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“... the probabilistically surest empirical repre-

sentation of first order... LRE models and of

DSGE ones in particular is not merely a linear

combination of non-minimal states in principle,

whenever not equal to zero, but no more than a

pseudo-variance shifted vector of white noises

for which no kind of forecast analysis is at all

conceivable.”

Abstract

Does there exist a systematic manner to derive a finite vector autoregression (VAR) representation
for any minimal transition equation? While the good news be that any transition equation of a minimal
linear time invariant (LTI) state space representation in discrete time admits a VAR representation
of finite order of the non-minimal states in the (minimal) measurement equation’s outputs, the bad
news are that such a representation, on account of the procedure underlying its derivation, is both the
probabilistically surest and empirically useless, ranging from linear combinations of non-minimal states in
principle, equal to shifted white noises, to output nullity, thereby presenting negative repercussions with
particular regard to first order linear rational expectations (LRE) models of optimising representative
agents.
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MSC codes: 91B51; 93B20.
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1. Introduction

This work’s methodological contribution is the presentation of a systematic manner to derive a finite
VAR representation for any minimal transition equation in discrete time. This work’s notional contribution
is nevertheless the clarification that such a representation, on account of the procedure underlying its
derivation, is both the probabilistically surest and empirically useless, ranging from linear combinations of
non-minimal states in principle, equal to shifted white noises, to output nullity, thereby presenting negative
repercussions with particular regard to first order LRE models and dynamic stochastic general equilibrium
(DSGE) models.

Sections 2 and 3 introduce state space and VAR representations as well as minimality. Findings are
adduced in section 4. Section 5 offers applications. Section 6 concludes.

2. State space and VAR representations
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Consider an LTI state space representation in discrete time, in which xt is a vector of states (i.e.
endogenous variables), ut is a vector of inputs or controls (i.e. exogenous shocks) and yt is a vector of
outputs or observables:

xt = Axt−1 + But

yt = Cxt−1 + Dut,

∀t ∈ Z, xt ∈ R
nx , ut ∈ R

nu , yt ∈ R
ny , A ∈ R

nx×nx , B ∈ R
nx×nu , M ∈ R

ny×nx , C ∈ R
ny×nx and

D ∈ R
ny×nu , observing that Mxt = MAxt−1 + MBut ←→ yt = Cxt−1 + Dut.

The first equation is termed the transition or state equation, M is termed the measurement or observation
matrix, which is normally a selector matrix (i.e. of all zeros and a single one per row), and the second
equation is termed the measurement or observation equation.

Let D be invertible and therefore square: D−1 such that ny = nu ≤ nx ∈ N+, (i) either adding ny − nu

measurement errors to ut or dropping ny−nu from yt whenever ny > nu and (ii) dropping inputs whenever
ny < nu. Solve then for ut in the measurement equation and plug it into the transition equation:

yt = Cxt−1 + Dut −→

−→ ut = D−1 (yt − Cxt−1) −→

−→ xt = Axt−1 + BD−1 (yt − Cxt−1) −→

−→ xt =
(

A−BD−1C
)

xt−1 + BD−1yt = Fxt−1 + BD−1yt,

observing that matrix F = A−BD−1C. Solve equation xt = Fxt−1 + BD−1yt backwards and plug it
therefrom into the measurement equation:

xt = Fxt−1 + BD−1yt −→

−→ (I − FL) xt = BD−1yt −→

−→ xt = (I − FL)
−1

BD−1yt −→

−→ xt =

∞
∑

j=0

F jLjBD−1yt −→

−→ xt =
∞

∑

j=0

F jBD−1yt−j −→

−→ yt = Cxt−1 + Dut = C

∞
∑

j=0

F jBD−1yt−j−1 + Dut,

in which operator L = x−1
t xt−1. Observe that equation xt =

∑∞

j=0 F jBD−1yt−j is causal and that

matrix (I − FL)
−1

=
∑∞

j=0 F jLj if and only if F ’s characteristic polynomial eigenvalues are less than one
in modulus (i.e. F is stable), that is, F ’s elements are square summable (i.e. F ’s trace is finite).

Formally: xt =
∑∞

j=0 F jBD−1yt−j is causal and (I − FL)
−1

=
∑∞

j=0 F jLj ←→ I =

(I − FL)
∑∞

j=0 F jLj if and only if |λF (λ)| < 1 for F (λ) = F − λI in det [F (λ)] = 0, that is,

tr
(

FF ⊤
)

=
∑nx

i, j=1 fijf⊤
ji =

∑nx

i, j=1 f2
ij <∞.

3. VAR representations and minimality

Accordingly, Fernández-Villaverde et al. [5] prove that equation yt = C
∑∞

j=0 F jBD−1yt−j−1 + Dut

is a vector autoregression of infinite order V AR (∞) for ut ∼ N
(

0, Σ2
u

)

and thereby fundamental if F is
stable, terming it the poor man’s invertibility condition (PMIC). In other words, if F ’s trace is finite there
then exists a V AR (∞) of xt in yt.
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Ravenna [13] and Franchi and Vidotto [8] prove that if F ’s characteristic polynomial eigenvalues are
zero (i.e. F is nilpotent) there then exists a vector autoregression of finite order V AR (k) for k ∈ N+ of xt

in yt : yt = C
∑k

j=0 F jBD−1yt−j−1 + Dut if and only if λF (λ) = 0.

Franchi [6] and Franchi and Paruolo [7] observe that F ’s stability is merely sufficient, but unnecessary,
for a V AR (∞) of xt in yt, unlike the stability of a minimal F, being sufficient and necessary thereby: Fm

is stable if and only if there exists V AR (∞) of xt in yt, which one terms the minimal poor man’s minimal
invertibility condition (mPMIC) hereby. The reason is that while a stable F may not originate a V AR (∞)
of xt in yt a stable Fm could.

Crucially, Franchi [6] and Franchi and Paruolo [7] observe that in minimal LTI state space representations
the impulse response functions (IRFs) of the transition equation and the coefficients of the VAR and moving
average (MA) representations of xt in yt are invariant: ∀j ∈ N+, CAjB = CmAj

mBm 6= 0, from

xt = Axt−1 + But −→

−→ (I −AL) xt = But −→

−→ xt = (I −AL)
−1

But −→

−→ xt =
∞

∑

j=0

AjLjBut −→

−→ xt =

∞
∑

j=0

AjBut−j −→

−→ yt = Cxt−1 + Dut = C

∞
∑

j=0

AjBut−j + Dut

if and only if |λA(λ)| R 1 for A (λ) = A − λI in det [A (λ)] = 0, and CF jB = CmF j
mBm 6= 0, from

yt = Cm

∑∞

j=0 F j
mBmD−1yt−j−1 + Dut.

