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Abstract

I introduce a general method to account for the distribution of underlying compo-

nents (variety) in the growth of an aggregate quantity, using the notion of entropy. This

accounting decomposition enables a number of insightful applications to index num-

bers in economics. The cross-entropy of GDP with respect to a benchmark captures the

change in its distribution, and thus how well this benchmark matches data for price and

volume indices across time. This ‘error’ changes demonstrably over time. Accounting of

variety also lends itself to a decomposition of labour productivity growth by a technol-

ogy component (how many more ‘average’ goods are produced per unit of labour?), and

the allocation of labour (does the distribution of labour inputs converge to the distribu-

tion of outputs?) plus demand (does the distribution of expenditures diverge from the

distribution of outputs?).
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1 Introduction

Is Gross Domestic Product (GDP) a good measure for welfare? Real output of goods and

services is the accepted measure of historical living standards. To track its evolution, statis-

ticians count growth in expenditures, also ‘nominal’ output, hoping to separate growth in

price (inflation) versus real output:

Real output growth = Nominal output growth−Price Inflation.

Nominal output is observed in currency units, but what exactly should we measure the

price, and real output, of? Choosing a measure for price requires aggregating prices from

hundreds of industries, millions of firms, and many more product types. In abstract terms,

‘what’ we pay for at any given point in time is in the distribution of nominal output among

a number of ‘types’ of output: industries, products, firms, etc.

This paper notes that even if the question of ‘what’ we want to measure is settled, ‘what’

we pay for changes over time. For example, we know the distribution of US nominal output

in 2000 to rely more on service and IT industries compared to 1950. If we are interested in

measuring historical real output growth from the perspective of the average firm in 2000,

more weight should be placed on inflation for service and IT industries in the 1950’s, even

if they constituted a smaller share of nominal output. The result is a worse approximation

of real output growth for the average firm in 1950.

It follows that the importance placed on certain goods should change with the distribu-

tion of nominal output as preferences evolve. However, in a recent study, Baqaee & Burstein

(2021) insist on fixing weights, to the extent that they change due to income effects or taste

shocks, when measuring economic welfare. The important contribution is their challenge

to what we should interpret as a historically consistent, and intuitive, measure for living

standards. The composition of expenditures they seek to deflate may not agree with the

weights assigned to price components, which this paper shows to hold significant practical

implications.

One illustrative thought experiment demonstrating the importance of a changing out-

put distribution at any level of aggregation is Hulten’s Paradox. The ICT revolution in the

1990’s sparked a discussion on measuring welfare improvements from the changing quality

of products, in addition to their real output. Besides practical difficulties in implementing

such ‘hedonic’ price indices, Hulten (1997), in response to Nordhaus’s (1997) claim that the

hedonic price of light dropped faster than its traditional counterpart, famously cautions the

use of quality adjustments since they likely overstate actual welfare gains. A passage from

Hulten’s (1997) comment, evaluating Nordhaus’s (1997) revised price deflator, provides the

key insight:

[...]a person possessing the average disposable income in America today should

be willing to accept a massive reduction in spending power – from $17,200 to the

$90-430 range – in order to avoid being sent back in time to an equivalent status

in colonial America. Alternatively, it suggests that the average colonial should
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prefer living in the America of today, with as little as $90 per year, to staying put

in the late eighteenth century.

The contentious point in Hulten’s quote is that a basket of goods for the colonial Ameri-

can evolved very differently from a representative basket of goods consumed today. The $90

today price a different ‘representative’ unit than $90 in colonial America. An individual to-

day would have indeed turned out quite poor in colonial America, if the representative bas-

ket of goods was substantially more scarce compared to the basket of a colonial American.

Sending him back in time requires centuries of devolving preferences and substitutions.

This substitution also entails a scarcer basket of goods for a colonial American, today.

Section 2 formalises this issue using index number theory, and introduces an extra en-

tropy term, alongside price and real output, which encapsulated the shift in consumption

patterns. Entropy is used in many fields as a measure of ‘observational variety’, and there-

fore lends an elegant application in the present economic context. The result emerges natu-

rally from Jensen’s Inequality, but also benefits from deep intuition; indices aggregate across

a variety, so a change in variety hurts the ‘representativeness’ of an index.

The entropy term captures a bias in real output when extrapolated from the difference

in nominal output and price inflation. Furthermore, this bias travels in one direction with

time, suggesting that the representativeness of a basket of goods from the past should

worsen, whereas it improves for today’s basket. In practice, this means any pair of price

and real output indices that favour recent consumption bundles will overestimate the price

and real output growth rates of older bundles. This finding can be used to evaluate the

bias in popular indexation methods. For example, Divisia indices update product weights

in each period, which achieves a good result in terms of minimising the influence of the

cross-entropy bias.

This result applies to any aggregate index. One application is in measuring the reallo-

cation effect studied in the growth accounting field, whereby resources move between high

and low productivity industries. In this context, the entropy of employment by industry

contributes to a labour productivity decomposition, to the degree that the allocation of em-

ployment diverges from sources of production.

Section 3 measures the bias from cross-entropy in two applications. I test the effect in a

transparent manner, using industry price and output data from US KLEMS for the period

1947-2014. Forming production profiles from 65 Standard Industry Classification (SIC)

industries, the real output growth rate experienced by the 1947 bundle is over 1pp smaller

than that experienced by the 2014 bundle. Without correcting for cross-entropy, this means

that we would overstate today’s living standards by around 70% compared to those of 50

years ago when using consumption patterns from today, as would be the case if data on

industry-level real output was unavailable. Overall, the industries that made up larger

shares of nominal output in 1947 experienced both lower inflation and real output growth

rates. It follows that nominal output grew more uniform between industries, as reflected

by an increasing rate of entropy. A popular view is that the economic structure of the US

shifted out of agriculture and into professional or health services, due to some type of ‘cost

disease’.
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Applying the notion of entropy to labour productivity is instructive for the wider ap-

plicability of entropy to economic questions. I extend the output exercise by including a

labour index, which yields a labour productivity decomposition between i) the productivity

growth rate experienced by the average industry, ii) the divergence of expenditures from

‘important’ industries, and iii) the convergence of the distribution, by industry, of labour

inputs to the importance of any given industry assigned by the weighting scheme. Using EU

KLEMS data, I find that a significant part of the post-2005 slowdown in labour productivity

growth in Germany can be attributed to a slowdown in the allocation of labour inputs.

Related literature A number of key arguments characterise the persistent debate on what

real output should measure. Complications arise when new products enter, or old products

leave, the market: Aghion et al. (2019) estimate that imputations for inflation of products

subject to creative destruction leads to an overestimation of the true inflation rate by an av-

erage of 0.5%. Most of this stems from hotel, restaurant and retail trade industries. There

exists an active literature that seeks to interpret changes in product variety in terms of wel-

fare (Redding &Weinstein 2019, Baqaee & Burstein 2021). Deaton (2010) famously re-draws

the international poverty line to address differences in product variety across countries. The

accounting framework I present is complementary to those efforts, but extends beyond the

scope of output and welfare measurements.

