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Abstract

Semiparametric models are useful in econometrics, social sciences and medicine applica-

tion. In this paper, a new estimator based on least square methods is proposed to estimate the

direction of unknown parameters in semi-parametric models. The proposed estimator is consis-

tent and has asymptotic distribution under mild conditions without the knowledge of the form

of link function. simulations show that the proposed estimator is significantly superior to max-

imum score estimator given by Manski (1975) for binary response variables. When the error

term is long-tailed distributions or distribution with no moments, the proposed estimator per-

form well. Its application is illustrated with data of exportibg participation of manufactures in

Guangdong

Key Words:Binary model, direction, least squares estimator, maximum score, semi-parametric

models, single index model.

1 Introduction

Considering the problem of estimating the regression model E(Y | X), where Y denotes response

variable, X is p-dimensional observable covariates. Model E(Y | X) has a significant applications

in economics, medicine, and other fields and the estimation of E(Y | X) is a key problem. While

nonparametric methods are flexible, the price is high: the estimation precision decreases rapidly

as p increasing and the estimating results can be hard to interpret when dimension of covariate X

is greater. So to avoids the curse of dimensionality for nonparametric model while still offering

flexibility in the functional form of E(Y | X), a natural way is to assume that E[Y | X] is a semi-

parametric model. A popular semiparametric model is given by

E[Y | X] = E[Y | X′β] = g(X
′
β), (1)

where β ∈ Rp and g : R → R , a unknown link function. When g(·) is known, the generalized

moment estimation method is used to estimate unknown parameters β. In this paper, here assume
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that the link function g(·) is unknown and estimate the direction of parameters β.

A special case of models (1) is the binary response model, i.e.,

Y = 1{X′β + ϵ > 0}, (2)

where ϵ is unobservable random variable. The unknown parameters can be estimated via maximum

likelihood methods when the conditional distribution of ϵ given X is known such as logistic Models

or Probit Models. When the conditional distribution of ϵ is unknow, Manski (1975) proposed the

maximum score estimator for binary response models with a conditional median restriction, i.e.,

med(ϵ | X) = 0, where med(ϵ | X) denotes the conditional median of ϵ given X. Base on result-

s given by Manski, Horowitz (1992) proposed the smoothed maximum score estimator, proved it

was asymptotically normally distributed under certain assumptions and the classical bootstrap was

applied to make inference. Abrevaya and Huang (2005) showed that the classical bootstrap was in-

consistent for the maximum estimator. Patra et al. (2018) proposed a model-based smooth bootstrap

process for making statistical inference on the maximum score estimator and proved its consistency.

Gao et al. (2022) proposed the two-stage maximum score estimator.

Another special form of model (1) is classical single index models

Y = g(X
′
β) + ϵ. (3)

There have mainly two kinds of techniques for estimation in single index models. One kind is M-

estimation methods, which is based on kernel estimator (Ichimura, 1993 ),regression splines (Park et

al., 2020), local-linear approximation (Zhou et al., 2019), penalized splines (Yu et al., 2002), and s-

moothing splines (Kuchibhotla and Patra, 2020) to estimate g(·), and minimize some appropriate cri-

terion function such as quadratic loss ( Yu and Ruppert, 2002), quantile regression (Wu et al., 2010),

estimating function method(Cuiet al., 2011), robust L1 loss (Zou and Zhu, 2014),, quasi-likelihood

(Wang and Guo, 2019), profiled likelihood (Patra et al., 2020) and modal regression (Yang et al.,

2020)to obtain β. The other kind is direct estimation methods such as maximum rank correlation

estimators (Han, 1987) average derivative estimators (Hristache et al., 2001), dimension reduction

techniques (Li and Racine, 2007), partial least squares (Naik and Tsai, 2000) and linearized maxi-

mum rank correlation estimators(Shen et al., 2022). Recently Kuchibhotla et al. (2021) introduced

a convex and Lipschitz constrained least-square estimator (CLSE) for both the parametric and the

nonparametric components given independent and identically distributed observations.
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models (1) contains the linear model and a least squares method is proposed to estimate the

direction of the parameter β in semiparametric models for the response variable being ontinuous or

discrete. The proposed method is computationally simple and theoretical reliable. Simulation results

shows that the proposed estimator is significantly superior to maximum score estimation for response

variables being discrete, and is comparable with linearized maximum rank correlation(LMRC) and

them maximum likelihood estimation methods for Probit Models. When the distribution of error

term is long-tailed distributions (i.e., Student t) and distributions with no existing moments (i.e.,

Cauchy), the proposed estimator and LMRC estimator perform better than standard estimator. When

the dimension of covariates is relatively high, the proposed method is still feasible. The proposed

estimation is superior to the linearized maximum rank correlation estimation with nonlinear models.

