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Abstract 

 

This study, focusing on the water pollutions in terms of chemical oxygen demand 
(COD) and ammonia nitrogen by industrial and household discharges in Chinese 
provinces, investigates the contribution of capacity shortage for pollution control to the 
provincial pollution levels, by conducting a factor analysis to the heterogeneity of 
provincial pollutions under the environmental Kuznets curve (EKC) framework. The 
study’s contribution to the literature lies in its framework of analyzing the heterogeneity 
of Chinese provinces’ EKCs in terms of their positions (not their shapes) by using a fixed-
effect model to extract the province-specific pollution effects. The main finding of this 
study is that the capacity shortage for pollution control accounts for around 30% as a 
pollution factor of industrial COD and ammonia nitrogen, and accounts for around 60% 
and 80% as a pollution factor of household COD and ammonia nitrogen, respectively. It 
suggests that China has still much policy space and room to mitigate the water pollutions, 
by building the capacity for pollution control through developing human resources and 
training them. 
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1. Introduction 

 

China’s growth has significantly improved the country’s living standards since its 
Open and Reform Policy in 1978. The economic status of China was promoted from low-
income category to lower-middle-income one in 1997 and further to upper-middle-
income one in 2010, based on the World Bank income classification1. On the other hand, 
this rapid economic development has brought serious damages to its environment through 
industrialization and urbanization. Water pollution is one of the vital issues influencing 
the survival of human beings and the development of socio-economic systems. According 
to the Environmental Performance Index2, China remains at the 80th place out of 180 
countries in the field of water resources. To address the water pollution, the Chinese 
government has set the numerical targets to reduce the two main water pollutants: 
chemical oxygen demand (COD) discharge since the 11th Five-Year Plan (2006-2010) 
and ammonia nitrogen discharge since the 12th Five-Year Plan (2011-2015). The current 
14th Five-Year Plan (2021-2025) contains binding targets to reduce COD and ammonia 
nitrogen discharges by 8% during the planed period, respectively. Although these targets 
have been almost achieved through the policy efforts, the pollution discharges still remain 
massive, keeping the water quality at a low level: the groundwater supplies in more than 
half of Chinese cities were categorized as “bad to very bad”, while more than a quarter of 
China’s major rivers were considered “unfit for human contact” (e.g., Cai et al. 2020, 
Zhang et al. 2017). 

Aside from the nation-wide issue of water pollution, another concern in China is the 
regional heterogeneity in the pollution levels and the factors affecting the pollution (see 
Table 1). According to the China Statistical Yearbook3 in 2020, the industrial discharge 
of COD per million persons varies in the range from 65 ton in Beijing to 700 ton in 
Jiangsu; the household discharge of COD from 1,848 ton in Beijing to 11,488 ton in 
Guangxi; the industrial discharge of ammonia nitrogen from 2 ton in Beijing to 36 ton in 
Jiangxi; and the household discharge of ammonia nitrogen from 94 ton in Tianjin to 1,149 
ton in Guangxi. Regarding the economic factors affecting the pollution, gross regional 
product (GRP) per capita at 2010 prices differs from 127,816 yuan in Beijing to 28,171 
yuan in Gansu; the secondary industry’s value added as a percentage of GRP affecting 
industrial discharges from 46.2% in Fujian to 16.0% in Beijing; and the urban population 
as a percentage of total population affecting household discharges from 89.3% in 
Shanghai to 35.8% in Tibet. There are also the policy priority areas where the Chinese 

 
1 See the website: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519. 
2 See the website: https://epi.yale.edu/. 
3 See the website: https://spc.jst.go.jp/statistics/stats_index.html. 
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government designates them as key regions for water pollution control and has imposed 
a variety of regulations to improve water quality: the three rivers (i.e., Huai, Hai, and 
Liao) and three lakes (i.e., Tai, Chao, and Dianchi) basins (hereafter, 3Rs3Ls) that 
involves 11 provinces as shown in the last column of Table 1 (Wang et al. 2018)4. 

This study, focusing on the water pollutions (COD and ammonia nitrogen by 
industrial and household discharges) in Chinese provinces, aims to investigate the 
contribution of capacity shortage for pollution control to the provincial pollution levels, 
by conducting a factor analysis to the heterogeneity of provincial pollutions under the 
analytical framework of the environmental Kuznets curve (EKC). Specifically, this study 
takes the following steps: first, estimating the EKC econometrically with provincial panel 
data by a fixed-effect model; second, extracting the province-specific pollution effect 
from the fixed effect, which is not affected by the provincial income level on the EKC; 
third, re-estimating the alternative EKC by replacing the fixed-effects with the possible 
contributors to the province-specific pollution, i.e., the capacity for pollution control, 
industrialization degree (for industrial discharges), and urbanization degree (for 
household discharges), and finally, quantifying the contribution of capacity shortage for 
pollution control to the province-specific pollutions. 

The main finding of this study is that the capacity shortage for pollution control 
accounts for around 30% as a pollution factor of industrial COD and ammonia nitrogen, 
and accounts for around 60% and 80% as a pollution factor of household COD and 
ammonia nitrogen, respectively. It suggests that China has still much policy space and 
room to mitigate the water pollutions in terms of COD and ammonia nitrogen. 

The remainder of the paper is structured as follows. Section 2 reviews the literature 
related to the EKC issues including water pollution in China and clarifies this study’s 
contributions. Section 3 conducts empirics consisting of the EKC econometric 
estimations using provincial panel data and the factor analysis to the heterogeneity of the 
province-specific water pollutions. Section 4 summarizes and concludes the paper. 
 

2. Literature Review and Contributions 

 

This section reviews the literature related to the EKC issues including water pollution 
EKC in China and clarifies this study’s contributions. 

The EKC provides an analytical framework to examine how economies deal with 
environmental issues. It postulates an inverted-U-shaped relationship between pollution 
and economic development. Kuznets’s name was apparently attached to the curve by 

 
4 The author identifies 11 provinces based on Wang et al. (2018). 
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Grossman and Krueger (1993) who noted its resemblance to Kuznets inverted-U 
relationship between income inequality and development. Dasgupta et al. (2002) 
describes the EKC dynamic process as follows: In the first stage of industrialization, 
pollution worsens rapidly because people are more interested in jobs and income than in 
clean air and water, and environmental regulation is correspondingly weak. Along the 
curve, pollution falls in wealthy societies, because leading industrial sectors become 
cleaner, people value the environment, and regulatory institutions become more effective. 