Revisiting Hulten’s Paradox for a moment, Gordon (2009) forces a point on CPI mea-

surement, demonstrating that US women’s apparel products experienced higher rates of

inflation under a hedonic price model. To be clear: the entropy problem is distinct, in the

sense that real output growth rates may appear unreasonably high regardless of downward

biases in aggregate deflators. The cross-entropy term behaves in opposing directions for ag-

gregate prices weighted to the start of the period, from which consumption baskets diverge,

versus the end, towards which consumption baskets converge. In this way, changing variety

solves Hulten’s paradox, instead of correcting it.

Information Theory concepts like entropy feature prominently in econometrics. Maa-

soumi (1993) offers a broader review, and explains their usefulness in studying the role of

aggregation. This was an area of concern to Theil (1967) in his study of income inequality

across population groups. In contrast, this paper focuses on distributional divergence over

time, instead of a cross-sectional dimension.

Roadmap Section 2 presents the decomposition, and explains the role of entropy in the

present context. Section 3 applies this decomposition to US KLEMS data to demonstrate

the scale of the cross-entropy problem, and extends it to study the aggregate productivity

growth slowdown. Section 4 concludes.

2 Indexing variety

In this section, I develop a statistical accounting framework to aggregate nominal output

– GDP – although it applies to any index that seeks to aggregate across a variety of types:
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employment, exchange rates, monetary aggregates, etc. The role of variety emerges statis-

tically as the entropy of the index, which theoretically evolves alongside incomes as long as

preferences are not specifically Cobb-Douglas.

2.1 Entropy to measure variety

National statistical agencies measure GDP and its composition between industries. The

relationship between aggregate and industry nominal outputs, themselves the products of

industry prices times real outputs, adheres to Definition 1.

Definition 1 (GDP). GDP, Y , is the sum of N industry nominal outputs Yi , which themselves

are equal to the product of the industry-specific price level Pi and real output level Qi :

Y =

N∑

i=1

Yi =

N∑

i=1

PiQi . (1)

Note that Definition 1 implies the existence of industry-level deflators Pi , which sim-

plifies the exposition. When dealing with long-term economic data, statisticians typically

observe prices from consumer surveys, then extrapolate an aggregate real output index

from aggregate GDP. I make two assumptions throughout this paper. First, the number

of types(industries) N is large. Second, GDP and industry prices Pi are always known.1

Industry-specific nominal or real outputs are not necessarily observed.2

To track historical living standards, statisticians look to retrieve an index that aggregates

real outputs across industries over time. Since these are unobserved, the next best thing is

to construct an aggregate price index with which to deflate GDP. Definition 2 states the type

of index studied throughout this paper.

Definition 2 (Price and real output indices). The price(real output) index equals a geometric

weighted average of industry prices(real outputs),

P̃t = ∆

N∑

i=1

ωi,t logPi,t , Q̃t = ∆

N∑

i=1

ωi,t logQi,t , (2)

where t denotes time, ωi denotes a positive weight assigned to industry i such that
∑

iωi = 1, and

∆ is the difference operator, ∆x ≡ xt − xt−1.

Industry weights ωi belong to a 1 ×N vector Ω = {ω1,ω2, . . . ,ωN }, which I refer to as an

indexation scheme. This is distinct from the distribution of industry nominal output shares

1One complication, especially for longer time series, is that surveyed prices are often consumer prices,

not producer prices. One symptom of this problem is that a price index used to deflate domestic output may

include import prices. While this challenge is beyond the scope of the present paper, the assumption offers a

best-case scenario in measuring historical living standards.
2Historically, the breakdown of GDP by industry is not always available, for two main reasons; i) tracking

expenditures for granular product classifications, which can include hundreds of product types, is a signifi-

cant practical challenge, and ii) data attrition increases the longer the time series, even for coarser industry

aggregates.
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yi = Yi /Y , populating a 1 × N vector Y = {y1, y2, . . . , yN }, which I refer to as consumption

patterns.

An important remark is that Definition 2 restricts the scope of the paper to indices con-

structed from geometric averages. Examples are the Törnqvist, Sato-Vartia and Divisia in-

dices, but alternatives exist, notably the Fisher, Laspeyres and Paasche indices (Törnqvist

1936, Sato 1976, Vartia 1976, Fisher 1922). A sprawling literature, duly explained by Eich-

horn (1978), proposes sets of tests to evaluate which index is ‘best’. The main contender to

the type of index introduced by Definition 2 is Fisher’s ideal index.3

Indices of the type in Definition 2 produce a residual, because

P̃t + Q̃t = ∆ logYt ⇐⇒ ∆ logPi,t = ∆ logPj,t and ∆ logQi,t = ∆ logQj,t , ∀ i, j. (3)

Unless price and quantity growth is exactly equal for each category i, the resulting indices

will not sum to GDP growth. The key contribution of the present paper is to give this

residual a name. This is desirable, because it yields an exact decomposition of GDP in an

economically meaningful way, without resorting to assumptions required by complicated

demand systems. Proposition 1 introduces this decomposition, applied to GDP growth.

Proposition 1 (Accounting for variety). GDP can be decomposed exactly between a price in-

dex, real output index, and the cross-entropy of consumption patterns relative to the indexation

scheme:

∆ logYt = ∆

N∑

i=1

ωi,t logPi,t

︸             ︷︷             ︸
Price inflation: P̃t

+

Extrapolated output growth: X̃t︷                                               ︸︸                                               ︷

∆

N∑

i=1

ωi,t logQi,t

︸              ︷︷              ︸
Real output growth: Q̃t

+ ∆

N∑

i=1

ωi,t log

(
Yt
Yi,t

)

︸                 ︷︷                 ︸
Entropy change: ∆H(Ωt ,Yt)

. (4)

Proof. The difference between GDP and an index of industry nominal outputs, following

indexation scheme Ωt , is

logYt −

N∑

i=1

ωi,t logYi,t =

N∑

i=1

ωi,t log

(
Yt
Yi,t

)
,

which is the cross-entropy of the indexation scheme Ωt and the consumption pattern Yt .

Following convention, this term is written as H(Ωt ,Yt). Substituting logYi,t = logPi,t +

logQi,t , which follows from Definition 1, and re-arranging yields the desired result.

There are two immediate observations on the residual, termed ‘cross-entropy’, in Propo-

sition 1. First, cross-entropy is identical to the negative log-likelihood of the nominal output

3I briefly summarise Eichhorn (1978) on the trade-off between Fisher-type indices and Törnqvist-type in-

dices, and its relevance to the present context. Fisher-type indices fail a Base Test, in that the total inflation rate

between two periods is not equal to the sum of inflation rates in enclosed sub-periods, whereas Törnqvist-type

indices fail a Product Test, in that the aggregate price and real output indices do not sum to the GDP index.
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data, Yt , relative to Ωt . Therefore, minimising cross-entropy is similar to maximising the

log-likelihood of all Yi,t , given that we assume weights ωi,t . The second interpretation is

that of entropy itself: cross-entropy quantifies the information required to encode Yt , given

that the encoding scheme is optimised for Ωt . It is, loosely, a measure of the variation in Yt

explained by the variation in Ωt .