This paper is organized as follows. Estimators for the direction of the parameter β are considered

and their theoretical properties are presented in Section 2. A simulation study will be conducted, and

the results will be reported in Section 3. In Section 4, we apply our methodology to a real data set

that studies the influence of series exporting determined variables on the export-market participation

of specialized and transport facility manufactures in the province of Guangdong, China in 2006.

Conclusions and discussions will be discussed in Section 5. Proofs of lemma and theorems will be

presented in the Appendix

2 The Proposed estimator

Consider the samples (Yi,Xi)(i = 1, · · · , n) are observed from the following models

E[Yi | Xi] = E[Yi | XT
i β] = g(XT

i β), (4)

where g(·) is a unknown and monotonically increasing function function and β is a parameter in Rp..

In this paper, we mainly consider that the estimation of the direction of parameters β (β , 0), in

case of β = 0 which is simple. Because models (4) includes the linear model, so the estimator for

the direction of β in model (4) is obtained via the least squares method

D(β̂) =

Σ̂−1
X
×

n
∑

i=1

Yi(Xi − X̄)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Σ̂−1
X
×

n
∑

i=1

Yi(Xi − X̄)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5)
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where

Σ̂X =
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)
′
,

and X̄ is sample mean value of X. The least squares method can be used to estimate the direction

of unknown parameters β in semi-parametric model for the response variable being continuous or

discrete.

Under some regular conditions, the estimator of direction of β is consistent. The proof is given in

the Appendix.

Theorem 1. When X is distributed by the elliptical distributions with mean µ and covariance

Var(X) = Σ( positive definite) for Models (4) and E(g2(X
′
β)) < +∞, then

D(β̂)
P−→ β

∥β∥
.

When the mean of X is EX = 0, the direction of β can be given by

D∗(β̂) =

Σ̂−1
X
×

n
∑

i=1

YiXi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Σ̂−1
X
×

n
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YiXi
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∣

∣

∣

∣

∣

∣

, (6)

and the following theorem will give the asymptotic distribution of D∗(β̂).

Theorem 2. When X is distributed by the elliptical distributions with mean 0 and covariance

Var(X) = Σ( positive definite) for Models (4), E(g2(X
′
β)) < +∞ and E(X4

j
) < +∞ for j = 1, · · · , p,

then

√
n

(

D∗(β̂) − β
∥β∥

)

d−→ 1

∥β∥

{

λ−1Σ−1U − Σ−1V −

[

λ−1β
′
Σ−1U − β′Σ−1V

]

∥β∥2
β

}

where

λ = E(Yβ
′
Σ−1X)

and
(

U

V

)

∼ N

((

0

0

)

,Ω

)

, Ω = Var

(

YX

XX
′
β

)

.

Remark. D∗(β̂)− β is close to 0 with the increase of samples, therefor, D∗(β̂) is in the tangent plane

of β. Therefor, 1
∥β∥

{

λ−1Σ−1U − Σ−1V −
[

λ−1β
′
Σ−1U−β′Σ−1V

]

∥β∥2 β

}

is a degenerate normal distribution in

Rp−1.

Similar to Theorem 2, D(β̂) has the following results.
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Corollary 1. When X is distributed by the elliptical distributions with mean µ and covariance

Var(X) = Σ( positive definite) for Models (4), E(g2(X
′
β)) < +∞ and E(X4

j
) < +∞ for j = 1, · · · , p,

then

√
n

(

D(β̂) − β
∥β∥

)

d−→ 1

∥β∥

{

λ−1Σ−1U − Σ−1V − λ−1γΣ−1Z −

[

λ−1β
′
Σ−1U − β′Σ−1V − λ−1γβ

′
Σ−1Z

]

∥β∥2
β

}

where

λ = E(Yβ
′
Σ−1X), γ = EY

and
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3 Simulation studies

In this section, we conduct several simulation studies to evaluate the finite sample performance of

the proposed parameter direction estimator D(β̂) in section 2.

In the first simulation study, we assume that the response variable Y is discrete, and X is p = 3

dimensional covariates, i.e., X ∼ N(0,Σ = (σi j)), σi j = ρ
|i− j|, i, j = 1, · · · , p. We mainly consider

that the following data generation scenarios in models (4).