Since the report of World Bank (1992) initially discussed EKC issues, numerous 
empirical tests and theoretical debates have been intensified, supporting the applicability 
of the EKC for some regions and environment problems (e.g., Selden and Song 1994, 
Lopez 1994, Grossman and Krueger 1995, Stokey 1998). At the initial stage until the 
1990s, most of empirical studies concentrated on validating the EKC hypothesis and its 
requirements by using cross-sectional data. Since the late 1990s, however, the EKC 
studies have shifted from cross-sectional analyses to time-series analyses, and more 
importantly, have examined the heterogeneity of individual economies’ EKCs in terms of 
the curve’s shapes and positions. In this context, Dasgupta et al. (2002) presented three 
different EKC scenarios from the conventional inverted-U EKC: Race to the Bottom 
(pessimistic with continuation of the highest level of pollution), New Toxics (pessimistic 
with higher curve by newly emerging pollutants), and Revised EKC (optimistic with 
lower and flatter curve by better management of pollution), and these scenarios have also 
been put in empirical tests (e.g., Dinda 2004, Mukhopadhyay and Chakraborty 2005, 
Taguchi and Murofushi 2010, Taguchi 2012). Sarkodie and Strezov (2019) 
comprehensively reviewed the heterogeneity of the EKC modalities in terms of the 
curve’s shapes and positions. 

Although there has been a large body of literature on the EKC studies for several 
countries and for several environmental quality as shown above, it is in recent times since 
the 2000s that the studies on the EKC of China have increasingly appeared in the literature. 
Thus, there are relatively a limited number of the EKC studies, particularly, on water 
pollution in China, covering total provinces or specific areas, as listed in Table 2. Their 
estimation shows ambiguous and mixed outcomes: some studies identify the validity of 
inverted-U shaped EKC (Zhang et al. 2017, Zhao et al. 2017, Li et al. 2016, 
Jayanthakumaran and Liu 2012, Shen 2006), while the others demonstrate that the EKC 
modality depends on regions and pollutants (Cai et al. 2020, Liu et al. 2019, Wang et al. 
2017, Liu et al. 2016, Liu et al. (2007). 

Regarding the heterogeneity of Chinese provinces’ EKCs, Cai et al. (2020), for 
instance, demonstrates the several types of EKCs depending on provinces: “good EKCs” 
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(negative monotonic shape, inverted N-shape, inverted U-shape and M-shape), “bad 
EKCs” (positive monotonic shape, N-shape and U-shape) and “transition EKC” (positive 
monotonic and flat-tailed shape). To the best of the authors’ knowledge, however, no 
studies investigate the “positions” of provincial EKCs, which reflect the province-specific 
pollution effects that are not affected by the provincial income levels. Thus, this study’s 
contributions are directly to analyze the heterogeneity of Chinese provinces’ EKCs in 
terms of their positions by using a fixed-effect model in the EKC panel estimation in order 
to extract the province-specific pollution effects, and to reveal the factors affecting the 
province-specific pollutions, focusing particularly on the provincial capacity for 
controlling the pollutions. 
 

3. Empirical Analyses 

 

This section conducts empirics consisting of the EKC econometric estimations using 
provincial panel data and the factor analysis to the heterogeneity of the province-specific 
water pollutions. The section starts with the description of methodology and data. 
 

3.1 Methodology and Data 

 

This study basically follows the original form of the EKC, i.e., the standard nonlinear 
model where water pollution per capita is regressed by income per capita and its square. 
The first specification in Equation (1) applies a fixed-effect model for provincial panel-
data estimation in order to explicitly demonstrate the province-specific pollution effects, 
and also runs the alternative models in Equation (2) and (3) by replacing the fixed-effects 
with possible pollution contributors (pollution-control capacity, industrialization, and 
urbanization) to the province-specific pollution effects. The equations for the estimation 
are specified as follows. 
 

ln (codiit, codhit, antiit, anthit) = α0 + α1 ln ypcit + α2 (ln ypcit)2 + fi + ft + εt    (1) 
ln (codiit, antiit) = β0 + β1 ln ypcit + β2 (ln ypcit)2 + β3 eduit + β4 indit + ft + εt      (2) 
ln (codhit, anthit) = γ0 + γ1 ln ypcit + γ2 (ln ypcit)2 + γ3 eduit + γ4 urbit + ft + εt     (3) 
 

where the subscripts i and t denote sample 31 Chinese provinces and years for 2003-2019, 
respectively; codi, codh, anti, and anth represents the water pollutants: industrial COD, 
household COD, industrial ammonia nitrogen and household ammonia nitrogen, 
expressed as the ton per million persons; ypc shows gross regional product (GRP) per 
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capita in terms of yuan at constant prices in 2010; edu denotes the number of graduates 
of higher education per million persons; ind shows the secondary industry value added as 
a percentage of GRP; urb represents the urban population as a percentage of total 
population; fi and ft show a time-invariant country-specific fixed effect and a country-
invariant time-specific fixed effect, respectively; ε denotes a residual error term; α0…2, 
β0…4, and γ0…4 represent estimated coefficients, respectively; and ln shows a logarithm 
form, which is set to avoid scaling issues for the water pollutants and GRP per capita. The 
data source of all the variables is the China Statistical Yearbook. The study constructs a 
set of panel data of sample 31 provinces and period for 2003-2019.5 The variable list and 
the descriptive statistics for the variable data are displayed in Table 3 and 4, respectively. 