In practice, Proposition 1 suggests that statisticians have some freedom in choosing an

indexation scheme that is economically meaningful, in that they produce a model Ωt to

explain variation in expenditures across industries Yt . This comes at the price of some in-

formation loss, to the extent that the model does not reproduce true consumption patterns.

The failure in indices of the type in Definition 2 for the product test in Eq. 3 follows

from Proposition 1. Corollary 1.1 finds that no such index can perfectly satisfy the product

test: there always remains a positive residual from cross-entropy, which is bounded by the

entropy of aggregate GDP.

Corollary 1.1. The choice of indexation scheme Ωt which minimises H(Ωt ,Yt) is

ωi,t =
Yi,t
Yt

∀i. (5)

Under this indexation scheme, minimal cross-entropy can be written as

H(Ωt ,Yt) =

N∑

i=1

Yi,t
Yt

log

(
Yt
Yi,t

)
=H(Yt), (6)

which is Shannon’s (1948) definition of entropy, applied to aggregate nominal output Yt .

Proof. Follows from the definition of cross-entropy (Cover & Thomas 2005).

From Corollary 1.1, the cross-entropy residual can be minimised by setting the index-

ation scheme equal to the distribution of GDP. The existence of any residual is immediate

from Eq. 5, which is a standard representation of Jensen’s Inequality. When the indexation

scheme is chosen to be equal to the distribution of GDP among industries, the cross-entropy

term reduces to the entropy of GDP, H(Yt), as defined by Shannon (1948). This index is

typically referred to as the Divisia index when applied to continuous time.

The surprising implication of Corollary 1.1 is that the fidelity of any pair of price and real

output indices to the product test has a hard boundary equal to the entropy of GDP. This has

particular consequences for long time series, where the entropy of GDP itself might change

over time. This point is developed further below.

2.2 Intermezzo: what is entropy?

Here, I illustrate what the entropy of GDP measures. Formally, recall that the market econ-

omy is accounted for by the transactions across N goods in a given period of time, for which

the sum is GDP. The number of possible arrangements for those transactions is given by the

multinomial coefficient:
(

Y !

Y1!,Y2!, . . . ,YN !

)
=

Y !

Y1!Y2! . . .YN !
=

Y !

(Yy1)!(Yy2)! . . . (YyN )!
,
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Figure 1: Plotting entropy for two industries: Total entropy (Left) is maximal at the dotted

line, where the share of each industry is equal at 1/2. By fixing a weight (Right) at the dotted

line, a change in the actual share increases cross-entropy.

where yi = Yi /Y . This is simplified, under large N , using the Stirling approximation for

factorials:

log

[
Y !

(Yy1)!(Yy2)! . . . (YyN )!

]
≈ Y

N∑

i=1

yi log

(
1

yi

)
, (7)

which corresponds to Shannon’s (1948) entropy. To better interpret this term, assume that,

on a given day, €10 of fruit are traded on a market consisting of two types, apples and

coconuts. If spending is uniform, the number of possible allocations is

10!

5!5!
= 252.

On the other extreme, if all but one Euro is spent on one fruit alone, the number of possible

arrangements is

10!

9!1!
= 10.

This is why entropy is often described as a measure of uncertainty, or observational vari-

ety: from the consumer’s perspective, there are many more ways to spend an endowment

equally among options, rather than prioritising some ahead of others.4 An additional dollar

has many possible ways of being spent in a uniform economy, but fewer in a concentrated

economy.

Returning to the problem at hand, a weighting scheme Ω
d
= Y yields an indexation error

equal to the entropy of GDP. Therefore, the indexation error worsens as variety increases. In

the example, a real output index will be more inaccurate when expenditures are similar be-

tween apples and coconuts, rather than concentrated in apples. This is visualised on the left

of Figure 1: if all expenditures are on apples, then the growth rate of apples produced is a

4Two technical remarks: i) observational zeros do not appear (0log0 = 0), and ii) each Euro is treated

equally.
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perfect measure for aggregate growth, and entropy is zero. Alternatively, if expenditures are

allocated uniformly, the average growth rate is a worse approximation of the growth rates

in either apples or coconuts. When national statisticians extrapolate an aggregate real out-

put index from a time series of industry GDP and prices, it will invariably be progressively

more biased upwards if variety in GDP increases. This is is particularly interesting for fixed

weights, visualised on the right of Figure 1; the cross-entropy between the assumed weight

versus the actual share can change over time, even if entropy itself is already low.

I write ‘economic’ variety because this result naturally extends beyond industry-level

aggregation, right down to the product level. It is not hard to imagine that variety today

is orders of magnitudes larger than a century ago. In fact, much of this is reflected in the

constant revisions and expansions of industry classifiers: what products are similar enough

that we can assume a common price level? The answer inevitably evolves with innovation

and creative destruction, as per Aghion et al. (2019).

Comparing distributions Entropy is a metric for variety in one variable, but cross-entropy

combines this measure for two distributions. The notion of ‘accounting’ for variety I propose

is no more than a log-likelihood function for the distribution of GDP by industry against

an assumed weighting scheme. In economics, these weights typically constitute a ‘model’.

Proposition 1 suggests that an accurate measure for aggregate real output requires a ‘good’

model when quantities are not directly observed by industry.

The right panel of Figure 1 demonstrates the extent to which variation in the true share

of an industry, plotted along the horizontal axis, affects cross-entropy as measured by Eq. 4

when the assumed weight is fixed to 0.4. One issue with cross-entropy is that it is difficult

to compare across different scenarios, because it is jointly sensitive to the performance of

the model in addition to variety in the original data. Therefore, the Kullback-Leibler (KL)

divergence is used as a common metric that standardises the divergence between two dis-

tributions (Kullback & Leibler 1951):

DKL(Ω||Y) =H(Ω,Y)−H(Ω)

=

N∑

i

ωi log
ωi

yi
,

where DKL(x||y) denotes the KL divergence of y from x. The desirable property of the KL

divergence between two distributions is that it is zero when both distributions are identical.

This is also seen from the minimised cross-entropy in Eq. 6. Further properties of the KL

divergence measure are discussed by Cover & Thomas (2005)

2.3 Theoretical motivation

So far, I motivated the integration of entropy into macroeconomic indices by an intriguing

accounting relationship. This comes with its own downside, since the result in Proposition

1 might strike the reader as tautological. Uneven growth rates must cause relative expendi-

ture shares to diverge. However, theoretical assumptions also yield a variable level entropy,
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except under Cobb-Douglas aggregation. Entropy may therefore offer new insights into the

nature of heterogeneous consumption in a demand system. I demonstrate this using a gen-

eral framework.