• Case I. Y = 1{X′β + ϵ > 0}, where ϵ ∼ N(0, 1) and β = (1, 1, 1).

• Case II. Y = 1{X′β + ϵ > 0}, where ϵ ∼ t(1) and β = (1, 1, 1).

• Case III. Y = 1{X′β + ϵ > 0}, where ϵ ∼ 0.4 ∗ N(−3, 1) + 0.6 ∗ N(2, 2) and β = (1, 1, 1).

When the distributions of error term ϵ is unknown and a conditional median restriction, Mans-

ki(1975) proposed the maximum score (MS) estimator for the parameter β. Shen et al. (2022)

proposed the linearized maximum rank correlation (LMRC) estimator. Here, we compared the pro-

posed estimator with MS estimators, LMRC estimator and the standard method (probit regression)

estimator. The angle between the true direction of the parameter β and the estimation of the direction

D(β̂) is cos = β ∗ D(β̂)/(∥β∥ ∗ ∥D(β̂)∥). We obtain that cos and standard error (SE) of estimators of

β for different distributions of ϵ with sample sizes equal to 100, 300 and 500 for Case I-III. The

results based on 100 repetitions are reported in Table (1)-(3). From Table (1)-(3), we find that as the

sample size increases, all SE for cos decrease and the values of cos is closer to 1, which is consistent
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Table 1: The SE and cos value of proposed estimators with β with sample size n=100, 300, 500

based on 100 repetitions for Case I.

n ρ New MS LMRC Standard
cos SE cos SE cos SE cos SE

100

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9601
0.9896
0.9890
0.9883
0.9805
0.9647
0.8543

0.0715
0.0132
0.0121
0.0114
0.0199
0.0322
0.1028

0.8919
0.9672
0.9704
0.9627
0.9623
0.9356
0.7900

0.1726
0.0411
0.0321
0.0344
0.0399
0.0679
0.1461

0.9605
0.9893
0.9887
0.9880
0.9802
0.9634
0.8623

0.0696
0.0135
0.0125
0.0118
0.0204
0.0331
0.0972

0.9637
0.9904
0.9887
0.9888
0.9834
0.9634
0.8924

0.0619
0.0127
0.0109
0.0129
0.1594
0.0257
0.0879

300

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9902
0.9969
0.9973
0.9965
0.9923
0.9850
0.9522

0.0129
0.0034
0.0027
0.0031
0.0092
0.0178
0.0486

0.9582
0.9866
0.9897
0.9866
0.9732
0.9591
0.8815

0.0702
0.0139
0.0103
0.0122
0.0250
0.0392
0.0918

0.9901
0.9970
0.9973
0.9964
0.9921
0.9847
0.9522

0.0128
0.0035
0.0027
0.0030
0.0095
0.0180
0.0488

0.9901
0.9971
0.9975
0.9971
0.9941
0.9891
0.9616

0.0148
0.0034
0.0026
0.0023
0.0069
0.0124
0.0390

500

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9946
0.9963
0.9920
0.9978
0.9986
0.9850
0.9634

0.0072
0.0041
0.0094
0.0181
0.0015
0.0014
0.0331

0.9620
0.9865
0.9728
0.9894
0.9909
0.9923
0.9093

0.0738
0.0129
0.0303
0.0109
0.0081
0.0090
0.0789

0.9945
0.9962
0.9919
0.9978
0.9986
0.9985
0.9640

0.0073
0.0042
0.0093
0.0020
0.0015
0.0013
0.0336

0.9948
0.9969
0.9936
0.9982
0.9987
0.9986
0.9744

0.0075
0.0034
0.0074
0.0020
0.0014
0.0014
0.0389

with Theorem 1. Besides, we observe that the proposed estimator is significantly better than MS

estimator in terms of the values of cos and SE. The proposed estimator and LMRC estimator are

comparable, the cos value and SE obtained by the proposed method and LMRC method are almost

the same for the sample size is large enough. When the distribution of error term is long-tailed

distribution (i.e., Student t) and distribution with no moments (i.e., Cauchy), the proposed estimator

and LMRC estimator perform better than standard estimator.