LTI state space representations are minimal if and only if rank nx = rC = rO for controllability matrix

C =
[

B · · · Anx−1B
]

and observability matrix O =
[

C · · · CAnx−1
]⊤

. Non-minimal representations can
be reduced to minimal ones by the Kalman decomposition, practically deployed by means of the three
following steps.

Step 1. Construct C =
[

B · · · Anx−1B
]

and O =
[

C · · · CAnx−1
]⊤

.

Step 2. If nx = rC then the representation is controllable: x̄ct, Āc, B̄c, C̄c, C̄c and Ōc; go to Step 3. If
nx > rC then construct similarity transformation matrix T = [CrC

vnx−rC
] such that x̄cc̄t = T −1xt, Ācc̄ =

T −1AT , B̄cc̄ = T −1B, C̄cc̄ = CT , C̄cc̄ = T −1C and Ōcc̄ = OT . The representation is controllable in the
first rC states: x̄ct, Āc, B̄c, C̄c, C̄c and Ōc; go to Step 3.

Step 3. If nx̄c
= r

Ōc
then the representation is controllable and observable (i.e. minimal): x̄cot =

xmt, Āco = Am, B̄co = Bm, C̄co = Cm, C̄co = Cm and Ōco = Om. If nx̄c
> r

Ōc
then construct similarity

transformation matrix T =
[

ŌcrŌc
vnx̄c −rŌc

]⊤

such that x̄coōt = T −1x̄ct, Ācoō = T −1ĀcT , B̄coō =

T −1B̄c, C̄coō = C̄cT , C̄coō = T −1C̄c and Ōcoō = ŌcT . The representation is controllable and observable (i.e.
minimal) in the first r

Ōc
states: x̄cot = xmt, Āco = Am, B̄co = Bm, C̄co = Cm, C̄co = Cm and Ōco = Om.

Observe that the reduction of the LTI state space representation to observability before controllability,
whenever applicable, does not substantially alter the algorithm: the order of reduction is accidental. All
else equal, a minimal LTI state space representation in discrete time is thus the following:

xmt = Amxmt−1 + Bmut

yt = Cmxmt−1 + Dut,
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∀xmt ∈ R
nxm , Am ∈ R

nxm ×nxm , Bm ∈ R
nxm ×nu and Cm ∈ R

ny×nxm , whereby nxm
= rCm

= rOm
.

4. V AR (k) representation ubiquity

4.1 C = 0. Consider the case of dimension ny = nu ≤ nx ∈ N+ and C = 0. It follows that nx > rO =

O =
[

C · · · CAnx−1
]⊤

= 0. Consequently, the minimal LTI state space representation is:

0

yt = Dut,

whereby nxm
= rCm

= rOm
= 0, so that xmt = Am−BmD−1Cm = Fm = λFm(λ) = 0. Such signifies that

there exists a V AR (k) representation of xt in yt, being precisely yt = Dut. Observe the non-necessity of F ’s
stability for a VAR representation of xt in yt : F = A−BD−1C = A and |λA(λ)| R 1 for A (λ) = A− λI

in det [A (λ)] = 0.

The central question then is: can C = 0 be categorically guaranteed? Does there exist a systematic
manner to obtain C = 0 to the end of deriving a finite VAR representation for any minimal transition
equation? Even though the answer be a yes its content is not as appealing as it may sound.

4.2 Transpose kernel of A⊤. Provided the existence of a non-trivial kernel or null space of A⊤ to
begin with, one can systematically obtain C = 0 by choosing an M 6= 0 such that MA = C = 0 in which
the non-trivial rows of M differ and are orthogonal to all columns of A, thereby belonging to the transpose
kernel of A⊤ : ∀h = 1, . . . , ny, i = 1, . . . , nx, j = 1, . . . , nx and k = 1, . . . , nx, mhiajk 6= m¬hiajk = 0,

in which 0 6= M ∈ ker⊤
(

A⊤
)

=
{

v⊤ ∈ R
ny×nx : v⊤A = 0

}

and ker
(

A⊤
)

=
{

v ∈ R
nx×ny : A⊤v = 0

}

,

since A⊤v = 0 ∈ R
nx×ny −→

(

A⊤v
)⊤

= v⊤A = 0⊤ = 0 ∈ R
ny×nx , observing that M = v⊤ whenever

v⊤ 6= 0.

Basis ny of the non-trivial kernel of A⊤, v⊤ 6= 0, could certainly exceed one. If such a basis does not
exceed one then M is not a matrix, but a non-trivial row vector, and selects one state at best, that is,
ny = 1 for 0 6= M = v⊤ ∈ R

1×nx , implying nu = 1 and thereby restricting the input potential of both the
finite VAR representation and the underlying structural model.

The reason for which M would thereby be a non-trivial row vector, rather than a matrix, is not so
much due to its equation with the non-trivial transpose kernel of A⊤, v⊤ 6= 0, as that its artificial rows
would otherwise be identical and thereby give rise to a V AR (k) of xt in yt by the identical variables, that
is, to a yt vector by the identical entries.

4.3 nu = 1 restriction. The nu = 1 restriction of the input potential of both the finite VAR
representation and the underlying structural model is noticeable. Constraining empirical VARs to the
presentation of one exogenous shock alone effectively signifies renouncing to no less than the computation
of IRFs and forecast error variance decomposition (FEVDs) in relation to variations in more than one
endogenous variable, but the presence of one exogenous shock alone stems precisely from that of one
endogenous variable (i.e. a single state at best).

In the underlying structural models, such as DSGE models, for instance, nu = 1 would similarly require
the presence of one sole exogenous shock. At first order approximations both the methodological loss and
the notional loss could nonetheless be negligible: at a methodological level if the variances proper to more
than one exogenous shock, relative its own process, were normalised to the same value then there would
effectively exist one sole exogenous shock all the same, irrespective of the shape of the exogenous shock
vector’s matrix; at a notional level a sole exogenous shock driving variations in more than one process
reflects the idea of a single, underlying unexpected variation.

4.4 Vector moving average of order zero [VMA (0)] . The minimal LTI state space representation
originating from the exploitation of the non-trivial transpose kernel of A⊤, v⊤ 6= 0, is therefore that shown
above, that is, 0 and yt = Dut, for which λFm(λ) = 0.