Modelling consumption shares A parametric model can rationalise the share of con-

sumption allocated to a given industry. Using such models, economists build ‘cost of liv-

ing’ indices that aggregate industry prices to meet their benchmark ‘standard of living’, the

corresponding aggregate real output index. Various assumptions can yield different param-

eterisations, and thus different weighting schemes by which to aggregate across industries.

The main parameter that governs aggregation in these models is

εi =
dY

dQi

Qi

Y
(8)

=
Yi
Y

= yi . (9)

Parameter εi in Eq. 8 is defined as the elasticity of output Y with respect to quantity Qi .

Eq. 9 follows from assuming that Qi is paid price Pi equivalent to its marginal output

(the derivative in Eq. 8). This relationship is expected to hold at the system’s equilibrium

under perfect competition. Further extensions consider markups charged under imperfect

competition, and other sources for ‘wedges’ (Baqaee & Farhi 2020).

Parameterisation using a utility function This elasticity features in a functional relation-

ship between aggregate welfare and quantity inputs: a ‘utility function’ (or its dual with

respect to prices, the ‘cost function’). Writing this parameter explicitly is useful because it

clearly delineates the realm of variability that these models offer under perfect competition.

This is crucial for understanding the theoretical underpinning of entropy, which emerges

from re-arranging Eq. 9:

logY = logPi + logQi + log
1

εi
(10)

=

N∑

i=1

ωi logPi +

N∑

i=1

ωi logQi +

N∑

i=1

ωi log
1

εi
, (11)

where
∑

iωi = 1 as before. Eq. 10 demonstrates the earlier tautology: without measurement

error, an index can be built from a single industry alone only if quantity growth is equal

among all industries. In other words, aggregated output elasticities are residuals that only

change when quantity growth is uneven among industries. The aggregation in Eq. 11 is

desirable because it tracks ‘aggregate’ prices and quantities according to a schemeΩ, whose

purpose can either be statistical – attenuating measurement error – or economic – tracing

some aggregate ‘welfare’.

When is entropy constant? It is important to note that different utility aggregators yield

various predictions for what the elasticity should be. Therefore, changes in the output dis-

tribution can be interpreted in a variety of ways, depending on the assumptions on the
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utility function. Proposition 2 states a null result: what utility functions predict constant

elasticities, and, consequently, a fixed output distribution?

Proposition 2 (Constant elasticity). Aggregator Y = f (Qi) exhibits a constant elasticity εi with

respect to quantity Qi if, and only if, it holds functional form

f (Qi) =Qε
i c, (12)

where c is constant with respect to Qi .

Proof. See Appendix A.1.

Utility functions that follow the form of Eq. 12 are commonly referred to as ‘Cobb-

Douglas’. According to Proposition 2, Cobb-Douglas aggregators have constant elasticities

that are dependent on a variety of goods, resulting in a constant entropy for the correspond-

ing quantity index as income levels change. Preferences that generate constant expenditure

shares as a function of income levels are known as homothetic preferences. This has signif-

icant implications, as it highlights that GDP alone is not a sufficient welfare metric unless

preferences are Cobb-Douglas. Other utility functions require real output indices that are

adapted to incorporate changes in preferences.

A prime example of such an adaptation is Baqaee & Burstein (2021). Their analysis con-

siders the extent to which particular industries become more prevalent in consumption as

incomes increase. Practical scenarios include healthcare and professional services, which

grew as a share of GDP in advanced economies, in contrast to agricultural and certain in-

dustrial services, which generally shrank. Redding & Weinstein (2019) also introduce a de-

mand system to assign an entropy-like residual, specifically for the Sato-Vartia index, some

economic insight.

Does entropy increase over time? One reflection follows an established literature on the

evolution of human wants as they progressively satisfy their needs (Maslow 1943). As

spending on relatively niche outlets increases, and allocations turn more uniform, entropy

invariably increases. More concretely, certain utility forms predict output elasticities as a

function of input levels, allowing for some flexibility in assessing changes in output vari-

ety. Table 1 tabulates these elasticities for three popular functions used in microeconomic

theory, with two inputs Q1,Q2. Section 3 offers empirical evidence for a broad trend in the

historical entropy rate of the US economy.

One notable feature is that these utility functions, namely the Constant Elasticity of

Substitution (CES) and the Translog, preserve the Cobb-Douglas as a special case. In both

instances, output elasticities, and thus entropy, change if growth in utility components is

uneven. This is readily seen in the third column of Table 1. In a CES scenario where Q1

grows faster thanQ2, the expenditure share onQ1 is predicted to decline if both components

are complements (σ < 0), or increase if both are substitutes (σ > 0). This is due to the indirect

effect on prices, thus breaking the tautology pointed out at the beginning of this section.
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Table 1: Demand elasticities for select utility functions

Name f (Q1,Q2) ε1

Cobb-Douglas AQ
a1
1 Q

a2
2 a1

CES A
[
a1Q

σ
1 + a2Q

σ
2

] 1
σ a1Q

σ
1

a1Q
σ
1+a2Q

σ
2

Translog A+
∑

i ai logQi +
∑

i,j ai,j logQi logQj a1 +
∑

i a1,i logQi

Notes: Three candidate utility functions are tabulated, along the output elasticity ε1 for one good Q1. Con-

stant coefficients are A, a generic multiplier, ai , a technical coefficient, and σ , which yields an elasticity of

substitution.

The Translog function obtains a similar result, where the signs of the second-order coef-

ficients determine the direction for the expenditure share. Starting input levels will make

a difference, since entropy will specifically increase(decrease) if expenditure shares grow

more uniform(concentrated). It is possible to derive similar elasticities for other forms of

utility.

2.4 Choosing weights

As per Corollary 1.1, changing indexation scheme Ωt can ameliorate, or worsen, the bias

in real output in Proposition 1. However, one detail is that this corollary considers a static

indexation scheme, built with information learnt in period t alone. Since quantity and price

indices are defined by two-period changes, can we get around the bias by finding weights

that minimise the change in cross-entropy, instead of its level?

Generally, yes. Table 2 categorises certain well-known indexation schemes, and demon-

strates how cross-entropy enters the indexation formula. This variety in methods is due to

the fact that some ‘optimal’ index should fulfill multiple criteria, which Eichhorn (1978)

proves are impossible to satisfy simultaneously. Additionally, the desirability of certain in-

dices depends on their interpretation within economic theory, or simple intuition.

Examples of weighting schemes A prominent choice for weighting scheme Ωt defined in

continuous time are Divisia weights (Divisia 1925). Hulten (1973) demonstrates that, under

the parameterisation in Eq. 9 plus an assumption on linear homogeneity, so that
∑

i εi,t = 1,

these indices are path-independent. The Divisia index is conventionally approximated with

two-period averages in expenditure shares for discrete time observations. Table 2 suggests

that the bias due to cross-entropy under the Divisia approximation is small, specifically one

half of the difference in the KL divergence of output shares in periods t and t −1. This term

is large if fluctuations in output shares yi,t are large, but close to zero otherwise.