A main drawback of the maximum score estimator is its computational difficulty, because the ob-

jective function of optimization is non-convex and non-smooth, which makes it a difficult task to find

the global optimal solution. In addition, the calculation difficulty is more serious with the dimension

of X being larger (Khan et al., 2021). To consider the influence of the increase in the dimension

of covariates on the estimation results, we consider the following data generation scenarios, i.e.,

X ∼ N(0,Σ = (σi j)), σi j = ρ
|i− j|, i, j = 1, · · · , p. Y = 1{XTβ + ϵ > 0}, where p = 10, 15, ϵ ∼ N(0, 1)

and β = 1p. Compared the proposed method with the LMRC method and standard method with the

dimension of X is relatively large. Simulation results are listed in Table (4) with n=500 and 100

repetitions for two different p values. Results show that our proposed method is still feasible when

the dimension of X is relatively high, e.g., p = 10, 15. The proposed estimator is comparable with
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Table 2: The SE and cos value of proposed estimators with β with sample size n=100, 300, 500

based on 100 repetitions for Case II.

n ρ New MS LMRC Standard
cos SE cos SE cos SE cos SE

100

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.8926
0.9748
0.9792
0.9732
0.9572
0.9228
0.7582

0.1967
0.0333
0.0216
0.0292
0.0392
0.0671
0.1570

0.8467
0.9482
0.9662
0.9498
0.9267
0.8749
0.7713

0.2595
0.0842
0.0299
0.0657
0.0615
0.1071
0.1721

0.8839
0.9734
0.9790
0.9731
0.9579
0.9243
0.7555

0.2108
0.0366
0.0220
0.0293
0.0383
0.0649
0.1524

0.8921
0.9743
0.9791
0.9734
0.9563
0.9225
0.7569

0.1992
0.0352
0.0233
0.0285
0.0393
0.0642
0.1552

300

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9815
0.9941
0.9938
0.9932
0.9878
0.9755
0.8875

0.0225
0.0069
0.0060
0.0076
0.0124
0.0271
0.0968

0.9021
0.9792
0.9835
0.9750
0.9656
0.9464
0.8420

0.1990
0.0284
0.0166
0.0231
0.0359
0.0497
0.1126

0.9810
0.9941
0.9938
0.9931
0.9881
0.9759
0.8883

0.0232
0.0072
0.0060
0.0075
0.0118
0.0258
0.0970

0.9810
0.9941
0.9937
0.9927
0.9872
0.9739
0.8847

0.0239
0.0071
0.0062
0.0080
0.0130
0.0288
0.0980

500

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9848
0.9957
0.9964
0.9965
0.9911
0.9817
0.9229

0.0176
0.0048
0.0037
0.0039
0.0087
0.0178
0.0734

0.9650
0.9834
0.9909
0.9845
0.9752
0.9601
0.8851

0.0649
0.0193
0.0079
0.0131
0.0254
0.0373
0.0988

0.9847
0.9957
0.9963
0.9965
0.9911
0.9817
0.9230

0.0177
0.0047
0.0037
0.0039
0.0087
0.0177
0.0734

0.9842
0.9955
0.9962
0.9969
0.9906
0.9807
0.9205

0.0186
0.0051
0.0041
0.0032
0.0095
0.0191
0.0764

Table 3: The SE and cos value of proposed estimators with β with sample size n=100, 300, 500

based on 100 repetitions for Case III.

n ρ New MS LMRC Standard
cos SE cos SE cos SE cos SE

100

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9773
0.9934
0.9929
0.9906
0.9840
0.9649
0.8800

0.0289
0.0071
0.0072
0.0089
0.0169
0.0338
0.1035

0.8837
0.9819
0.9850
0.9785
0.9650
0.9388
0.8320

0.2288
0.0165
0.0156
0.0222
0.0355
0.0572
0.1176

0.9786
0.9935
0.9928
0.9905
0.9837
0.9649
0.8828

0.0275
0.0072
0.0075
0.0093
0.0172
0.0326
0.1017

0.9793
0.9944
0.9945
0.9930
0.9880
0.9761
0.9103

0.0287
0.0066
0.0061
0.0097
0.0121
0.0217
0.0806

300

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9938
0.9981
0.9982
0.9975
0.9946
0.9889
0.9496

0.0060
0.0018
0.0019
0.0023
0.0050
0.0123
0.0495

0.9747
0.9919
0.9928
0.9908
0.9854
0.9700
0.9119

0.0342
0.0083
0.0094
0.0093
0.0144
0.0260
0.0695

0.9936
0.9981
0.9982
0.9974
0.9945
0.9885
0.9495

0.0064
0.0018
0.0019
0.0024
0.0050
0.0123
0.0502

0.9943
0.9982
0.9984
0.9983
0.9966
0.9931
0.9670

0.0060
0.0019
0.0016
0.0017
0.0027
0.0076
0.0314

500

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9963
0.9991
0.9989
0.9985
0.9970
0.9931
0.9653

