Merz, Joachim and Stolze, Henning (2008): Representative time use data and new harmonised calibration of the American Heritage Time Use Data (AHTUD) 1965-1999. Published in: Electronic International Journal of Time Use Research , Vol. 5, : pp. 90-126.
Preview |
PDF
MPRA_paper_11651.pdf Download (1MB) | Preview |
Abstract
Representative and reliable individual time use data, in connection with a proper set of socio-economic back-ground variables, are essential elements for the empirical foundation and evaluation of existing and new theories in general and in particular for time use analyses. Within the international project Assessing Time Use Survey Datasets several potentially useful individual US time use heritage datasets have been identified for use in de-veloping an historical series of non-market accounts. In order to evaluate the series of American Heritage Time Use Data (AHTUD) (1965, 1975, 1985, 1992-94, 1998-99) this paper analyses the representativeness of this data when using given weights and provides a new harmonised calibration of the AHTUD for sound time use analyses. Our calibration procedure with its ADJUST program package is theoretically founded on information theory, consistent with a simultaneous weighting including hierarchical data, ensures desired positive weights, and is well-suited and available for any time use data calibration of interest. We present the calibration approach and provide new harmonised weights for all AHTUD surveys based on a substantially driven calibration frame-work. To illustrate the various application possibilities of a calibration, we finally disentangle demographic vs. time use behavioural changes and developments by re-calibrating all five AHTUD surveys using 1965 popula-tion totals as a benchmark.
Item Type: | MPRA Paper |
---|---|
Original Title: | Representative time use data and new harmonised calibration of the American Heritage Time Use Data (AHTUD) 1965-1999 |
Language: | English |
Keywords: | Representative time use data, calibration (adjustment re-weighting) of microdata, information theory, minimum information loss principle, American Heritage Time Use Data (AHTUD), ADJUST program package |
Subjects: | Z - Other Special Topics > Z0 - General J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J22 - Time Allocation and Labor Supply J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J29 - Other J - Labor and Demographic Economics > J1 - Demographic Economics > J11 - Demographic Trends, Macroeconomic Effects, and Forecasts |
Item ID: | 11651 |
Depositing User: | Joachim Merz |
Date Deposited: | 19 Nov 2008 10:12 |
Last Modified: | 01 Oct 2019 08:06 |
References: | ADJUST for Windows – A software package to achieve representative microdata by the minimum information loss principle, http://ffb.uni-lueneburg.de/adjust. Becker, G.S. (1965), A theory of the allocation of time, in: Economic Journal, Vol. 75, 493-517. Bishop, Y.M. and S.E. Fienberg (1975), Discrete multivariate analysis: Theory and practice, Mass.: MIT-Press, Cambridge. Bridges, B. jr. and M.P. Johnston (1976), Estimation of social security taxes on the March current population survey, Studies of Income Distribution, No. 4 (Social Security Administration, Office of Research and Statistics, US Department of Health, Education and Welfare, Washington, D.C Bureau of Labour Statistics (1988), Labour force statistics derived from the Current Population Survey, 1948-87, Bulletin 2307. Byron, R.P. (1978), The estimation of large social account matrices, in: Journal of the Royal Statistical Society, Series A, 141, Part 3, 359-367 CBS (Centraal Bureau voor de Statistiek) (1999), Living conditions of dutch population: Part 3, Time allocation and social participation, Voorburg/Heerlen, Netherlands. Chiappori, P.-A. (1988), Rational household labour supply, in: Econometrica, Vol. 56, 63-89. Chiappori, P.-A., Blundell, R., Magnac, T. and C. Meghir (2007), Collective labour supply: Heterogeneity and nonparticipation, in: Review of Economic Studies, Vol. 74, 417-447. Citro C.F. and E.A. Hanushek (eds.) (1991a), Improving information for social policy decisions, The uses of microsimulation modeling: Review and recommendations, Vol. I, National Research Council, Wash-ington. Citro C.F. and E.A. Hanushek (eds.) (1991b), Improving information for social policy decisions, The uses of microsimulation modeling: Technical papers, Vol. II, National Research Council, Washington. Deming, W.E. and F.F. Stephan (1940), On a least square adjustment of a sampled frequency table when the expected marginal totals are known, in: The Annals of Mathematical Statistics, Vol. 11, 427-444. Deville, J.-C. and C.