The notes on the specifications of the estimation models in (1), (2) and (3) are needed 
to describe additionally as follows. Regarding Equation (1), it applies a fixed-effect model 
represented by fi and ft, respectively, for provincial panel-data estimation. From the 
statistical perspective, the Hausman-test statistic is generally utilized for the choice 
between a fixed-effect model and a random effect one (Hausman 1978). This study, 
however, places a premium on demonstrating province-specific pollution effects 
explicitly, and also needs to consider time-specific factors such as economic fluctuations 
due to external shocks such as the Asian financial crises in 1997–1998 and the global 
financial crises in 2008–2009. In addition, adopting the fixed-effect model contributes to 
alleviating the endogeneity problem by absorbing unobserved time-invariant 
heterogeneity among the sample provinces. The estimation sets Beijing as a benchmark 
province for extracting the province-specific pollution effects, because Beijing shows the 
best performance in water pollution control as shown in Table 1. The significantly positive 
coefficient of the province-specific fixed-effects would suggest that the province’s water 
pollution is more serious than that of Beijing. The ordinary hypothesis of EKC postulating 
the inverted-U-shaped path between water pollution and GRP per capita would be verified 
if α1, β1, γ1 > 0 and α2, β2, γ2 < 0 are significant with reasonable levels of turning points. 

Equations (2) and (3) represent the alternative models for industrial discharges and 
household discharges, respectively. Equation (2) replaces the province-specific fixed 
effects with possible pollution contributors to the fixed-effects: pollution-control capacity 
(edu) and industrialization (ind), and Equation (3) replaces them with pollution-control 
capacity (edu) and urbanization (urb). This study uses the number of graduates of higher 
education (edu) to represent the capacity to control pollutions because the pollution 
controllability depends highly on human resources and capitals to address pollution in 
each province. In fact, the importance of human capitals in controlling environmental 

 
5 This study excludes the year of 2020 when the COVID-19 seriously affected economic activities. 
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pollutions has been studied in a number of previous studies (e.g., Lan et al. 2012, Wang 
et al. 2019, Haini 2021). The adoption of industrialization (ind) and urbanization (urb) is 
based on Liu et al. (2019), which argues that secondary industry output can be a main 
indicator for industrial water use, and urban population can be an indicator for household 
water use. No multicollinearity problem exists in the regressors’ combinations in 
Equations (2) and (3), namely, (ypc, edu, ind) and (ypc, edu, urb). It is because the 
variance inflation factors (VIF), a method of measuring the level of collinearity between 
the regressors, indicate lower values than the criteria of collinearity (ten points) in each 
equation. 6  The pollution-control capacity (edu) is expected to equip a negative 
coefficient on water pollutions because the higher capacity enables the pollutions to 
mitigate. The coefficients of industrialization (ind) and urbanization (urb), which 
deteriorate water pollutions, are supposed to be positive in the respective equations. 

The explanatory variables in Equation (1) – (3), ypc, ind, and urb are lagged by one 
year. It comes from the need to avoid the issue of reverse causality in the model 
specifications including the endogenous interaction between dependent and independent 
variables. Regarding the pollution-control capacity (edu), ten-year lag is applied because 
it takes a long time for graduates of higher education to be trained for the capacity building 
for pollution control. Figure 1 displays the magnitudes of negative coefficients of the 
pollution-control capacity (edu) by time-series lag patterns in Equation (2) and (3) 
estimated on each water pollutant, and shows that the impacts of the capacity on 
pollutions are negatively maximized around at ten-year lag. 

As for the estimation technique, this study applies the ordinary least squares (OLS) 
estimator and the Poisson pseudo-maximum likelihood (PPML) estimator. The reason for 
applying the PPML estimator is that the sample data with the heterogeneity in provincial 
properties would be plagued by heteroskedasticity and autocorrelation; in which cases, 
the OLS estimator leads to bias and inconsistency in estimates. The PPML estimator 
corrects for heteroscedastic error structure across panels and the presence of 
autocorrelation with panels, as Silva and Tenreyro (2006) and Kareem et al. (2016) 
suggest. Therefore, both estimators are applied to ensure the robustness of the estimations. 
This study uses EViews (version 12) as software to process the data and conduct all the 
estimations in this study. 
 

3.2 Panel Unit Root and Cointegration Tests 

 

 
6 The VIF values of (ypc, edu, ind) in Equation (2) are (2.793, 2.765, 1.017), and those of (ypc, edu, 

urb) in Equation (3) are (5.417,  2.737,  4.111), according to the author’s estimation. 
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For the subsequent estimation, this study investigates the stationary property of the 
constructed panel data by employing panel unit root tests, and if needed, a panel 
cointegration test for a set of variables’ data. The panel unit root tests are firstly conducted 
on the null hypothesis that a level and/or a first difference of the individual data have a 
unit root. In case that the unit root tests reveal that each variable’s data is not stationary 
in the level, but stationary in the first-difference, a set of variables’ data corresponds to 
the case of I(1), and then can be further examined by a co-integration test for the “level” 
data. If a set of variables’ data are identified to have a co-integration, the use of the “level” 
data is justified for a model estimation. 

For the panel unit root tests, this study applies the Levin, Lin, and Chu test (Levin et 
al. 2002) as a common unit root test; and the Fisher-ADF and Fisher-PP tests (Maddala 
and Wu 1999, Choi 2001) as individual unit root tests. The common unit root test assumes 
that there is a common unit root process across cross-sections, and the individual unit root 
test allows for individual unit root processes that vary across cross-sections. For a panel 
co-integration test, the study conducts the Pedroni residual co-integration test (developed 
by Pedroni, 2004). All of the test equations contain individual intercept and trend with the 
lag length being automatic selection. 

Table 5 presents the test results: the common unit root test rejects the null hypothesis 
of a unit root at the conventional significance levels in all the variables; however, the 
individual tests do not reject a unit root in their levels except edu while rejecting it in their 
first differences, thereby the variables almost following the case of I(1). Then, the panel 
co-integration test is conducted further on the combinations of variables in Equations (2) 
and (3). The panel PP and ADF tests suggest that the level series of a set of variables’ data 
are co-integrated in the respective combinations. Thus, the study utilizes the level data 
for the estimation. 
 

3.3 Estimation Results 

 

Tables 6 – 9 report the results of OLS estimation and PPML one in the form of log-
link function for industrial and household COD and industrial and household ammonia 
nitrogen, respectively. Column (i) and (ii) display the outcomes of the fixed-effect models, 
and Column (iii) and (iv) present the results of the alternative models containing 
pollution-control capacity (edu) and industrialization (ind) for industrial discharges and 
pollution-control capacity (edu) and urbanization (urb) for household discharges instead 
of the fixed-effects. Both of OLS and PPML estimations show similar results in the sign 
and significance of each coefficient, and thus the subsequent description focuses on the 
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result of PPML estimations that adjusts heteroskedasticity and autocorrelation. The 
findings from the estimation results are summarized as follows. 

