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Abstract

This paper uses the Hartman-Stampacchia theorems as primary tool to prove the Gale-
Nikaido-Debreu lemma. It also establishes a full equivalence circle among the Hartman
Stampacchia theorems, the Gale-Nikaido-Debreu lemmas, and Kakutani and Brouwer fixed
point theorems.
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1. Introduction

The existence of an economic equilibrium was proven by Arrow and Debreu (1954) and
McKenzie (1954). While the existence result could be established in many different ways, all
classic proofs of the existence theorem rely on Kakutani fixed point argument (see Debreu
(1982)’s survey). In the so called excess demand approach, the existence result is yielded from
the existence of prices satisfying the Walras’s law. The core of the proof of excess demand
approach is a celebrated result known as the Gale-Nikaido-Debreu lemma (henceforth, GND
lemma) (see Gale (1955), Debreu (1956) and Nikaidô (1956) or Debreu (1959), Gale and
Mas-Colell (1975, 1979)) whose proofs1 make use of the Kakutani fixed point theorem. The
present paper’s main aim is, by the means of the Hartman-Stampacchia theorems (Hartman
and Stampacchia (1966)) to provide a proof for the GND lemma and its generalized version
given by Geistdoerfer-Florenzano (1982).

In recent years, there has been a renewed interest in the fundamental existence results
of equilibrium in economics and games. In particular, the GND lemma has been extended
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to the class of discontinuous demand functions/correspondences in various settings, such as
finite-dimensional settings (e.g.,Maskin and Roberts (2008), Tian (2016) and Cornet (2020)),
infinite-dimensional settings (e.g., He and Yannelis (2017)). Additionally, there have been
many efforts to provide a proof of the existence result without Kakutani’s fixed point ar-
gument, including studies by Greenberg (1977), Barbolla and Corchon (1989), John (1999),
Quah (2008), Frayssé (2009), Maćkowiak (2010). These studies often fall into two categories,
both of which impose conditions on excess demand function or correspondence. The first cat-
egory is relied on gross substitutes assumptions (e.g., (Greenberg, 1977) Greenberg (1977),
Barbolla and Corchon (1989) and Frayssé (2009)); the second one is based on weak axiom of
revealed preference assumption (e.g., Quah (2008) and Maćkowiak (2010)). This paper aims
to contribute to such line of research.

As mentioned in Duppe and Weintraub (2014) and Khan (2021), Debreu wanted to
explore the possibility of proving the GND lemma and its generalization without the Kaku-
tani’s fixed point argument. Le et al. (2022) have been among the first to investigate the
question. The authors have used Sperner’s lemmas as the primary argument to prove the
GND lemma. However, they do not give a proof of the generalized version of GND lemma,
given by Geistdoerfer-Florenzano (1982) (or Florenzano (2003)) by means of Sperner lemma.
The first goal of the paper is to provide an alternative argument for the proof of not only
GND lemma but also its generalization. In contrast to the proof in Geistdoerfer-Florenzano
(1982), the present paper provides the direct proof. The second goal is to make an equiv-
alence circle among the Hartman Stampacchia theorems, GND lemmas and some related
fixed point theorems (See below).

As for the second goal, we introduce a new version of Hartman-Stampacchia theorem
(Theorem 2) associating with upper semi-continuous correspondence. The original Hartman
Stampacchia theorem for continuous mapping (Theorem 1, HS1) implies the one for upper-
semi continuous correspondence (Theorem 2, HS2), which yields, in turn, the GND lemma
(Theorem 4). As showed in Geistdoerfer-Florenzano (1982), the GND lemma implies the
Kakutani theorem, which straightforward entails the Brouwer theorem. Finally, the original
Hartman Stampacchia for continuous mapping can be obtained from the Brouwer theorem,
leading to a full equivalence circle. Moreover, the Kakutani and Brouwer theorems are shown
to be themselves a consequences of the original Hartman Stampacchia theorem (Theorem 1,
HS1). All these results are illustrates in Figure 1.

HS1

HS2

GNDKakutani

Brouwer

Figure 1: The full equivalence circle: Hartman Stampacchia theorem (Theorem 1, HS1), generalized version
of Hartman Stampacchia for correspondence(Theorem 2, HS2), GND lemma, Kakutani and Brouwer fixed
point theorems.
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In order to achieve our purposes, the generalized version of Hartman-Stampacchia theo-
rem (Theorem 2) associated with upper semi-continuous and convex-valued correspondence
is provided and proven. This theorem, together with the original Hartman-Stampacchia
theorem (Theorem 1), allows us to prove not only the GND lemma in Debreu (1959) but
also the generalized version of GND lemma in Geistdoerfer-Florenzano (1982) (or Florenzano
(2003)). To make easy the reading of our paper, we first consider the case of a continuous
mapping. In the second stage, we deal with the case of an upper semi-continuous corre-
spondence with convex, compact, non-empty values. In the case of a correspondence, some
additional ingredients such as finite covering of a compact set, partition of unit subordinated
to a covering and Carathéodory convexity theorem (Carathéodory (1907)) have been added.