Such signifies that by said construction of C = 0 there categorically exists an accompanying V AR (k)
of xt in yt, being none other than yt = Dut and in fact admitting an AR (k) as well, owing to the fact that
the non-trivial transpose kernel of A⊤, v⊤ 6= 0, could be a row vector.
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To be even more precise, yt = Dut is not even a V AR (k) , but a V MA (0) , that is, a D pseudo-variance
shifted vector of white noises: yt = Dut, in which ut ∼ N

(

0, Σ2
u

)

, in which Σu 6= D = MB and Σu need
not equal B.

Moreover, the non-trivial transpose kernel of A⊤, v⊤ 6= 0, is not necessarily a selector matrix, being
composed of all zeros and a single one per row, but effectively depends on A’s elements; because of such a
dependence, in fact, it almost never is, arising from linear structural models whose coefficients, even after
the Gauss Jordan elimination required for the kernel of A⊤’s computation, render it more elaborate.

As alluded to, it could even result that a non-trivial transpose kernel of A⊤, v⊤ 6= 0, may not exist,
that is, it could even result that the transpose kernel of A⊤ be no more than trivial, A⊤ and A being
thereby invertible, whereby M = v⊤ = ker⊤

(

A⊤
)

= 0, so that M = 0 and Mxt = yt = 0, being there no
outputs at all.

If the non-trivial transpose kernel of A⊤, v⊤ 6= 0, is not a selector matrix then the empirical interpretation
of the accompanying V MA (0) of xt in yt is such that IRFs and other forecasting tools, as moments and
FEVDs, concern not single non-minimal states, but effective linear combinations thereof (e.g. −2x1t + x2t

for ny = 1 as in Example 5.1 below), losses in forecasting expedience being therefore substantial.
Indeed, if the basis of the non-trivial kernel of A⊤, v⊤ 6= 0, exceeded one such that M were not a

selector matrix then the accompanying V AR (k) representation of xt in yt would emerge as even more
convoluted than if said basis equalled one.

Regardless of whether one were able to systematically restrict the computation of the non-trivial
transpose kernel of A⊤, v⊤ 6= 0, to single non-minimal states, M being a selector matrix thereby, provided
a multiple basis of the transpose kernel of A⊤ to start with, a linear combination of non-minimal states in
principle emerges as a categorical V AR (k) representation of xt in yt, as well as the probabilistically surest.

4.5 VMA (0) sterility. Observe that for xmt = 0 the IRFs of the transition equation and the
coefficients of the VAR and MA representations of xt in yt clearly differ from their non-minimal ones:
∀j ∈ N+, CAjB 6= CmAj

mBm = 0 and CF jB 6= CmF j
mBm = 0.

Such is not anomalous, however, for the minimal states are zero such that no analysis can be conducted
in terms of outputs, that is, no empirical forecasting is possible by definition, be it the computation of IRFs
or FEVDs, be it that of moments, be it the recovery of exogenous shocks. Otherwise stated, the nullity
of minimal states does not invalidate the ubiquity of a VAR representation of xt in yt, but reinforces its
inexpedience.

Such an inexpedience precisely consists in V MA (0) representation yt = Dut’s methodological sterility,
which consistently confirms that a linear combination of non-minimal states yt in principle is tantamount
to a pseudo-variance shifted vector of white noises Dut.

On further reflexion, although, said sterility can be discerned as being effectively insightful, for it does
not merely reveal that in empirical terms the underlying structural model (first order DSGE, LRE etc.) is
represented at best as a convolution but that such a maximal convolution is itself represented as exogenous
shocks and no more, whereby no empirical analysis is in principle possible and whereby the determination
of said convolution in principle on the part of exogenous shocks is not merely ultimate but frontal as well.

The last phrase is to mean that exogenous shocks are not merely recovered by means of a finite VAR
but through a VMA of order zero, that is, they are recovered almost directly as observables. Otherwise
stated, the exogenous shocks of the underlying structural model are the shifted observables themselves.

In sum, while the good news be that any transition equation of a minimal LTI state space representation
in discrete time admits a VAR representation of finite order of the non-minimal states in the (minimal)
measurement equation’s outputs, the bad news are that such a representation, on account of the procedure
underlying its derivation, is both the probabilistically surest and empirically useless, ranging from material
inutility (i.e. linear combinations of non-minimal states in principle, equal to shifted white noises) to formal
inutility (i.e. output nullity). They are also formally adduced by means of the following two propositions.

Proposition 4.6 (Empirical representation ubiquity) For any minimal transition equation in discrete
time there exists a V MA (0) representation of the non-minimal states in the (minimal) measurement
equation’s outputs (i.e. equal to a pseudo-variance shifted vector of white noises). Additionally, if the
minimal transition equation’s companion matrix is invertible then said representation equals zero. Formally:
∀ut ∼ N

(

0, Σ2
u

)

,
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∀xmt = Amxmt−1 + Bmut, ∃yt = Dut;

∃A−1 −→ yt = 0.

Proof. Consider an LTI state space representation in discrete time: xt = Axt−1 + But and yt =
Cxt−1 + Dut, ceteris paribus. For any A choose an M such that MA = C = 0 in which the rows of M

differ and are orthogonal to all columns of A; in other words, choose an M equal to the transpose kernel
of A⊤ : ∀h = 1, . . . , ny, i = 1, . . . , nx, j = 1, . . . , nx and k = 1, . . . , nx, mhiajk 6= m¬hiajk = 0,

in which M = ker⊤
(

A⊤
)

=
{

v⊤ ∈ R
ny×nx : v⊤A = 0

}

and ker
(

A⊤
)

=
{

v ∈ R
nx×ny : A⊤v = 0

}

, since

A⊤v = 0 ∈ R
nx×ny −→

(

A⊤v
)⊤

= v⊤A = 0⊤ = 0 ∈ R
ny×nx , observing that M = v⊤.

It follows that the number of non-minimal states exceeds the rank of the observability matrix, which
equals zero, consequently, the minimal LTI state space representation is a zero transition equation and
a measurement equation equal to a pseudo-variance shifted vector of white noises: nx > rO = O =
[

C · · · CAnx−1
]⊤

= 0, thus, the minimal LTI state space representation is 0 and yt = Dut, whereby
nxm

= rCm
= rOm

= 0.