First, the EKC hypothesis, which assumes the inverted-U-shaped relationship 
between water pollution level and GRP per capita, is confirmed in all the water pollutants 
from Tables 6 – 9 and in all the estimations from Columns (i) – (iv). They are confirmed 
by the estimation results that the coefficients of GRP per capita are significantly positive 
and those of its square are significantly negative; and the turning points fall within the 
reasonable ranges of GRP per capita between its minimum level and its maximum one in 
the samples shown in Table 4, except for the estimations in Column (i) and (ii) in Table 6 
(the turning point is computed by –α1/2α2, –β1/2β2, or –γ1/2γ2 in Equations). The main 
research focus in this study is, however, the provincial EKC positions rather than their 
shapes as in the subsequent description. 

Second, the fixed-effect models in Columns (i) and (ii) identify the positive 
coefficients as the province-specific fixed-effects at conventional significant levels, in all 
the provinces for industrial COD in Table 6 and for household ammonia nitrogen in Table 
9, and in the majority of provinces for household COD (except Hebei, Shandong, Henan, 
Chongqing, and Ningxia) in Table 7 and for industrial ammonia nitrogen (except Tibet) 
in Table 8. The positive provincial fixed-effects mean the provincial EKCs are located 
upward from that of Beijing as the benchmark, suggesting that the province-specific 
pollution effects (not affected by the provincial income level on the EKC) are larger than 
the pollution of Beijing. These results are in line with the simple observations on water 
pollutions per capita in all the provinces in Table 1. The degree of the water pollutions is 
shown by the magnitude of the coefficients of provincial fixed-effects: the industrial COD 
in Tianjin by PPML estimation (Column (ii) in Table 6), for instance, is exp. (1.825) = 
6.203 times larger than that of Beijing. The provincial fixed-effects also reveal that the 
pollution levels in the policy propriety areas (3Rs3Ls) shown in Table 1 are not 
necessarily higher than the average levels among the 31 provinces in all the water 
pollutants, thereby implying that the government policies have controlled well the water 
pollutions in the priority area.  

Third, turning to the alternative model containing pollution-control capacity (edu), 
industrialization (ind), and urbanization (urb) in Column (iii) and (iv), the coefficients of 
edu is significantly negative in all the pollutants and estimations in Table 6 – 9, and those 
of ind for industrial discharges in Tables 6 and 8 and those of urb for household discharges 
in Tables 7 and 9 are significantly positive in any estimations. These results are in line 
with the hypothesis of Liu et al. (2019) that secondary industry output and urban 
population can be main indicators of industrial and household water use, respectively. 
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More importantly, the negative coefficients of edu in all the pollutants suggest that the 
pollution-control capacity has really affected the provincial pollution levels, and that the 
heterogeneity of provincial pollutions can be explained by the difference in provincial 
pollution-control capacity. The joint estimation outcomes of the province-specific 
pollution effects and the workability of pollution-control capacity lead to the question on 
the quantitative contributions of provincial capacity shortage for pollution control to the 
provincial pollution levels. 
 

3.4 Factor Analysis on Pollution-Control Capacity 

 

This section quantifies the contributions of provincial pollution-control capacity to 
the province-specific pollution effects (hear, also based on the PPML estimation). Tables 
10 and 11 denote the analytical outcomes for COD and ammonia nitrogen discharges, 
respectively. Columns (a) and (b) redisplay the provincial fixed-effects (only significant 
coefficients) in Tables 6 – 9 representing the province-specific pollutions from industrial 
and household discharges, respectively; Column (c) presents the period-average of 
provincial pollution-control capacity indicators (edu); Column (d) computes the edu 
deviations from that of Beijing (the benchmark); Columns (e) and (f) obtain the edu 
contributions to provincial industrial and household discharges by multiplying the edu 
deviations with the estimated edu coefficients in Tables 6 – 9; and Columns (g) and (h) 
finally demonstrate the edu contribution ratios to provincial industrial and household 
pollutions by dividing Columns (e) and (f) by Columns (a) and (b). 

The average edu contribution ratios among total provinces except those with 
insignificant fixed effects are 0.263 for industrial COD, 0.623 for household COD, 0.329 
for industrial ammonia nitrogen, and 0.838 for household ammonia nitrogen. It suggests 
that the capacity shortage for pollution control accounts for around 30% as a pollution 
factor of industrial COD and ammonia nitrogen, and accounts for around 60% and 80% 
as a pollution factor of household COD and ammonia nitrogen, respectively. The strategic 
implication of this result is the significance in building the capacity for water pollution 
control by developing human resources and training them. The capacity building 
contributes to water-pollution mitigation through various channels by: enhancing 
environmental awareness (e.g., Niu et al. 2022), developing environmental technologies 
(e.g., Zhao et al. 2017, Aboelmaged and Hashem 2019), and raising regulatory powers 
and governances of environmental policies (e.g., Cai et al. 2020, Liu et al. 2019). 
 

4. Conclusion 
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This study focused on the water pollutions in terms of COD and ammonia nitrogen 
by industrial and household discharges in Chinese provinces, and investigated the 
contribution of capacity shortage for pollution control to the provincial pollution levels, 
by conducting a factor analysis to the heterogeneity of provincial pollutions under the 
EKC framework. The study’s contribution to the literature lies in its framework of 
analyzing the heterogeneity of Chinese provinces’ EKCs in terms of their positions (not 
their shapes) by using a fixed-effect model in the EKC panel estimation to extract the 
province-specific pollution effects, and conducting a factor analysis to uncover the 
contribution of provincial pollution-control capacity to the provincial pollutions. 