Since Diewert’s (1976) seminal contribution, statistical agencies adopted the use of stan-

dard techniques in forming aggregate price indices, motivated by economic theory. One

recommended method is the Törnqvist index, which adopts a similar form to Eq. 4. Specif-
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Table 2: Cross-entropy under different indexation schemes

Name ωi,t ∆H(Ωt ,Yt)

Divisia 1
2

(
yi,t + yi,t−1

) 1
2 [DKL(Yt−1||Yt)−DKL(Yt ||Yt−1)]

Törnqvist 1
2

(
yi,t1 + yi,t0

) 1
2 [DKL(Yt0||Yt1)−DKL(Yt1||Yt0)]

Sato-Vartia 2
yi,t−yi,t−1

logyi,t−logyi,t−1

/∑N
i=1

yi,t−yi,t−1
logyi,t−logyi,t−1

0

Chained yi,t−1 DKL(Yt−1||Yt)

Notes: The bias in real output due to cross-entropy in output shares, listed in the final column, varies by

indexation scheme, named and expressed in the first two columns. DKL(x||y) is the Kullback-Leibler (KL)

divergence of y from x (Kullback & Leibler 1951, Cover & Thomas 2005).

ically, it assigns weights equal to the average output shares between two arbitrary periods

– t0 and t1 in Table 2. Törnqvist weights coincide with the Divisa approximation when

computed over rolling observations. Diewert motivates the properties of this index, which

he defines to be ‘superlative’, by demonstrating how it benchmarks the price to an assumed

average utility between the two periods of choice. Practically, it is useful because it may

cancel the cross-entropy term in Eq. 4, depending on how linearly the true weights change

over time.

Whereas the Törnqvist index corresponds to Translog utility, the Sato-Vartia index corre-

sponds to CES preferences (Sato 1976, Vartia 1976).5 The Sato-Vartia index’ own desirable

property is that it adjusts for substitution between inputs via some constant elasticity, al-

though at the price of violating Fisher’s (1922) monotonicity axiom (Reinsdorf & Dorfman

1999). Redding &Weinstein (2019) further critique this index, demonstrating that it is prob-

lematic when preferences change over time. As far as accounting for variety is concerned,

one feature that stands out in Table 2 is that the cross-entropy residual under Sato-Vartia

indexation is precisely zero. The weights cancel the change in logarithmic output shares,

and the remaining expression sums to zero.

Finally, I mention the chain index. The chain index, which updates weights to the pre-

vious period’s output shares, is widely used in statistical agencies’ CPI computations. The

weights for consumption are updated annually and used to form monthly CPI estimates.

This index provides a straightforward interpretation of price and quantity changes, as it is

tied to a single representative basket from the recent past. This feature is particularly useful

in high-frequency settings where there are persistent fluctuations, such as seasonal goods.

In terms of accounting for variety, the cross-entropy term for a chained index reflects the

simplest and most intuitive form for a change in entropy, which is the KL divergence of the

current consumption basket from the previous basket.

5The specific version I consider is its second variant, Sato-Vartia 2.
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2.5 Summary

This section demonstrates that real output indices of the type defined in Definition 2 are bi-

ased if extrapolated from GDP using a counterpart price index, to the degree that the index-

ation scheme differs from consumption patterns. In addition, this bias from cross-entropy

in the indexation scheme and consumption patterns enters real output growth indices by

at least the amount that the entropy of GDP changes. This bias is larger if the indexation

scheme does not match consumption patterns, as is the case for common, economically-

motivated real output indices.

Importantly, this bias remains present as long as preferences are not Cobb-Douglas.

Therefore, this result suggests that adjusted real output indices are needed to account for

varying preferences in order to obtain an accurate representation of economic activity. The

main limitation in this argument is that it is derived assuming perfect competition. Recent

studies investigate the role of markups and taxes that further distort the observed output

distribution Baqaee & Farhi (2020). However, further adjustments for such wedges should

manifest in addition to the cross-entropy term that relies on modelling output shares under

perfect competition.

3 Indices, revisited

3.1 Real output: Hulten’s Paradox in KLEMS data

What does Proposition 1 imply for the measurement of living standards in the long run? To

demonstrate the role of changing consumption patterns, I revisit Hulten’s Paradox. Hulten

(1997) established the paradox in response to Nordhaus’s (1997) claim that prices grew

slower than commonly accepted. He noted that the revision implies faster volume growth:

when extrapolated back in time, this correction in prices leaves our ancestors with very

little income in real terms. A paradox manifests in the observation that these ancestors were

demonstrably capable to procure sustainable lifestyles.

Solving the paradox The exchange centred on pricing attributes for products (dis)appearing

for the first time, but this paper takes issue with one particular step in Hulten’s logic.6 He

asserts that if true price growth is overestimated, and volume growth underestimated, the

average colonial and modern Americans are indifferent between the average living stan-

dard of colonial America, and that afforded with $90-$430 in 1997. However, not only is

the budget of 90-430 1997 dollars fixed, but so is the 1997 assumed consumption basket.

The decisions from both modern and colonial Americans to travel across time should not be

equivalent, because they adhere to different consumption patterns. In absolute terms, goods

consumed in 1997 were likely scarce in colonial America – think of the entertainment a new

6Quality improvements, the like Nordhaus (1997) investigates, are indeed important in biasing inflation

indices upwards in matched-model methods; the availability of characteristics is increasing with new prod-

ucts, but on paper their prices may appear the same. Gordon (2009) proposes that, just as matched models

bias inflation upwards, so they may bias inflation downwards, with apparel prices as a case in point.

14



Game Boy offers – while goods consumed by colonial Americans are abundant in 1997. The

modern CPI Hulten uses to deduce living standard improvements one hundred years ago is

off the mark.

Table 3: Yearly GDP growth with different industry indices: US, 1947-2014

∆ logYt P̃t Q̃t ∆H(Ωt ,Yt)

Basket from 1947 6.33 3.17 2.40 0.76

Basket from 2014 6.33 3.53 3.48 -0.68

Difference 0.00 -0.36 -1.08 1.44

Törnqvist 1947&2014 6.33 3.35 2.94 0.04

Chained 6.33 3.36 3.15 -0.18

Divisia 6.33 3.32 3.01 0.00

Notes: This table decomposes average nominal GDP growth from 1947 to 2014 between the average growth in

price, volumes, and change in cross-entropy. WeightsΩt are labelled in the first column, and computed as per

Table 2. All values denote log points. These observations aggregate across 65 industries, for which data are

made available by World Klems.