Owing to the satisfaction of the mPMIC, the non-minimal states can be precisely represented as the
minimal measurement equation: xmt = Am −BmD−1Cm = Fm = λFm(λ) = 0, thus, xt can be represented
as yt = Dut.

Additionally, A’s invertibility is necessary and sufficient for that of A⊤, signifying that A⊤v = 0
admits of one solution alone, being zero, so that the (minimal) measurement equation’s outputs be

zero: ∃A−1 if and only if ∃
(

A⊤
)−1

, which signifies that the only solution of A⊤v = 0 is v = 0, so that
0 = v⊤ = M = Mxt = yt.

Observe that A’s invertibility is sufficient, but unnecessary for the (minimal) measurement equation’s
outputs to be zero, since they could also be zero as result of (i) another derivation of C = O = 0 (for
C = MA e.g. M = v⊤ 6= 0 tautologically, 0 6= M 6= v⊤

)

, (ii) C 6= 0, but O = 0, (iii) B = C = 0, at the
cost of But = 0, or (iv) B 6= 0, but C = 0, the inclusive disjunction applying wherever suitable. QED

Proposition 4.7 (Quasi-surety) For any minimal transition equation in discrete time a V MA (0)
representation of the non-minimal states in the (minimal) measurement equation’s outputs is almost surely
verified. Formally: ∀ (Xm, S, µ) , in which

Xm = {xm ∈ Xm : xmt = Amxmt−1 + Bmut} ,

¬P = {xm ∈ Xm : ¬P (xm)} ⊂ N ∈ S ⊂ P (Xm) ,

P = N c = {xm ∈ N c = Xm\N : P (xm)} ∈ S,

P (xm) := {∀xmt, ∃!yt : yt = Dut} and

¬P (xm) :=







∀xmt, ∃ {yit}
n
i=1 : (yit = Dut) ∧



y¬it = Cm

∞
∑

j=0

F j
mBmD−1y¬it−j−1 + Dut, ∀CmF j

mBm 6= 0











,

µ (N c) = µ (P ) = 1 and µ (N) = 0.

Proof. µ can be understood as a probability measure such that
∫ ∞

−∞
µ (xm) dxm = 1 and µ (xm) dxm ≥ 0.

Now, by Proposition 4.6 µ (N c) = µ (P ) = 1.

Additionally, by the ubiquity of minimal LTI state space representations in discrete time µ (Xm) = 1.

Observe that µ (Xm) = µ (N) + µ (N c) , since µ (Xm) = 1 < ∞ (i.e. finite). Therefore, µ (N) =
µ (Xm)− µ (N c) = µ (Xm)− µ (P ) = 1− 1 = 0, whereby P = N c is a co-null set.

Consequently, a V MA (0) representation of the non-minimal states in the (minimal) measurement
equation’s outputs occurs almost surely, almost everywhere in Xm or for almost every xm ∈ Xm, that is,
for almost every minimal transition equation, so that those for which it is not verified (i.e. other empirical
representations thereof are also verified) are negligible. QED

The reason for which the negation of the property evoking a V MA (0) representation of xt in yt as
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univocal is defined as evoking more than one V AR (∞) representation xt in yt is self-evident, that is,
axiomatic or indemonstrable. Comparably, all other proper subsets of power set P (Xm) as well as any
subset thereof or even any other element of set S refer to other properties of universe Xm.

5. Applications and LRE models discussion

Example 5.1 (Generic) Consider an LTI state space representation in discrete time and let

xt =





x1t

x2t

x3t



 , ut =

[

u1t

u2t

]

,

A =





1 2 3
2 4 6
0 0 1



 and B =





σu1
0

0 σu2

σu1
σu2



 ,

in which ut ∼ N
(

0, Σ2
u

)

and σu1, 2
∈ R, more specifically. The transition equation is thus

xt = Axt−1 + But ←→

←→





x1t

x2t

x3t



 =





1 2 3
2 4 6
0 0 1









x1t

x2t

x3t



 +





σu1
0

0 σu2

σu1
σu2





[

u1t

u2t

]

.

Compute the non-trivial transpose kernel of A⊤, v⊤ 6= 0 :

A⊤ =





1 2 0
2 4 0
3 6 1



 −→

−→





1 2 0 1 0 0
2 4 0 0 1 0
3 6 1 0 0 1



 −→

−→





1 2 0 1 0 0
0 0 0 −2 1 0
3 6 1 0 0 1



 r̃2 = r2 − 2r1

in which M = v⊤ =
[

−2 1 0
]

∈ ker⊤
(

A⊤
)

, being the sole echelon form (non-zero) row of the
identity sub-matrix corresponding to an echelon form zero row of A⊤. It follows that

Mxt = yt ←→

←→
[

−2 1 0
]





x1t

x2t

x3t



 = −2x1t + x2t.

Consequently, the minimal LTI state space representation guaranteeing a non-zero V MA (0) of xt in
yt, being an MA (0) hereby, is

yt = MBut = Dut ←→

←→ −2x1t + x2t =
[

−2 1 0
]





σui

σui

2σui



 uit = −σui
uit,
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for any i = 1, 2, having removed either input amongst u1t and u2t from ut and normalised σu1
= σu2

such that B = [σui
σui

2σui
]
⊤

.

Example 5.2 (Hybrid New Keynesian Phillips curve) Consider the vector representation of a hybrid
New Keynesian Phillips curve of the linear form1 πt = αEtπt+1 + βπt−1 + γεt, in which α = (1− a) b, β =

a, γ = (1− h)
−1 {h [1− (1− h) b] c} and Θ = {a, b, c, h} ⊂ R :

Qxt = Rxt−1 + Sεt + Tηt ←→

←→

[

1 −α

1 0

] [

πt

Etπt+1

]

=

[

β 0
0 1

] [

πt−1

Et−1πt

]

+

[

γ

0

]

εt +

[

0
1

]

ηt,

in which εt ∼ N
(

0, σ2
ε

)

and ηt = πt − Et−1πt is an expectational error. For simplicity, parametrise
α = 0.6, β = 0.4 and γ = 0.01 :

[

1 −0.6
1 0

] [

πt

Etπt+1

]

=

[

0.4 0
0 1

] [

πt−1

Et−1πt

]

+

[

0.01
0

]

εt +

[

0
1

]

ηt.