The main findings from empirical estimations are summarized as follows. First, all 
the EKC estimations with provincial panel data identify the existence of the inverted-U-
shaped relationship between water pollutions and income with reasonable turning points. 
Second, the fixed-effect models confirm that the majority of provinces have more serious 
water pollutions as province-specific effects than Beijing as the benchmark has. Third, 
the alternative models reveal that industrial and household pollutions are associated with 
industrialization and urbanization degrees, respectively, and, more importantly, that both 
of pollutions are significantly affected by pollution-control capacity. Fourth, the factor 
analysis demonstrates that the capacity shortage for pollution control accounts for around 
30% as a pollution factor of industrial COD and ammonia nitrogen, and accounts for 
around 60% and 80% as a pollution factor of household COD and ammonia nitrogen, 
respectively. 

The policy implication is, therefore, that China has still much policy space and room 
to mitigate the water pollutions in terms of COD and ammonia nitrogen by building the 
capacity for pollution control through developing human resources and training them. 
The capacity building contributes to water-pollution mitigation through various channels 
by: enhancing environmental awareness, developing environmental technologies, and 
raising regulatory powers and governances of environmental policies. 

The limitation of this study is the shortage of detailed researches on individual 
provinces and regions. As shown in the introduction, China has its regional heterogeneity 
in pollution levels and factors affecting them, and also its policy priority areas such as the 
3Rs3Ls. Examining the complexity of pollution mechanisms and the policy performances 
in specific regions through detailed case studies would make it possible to produce region-
specific and concrete recommendations and prescriptions on the water-pollution 
management in China. 
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Table 1 Water Pollution and its Influential Factors in Chinese Provinces in 2020 

 

Notes: 
codi: Industrial Chemical Oxygen Demand (COD), ton per million persons 
codh: Household Chemical Oxygen Demand (COD), ton per million persons 
anti: Industrial Ammonia Nitrogen, ton per million persons 

anth: household Ammonia Nitrogen, ton per million persons 
ypc: Gross Regional Product (GRP) per capita, 2010 prices, yuan 
ind: Secondary industry, percent of GRP 

urb: Urban population, percent of total population 
3Rs3Ls: Three rivers (i.e., Huai, Hai, and Liao) and three lakes (i.e., Tai, Chao, and Dianchi) basins 

Sources: China Statistical Yearbook 

  

 codi codh anti anth ypc ind urb 3Rs3Ls

Beijing 65 1,848 2 119 127,816 16.0 87.5 *

Tianjin 203 2,423 7 94 79,377 35.1 84.7 *

Hebei 351 4,823 11 228 37,909 38.2 60.1 *

Shanxi 138 5,386 5 326 40,851 43.2 62.5 *

Inner Mongolia 365 4,290 19 224 56,765 40.0 67.5 *

Liaoning 310 3,893 13 209 46,399 37.4 72.1 *

Jilin 392 5,894 15 215 39,585 35.2 62.6

Heilongjiang 671 5,672 32 313 33,595 25.3 65.6

Shanghai 346 2,255 8 100 121,299 26.3 89.3

Jiangsu 700 5,336 30 407 93,882 43.4 73.4 *

Zhejiang 686 6,299 14 491 78,860 40.8 72.2 *

Anhui 268 8,085 16 477 49,455 40.0 58.3 *

Fujian 471 10,412 18 811 83,630 46.2 68.7

Jiangxi 459 8,124 36 672 44,234 43.1 60.4

Shandong 457 5,140 19 368 56,397 39.1 63.1 *

Henan 161 5,821 8 347 42,522 41.0 55.4 *

Hubei 389 7,674 20 611 56,788 37.1 62.9

Hunan 219 7,542 10 728 49,459 38.4 58.8

Guangdong 324 7,162 12 632 68,259 39.5 74.2

Guangxi 312 11,488 11 1,149 33,915 31.9 54.2

Hainan 437 8,250 11 631 41,565 19.3 60.3

Chongqing 290 4,126 11 511 62,176 39.8 69.5

Sichuan 307 9,413 15 848 45,290 36.1 56.7

Guizhou 122 6,329 17 558 36,729 35.1 53.2

Yunnan 224 5,746 9 435 40,611 34.2 50.0

Tibet 49 9,214 3 786 39,917 37.6 35.8

Shaanxi 239 6,951 8 563 51,742 43.1 62.7

Gansu 179 3,998 8 134 28,171 31.5 52.2

Qinghai 274 10,516 19 821 38,082 38.0 60.1

Ningxia 436 5,576 17 325 43,180 40.7 65.0

Xinjiang 424 8,215 23 721 41,769 34.7 56.5
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Table 2 Literature Review of EKC on Water Pollution in China 

 
Notes: 

WW:  Waste water discharge 
COD:  Chemical Oxygen Demand 

NH3-N, NH4-N:  Ammonia Nitrogen 

TPH:  total petroleum hydrocarbon 

Sources: Author’s description 

  

 Sample Areas Pollutants Summary

Cai et al. (2020) 31 provinces WW, COD, NH4-N Modality of EKC depends on regions

Liu et al. (2019) Shandong WW, COD, NH3-N Modality of EKC depends on pollutants

Zhang et al. (2017) 27 provinces COD, NH3-N Inverted-U shaped EKC is identified

Zhao et al. (2017) 31 provinces water use Inverted-U shaped EKC is identified

Wang et al. (2017) Urumqi WW, COD, NH3-N Modality of EKC depends on pollutants

Li et al. (2016) 28 provinces WW Inverted-U shaped EKC is identified

Liu et al. (2016) Zaozhuang WW, COD, NH3-N Modality of EKC depends on pollutants

Jayanthakumaran &

Liu (2012)
31 provinces COD Inverted-U shaped EKC is identified

Liu et al. (2007) Shenzhen TPH, etc. Modality of EKC depends on pollutants

Shen (2006) 31 provinces
COD, Arsenic,

Cadmium
Inverted-U shaped EKC is identified
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Table 3 List of Variables 

 

Sources: Author’s description 

 

Table 4 Descriptive Statistics 

 

Sources: Author’s calculation 

 

  