Is the bias in real output due to entropy significant in practice? Returning to Eq. 4,

the cross-entropy term increases over time as real output growth diverges between indus-

tries from the perspective of a colonial American, even when keeping inflation rates equal

across industries. From the perspective of the modern American, aggregate GDP appears to

have grown substantially, but this is only due to a decline in cross-entropy: they happen to

consume more goods that experienced higher real output growth rates.

Data In order to capture the order of magnitude of this difference, I reproduce an aggre-

gate GDP deflator from US World KLEMS data.7 These data cover 65 industries, from 1947

to 2014. The files provide yearly GDP by industry in current and constant prices. From this,

I back out industry-specific price indices by dividing reported industry-level nominal gross

output by its respective output in real quantities. Using these gross output deflators as Pi ’s,

I can estimate each term in Eq. 4 using different weighting schemes. Specifically, in Table

3 I compare the composition of average, yearly GDP growth for a representative basket in

1947 – fixing weights to industry shares of GDP in 1947 – to a representative basket in 2014

– with weights fixed to industry shares in 2014. In addition, I include a Törnqvist index

averaging 1947 and 2014, a chained index, and a rolling Törnqvist average to approximate

a Divisia index, as outlined by Table 2.

Results The first column in Table 3 reports the average yearly nominal GDP growth rate,

which is always constant. The second column reports the annual average price index, and

the third the quantity index, constructed with the weighting scheme labelling each row. Us-

ing the annual industry-level nominal output shares, I retrieve the average cross-entropy

7http://www.worldklems.net/data.htm
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residuals corresponding to those schemes in the fourth column. Given that the decomposi-

tion in Proposition 1 is exact, the final three columns always add up to the nominal output

growth rate reported in the first column.

The first result is that, as expected, real output growth rates are higher when indexing

industry contributions to the distribution of nominal output from 2014 in the second row,

relative to 1947 in the first row. This difference, reported in the third row of the third

column, is significant, in the order of 1pp per year. This translates to overstated real welfare

improvements of about 50% after seven decades, if consumption patterns in 2014 are used

as the benchmark.

The second, perhaps surprising outcome of this exercise is that aggregate deflators con-

tribute positively to this gap. In the first and second rows of the second column, the average

product in 1947 turned out less expensive than the average product in 2014. Therefore, a

resolution to Hulten’s Paradox may not lie at all in revising aggregate price indices upward

by finding negative CPI biases, but rather in accounting for the change in industrial variety

of GDP.

How does this compare to measures of welfare motivated by economic theory? The

fourth row of Table 3 reports the contributions to GDP growth by adopting average weights

between 1947 and 2014 as the benchmark. As expected, the loss of information by this index

is substantially lower, although slightly positive. This would suggest that industry shares

evolved relatively smoothly during that period.

The fifth row reports the indices and cross-entropy for chained weights. As stated pre-

viously, this weighting scheme is perhaps most intuitive, since it benchmarks price and

quantity growth to the most recent reporting period. The average rate of information loss

between two subsequent years, which coincides with the KL divergence reported in Table 2,

is relatively small at 0.18pp, almost 3% of average GDP growth.

Finally, the sixth row demonstrates that approximating a Divisia index yields a tiny

cross-entropy term, although not exactly equal to zero. Therefore, this index is desirable

for those who want to reduce the cross-entropy term to the greatest extent possible, short of

using the Sato-Vartia 2 indexations scheme.

Appendix B.1 demonstrates that CPI weights from statistical agencies produce similar

results, even though they include in the order of 200 product groups instead of coarse in-

dustry classes.

Sources of structural change It remains unclear whether these aggregate statistics conceal

meaningful trends in the structure of the US economy over the last seventy years. Figure 2

plots the entropy rate of US GDP, H(Yt), for years reported by US KLEMS. The underlying

unit plotted on the vertical axis is the base of the natural logarithm, Euler’s number, con-

ventionally known as a ‘nat’ (Cover & Thomas 2005).8 These industry data demonstrate a

stunning reversal in the entropy rate, which has increase until the early 1980s, but since

declined. This suggests that US industrial output has been most uniform in the early 1980s,

8Base two measures of entropy are known as ‘bits’, which are used to measure information in binary com-

puting systems.
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but turned relatively more concentrated in a few industries in recent years.

Figure 2: Entropy of US GDP increases until 1980, but has declined since: This figure

plots the entropy of US GDP, measure in nats, from 1947 to 2014. Data are made available

by World Klems.

Figure 3: Largest contributions to US entropy, 1947-2014: This figure plots six industries

that have the three largest positive and negative contributions to the entropy of US GDP.

Data are made available by World Klems.

Figure 3 helps understand where most of the change in US entropy originated, by plot-

ting the entropy rate

hi,t = −yi,t logyi,t

for select industries i. I plot this entropy rate for the three largest positive and negative

contributions to the change in the total entropy rate observed over the whole sample by

comparing the sums of entropy rates
∑2014

t=1947hi,t between industries. The industries that

emerge are well-documented in studies of structural change for the US economy. The largest

declining industries are agriculture, rail transport, but also output from federal government

activities. On the other hand, the rise of health care, professional services, and S&L general

government contributed most to an increasing entropy rate.

17



A promising avenue for further research constitutes aligning changes in the distribution

and concentration of US industrial output with known drivers of structural change. One

important phenomena is the emergence of IT industries, and service industries generally. A

second driver is the emergence of global trade, which significantly reduced the importance

of certain manufacturing industries. Another is cost disease (Baumol 1967), which likely

affected agriculture.

3.2 Labour productivity: technology or allocation?

Cross-entropy is a measure of how closely two distributions overlap. Recall, from Figure 1,

that cross-entropy is minimised when the two distributions are are identical. This observa-

tion lends itself to a useful application to the decomposition of labour productivity. To see

this, I first define a labour productivity index in Definition 3.

Definition 3 (Real productivity index). Real aggregate productivity growth∆ logqt equals GDP

growth, minus labour input growth and an aggregate inflation index:

∆ logqt = ∆ logYt −∆

N∑

i=1

ωi,t logPi,t −∆ logLt . (13)

A common choice for weights ωi,t in the productivity literature is the rolling Törnqvist

average, which coincides with the Divisia approximation expressed in Table 2. Unlike be-

fore, productivity entails the use of two aggregate statistics; nominal output and labour,

both of which are distributed among N industries. This means that the behaviour of the

aggregate index ∆ logqt hinges on the entropy of both nominal output and labour input.

This leads to an elegant decomposition of aggregate labour productivity between : i) ‘tech-

nology’ (how many more units are do industries produce per unit of labour, on average) and

the allocation of ii) ‘demand’ (are expenditures for industries, that are weighted relatively

more, relatively lower) and iii) labour (are labour input shares equal to industry weights).

Proposition 3 outlines the components of this decomposition.