-E. Särndal (1992), Calibration estimators in survey sampling, in: Journal of the American Statistical Association, Vol. 87, No. 418, 375-382. Estevao, V.M. and C.-E. Särndal (2006), Survey estimates by calibration on complex auxiliary information, in: International Statistical Review, Vol. 74, No. 2, 127-147. Finke, R. and H. Theil (1984), An extended version of minimum information estimation of allocation models, in: Economics Letters, Vol. 15, 229-233. Flood, L. (1988), Effects of taxes on mon-market work: The swedish case, in: Journal of Public Economics, Vol. 36, 259-267. Frank, M. and P. Wolfe (1956), An algorithm for quadratic programming, in: Naval Research Logistics Quar-terly, Vol. 3, 95-100. Galler, H.P. (1977), Die Ermittlung eines konsistenten Hochrechnungsrahmens für das IMDAF-69, SPES-Arbeitspapier Nr. 77, Frankfurt/Mannheim. Galler, H.P. and G. Wagner (1986), The microsimulation model of the Sfb 3 for the analysis of economic and social policies, in: Orcutt, G.H., Merz, J. and H. Quinke (eds.), Microanalytic simulation models to support social and financial policy, North Holland, Amsterdam, 227-247. Harding, A. (ed.) (1996), Microsimulation and public policy, North Holland, Amsterdam. Harvey, A. and A. St. Croix (2005), Report on data assembly and preliminary evaluation, Yale program of non-market accounts: Dataset assessments, Halifax, Canada. Harvey, A., Elliott, D. and D. Procos (1977), Sub-populations relevant to the study of the use of time: A working paper, Halifax, Canada. Hildreth, C. (1957), A quadratic programming procedure, in: Naval Research Logistics Quarterly, Vol. 14, 79-85. Houthakker, H.S. (1960), The capacity method of quadratic programming, in: Econometrica, Vol. 28, 62-87. Ironmonger, D.S. (1972), New commodities and consumer behaviour, Cambridge University Press, Cambridge. Jaynes, E.T. (1957), Information theory and statistical mechanics I, in: Physics Review, Vol. 106, 620-630. Juster, T.F., Hill, M.S., Stafford, F.P. and J. Eccles Parsons (1983), 1975-1981 Time Use Longitudinal Panel Study, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan. Killingsworth, M. (1983), Labour supply, Cambridge University Press, Cambridge. Killingsworth, M.R. and J.J. Heckmann (1986), Female labour supply: A survey, in: Ashenfelter, O. and Layard, R. (eds.), Handbook of Labour Economics, Vol. I, Amsterdam/New York, 103-204. Lancaster, K. (1966), A new approach to consumer theory, in: Journal of Political Economy, Vol. 73, 132-157. Le Guennec, J. and O. Sautory (2003), La macro Calmar2, manuel d'utilisation, Document interne INSEE. Legal Information Institute (2005), U.S. Code Collection, Cornell. Merz, J. (1980), Prognosegüte und Spektraleigenschaften ökonomischer Modelle, in: Stöppler, S. (ed.), Dynami-sche ökonomische Systeme - Analyse und Steuerung, 2nd edition, Gabler, Wiesbaden, 31-66. Merz, J. (1983a), Die konsistente Hochrechnung von Mikrodaten nach dem Prinzip des minimalen Infor-mationsverlustes, in: Allgemeines Statistisches Archiv, Vol. 67, No. 4, 342-366. Merz, J. (1983b), The adjustment of microdata using the Kalman filtering procedure and optimal control theory, Sfb 3-Working Paper No. 122, Frankfurt/Mannheim. Merz, J. (1985), Ein modifiziertes Newton-Verfahren zur Lösung des Hochrechnungsproblems nach dem Prinzip des minimalen Informationsverlustes, in: Computing, Vol. 35, 51-61. Merz, J. (1986), Structural adjustment in static and dynamic microsimulation models, in: Orcutt, G., Merz, J. and H. Quinke (eds.), Microanalytic simulation models to support social and financial policy, North Hol-land, Amsterdam, 423-446. Merz, J. (1986), Structural adjustment in static and dynamic microsimulation models, in: Orcutt, G., Merz, J. and H. Quinke (eds.), Microanalytic simulation models to support social and financial policy, North Hol-land, Amsterdam, 423-446. Merz, J. (1990), The 1990 German tax reform - Microsimulation of time allocation effects in the formal and informal economy, in: Brunner, J.K. and H.G. Petersen (eds.), Simulation models in tax and transfer policy, Campus, Frankfurt/M., New York. Merz, J. (1991a), Microsimulation - A survey of principles, developments and applications, in: International Journal of Forecasting, Vol. 7, 77-104. Merz, J. (1991b), Wirkungen der Steuerreform 1990 auf Nebenerwerb und Schwarzarbeit, in: Döring, D. and P.B. Spahn (eds.), Steuerreform als gesellschaftliche Aufgabe der neunziger Jahre, Duncker und Humblot, Berlin, 283-303. Merz, J. (1994), Microdata adjustment by the minimum information loss principle, FFB-Discussion paper No. 10, Forschungsinstitut Freie Berufe, Fachbereich Wirtschafts- und Sozialwissenschaften, Univer-sität Lüneburg, Lüneburg. Merz, J. (1996a), Market and non-market labour supply and the impact of the recent German tax reform - Incor-porating behavioural response, in: Ann Harding (ed.), Microsimulation and public policy, (IARIW Special conference on microsimulation and public policy, Canberra, Australia, 5.