 Variables Description

Dependent Variable

codi Industrial Chemical Oxygen Demand (COD), ton per million persons, log term

codh Household Chemical Oxygen Demand (COD), ton per million persons, log term

anti Industrial Ammona Nitrogen, ton per million persons, log term

anth household Ammona Nitrogen, ton per million persons, log term

Explanatory Variables

ypc Gross Domestic Product (GDP) per capita, 2010 prices, RMB, log-term, one-year lagged

edu
Number of graduate of higher education (regular undergraduate and specialized) per million

persons, log-term, ten-year lagged

ind Secondary industry, percent of GDP, one-year lagged

urb Urban population, percent of total population, one-year lagged

 Variables Obs. Median Std. Dev. Min. Max

Dependent Variable

codi 527 7.700 1.046 4.159 9.800

codh 527 8.672 0.458 6.984 9.724

anti 527 7.648 1.295 0.000 7.648

anth 527 6.583 0.584 3.689 7.532

Explanatory Variables

ypc 527 10.298 0.620 8.435 11.761

edu 527 8.351 0.536 6.463 9.214

ind 527 42.340 8.895 15.989 63.254

urb 519 50.970 14.626 22.198 89.600
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Table 5 Panel Unit Root Tests 

 

Note: ***, **, and * denote statistical significance at 99, 95 and 90 percent level, respectively. 
Sources: Author’s estimation 

 

  

 
Level 1st difference

codi -3.959 *** -

codh -3.445 *** -

anti -3.277 *** -

anth -3.089 *** -

ypc -2.223 ** -

ypc
2 -1.365 * -

edu -2.895 *** -

ind -3.290 *** -

Panal ADF Panel PP

codi 30.454 178.523 ***

codh 33.619 219.161 ***

anti 37.407 200.169 ***

anth 9.257 181.955 ***

ypc 21.936 145.492 ***

ypc
2 17.626 149.354 ***

edu 79.095 * 113.663 ***

ind 70.484 201.233 ***

Panal ADF Panel PP

codi 26.552 265.096 ***

codh 36.131 290.202 ***

anti 33.946 277.300 ***

anth 4.284 204.084 ***

ypc 29.065 150.792 ***

ypc
2 20.094 141.915 ***

edu 425.975 *** 131.504 ***

ind 60.512 264.166 ***

-3.223 *** -2.116 **

Group of anth

-4.102 *** -4.037 ***

Group of codh

Fisher-PP

Group of anti

-3.248 *** -2.121 **

Unit Root Test Panel Cointegration Test

-

-3.661 *** -0.863 ***

Levin, Lin and Chu

Fisher-ADF

Group of codi
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Figure 1 Lag pattern of Pollution-Control Capacity 

 

Note: The vertical line denotes the coefficient value of pollution-control capacity (edu), which is 
defined as the number of graduates of higher education per million persons, and the horizontal 
line indicates yearly-time lags of the edu variable: edu-1, edu-2, edu-3…edu-n. 

Sources: Author’s estimation 
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Table 6 Estimation Results: Industrial COD (codi) 

 

Note: ***, **, and * denote statistical significance at 99, 95 and 90 percent level, respectively. 
Sources: Author’s estimation 

 

Table 7 Estimation Results: Household COD (codh) 

 Estimation (i) (ii) (iii) (iv)

Methodology OLS PPML OLS PPML

2.603 ** 2.796 ** 12.333 ** 13.404 **

(2.336) (2.229) (2.692) (2.216)

-0.104 * -0.112 * -0.567 ** -0.618 **

(-1.747) (-1.663) (-2.653) (-2.207)

0.019 *** 0.020 ***

(5.994) (3.262)

-0.940 *** -0.943 ***

(-17.758) (-6.774)

Dummy for fixed effect

Tianjin 1.856 *** 1.825 ***

Hebei 2.484 *** 2.468 ***

Shanxi 2.549 *** 2.543 ***

Inner Mongolia 2.947 *** 2.970 ***

Liaoning 2.654 *** 2.676 ***

Jilin 2.903 *** 2.924 ***

Heilongjiang 2.646 *** 2.680 ***

Shanghai 1.363 *** 1.381 ***

Jiangsu 2.562 *** 2.603 ***

Zhejiang 2.618 *** 2.630 ***

Anhui 2.239 *** 2.276 ***

Fujian 2.262 *** 2.298 ***

Jiangxi 2.705 *** 2.775 ***

Shandong 2.207 *** 2.227 ***

Henan 2.273 *** 2.262 ***

Hubei 2.313 *** 2.316 ***

Hunan 2.691 *** 2.721 ***

Guangdong 2.155 *** 2.178 ***

Guangxi 3.427 *** 3.419 ***

Hainan 2.001 *** 2.067 ***

Chongqing 2.443 *** 2.458 ***

Sichuan 2.466 *** 2.493 ***

Guizhou 1.662 *** 1.701 ***

Yunnan 2.603 *** 2.632 ***

Tibet 0.918 ** 1.044 **

Shaanxi 2.547 *** 2.548 ***

Gansu 2.773 *** 2.840 ***

Qinghai 3.089 *** 3.089 ***

Ningxia 4.140 *** 4.157 ***

Xinjiang 3.429 *** 3.441 ***

Turning Point (ypc ) 12.456 12.457 10.872 10.842

Cross-sections 31 31 31 31

Periods 2004-2019 2004-2019 2013-2019 2013-2019

Total observations 496 496 217 217

ypc

ypc
2

edu

ind
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Note: ***, **, and * denote statistical significance at 99, 95 and 90 percent level, respectively. 
Sources: Author’s estimation 

  

 Estimation (i) (ii) (iii) (iv)

Methodology OLS PPML OLS PPML

3.461 *** 3.518 *** 5.497 *** 5.615 *

(5.815) (5.254) (8.746) (1.949)

-0.151 *** -0.155 *** -0.259 *** -0.262 **

(-4.731) (-4.222) (-8.681) (-1.969)

0.012 * 0.009 **

(2.357) (2.123)