0.0048
0.0011
0.0009
0.0016
0.0029
0.0072
0.0337

0.9797
0.9945
0.9945
0.9929
0.9894
0.9800
0.9325

0.0208
0.0058
0.0056
0.0064
0.0130
0.0197
0.0554

0.9962
0.9991
0.9989
0.9983
0.9970
0.9932
0.9662

0.0048
0.0011
0.0009
0.0016
0.0029
0.0070
0.0339

0.9965
0.9990
0.9990
0.9988
0.9982
0.9963
0.9829

0.0042
0.0011
0.0009
0.0013
0.0018
0.0040
0.0181
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Table 4: The SE and cos value of proposed estimators with β with sample size n=500 based on 100

repetitions for different dimensions of X .

Dimension ρ New LMRC Standard
cos SE cos SE cos SE

10

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9708
0.9862
0.9889
0.9865
0.9757
0.9396
0.6999

0.0202
0.0070
0.0058
0.0064
0.0122
0.0283
0.0964

0.9709
0.9862
0.9889
0.9864
0.9757
0.9394
0.6983

0.0195
0.0071
0.0059
0.0065
0.0120
0.0290
0.0967

0.9703
0.9858
0.9886
0.9857
0.9759
0.9417
0.7048

0.0205
0.0071
0.0057
0.0069
0.0127
0.0290
0.1026

15

-0.9
-0.6
-0.3

0
0.3
0.6
0.9

0.9569
0.9828
0.9852
0.9804
0.9661
0.9133
0.5758

0.0205
0.0080
0.0066
0.0085
0.0152
0.0341
0.0893

0.9568
0.9829
0.9852
0.9802
0.9661
0.9133
0.5745

0.0201
0.0077
0.0066
0.0087
0.0152
0.0333
0.0900

0.9560
0.9818
0.9846
0.9799
0.9648
0.9113
0.5851

0.0211
0.0085
0.0072
0.0085
0.0158
0.0386
0.0941

LMRC estimator, and performs better than standard estimator.

Finally, we assume that the response variable Y is continuous and X ∼ N(0,Σ = (σi j)), σi j = ρ
|i− j|,

i, j = 1, · · · , p = 3. and following data generation scenarios are considered.

• Case 1. Y = X
′
β + ϵ, where ϵ ∼ t(1) and β = (1, 1, 1).

• Case 2. Y = Φ(X
′
β) + ϵ, where ϵ ∼ N(0, 1) and β = (1, 1, 1).

• Case 3. Y = log(1 + exp(X
′
β)) + ϵ, where ϵ ∼ N(0, 1) and β = (1, 1, 1).

• Case 4. Y = 1

1+exp(−50∗X′β) + ϵ, where ϵ ∼ N(0, 1) and β = (1, 1, 1).

We compare the proposed estimator with LMRC estimator. The SE and cos value of proposed

estimators with β for different values of ρ with different distributions of ϵ and simple size n=100,

300, 500 based on 100 repetitions are reported in Table (5). From Table (5), we observe that as

the sample size increases, all SE for cos decrease and the values of cos is closer to 1. Although

the proposed estimator is slightly inferior to LMRC estimator When the model is lineal model, the

proposed estimator performs better than LMRC estimator when the model is nonlinear.

4 Real data

In this section, we apply our proposed methodology to a real dataset that studies the influence of

series exporting determined variables on the export-market participation of specialized and transport

8



Table 5: The SE and cos value of proposed estimators with β with sample size n=100, 300, 500

based on 100 repetitions for Case 1-4.