Sims’ [14] unique solution algorithm for first order LRE models dictates:

HJQK⊤xt = HJRK⊤xt−1 + Sεt + Tηt −→

−→ HJQzt = HJRzt−1 + Sεt + Tηt −→

−→ JQzt = JRzt−1 + H⊤ (Sεt + Tηt)←→

←→

[

JQ11 JQ12

0 JQ22

] [

z1t

z2t

]

=

[

JR11 JR12

0 JR22

] [

z1t−1

z2t−1

]

+

[

Ĥ11 Ĥ12

Ĥ21 Ĥ22

] {[

S1

S2

]

εt +

[

T1

T2

]

ηt

}

=

=

[

JR11 JR12

0 JR22

] [

z1t−1

z2t−1

]

+

[

U1

U2

]

εt +

[

V1

V2

]

ηt −→

−→ JQ11z1t + JQ12z2t = JR11z1t−1 + JR12z2t−1 + U1εt + V1ηt and

JQ22z2t = JR22z2t−1 + U2εt + V2ηt −→

−→ JR22z2t−1 = JQ22z2t − U2εt − V2ηt −→

−→ z2t−1 = J−1
R22JQ22z2t − J−1

R22U2εt − J−1
R22V2ηt −→

−→ z2t = J−1
R22JQ22Etz2t+1 − J−1

R22U2Etεt+1 − J−1
R22V2Etηt+1 =

= J−1
R22JQ22

[

J−1
R22JQ22Etz2t+2 − J−1

R22U2Etεt+2 − J−1
R22V2Etηt+2

]

− J−1
R22U2Etεt+1 − J−1

R22V2Etηt+1 =

=
(

J−1
R22JQ22

)2
Etz2t+2 − J−2

R22JQ22U2Etεt+2 − J−2
R22JQ22V2Etηt+2 − J−1

R22U2Etεt+1 − J−1
R22V2Etηt+1 −→

−→ z2t = lim
j→∞

(

J−1
R22JQ22

)j
Etz2t+j −

∞
∑

j=1

J
−j
R22JQ22U2Etεt+j −

∞
∑

j=1

J
−j
R22JQ22V2Etηt+j = 0 −→

−→ U2εt + V2ηt = 0 −→

−→ V2ηt = −U2εt −→

−→ ηt = −V −1
2 U2εt, provided nλ2

= nη, and

JQ11z1t = JR11z1t−1 + U1εt + V1

(

−V −1
2 U2εt

)

= JR11z1t−1 +
(

U1 − V1V −1
2 U2

)

εt −→

−→ z1t = J−1
Q11JR11z1t−1 + J−1

Q11

(

U1 − V1V −1
2 U2

)

εt, thus,
[

z1t

z2t

]

=

[

J−1
Q11JR11 0

0 0

] [

z1t−1

z2t−1

]

+

[

J−1
Q11

(

U1 − V1V −1
2 U2

)

0

]

εt −→

1https://en.wikipedia.org
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−→

[

K̂11 K̂12

K̂21 K̂22

] [

π1t

Etπt+1

]

=

[

J−1
Q11JR11 0

0 0

] [

K̂11 K̂12

K̂21 K̂22

] [

x1t−1

x2t−1

]

+

[

J−1
Q11

(

U1 − V1V −1
2 U2

)

0

]

εt −→

−→

[

πt

Etπt+1

]

=

[

J−1
Q11JR11 0

0 0

] [

πt−1

Et−1πt

]

+

[

K11 K12

K21 K22

] [

J−1
Q11

(

U1 − V1V −1
2 U2

)

0

]

εt =

=

[

J−1
Q11JR11 0

0 0

] [

πt−1

Et−1πt

]

+

[

K11J−1
Q11

(

U1 − V1V −1
2 U2

)

K21J−1
Q11

(

U1 − V1V −1
2 U2

)

]

εt ←→

←→ xt = Axt−1 + Bεt.

More specifically, a generalised Schur decomposition solves the generalised eigenvalue problem Qv = λRv

such that Q = HJQK⊤, R = HJRK⊤ and generalised eigenvalue λi = JRii

JQii
, JQ and JR eigenvalues being

situated along the respective diagonals.
JQ and JR are upper triangular and HH⊤ = HH−1 = KK⊤ = KK−1 = I; in detail, JQ, JR ∈

R
nλ×nλ , H, K ∈ R

nx×nλ and K⊤, H⊤ ∈ R
nλ×nx .

For clarity, Q, R ∈ R
nx×nx , S ∈ R

nx×nε , T ∈ R
nx×nη , U1 ∈ R

nλ1
×nε , U2 ∈ R

nλ2
×nε , V1 ∈ R

nλ1
×nη

and V2 ∈ R
nλ2

×nη .

JQ and JR are additionally reordered such that JQ11 and JR11 respectively contain all eigenvalues
smaller than one in modulus; accordingly, JQ22 and JR22 are reordered to contain all eigenvalues no
smaller than one in modulus: |λJQ(λ)| < 1 in JQ11 and |λJQ(λ)| ≥ 1 in JQ22 for JQ(λ) = JQ − λI in
det [JQ(λ)] = 0; |λJR(λ)| < 1 in JR11 and |λJR(λ)| ≥ 1 in JR22 for JR(λ) = JR − λI in det [JR(λ)] = 0.

Observe that z2t = 0 owing to the following facts. Expectational endogenous variable stationarity:
limj→∞ Etz2t+j <∞. Eigenvalues instability: limj→∞ J

−j
R22 = 0. Exogenous shock zero mean (i.e. white

noise):
∑∞

j=1 Etεt+j = 0. Expectational error zero conditional mean:
∑∞

j=1 Etηt+j = 0. The transition
equation is thus

xt = Axt−1 + Bεt ←→

←→

[

πt

Etπt+1

]

=

[

0.667 0
0 0

] [

πt−1

Et−1πt

]

+

[

0.017
0.011

]

εt.

Compute the non-trivial transpose kernel of A⊤, v⊤ 6= 0 :

A⊤ =

[

0.667 0
0 0

]

−→

−→

[

0.667 0 1 0
0 0 0 1

]

in which M = v⊤ =
[

0 1
]

∈ ker⊤
(

A⊤
)

, being the sole echelon form (non-zero) row of the identity
sub-matrix corresponding to a zero row of A⊤. It follows that

Mxt = yt ←→

←→
[

0 1
]

[

πt

Etπt+1

]

= Etπt+1.