Proposition 3 (Aggregate real productivity decomposition). Aggregate real productivity growth

can be decomposed exactly between technology, plus the allocation of demand and labour:

∆ logqt = ∆

N∑

i=1

ωi,t log

(
Qi,t

Li,t

)

︸                  ︷︷                  ︸
Technology

+

Allocation
︷                               ︸︸                               ︷
∆DKL(Ωt ||Yt)︸          ︷︷          ︸

Demand

−∆DKL(Ωt ||Lt)︸          ︷︷          ︸
Labour

. (14)

Proof. See Appendix A.2.

Cost disease Proposition 3 shares some similarities with the method presented by Tang

& Wang (2004), but offers an improved interpretation and additivity of log growth rates.

The decomposition predicts that demand allocation can contribute positively to the labour
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productivity growth index. This is reasonable in the sense that important industries, with

larger weights, should cost less, and thus capture a smaller expenditure share. The demand

allocation term constitutes an important link to Baumol’s (1967) cost disease hypothesis,

by which industries with low productivity growth capture a larger share of output. The

precise version of the cost disease hypothesis that the demand allocation term captures will

specifically depend on the choice of weights.

Labour misallocation While demand allocation contributes positively to the labour pro-

ductivity growth index, labour allocation has a negative effect. This is because, if an industry

receives a greater amount of labour inputs than its weight in the weighting scheme, it cre-

ates a reallocation opportunity by which relatively more labour input is sent to relatively

important industries. In Proposition 3, this re-allocation can reduce the KL divergence of

labour from the scheme towards zero. In contrast to Tang &Wang (2004), the decomposition

does not focus exclusively on the productivity levels of industries. Rather, it measures re-

allocation according to the weighting scheme that is chosen, which does not have to reflect

real output levels.

Explaining the slowdown in labour productivity growth Are the allocation terms sig-

nificant for the infamous labour productivity slowdown? I use the conventional approach

of two-period averages for the industries’ nominal value added shares as the indexation

scheme. Labour inputs are defined as number of hours worked. To summarise the prob-

lem, the first column reports real aggregate labour productivity growth (from a price index

derived using appropriate weights) as an average for years pre- and post-2005, for France,

Germany, Japan, the UK and the US. The slowdown is then defined as the difference between

those two average growth rates; these range from around 1pp for the first three countries, to

more than 1.5pp in the UK and US. As Table 4 demonstrates, these allocation terms explain

the labour productivity slowdown in varying proportions.

One of the key findings of the study is that the reallocation of demand appears to have

worsened in all countries, explaining between 10 to 15% of the slowdown across the board.

However, the experience with labour reallocation is more varied. In Germany, labour reallo-

cation worsened after 2005, and explains almost 30% of the labour productivity slowdown.

On the other hand, labour reallocation does not appear to have changed significantly in

France, and has actually contributed positively to labour productivity in Japan, the UK, and

the US. Taken together, these results indicate that demand and labour reallocation account

for almost half of the slowdown in labour productivity for Germany. However, for the other

countries, the pure technology component, which measures the average industry’s ability to

produce more per hour worked, is the single explanation.

4 Conclusion

In this paper, I highlight the importance of accounting for product variety in the analysis

of aggregate quantities. I demonstrate that failing to consider the changing representation
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Table 4: Allocation in the slowdown of labour productivity growth

∆ logqt Technology Demand Labour

France

1995-2005 1.64 1.58 0.14 -0.08

2006-2017 0.64 0.73 -0.02 -0.08

Slowdown 1.01 0.85 0.16 0.00

Share 1.00 0.84 0.15 0.00

Germany

1995-2005 1.84 1.49 0.16 0.18

2006-2017 0.87 0.96 0.02 -0.10

Slowdown 0.97 0.54 0.15 0.28

Share 1.00 0.55 0.15 0.29

Japan

1995-2005 1.75 1.48 0.12 0.15

2006-2015 0.80 0.56 -0.00 0.25

Slowdown 0.95 0.92 0.13 -0.11

Share 1.00 0.98 0.13 -0.11

United

Kingdom

1995-2005 2.18 1.90 0.18 0.11

2006-2017 0.38 0.06 -0.02 0.34

Slowdown 1.80 1.83 0.20 -0.23

Share 1.00 1.02 0.11 -0.13

United

States

1997-2005 2.45 2.58 0.22 -0.35

2006-2017 0.88 1.02 -0.01 -0.13

Slowdown 1.57 1.56 0.23 -0.22

Share 1.00 0.99 0.15 -0.14

Notes: This table reports the sources of the labour productivity slowdown in five advanced economies, using

the decomposition in Eq. 14. Weights are two-period Törnqvist averages of nominal output shares. Data from

EU-KLEMS 2019.

of products over time can lead to biased estimates of real output. For instance, the real

output growth experienced by a modern product may appear higher simply because the

product was rarely consumed in the past, irrespective of its actual inflation rate. Similarly,

the current real output growth of a representative product from the past may be underes-

timated due to its diminishing importance over time. This bias can be quantified by the

cross-entropy of GDP between the benchmark year and the remaining period. I interpret

this measure as the loss of information inherent in an index that accumulates over time.

These findings highlight the need for careful consideration of product and industry variety

in the study of aggregate quantities.

The loss of information due to accounting for variety has a significant impact on mea-

suring GDP growth, even in fine-grained industry breakdowns. In the US World KLEMS

data, for instance, it results in a doubling of the real output index level when using current

industry compositions of GDP, compared to those from seven decades earlier. This finding
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is consistent with a more detailed analysis of CPI weights from 1998 to 2018, as well as with

consumer price data from Eurostat, which suggests that extrapolated real output growth

rates from aggregated inflation data are about 1-2pp higher than actual growth rates from

observed real output data. Additionally, by incorporating the allocation of demand and

labour inputs, a decomposition of labour productivity provides insight into the origins of

the labour productivity slowdown in Germany since 2005.

The central argument of the paper is that variety plays a crucial role in analysing het-

erogeneous economic data, and this warrants careful consideration. Although the study

focuses on a single application in the context of long-term economic growth, it suggests that

accounting for variety could be relevant in other areas such as monetary aggregates and

employment. There are several measures of variety that extend beyond the one examined

in this paper, which could offer fresh perspectives. As researchers have access to increas-

ingly granular datasets, this subject gains even greater significance, expanding the horizon

beyond the analysis of singular aggregate quantities. The implications of this approach are

broad, and further exploration could lead to new insights and innovative applications.
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A Proofs

A.1 Proposition 2

Dropping subscript i from Eq. 8, elasticity

ε =
dY

dQ

Q

Y
(15)

is assumed constant. To derive the functional form of Y = f (Q) that satisfies constant ε,

re-arrange the expression, then integrate both sides:

∫
f ′(Q)dQ =

∫
ε
f (Q)

Q
dQ (16)

= f (Q) +C = ε

∫
f (Q)

Q
dQ (17)

= εf (Q) logQ −
ε2

2
f (Q) log2Q +

ε3

6
f (Q) log3Q −O(log4Q) (18)

= f (Q)


1−

∞∑

n=0

εn(−1)n

n!
(logQ)n


 (19)

= f (Q)


1−

∞∑

n=0

1

n!
(logQ−ε)n


 (20)

= f (Q)− f (Q)
1

Qε
, (21)

⇒ f (Q) =Qεc, (22)

where C = −c is the constant of integration. Step 17 is possible because ε is assumed not

to vary with Q. Step 18 follows from recursively integrating by parts and substituting ε =

Qf ′(Q)/f (Q). The terms are collected in the sum of Step 19 after adding and subtracting

one. This summation term is a Taylor expansion of exp(x) about zero, and thus simplifies to

Step 21. Re-arranging yields the final result.