n ρ Case 1 Case 2 Case 3 Case 4
cos SE cos SE cos SE cos SE

-0.3
New

LMRC
0.9958

0.99575
0.0048
0.0052

0.9307
0.9249

0.0832
0.0882

0.9840
0.9826

0.0167
0.0195

0.9544
0.9515

0.0528
0.0569

100 0
New

LMRC
0.9949
0.9952

0.0050
0.0046

0.8998
0.8937

0.0970
0.1039

0.9795
0.9792

0.0184
0.0196

0.9220
0.9189

0.0762
0.0806

0.3
New

LMRC
0.9940
0.9944

0.0058
0.0051

0.8543
0.8439

0.1377
0.1491

0.9716
0.9724

0.0270
0.0298

0.8710
0.8648

0.1205
0.1268

-0.3
New

LMRC
0.9989
0.9990

0.0010
0.0010

0.9831
0.9829

0.0166
0.0174

0.9957
0.9959

0.0042
0.0040

0.9880
0.9883

0.0120
0.0123

300 0
New

LMRC
0.9988
0.9987

0.0012
0.0014

0.9744
0.9729

0.0257
0.0267

0.9944
0.9943

0.0065
0.0065

0.9796
0.9791

0.0215
0.0221

0.3
New

LMRC
0.9982
0.9983

0.0020
0.0016

0.9559
0.9556

0.0429
0.0450

0.9910
0.9914

0.0082
0.0086

0.9630
0.9636

0.0372
0.0374

-0.3
New

LMRC
0.9993
0.9993

0.0007
0.0007

0.9883
0.9881

0.0139
0.0134

0.9970
0.9970

0.0029
0.0031

0.9918
0.9920

0.0090
0.0087

500 0
New

LMRC
0.9914
0.9918

0.0010
0.0009

0.9815
0.9808

0.0242
0.0243

0.9962
0.9963

0.0044
0.0042

0.9858
0.9855

0.0179
0.0177

0.3
New

LMRC
0.9987
0.9987

0.0019
0.0016

0.9670
0.9672

0.0426
0.0430

0.9950
0.9950

0.0054
0.0070

0.9721
0.9729

0.0366
0.0360

facility manufactures in the province of Guangdong, China in 2006 (Baltagi et al. 2022). The data

is available on the National Bureau of Statistics of China (NBS).

In the subsequent analyses, the variables we mainly consider include expd-ford (=1 if the compa-

ny is an exporter; 0 otherwise), lemp (log firm sizes), lprod (log output per worker), lcapint (capital

divided by total sales), intastr (intangible assets over total assets), cmp (log sales over operating

profits), cmp2 (Square of cmp), ltastx (Fixed export costs), and sez (=1 if the firm is located in the

Special Economic Zone; =0 otherwise). Finally, we obtained that a total of 1614 companies with

total annual sales of at least 5 mn. RMB (about 700,000 US dollars) in 2006. As mentioned in Khan

et al. (2021), the maximum score method was extremely difficult to calculate for the dimension of

the covariate being large. There are a total of 8 covariates in this analysis, therefore the maximum

score estimator is ignored here.

To illustrate our methodologies, we let the response variable (i.e., Y) be expd-ford and X includes

the remaining variables. The results estimated by the proposed method, LMRC method and standard

method are presented in Table (6). From Table (6), we can explain some economic hypotheses.

Obviously, a simple test T = β̂i/σ̂i, i, · · · , 8 suggests that lemp, lcapint, ltastx, sez have a significant

impact on response variable at a significance level of 0.05 for the proposed method. Large size of

firms where fixed costs are more important (through a higher capital intensity) tend to be more

9



Table 6: The influence of series exporting determined variables on the export-market participation

of specialized and transport facility manufactures based on various methods.

Parameter Proposed method Probit LMRC

lemp

lprod

lcapint

intastr

Cmp

Cmp2

ltastx

sez

0.7621(0.0911)

0.0236(0.0586)

0.1463(0.0592)

-0.0844(0.0456)

-0.1228(0.2357)

0.0846(0.2393)

-0.1766(0.0552)

0.5802(0.1081)

0.8785(0.1210)

0.0231(0.0677)

0.1796(0.0703)

-0.0960(0.0524)

-0.2154(0.3172)

0.1478(0.3494)

-0.1981(0.0641)

0.2806(0.0623)

0.8934(0.0885)

0.0187(0.0668)

0.1957(0.0671)

-0.1032(0.0514)

-0.2823(0.2461)

0.1878(0.2540)

-0.1925(0.0601)

0.0228(0.0364)

likely to export. Higher the Fixed export costs is, lower the profitability of exporting will be, which

explain the decrease influence of export. Compared with the LMRC, the proposed method finds that

sez is a new influencing factors on response variables. Since the distance between firms and Special

Economic Zone should also affect the exporting, the binary variable do have a significant influence,

hence our proposed method is more reasonable.