-0.615 *** -0.605 ***

(-21.443) (-8.886)

dummy for fixed effect

Tianjin 0.396 *** 0.380 ***

Hebei 0.203 0.186

Shanxi 0.524 *** 0.500 **

Inner Mongolia 0.391 *** 0.363 **

Liaoning 0.597 *** 0.573 ***

Jilin 0.734 *** 0.702 ***

Heilongjiang 0.969 *** 0.945 ***

Shanghai 0.512 *** 0.503 ***

Jiangsu 0.571 *** 0.570 ***

Zhejiang 0.295 *** 0.289 ***

Anhui 0.721 *** 0.702 ***

Fujian 0.789 *** 0.783 ***

Jiangxi 1.018 *** 0.995 ***

Shandong 0.107 0.095

Henan 0.218 0.198

Hubei 0.812 *** 0.794 ***

Hunan 0.940 *** 0.915 ***

Guangdong 0.648 *** 0.645 ***

Guangxi 1.115 *** 1.090 ***

Hainan 1.017 *** 0.992 ***

Chongqing 0.276 * 0.241

Sichuan 0.731 *** 0.705 ***

Guizhou 0.817 *** 0.785 ***

Yunnan 0.438 ** 0.405 *

Tibet 0.795 *** 0.774 ***

Shaanxi 0.414 ** 0.389 **

Gansu 0.530 ** 0.493 **

Qinghai 0.746 *** 0.720 ***

Ningxia 0.312 * 0.298 

Xinjiang 0.639 *** 0.628 ***

Turning Point (ypc ) 11.452 11.356 10.612 10.713

Cross-sections 31 31 31 31

Periods 2004-2019 2004-2019 2013-2019 2013-2019

Total observations 496 496 217 217

ypc

ypc
2

urb

edu
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Table 8 Estimation Results: Industrial Ammonia Nitrogen (anti) 

 

Note: *** and ** denote statistical significance at 99 and 95 percent level, respectively. 
Sources: Author’s estimation 

  

 Estimation (i) (ii) (iii) (iv)

Methodology OLS PPML OLS PPML

4.038 *** 6.935 *** 17.671 ** 21.456 **

(2.647) (3.318) (2.109) (2.383)

-0.178 ** -0.317 *** -0.811 ** -0.989 **

(-2.177) (-2.804) (-2.091) (-2.375)

0.023 ** 0.024 ***

(2.549) (2.972)

-1.098 *** -1.114 ***

(-6.128) (-6.737)

Dummy for fixed effect

Tianjin 2.283 *** 2.172 ***

Hebei 2.556 *** 2.484 ***

Shanxi 2.645 *** 2.570 ***

Inner Mongolia 2.891 *** 2.906 ***

Liaoning 2.473 *** 2.446 ***

Jilin 2.366 *** 2.425 ***

Heilongjiang 2.455 *** 2.459 ***

Shanghai 1.631 *** 1.809 ***

Jiangsu 2.546 *** 2.688 ***

Zhejiang 2.515 *** 2.469 ***

Anhui 2.432 *** 2.418 ***

Fujian 2.241 *** 2.270 ***

Jiangxi 2.707 *** 2.803 ***

Shandong 2.148 *** 2.155 ***

Henan 2.357 *** 2.260 ***

Hubei 2.638 *** 2.584 ***

Hunan 3.151 *** 3.142 ***

Guangdong 1.726 *** 1.778 ***

Guangxi 2.945 *** 2.929 ***

Hainan 1.709 *** 1.811 ***

Chongqing 2.374 *** 2.351 ***

Sichuan 2.169 *** 2.198 ***

Guizhou 1.664 *** 1.791 ***

Yunnan 1.862 *** 1.926 ***

Tibet -0.336 0.108

Shaanxi 2.168 *** 2.151 ***

Gansu 3.257 *** 3.223 ***

Qinghai 2.716 *** 2.757 ***

Ningxia 4.052 *** 4.037 ***

Xinjiang 2.999 *** 3.039 ***

Turning Point (ypc ) 11.327 10.922 10.891 10.844

Cross-sections 31 31 31 31

Periods 2004-2019 2004-2019 2013-2019 2013-2019

Total observations 496 496 217 217

ypc

ypc
2

ind

edu
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Table 9 Estimation Results: Household Ammonia Nitrogen (anth) 

 

Note: *** and ** denote statistical significance at 99 and 95 percent level, respectively. 
Sources: Author’s estimation 

  

 Estimation (i) (ii) (iii) (iv)

Methodology OLS PPML OLS PPML

5.780 *** 6.078 *** 8.284 ** 8.609 **

(8.026) (7.475) (3.111) (1.998)

-0.256 *** -0.270 *** -0.398 ** -0.413 **

(-6.621) (-6.343) (-3.088) (-2.058)

0.026 ** 0.026 ***

(2.954) (3.713)

-1.054 *** -1.056 ***

(-19.299) (-12.278)

Dummy for fixed effect

Tianjin 0.381 *** 0.361 **

Hebei 0.486 ** 0.521 **

Shanxi 0.874 *** 0.900 ***

Inner Mongolia 0.716 *** 0.702 ***

Liaoning 0.951 *** 0.957 ***

Jilin 0.964 *** 0.973 ***

Heilongjiang 1.191 *** 1.219 ***

Shanghai 0.896 *** 0.922 ***

Jiangsu 0.562 *** 0.596 ***

Zhejiang 0.334 *** 0.354 **

Anhui 0.765 *** 0.794 ***

Fujian 0.764 *** 0.790 ***

Jiangxi 1.014 *** 1.052 ***

Shandong 0.378 ** 0.400 **

Henan 0.530 ** 0.557 **

Hubei 0.939 *** 0.968 ***

Hunan 1.047 *** 1.078 ***

Guangdong 0.784 *** 0.811 ***

Guangxi 1.100 *** 1.140 ***

Hainan 1.127 *** 1.159 ***

Chongqing 0.534 *** 0.533 **

Sichuan 0.828 *** 0.864 ***

Guizhou 1.022 *** 1.073 ***

Yunnan 0.613 ** 0.641 **

Tibet 0.992 *** 1.043 ***

Shaanxi 0.654 *** 0.675 ***

Gansu 0.836 *** 0.862 ***

Qinghai 1.219 *** 1.253 ***

Ningxia 0.881 *** 0.920 ***

Xinjiang 1.098 *** 1.152 ***

Turning Point (ypc ) 11.294 11.256 10.412 10.435

Cross-sections 31 31 31 31

Periods 2004-2019 2004-2019 2013-2019 2013-2019

Total observations 496 496 217 217

ypc

ypc
2

ind

edu
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Table 10 Provincial Pollutions and Pollution-Control Capacity (COD) 

 

Sources: Author’s estimation 

 

  