A.2 Proposition 3

Starting from productivity defined in Definition 3,

∆ logqt = ∆ logYt −∆

N∑

i=1

ωi,t logPi,t −∆ logLt (23)

= ∆

N∑

i=1

ωi,t logQi,t −∆

N∑

i=1

ωi,t logLi,t +∆

N∑

i=1

ωi,t log
Yt
Yi,t
−∆

N∑

i=1

ωi,t log
Lt
Li,t

(24)

= ∆

N∑

i=1

ωi,t logqi,t +∆

N∑

i=1

ωi,t log
ωi,tYt
Yi,t

−∆

N∑

i=1

ωi,t log
ωi,tLt
Li,t

(25)

= ∆

N∑

i=1

ωi,t logqi,t +∆DKL(Ωt ||Yt)−∆DKL(Ωt ||Lt), (26)
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where qi,t =Qi,t/Li,t , andDKL(x||y) is the Kullback-Leibler (KL) divergence of y from x (Kull-

back & Leibler 1951).

B Additional results

B.1 Does the level of aggregation matter?

Since the entropy of GDP clearly matters in measuring historical living standards, one won-

ders whether the 65 SIC industries offered by Worlds KLEMS paint an accurate picture. As

mentioned in Section 1, data on disaggregated output, and thus weights, are hard to come

by. Privacy protection rules also prevent publication of the most granular decomposition in

industry output.

BLS data However, through remarkable efforts of statistical agencies in recent decades,

data on components of consumption are more extensive, reliable and granular. On the prod-

uct level, the BLS is tasked with assigning weights to products consumed by households for

the purpose of estimating its CPI, which entails the use of surveys. The BLS publishes price

indices for 182 products from 1998 to 2018, of which 10 have data for only a subset of

years.9 These prices are accompanied by official weights used to form aggregates, from sur-

veys of what consumers buy for day-to-day living. After building a price index from these

data, one can deflate any consumption series. I supplement the results from BLS data using

the Harmonised Index of Consumer Prices (HICP) published by Eurostat, showing that the

cross-entropy bias typically varies between 1-4pp per year across 33 European countries.

Section 2 establishes that this real output series is biased by the cross-entropy of CPI

weights and the actual distribution of consumption. This bias is minimal when the weights

are equal to the distribution of output, at which point it is equal to the entropy of con-

sumption. Therefore, even though expenditure data is unavailable for the 182 products, the

weights alone determine a ‘best-case’ outcome for this bias.

Table 5: Yearly growth in consumer price and cross-entropy: US, 1998-2018

∆ log P̃t ∆H(Ωt)

Basket from 1998 2.07 0.57

Basket from 2018 2.12 -0.48

Difference -0.05 1.05

Törnqvist 1998&2018 2.08 0.06

Notes: BLS data on prices and weights for 182 products are used to form price indices in the first column,

fixing weights to 1998 and 2018. The second column computes the average cross-entropy of those weights and

the weights in all other years, denoted ω. All values denote log points. Data are made available by the BLS.

9Omitting the incomplete series does not significantly alter results.
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Results: US Table 5 computes this bias with CPI weights provided by the BLS. There are

persistent differences between the CPI and the PPI, so these results do not compare directly

to those of Table 3. However, the magnitude of the bias is surprisingly similar, at about 1pp

per year. The bias for the Törnqvist index is also close, however small, at 0.06pp. At a rate of

1pp, deflating consumption using current expenditure patterns overstates improvements in

living standards from fifty years ago by at least 65%. Another finding reproduced in Table

5 is the smaller inflation rate for the index based on 1998 consumption patterns.

Eurostat data The European HICP, maintained by Eurostat, mimics the construction of the

BLS’ CPI, with the advantage of offering granular data for 33 European countries. Published

data for the HICP include five levels of aggregation, with the 5-digit level counting up to

264 product categories. Decent coverage is available at that level for France, Lithuania and

Slovenia. For the remaining countries, data is available at the 4-digit level, which includes

up to 72 product categories. Generally, the price data span from 1996 to 2020, with some

exceptions. Using those observations, I repeat the exercise from BLS CPI data for each

European country. This will illustrate how varied the change in cross-entropy can be across

different economies.

Entropy Difference Price Difference Entropy from Tornqvist aggregate

0 2 4 6 0 2 4 6 0 2 4 6

0

5

10

15

log points (pp)

Aggregation level 4−digit 5−digit

Figure 4: Comparing price and entropy from first and last available weights in HICP

data: 33 European countries, 1997-2020: indexing aggregate price inflation to the start

of the observation period yields an estimate for entropy (Left) that is around 1-2pp higher

relative to an index composed of final-year weights. Overall inflation rates (Middle) are

generally similar, if not slightly larger when indexing to final-year weights. A Törnqvist

index (Right) averaging first- and final-year baskets lowers the average amount of cross-

entropy in the index, but can still be in the order of 1pp.

Results: HICP By using weights from the first and final years available, Figure 4 repro-

duces the difference in average yearly changes in cross-entropy on the left, the difference
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in average yearly price growth rates in the middle, and the average yearly change in cross-

entropy when using a Törnqvist average weight. These are comparable to row three, and the

fourth column in row four, of Table 5.

The middle chart in Figure 4 demonstrates that the average rate of information loss from

cross-entropy for an aggregate real output index is between 1-2pp per year. These obser-

vations align closely to the 1.05pp found for US CPI data, but exhibit some variation, with

6.31pp an extreme case in Lithuania. It is not clear whether the level of aggregation has an

obvious impact on cross-entropy estimates, since the number of countries publishing 5-digit

level data is too low for a robust hypothesis test.

The second chart suggests that yearly price growth rates are higher when assigning

weights from the first year of middle relative to the final year. This evidences some sort

of substitution bias, by which consumption in later years favors products which grew rela-

tively cheaper.

Finally, the right chart indicates that even Törnqvist aggregation, by which an average

weight is derived from weights in the first and final years, can be subject to substantial

bias from a change in cross-entropy. This suggests that the small result in US data, seen for

industry deflators in Table 3 and in CPI weights in Table 5, may be special cases. In contrast,

consumption patterns in other countries are subject to substantial shifts, even within an

observation period of 20 years.
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