5 Conclusion and discussion

In this paper, we consider that the estimation of unknown parameter direction in semi-parametric

models for response variables, which can be continuous or discrete. The least square method are

proposed to estimate the direction of unknown parameters in semi-parametric models. The pro-

posed estimator is computationally simple and has a closed-form expression. It is proved that the

proposed estimator is consistent and asymptotically normal. The proposed estimation is signifi-

cantly superior to the maximum score estimation for binary response variables, is comparable with

the linearized maximum rank correlation and the Probit estimation. When the distribution of error

term is long-tailed distributions (i.e., Student t) and distributions with no existing moments (i.e.,

Cauchy), the proposed estimator and LMRC estimator perform better than the Probit estimator. The

proposed estimation is superior to the linearized maximum rank correlation estimation for continu-

ous response variable with nonlinear models. Furthermore if one ise interested in the estimation of

the link function g(·), it can be directly estimated by non-parametric methods with E[Y | XT β̂].

In this paper, we mainly consider that the link function g(·) is monotonically increasing. The

estimator of unknown parameter direction can be obtained by a similar method when the link func-
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tion is monotonically decreasing, the direction estimation of unknown parameters is opposite to the

true direction of parameters. In practice, the observable covariates are high-dimensional for various

reasons. we extend the proposed method to handle parameter direction estimation for model (4)

with high-dimensional covariates. We can estimate the direction of parameters β via minimize the

following objective function

β̂n = arg min
∥β∥=1















1

n

n
∑

i=1

(Yi − c − X
′

iβ)
2 + P(β)















, (7)

where P(β) is the penalty function, e.g., lasso, SCAD. This research problem will be considered in

the future.

Appendix

Lemma A. When X is distributed by the elliptical distributions with mean 0 and covariance

Var(X) = Σ( positive definite) for Models (4), then

E(YX) = λΣβ,

where λ > 0.

Proof:

E(YX) = E[g(X
′
β)X] = E[(g(X

′
β) − g(0))X].

(I) in case β = 0, it is obviously proved. (II) in case β , 0 and Σ = σ2I. Let A be the orthogonal

matrix with the first row β/∥β∥ and

W =



































W1

W2

...

Wp



































= AX.

Then from definition of W, one has W1 = β
′
X/∥β∥ and

E(YX) = E[(g(X
′
β) − g(0))X] = A

′
E[(g(X

′
β) − g(0))AX] = A

′
E[(g(W1∥β∥) − g(0))W].

Since X is distributed by the elliptical distributions with mean 0 and variance Var(X) = σ2I, W =

AX is distributed by the elliptical distributions with mean 0 and variance σ2AA
′
= σ2I and then

E(Wi | W1) = 0, i = 2, · · · , p,
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by Theorem 6 given by Frahm (2004). So

E[(g(∥β∥W1) − g(0))Wi] = 0, i = 2, · · · , p,

E[(g(∥β∥W1) − g(0))W1] > 0

by g(·) is strictly increasing and

E(YX) =A
′
E[(g(∥β∥W1) − g(0))W]

=A
′



































E[(g(∥β∥W1) − g(0))W1]

0
...

0



































=
β

∥β∥
× E[(g(∥β∥W1) − g(0))W1]

=λσ2Iβ

=λΣβ,

where

λ =
E[(g(∥β∥W1) − g(0))W1]

σ2∥β∥
> 0.

(III) in general β , 0 and Var(X) = Σ. Let X∗ = Σ−1/2X and β∗ = Σ1/2β. Then X∗ is distributed

by the elliptical distributions with mean 0 and variance I. By Models (4), one has

E[Y | X] = E[Y | X∗] = g(X∗
′
β∗).

and so

E(YX) = Σ1/2E(YX∗) = Σ1/2 × λIβ∗ = λΣβ

by the case (II) and λ > 0.

Proof of Theorem 1: By the Law of Large Number, we have

1

n

n
∑

i=1

Yi(Xi − X̄) =
1

n

n
∑

i=1

Yi(Xi − µ) + (µ − X̄)Ȳ
p
−→ E(YX) = λΣβ.

According to the Lemma A and

Σ̂
p
−→ Σ.

Hence, we can obtain that

Σ̂−1
X ×

1

n

n
∑

i=1

Yi(Xi − X̄)
p
−−→ Σ−1 × λΣβ = λβ, λ > 0.
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that is

D(β̂) =

Σ̂−1
X
× 1

n

n
∑

i=1

Yi(Xi − X̄)

∥Σ̂−1
X
× 1

n

n
∑

i=1

Yi(Xi − X̄)∥

p
−−→ λβ

∥λβ∥
=
β

∥β∥
.