 (d) ×

-0.943

(d) ×

-0.605
(e) / (a) (f) / (b)

codi codh codi codh codi codh

(a) (b) (c) (d) (e) (f) (g) (h)

Tianjin 1.825 0.380 8.982 0.080 -0.075 -0.048 -0.041 -0.127

Hebei 2.468 - 8.225 -0.677 0.639 - 0.259 -

Shanxi 2.543 - 8.295 -0.607 0.573 - 0.225 -

Inner Mongolia 2.970 - 8.077 -0.825 0.778 - 0.262 -

Liaoning 2.676 0.573 8.459 -0.444 0.418 0.268 0.156 0.468

Jilin 2.924 0.702 8.447 -0.455 0.429 0.275 0.147 0.392

Heilongjiang 2.680 0.945 8.373 -0.529 0.499 0.320 0.186 0.339

Shanghai 1.381 0.503 8.594 -0.309 0.291 0.187 0.211 0.371

Jiangsu 2.603 0.570 8.447 -0.455 0.429 0.275 0.165 0.482

Zhejiang 2.630 0.289 8.213 -0.690 0.651 0.417 0.247 1.443

Anhui 2.276 0.702 8.147 -0.755 0.712 0.457 0.313 0.650

Fujian 2.298 0.783 8.184 -0.719 0.678 0.435 0.295 0.555

Jiangxi 2.775 0.995 8.370 -0.532 0.502 0.322 0.181 0.323

Shandong 2.227 - 8.285 -0.618 0.583 - 0.262 -

Henan 2.262 - 8.149 -0.753 0.710 - 0.314 -

Hubei 2.316 0.794 8.559 -0.343 0.324 0.207 0.140 0.261

Hunan 2.721 0.915 8.212 -0.691 0.651 0.418 0.239 0.456

Guangdong 2.178 0.645 7.980 -0.922 0.870 0.558 0.399 0.865

Guangxi 3.419 1.090 7.878 -1.025 0.967 0.620 0.283 0.568

Hainan 2.067 0.992 8.053 -0.849 0.801 0.513 0.388 0.518

Chongqing 2.458 - 8.286 -0.616 0.581 - 0.236 -

Sichuan 2.493 0.705 8.019 -0.884 0.834 0.534 0.334 0.757

Guizhou 1.701 0.785 7.638 -1.265 1.193 0.765 0.701 0.975

Yunnan 2.632 - 7.651 -1.251 1.180 - 0.448 -

Tibet - 0.774 7.609 -1.294 - 0.782 - 1.011

Shaanxi 2.548 - 8.658 -0.244 0.230 - 0.090 -

Gansu 2.840 - 8.097 -0.805 0.759 - 0.267 -

Qinghai 3.089 0.720 7.569 -1.334 1.258 0.806 0.407 1.120

Ningxia 4.157 - 7.911 -0.992 0.936 - 0.225 -

Xinjiang 3.441 0.628 7.839 -1.064 1.003 0.643 0.292 1.024

cod

fixed effect
edu

(c) -

Benchmark
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Table 11 Provincial Pollutions and Pollution-Control Capacity (Ammonia Nitrogen) 

 

Sources: Author’s estimation 

 

 

 (d) ×

-1.114

(d) ×

-1.056
(e) / (a) (f) / (b)

anti anth anti anth anti anth

(a) (b) (c) (d) (e) (f) (g) (h)

Tianjin 2.172 - 8.982 0.080 -0.089 - -0.041 -

Hebei 2.484 - 8.225 -0.677 0.755 - 0.304 -

Shanxi 2.570 0.900 8.295 -0.607 0.677 0.641 0.263 0.713

Inner Mongolia 2.906 0.702 8.077 -0.825 0.919 0.872 0.316 1.242

Liaoning 2.446 0.957 8.459 -0.444 0.494 0.469 0.202 0.490

Jilin 2.425 0.973 8.447 -0.455 0.507 0.481 0.209 0.494

Heilongjiang 2.459 1.219 8.373 -0.529 0.590 0.559 0.240 0.459

Shanghai 1.809 0.922 8.594 -0.309 0.344 0.326 0.190 0.354

Jiangsu 2.688 0.596 8.447 -0.455 0.507 0.481 0.189 0.806

Zhejiang 2.469 - 8.213 -0.690 0.769 - 0.311 -

Anhui 2.418 0.794 8.147 -0.755 0.841 0.798 0.348 1.005

Fujian 2.270 0.790 8.184 -0.719 0.801 0.759 0.353 0.961

Jiangxi 2.803 1.052 8.370 -0.532 0.593 0.562 0.212 0.534

Shandong 2.155 - 8.285 -0.618 0.688 - 0.319 -

Henan 2.260 - 8.149 -0.753 0.839 - 0.371 -

Hubei 2.584 0.968 8.559 -0.343 0.382 0.362 0.148 0.374

Hunan 3.142 1.078 8.212 -0.691 0.769 0.730 0.245 0.677

Guangdong 1.778 0.811 7.980 -0.922 1.028 0.974 0.578 1.201

Guangxi 2.929 1.140 7.878 -1.025 1.142 1.083 0.390 0.949

Hainan 1.811 1.159 8.053 -0.849 0.946 0.897 0.522 0.774

Chongqing 2.351 - 8.286 -0.616 0.686 - 0.292 -

Sichuan 2.198 0.864 8.019 -0.884 0.985 0.934 0.448 1.080

Guizhou 1.791 1.073 7.638 -1.265 1.409 1.336 0.787 1.245

Yunnan 1.926 - 7.651 -1.251 1.394 - 0.724 -

Tibet - 1.043 7.609 -1.294 - 1.367 - 1.310

Shaanxi 2.151 0.675 8.658 -0.244 0.272 0.258 0.127 0.382

Gansu 3.223 0.862 8.097 -0.805 0.897 0.851 0.278 0.987

Qinghai 2.757 1.253 7.569 -1.334 1.486 1.409 0.539 1.125

Ningxia 4.037 0.920 7.911 -0.992 1.105 1.048 0.274 1.138

Xinjiang 3.039 1.152 7.839 -1.064 1.185 1.124 0.390 0.975

ant

fixed effect
edu

(c) -

Benchmark