-9.12.1993), North Holland, Amsterdam, 177-202. Merz, J. and H. Stolze (2006), Representative time use data and calibration of the American Time Use Studies 1965-1999, FFB-Discussion paper No. 54, Department of Economic, Behavioural and Law Sciences, Leuphana University of Lüneburg, Lüneburg. Merz, J. and H. Stolze (2007), ADJUST for Windows – A software package to achieve representative microdata by the minimum information loss principle, http://ffb.uni-lueneburg.de/adjust. Merz, J. and K.G. Wolff (1993), The shadow economy: Illicit work and household production - A microanalysis of West Germany, in: The Review of Income and Wealth, Vol. 39, 177-194. Mitton, L., Sutherland, H. and M. Weeks (eds.) (2000), Microsimulation modelling for policy analysis, Cam-bridge University Press, Cambridge. Mosteller, F. (1968), Association and estimation in contingency tables, in: Journal of the American Statistical Association, Vol. 63, 1-28. Muth, R.F. (1966), Household production and consumer demand functions, in: Econometrica, Vol. 34, 699-708. Nieuwenbroek, N. and H.J. Boonstra (2002), Bascula 4.0 reference manual, Statistics Netherlands. Oh, H.L. and F. Scheuren (1980), Multivariate raking ratio estimation in the 1973 exact match study, Studies from Interagency Data Linkages Report No. 11, U.S. Department of Health, Education and Welfare, Washington, D.C. Orcutt, G., Merz, J. and H. Quinke (eds.) (1986), Microanalytic simulation models to support social and finan-cial policy, North Holland, Amsterdam. Robinson, J.P. (1977), How Americans used time in 1965, Institute for Social Research, University of Michigan, Ann Arbor, Michigan. Robinson, J.P. (1985), Americans’ use of time, Survey Research Center, College Park, MD: University of Maryland. Robinson, J.P., Bianchi, S.M.and S. Presser (1999), Family interaction, social capital, and trends in time use, 1998-1999, Survey Research Center, College Park, MD: University of Maryland. Särndal, C.-E. and S. Lundström (2005), Estimation in surveys with nonresponse, John Wiley & Sons, Chiches-ter (UK). Shore, J.E. and R.W. Johnson (1980), Axiomatic derivation of the principle of maximum entropy and the princi-ple of minimum cross-entropy, in: IEEE Trancsactions on Information Theory, Vol. IT-26, 28-37. St.Croix, A. and A.S. Harvey (2005), Report on data assembly and preliminary evaluation, Yale Program of Non-market Accounts: Dataset Assessments, Time Use Research Program (TURP), Saint Mary’s University, Halifax, Canada. Statistisches Bundesamt (1960), Stichproben in der amtlichen Statistik, Stuttgart/Mainz. Stone, R. (1976), The development of economic data systems, in: Pyatt, G. et al. (eds.), Social accounting for development planning with special reference to Sri Lanka, Cambridge University Press, Cambridge. The American Heritage Time Use Study (AHTUS), www.timeuse.org/ahtus/. Theil, H. (1967), Economics and information theory, North Holland, Amsterdam. Theil, H. (1972), Statistical decomposition analysis, North Holland, Amsterdam. Theil, H., Finke, R. and L.R. Flood (1984), Minimum information estimation of allocation models, in: Econom-ics Letters, Vol. 15, 251-256. Triplett, T. (1995), Data collection methods report for estimating exposure to pollutants through human activity pattern data, A national micro-behavioural approach, Survey Research Center, College Park, MD: University of Maryland. U.S. Census Bureau (2004), Annual social and economic supplement: 2003 Current Population Survey, Current Population Reports, Series P20-553, "America's Families and Living Arrangements: 2003" and earlier reports, retrieved February 2005, from http://www.census.gov/population/socdemo/hh-fam/tabCH-1.pdf. U.S. Census Bureau (n.d.), retrieved February 2005, from http://www.census.gov/popest/archives/1990s. U.S. Census Bureau (n.d.), National estimates, retrieved February 2005, from http://www.census.gov/ popest/archives/pre-1980/PE-11.html. U.S. Census Bureau. (2005), Table A-1. Years of school completed by people 25 years and over, by age and sex: Selected years 1940 to 2004, retrieved February 2005, from http://www.census.gov/ popula-tion/socdemo/education/tabA-1.pdf. Vanderhoeft, C. (2003), g-Calib Release 2.0 – Supplement to the manual for release 1.0, Statistics Belgium. Wauschkuhn, U. (1982), Anpassung von Stichproben und n-dimensionalen Tabellen an Randbedingungen, Ol-denbourg, München/Wien. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/11651 |