Consequently, the minimal LTI state space representation guaranteeing a non-zero V MA (0) of xt in
yt, being an MA (0) hereby, is
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yt = MBεt = Dεt ←→

←→ Etπt+1 =
[

0 1
]

[

0.017
0.011

]

εt = 0.011εt,

whereby the two non-minimal states πt and Etπt+1 are empirically represented by the linear combination
in principle m1πt + m2Etπt+1 = Etπt+1, itself potentially measurable and to be itself represented as pseudo-
variance shifted white noise 0.011εt.

Example 5.3 (Interest rate dynamics) Consider an equation for the nominal interest rate such that
the real interest rate and inflation are AR (1) processes (i.e. amnesic) driven by the same exogenous
shock: rnt = rt + Etπt+1, rt = 0.99rt−1 + εt and πt = 0.99πt−1 + εt, in which εt ∼ N

(

0, σ2
ε

)

. The vector
representation of such three equations is

Qxt = Rxt−1 + Sεt + Tηt ←→

←→









1 −1 0 −1
0 1 0 0
0 0 1 0
0 0 1 0

















rnt

rt

πt

Etπt+1









=









0 0 0 0
0 0.99 0 0
0 0 0.99 0
0 0 0 1

















rnt−1

rt−1

πt−1

Et−1πt









+









0
1
1
0









εt +









0
0
0
1









ηt,

in which ηt = πt − Et−1πt. By Sims’ [14] unique solution algorithm for first order LRE models, the
transition equation is thus

xt = Axt−1 + Bεt ←→

←→









rnt

rt

πt

Etπt+1









=









0 0.99 −0.967 0
0 0.99 0 0
0 0 0.99 0
0 0 0 0

















rnt−1

rt−1

πt−1

Et−1πt









+









1.99
1
1

0.99









εt.

The computation of the non-trivial transpose kernel of A⊤ yields

M = v⊤ =

[

0 0 0 1
−0.633 0.633 −0.445 0

]

∈ ker⊤
(

A⊤
)

.

It follows that

Mxt = yt ←→

←→

[

0 0 0 1
−0.633 0.633 −0.445 0

]









rnt

rt

πt

Etπt+1









=

[

Etπt+1

−0.633rnt + 0.633rt − 0.445πt

]

.

Consequently, the minimal LTI state space representation guaranteeing a non-zero V MA (0) of xt in yt

is
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yt = MBεt = Dεt ←→

←→

[

Etπt+1

−0.633rnt + 0.633rt − 0.445πt

]

=

[

0 0 0 1
−0.633 0.633 −0.445 0

]









1.99
1
1

0.99









εt =

[

0.99
−1.072

]

εt,

whereby the four non-minimal states rnt, rt, πt and Etπt+1 are empirically represented by the two
linear combinations (i.e. in principle and effective) m11rnt + m12rt + m13πt + m14Etπt+1 = Etπt+1 and
m21rnt + m22rt + m23πt + m24Etπt+1 = −0.633rnt + 0.633rt − 0.445πt, the first three being actually
measurable, the fourth being potentially so and to be all themselves represented as pseudo-variance shifted
white noise 0.99εt and −1.072εt, respectively.

5.4 DSGE and LRE models. Even though it be not the sole empirical representation non-minimal
states admit of, that obtained through the exploitation of the non-trivial transpose kernel of A⊤, v⊤ 6= 0, is
categorical and the probabilistically surest and is as such particularly problematic for first order DSGE and
LRE models more in general, causing them to depart even further from reality at large (i.e. metaphysics).

To be sure, LRE models, to which DSGE belong, are normally ones of optimising representative
agents, whose first order approximations express them as transition equations of (minimal) LTI state space
representations in discrete and continuous time.

DSGE and LRE models in discrete time thus represented, as non-zero V MA (0)s of xt in yt, that is
to say, can be consequently said to be convolutions of observables at best, however perfectly may such
observables be measured; nay, they can be said to be no more than pseudo-variance shifted vectors of
white noises for which no kind of forecast analysis is at all conceivable. It follows that DSGE and LRE
models more in general, as normally conceived, can be viewed as consistently expedient as of second order
approximations alone.

5.5 Empirical and structural models. Empirical VARs probably reflect an underlying structural
model, additionally, however elementary it be, on account of the likely satisfaction of some mPMIC.
Regardless of the sensation whereby, rather than forwards by trial and error, it may be best elaborated
backwards, following the empirical VAR’s parametric estimation and subsequent determination of A, B, C

and D, duly restricted by theory, it would thereby appeal to the set of its probabilistically negligible
empirical representations.

Such is nonetheless intuitable, for even though empirical models may ontologically precede structural
models the latter logically precede the former, that is, they broaden their relations from forecasting to
policy and thence seek validation through their replication (i.e. scientific method), so that the opposite
should not occur.

Sims [15] had contended that the absence of a VAR representation of a structural model’s states in
the same’s outputs need not invalidate the use of VARs to the end of recovering the inputs proper to the
underlying structural model.

One hereby extends his contention by asserting that not only can empirical VARs be used in spite
of such an absence but that the underlying structural models to which empirical VARs refer are almost
never ones arising from transition equations, whose probabilistically surest empirical representations are by
contrast considerably sterile.

Empirical VARs therefore result as being more comprehensively useful than suchlike structural models
after all, that is, they result as presenting greater signification and expedience to the end of both forecasting
and policy, despite the latter’s phenomenal acceptation, for what can the soundness be that of policy
indications elicited from structural models whose connexion with empirics is severely, if not wholly, sterile,
whereby inputs are the shifted outputs themselves?

In order for such policy indications to be sound suchlike structural models can only be salvaged by
appealing to axiomatic abstraction, although thereby conceding the essentialistic point held by authentic
meta-physicists all along (i.e. not by subjectivistic neo-Keynesians and neo-monetarists behaving as
phenomenalists and attacking reason under the banner of essentialism, being the Lucas critique).
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5.6 Weaknesses of common LRE models. DSGE and LRE models’ initial departure from reality
at large, albeit conceptually self-inflicted, is in fact rooted in their potential failure to preserve their
micro-foundations, on account of their subjection to the “Anything goes”2 theorem whereby the canonical
laws of supply and demand need not arise from their conceptual process of aggregation, speaking to Lippi’s
[12] contribution as well.

The linearisation of DSGE and LRE models to the end of deriving their solutions additionally causes
them to lose their non-linear idiosyncrasies. A coherent alternative would therefore involve the adoption of
macro-foundations as well as the numerical computation of their solutions in relation to their non-linear
form.