Therefor, the proposed estimator D(β̂) is consistent.

Proof of Theorem 2: Let

Un =
1

n

n
∑

i=1

YXi, Vn = Σ̂Xβ =
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)
′
β.

By Lemma A and the Central Limit Theorem, one know EUn = λΣβ and

√
n

(

Un − E[Un]

Vn − Σβ

)

=

(

Un − λΣβ
Vn − Σβ

)

d−→
(

U

V

)

∼ N

((

0

0

)

,Ω

)

, (8)

where

Ω = Var

(

YX

XX
′
β

)

.

According to the form of the proposed estimator, we have

D∗(β̂) =
Σ̂−1

X
Un

∥

∥

∥Σ̂−1
X

Un

∥

∥

∥

=
Σ̂−1

X
(Un − EUn) +

(

Σ̂−1
X

EUn − λβ
)

+ λβ
∥

∥

∥Σ̂−1
X

Un

∥

∥

∥

=
Σ̂−1

X
(Un − EUn) +

(

Σ̂−1
X

EUn − λβ
)

∥

∥

∥Σ̂−1
X

Un

∥

∥

∥

+
λβ

∥

∥

∥Σ̂−1
X

Un

∥

∥

∥

.

In order to obtain the asymptotic distribution of D∗(β̂) − β, we first require to prove the asymp-

totic distribution of
√

n(Un − EUn),
√

n
(

Σ̂−1
X

EUn − λβ
)

and
√

n

(

λβ

∥Σ̂−1
X

Un∥ −
β

∥β∥

)

. From (8), we

have
√

n(Un − EUn)
d−→ U ∼ N(0,Var(YX). Next, we will prove the asymptotic properties of

√
n
(

Σ̂−1
X

EUn − λβ
)

and
√

n

(

λβ

∥Σ̂−1
X

Un∥ −
β

∥β∥

)

respectively.

√
n
(

Σ̂−1
X E[Un] − λβ

)

=
√

n
(

Σ̂−1
X λΣβ − λβ

)

= λΣ̂−1
X

√
n
(

Σβ − Σ̂Xβ
)

= −λΣ̂−1
X

√
n(Vn − Σβ)

d−→ −λΣ−1V.

Let

Sn(Un,Σ
−1
X ) =

√
n















λβ
∥

∥

∥Σ̂−1
X

Un

∥

∥

∥

− β
∥β∥















=
√

n

























λ
√

U
′
nΣ̂
−2
X

Un

− 1

∥β∥

























β.
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and expand Sn(Un,Σ
−1
X

) at (λΣβ,Σ−1), we can obtain that

Sn(Un,Σ
−1
X ) =

√
n
[

−λ−1β
′
Σ−1(Un − EUn) − β′ΣΣ−1(Σ̂−1

X − Σ
−1)Σβ + op(n−1/2)

] β

∥β∥3

=
√

n
[

−λ−1β
′
Σ−1(Un − EUn) − β′(Σ̂−1

X − Σ
−1)Σβ + op(n−1/2)

] β

∥β∥3

=
√

n
[

−λ−1β
′
Σ−1(Un − EUn) − β′ Σ̂−1

X (Σ − Σ̂X)β + op(n−1/2)
] β

∥β∥3

=
√

n
[

−λ−1β
′
Σ−1(Un − EUn) − β′Σ−1

n (Σβ − Vn) + op(n−1/2)
] β

∥β∥3

d−→ −
[

λ−1β
′
Σ−1U − β′Σ−1V

] β

∥β∥3
.

Therefore,

√
n

(

D∗(β̂) − β
∥β∥

)

=
Σ̂X

∥Σ̂XUn∥
√

n(Un − E[Un]) +
1

∥Σ̂XUn∥
√

n(
(

Σ̂−1
X E[Un] − λβ

)

) +
√

n















λβ
∣

∣

∣Σ̂−1
X

Un

∣

∣

∣

− β
∥β∥















d−→ 1

∥β∥

{

λ−1Σ−1U − Σ−1V −

[

λ−1β
′
Σ−1U − β′Σ−1V

]

∥β∥2
β

}

,

where

λ = E(Yβ
′
Σ−1X),

(

U

V

)

∼ N

((

0

0

)

,Ω

)

, Ω = Var

(

YX

XX
′
β

)

.
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