While discretionally preserving optimisation, macro-foundations would permit one to conceptually
dispose of representative agents and thereby enable one to meaningfully conduct parametric estimation by
means of macroeconomic data, as per Kirman’s [10] observation, notwithstanding the objections underlying
their construction (e.g. imprecision, assumption violation). Accordingly, numerical solutions of their
non-linear form would conceptually befit popular Bayesian parametrisation to a greater degree because of
the preservation of all non-linear idiosyncrasies.

5.7 Companion matrices of first order LRE model unique solutions. In fact, observe that first
order LRE model unique solutions present stable companion matrices by construction (see Examples 5.2
and 5.3): ceteris paribus, ∀A in xt = Axt−1 + But stemming from first order LRE model unique solutions,
|λA(λ)| < 1, by construction.

Now, a matrix is invertible if and only if its determinant is non-zero and because the determinant of a
matrix is the product of its eigenvalues according to their multiplicity a non-zero determinant signifies the
absence of zero eigenvalues for a given matrix.

Since the invertibility of the companion matrices of first order LRE model unique solutions would imply
a zero representation of the transition equation’s non-minimal states a crucial question is thus whether
their companion matrices may categorically present non-zero stable eigenvalues.

Otherwise stated, whenever the companion matrices of first order LRE model unique solutions be
invertible there exists a zero representation of the transition equation’s non-minimal states, which is

additionally almost surely verified: ceteris paribus, λA(λ) 6= 0←→ det (A) 6= 0←→ ∃A−1 ←→ ∃
(

A⊤
)−1
−→

0 = v⊤ = M = Mxt = yt for A⊤v = 0, almost surely, in which λA(λ) 6= 0 need not be.
Insofar as they were expressed in terms of LTI state space representations, suchlike first order LRE

model unique solutions would not empirically exist: they would not phenomenally exist, that is, they would
fail to exist both observationally and observably.

In other words, because of the stability properties of their companion matrices, the probabilistically
surest empirical representation of suchlike first order LRE model unique solutions would be none other
than zero, whereby they would not empirically exist.

The prescription would thus be that suchlike first order LRE models be studied by contemplating
instability (unsteady state dynamics, long run demand effects etc.) and be therefore expressed as transition
equations otherwise (i.e. by some other algorithm) or, afresh, that suchlike LRE models be studied as of
their second order approximations at the minimum, if not in their non-linear forms outright.

For completeness, common algorithms for first order LRE model unique solutions, to which the question
regarding the invertibility of their companion matrices applies, are those of Blanchard and Kahn [3],
Anderson and Moore [1], Binder and Pesaran [2], King and Watson [9], Uhlig [16], Klein [11], Sims [14] and
Christiano [4].

For instance, the companion matrices of first order LRE model unique solutions delivered by the
algorithms of Blanchard and Kahn [3] and Sims [14] are A = [(A11 0) (A21 0)]

⊤
and A = [(A11 0) (0 0)]

⊤
,

respectively.
Since both their determinants are zero (i.e. det (A) = A11 (0)−(0) A21 = 0 and det (A) = A11 (0)−02 = 0)

the companion matrices are non-invertible and the probabilistically surest empirical representation of their
first order LRE model unique solutions is not zero, but a V MA (0) of xt in yt.

6. Conclusion
2https://en.wikipedia.org
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This work presented a systematic manner to derive a finite VAR representation for any minimal transition
equation. It nevertheless clarified that such a representation, on account of the procedure underlying its
derivation, is both the probabilistically surest and empirically useless, ranging from linear combinations of
non-minimal states in principle, equal to shifted white noises, to output nullity, thereby presenting negative
repercussions with particular regard to first order LRE models of optimising representative agents.

LRE models thus rendered could be consequently said to be convolutions of observables at best,
however perfectly may such observables be measured. In brief, the probabilistically surest empirical
representation of first order (approximations of) LRE models and of DSGE ones in particular is not merely
a linear combination of non-minimal states in principle, whenever not equal to zero, but no more than a
pseudo-variance shifted vector of white noises for which no kind of forecast analysis is at all conceivable.
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Appendix

Julia commands for Example 5.2 (wherein # must replace % and α and β must replace alpha and
beta)

1 using LinearAlgebra

2

3 % Parameters
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4 alpha=0.6; % Expected inflation coefficient

5 beta=0.4; % Past inflation coefficient

6 gamma=0.01; % Exogenous shock coefficient

7

8 % LRE model solution: Q*x_t=R*x_t−1+S*varepsilon_t+T*eta_t

9 Q=[1 −alpha; 1 0]; % x_t=[pi_t; E_t(pi_t+1)]

10 R=[beta 0; 0 1];

11

12 S=[gamma; 0];

13 T=[0; 1]; % eta_t=pi_t−E_t−1(pi_t)

14

15 % LRE model solution unicity and stability

16 F=schur(Q, R); % Generalised Schur decomposition: H*J_Q*K'x_t=H*J_R*K'*x_t−1+S* ...

varepsilon_t+T*eta_t, where H=F.Q and K=F.Z and upper triangular J_Q=F.S and J_R=F.T ...

such that F.Q*F.S*F.Z'=Q and F.Q*F.T*F.Z'=R

17 select=abs.(F.beta./F.alpha).<1; % Logical vector for generalised eigenvalues reordering ...

in ascending order, where F.alpha are J_Q'eigenvalues and F.beta are J_R's eigenvalues

18 % select=abs.(diag(F.T)./diag(F.S)).<1; % Logical vector for generalised eigenvalues ...

reordering in ascending order, where J_Q=F.S and J_R=F.T

19 G=ordschur(F, select); % Schur decomposition with generalised eigenvalues reordered in ...

ascending order, where J_Q=G.S and J_R=G.T

20 if (sum(abs.(G.beta./G.alpha).<1)==1) % Solution unicity check: n(generalised stable ...

eigenvalues)=n(past variables)

21 % if (sum(abs.(diag(G.T)./diag(G.S)).≥1)==1) % Solution unicity check: n(generalised ...

unstable eigenvalues)=n(expectational errors, future variables)

22 println("There exists a unique and stable model solution.");

23 else

24 println("There does not exist a unique and stable model solution.");

25 end

26

27 % State equation: ...

x_1t=(JQ11^−1*JR11)*x_t−1+(K11*JQ11^−1)*(U1−V1*V2^−1*U2)*varepsilon_t=A11*x_t−1+B1*varepsilon_t ...

and x_2t=(K21*JQ11^−1)*(U1−V1*V2^−1*U2)*varepsilon_t=B2*varepsilon_t, where ...

U1=Ht11*S1+Ht12*S2, U2=Ht21*S1+Ht22*S2, V1=Ht11*T1+Ht12*T2, V2=Ht21*T1+Ht22*T2

28 JQ11=G.S[1:1, 1:1];

29 JR11=G.T[1:1, 1:1];

30 K11=G.Z[1:1, 1:1];

31 K21=G.Z[2:2, 1:1];

32 Ht11=G.Q'[1:1, 1:1];

33 Ht12=G.Q'[1:1, 2:2];

34 Ht21=G.Q'[2:2, 1:1];

35 Ht22=G.Q'[2:2, 2:2];

36

37 S1=S[1:1, 1:1];

38 S2=S[2:2, 1:1];

39 T1=T[1:1, 1:1];

40 T2=T[2:2, 1:1];

41

42 U1=Ht11*S1+Ht12*S2;

43 U2=Ht21*S1+Ht22*S2;

44 V1=Ht11*T1+Ht12*T2;

45 V2=Ht21*T1+Ht22*T2;

46

47 A11=inv(JQ11)*JR11;

48 B1=K11*inv(JQ11)*(U1−V1*inv(V2)*U2);

49 B2=K21*inv(JQ11)*(U1−V1*inv(V2)*U2);

50 A=[A11 0; 0 0]; % Companion matrix

51 B=[B1; B2]; % Shock matrix

52

53 % State equation stability

54 evalA, evecA=eigen(A);

55 if (all(abs.(evalA).<1)) % Stability check: A modulus eigenvalues<1

56 println("The system is stable.");

57 else

58 println("The system is unstable.");

59 end

60
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61 % Transpose kernel of A^T for C=0

62 kerAt=nullspace(transpose(A)); % Kernel of A^T

63 Ms=transpose(kerAt); % Transpose kernel of A^T

64 Ds=Ms*B % Shock matrix of observables for C=0

65

66 transpose(Ms*A)==transpose(A)*kerAt % (v^T*A)^T=A^T*v

Julia commands for Example 5.3 (wherein # must replace % and α and β must replace alpha and
beta)

1 using LinearAlgebra

2

3 % LRE model solution: Q*x_t=R*x_t−1+S*varepsilon_t+T*eta_t

4 Q=[1 −1 0 −1; 0 1 0 0; 0 0 1 0; 0 0 1 0]; % x_t=[rn_t; r_t; pi_t; E_t(pi_t+1)]

5 R=[0 0 0 0; 0 0.99 0 0; 0 0 0.99 0; 0 0 0 1];

6

7 S=[0; 1; 1; 0];

8 T=[0; 0; 0; 1]; % eta_t=pi_t−E_t−1(pi_t)

9

10 % LRE model solution unicity and stability

11 F=schur(Q, R); % Generalised Schur decomposition: H*J_Q*K'x_t=H*J_R*K'*x_t−1+S* ...

varepsilon_t+T*eta_t, where H=F.Q and K=F.Z and upper triangular J_Q=F.S and J_R=F.T ...

such that F.Q*F.S*F.Z'=Q and F.Q*F.T*F.Z'=R

12 select=abs.(F.beta./F.alpha).<1; % Logical vector for generalised eigenvalues reordering ...

in ascending order, where F.alpha are J_Q'eigenvalues and F.beta are J_R's eigenvalues

13 % select=abs.(diag(F.T)./diag(F.S)).<1; % Logical vector for generalised eigenvalues ...

reordering in ascending order, where J_Q=F.S and J_R=F.T

14 G=ordschur(F, select); % Schur decomposition with generalised eigenvalues reordered in ...

ascending order, where J_Q=G.S and J_R=G.T

15 if (sum(abs.(G.beta./G.alpha).<1)==3) % Solution unicity check: n(generalised stable ...

eigenvalues)=n(past variables)

16 % if (sum(abs.(diag(G.T)./diag(G.S)).≥1)==1) % Solution unicity check: n(generalised ...

unstable eigenvalues)=n(expectational errors, future variables)

17 println("There exists a unique and stable model solution.");

18 else

19 println("There does not exist a unique and stable model solution.");

20 end

21

22 % State equation: ...

x_1t=(JQ11^−1*JR11)*x_t−1+(K11*JQ11^−1)*(U1−V1*V2^−1*U2)*varepsilon_t=A11*x_t−1+B1*varepsilon_t ...

and x_2t=(K21*JQ11^−1)*(U1−V1*V2^−1*U2)*varepsilon_t=B2*varepsilon_t, where ...

U1=Ht11*S1+Ht12*S2, U2=Ht21*S1+Ht22*S2, V1=Ht11*T1+Ht12*T2, V2=Ht21*T1+Ht22*T2

23 JQ11=G.S[1:3, 1:3];

24 JR11=G.T[1:3, 1:3];

25 K11=G.Z[1:3, 1:3];

26 K21=G.Z[4:4, 1:3];

27 Ht11=G.Q'[1:3, 1:3];

28 Ht12=G.Q'[1:3, 4:4];

29 Ht21=G.Q'[4:4, 1:3];

30 Ht22=G.Q'[4:4, 4:4];

31

32 S1=S[1:3, 1:1];

33 S2=S[4:4, 1:1];

34 T1=T[1:3, 1:1];

35 T2=T[4:4, 1:1];

36

37 U1=Ht11*S1+Ht12*S2;

38 U2=Ht21*S1+Ht22*S2;

39 V1=Ht11*T1+Ht12*T2;

40 V2=Ht21*T1+Ht22*T2;

41

42 A11=inv(JQ11)*JR11;

43 B1=K11*inv(JQ11)*(U1−V1*inv(V2)*U2);

44 B2=K21*inv(JQ11)*(U1−V1*inv(V2)*U2);

45 A=[A11 zeros(3, 1); zeros(1, 3) 0]; % Companion matrix

46 B=[B1; B2]; % Shock matrix
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47

48 % State equation stability

49 evalA, evecA=eigen(A);

50 if (all(abs.(evalA).<1)) % Stability check: A modulus eigenvalues<1

51 println("The system is stable.");

52 else

53 println("The system is unstable.");

54 end

55

56 % Transpose kernel of A^T for C=0

57 kerAt=nullspace(transpose(A)); % Kernel of A^T

58 Ms=transpose(kerAt); % Transpose kernel of A^T

59 Ds=Ms*B % Shock matrix of observables for C=0

60

61 transpose(Ms*A)==transpose(A)*kerAt % (v^T*A)^T=A^T*v
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