We end this introduction by discussing more precisely link this paper and others on the
same subject. First, we do not assume the so called weak axiom of revealed preference or its
generalization as in Quah (2008) and Maćkowiak (2010) respectively. The results of Quah
(2008) and Maćkowiak (2010) are special cases of the GND lemmas (Theorems 3 or 4) below.
Quah (2008) established the existence result under the standard assumptions and the weak
axiom of revealed preference assumption on the excess demand correspondence. The later
condition means that the excess demand correspondence ζ, whose domain is the set of prices
P ⊂ R

L, obeys the weak axiom of revealed preference if the following statement is true:

for all p and p′ in P, whenever there is z′ ∈ ζ(p′) such that ⟨p, z′⟩ ≤ 0, then ⟨p′, ζ(p)⟩ ≥ 0.

Second, the models of Greenberg (1977), Barbolla and Corchon (1989) and Frayssé (2009)
Frayssé (2009) are more specific than one considered here. Indeed, they assume the stronger
assumption that the excess demand correspondence is a continuous single-valued mapping
with the (strong) gross substitute property.

The paper proceeds as follows. In the next section, we begin with some notations and
definitions, the Hartman-Stampacchia theorem (Theorem 1) and its generalization (Theorem
2), which is of fundamental importance for the proof of the GND lemma and its extended
version. Section 3 contains the main result of the paper, namely the proofs of the GND
lemma and its extended version without the Kakutani fixed point argument. Section 4 is
dedicated to show how the Hartman-Stampacchia theorem can be used to prove Brouwer and
Kakutani theorems. Additionally, we demonstrate in Section 5 that Hartman-Stampacchia
theorem is a consequence of Brouwer theorem. Finally, some extended proofs are given the
Appendix A.

2. Preliminaries

We start by introducing some notations using through this paper.

2.1. General Notations and Definitions

We shall denote

❼ by ⟨x, y⟩ the inner product between x and y, and ||x|| the norm of x for any
x, y ∈ R

N ,

❼ by 0N , 0m the zero vector in R
N , Rm respectively,
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❼ by B and B̄ the open and closed unit-ball in R
N centered at 0N respectively, S

the unit-sphere associated with B̄,

❼ by B(x, r) and B̄(x, r) open and closed balls with center at x and radius r re-
spectively for any x ∈ R

N and r > 0,

❼ by P ◦ = {z ∈ R
N : ⟨p, z⟩ ≤ 0, ∀p ∈ P} the polar cone of P ,

❼ by ∆ the unit-simplex of RN ,

❼ by NC(x) the normal cone to the set C at the point x for any C ⊂ R
N and x ∈ C.

❼ by P c the complement of P for any P ⊂ R
N ,

❼ by int(P ), ri(P ) and Bdr(P ) the interior, relative interior and relative boundary
sets of a given set P respectively.

Let us recall the definition and some properties of upper-semi correspondence. Let X, Y
be non-empty topological spaces. A correspondence Γ : X → Y is upper semi-continuous
(u.s.c) at point x if for every open set V of Y for which Γ(x) ⊂ V , there exists a neighborhood
U of x such that Γ(z) ⊂ V ∀z ∈ U . The correspondence Γ is said to be upper semi-continuous
on X if it is upper continuous at every point of X.

Notice that if X is compact then Γ is upper semi-continuous if and only if Γ is closed,
namely, the graph of Γ is closed. It is also clear that if Γ is upper semi-continuous and
K ⊂ X is compact, then Γ(K) is compact. Recall that if Γ is single-valued, the notions of
continuity, upper semi-continuity, and the lower semi-continuity turn out to be equivalent.

2.2. Hartman-Stampachia Theorem and its Generalization

Let us first recall the theorem from Hartman and Stampacchia (1966) in the finite di-
mensional setting.

Theorem 1 (Hartman-Stampacchia theorem). 2 Let K be a convex and compact set of RN ,
f a continuous mapping from K into R

N . Then there exists ū ∈ K such that

⟨v, f(ū)⟩ ≤ ⟨ū, f(ū)⟩ ∀v ∈ K. (2.1)

Remark 1. One of the possible proof of Theorem 1 is to make use of the index theory or
the topological degree theory.

Remark 2. The point f(u0) ∈ NK(u0), namely, it belongs to the normal cone to the set K
at u0.

Before going to a detailed generalization of the Hartman-Stampacchia theorem, we intro-
duce a useful lemma3 describing the value of a continuous mapping in terms of a finite linear

2See Lemma 3.1 in Hartman and Stampacchia (1966) on page 276.
3A very similar idea in Lemma 1 can be found in Cellina (1969). However, the formulation of the mapping

f in the lemma differs from that of Theorem 1 in Cellina (1969) since both mappings are based on 2 different
structures of finite covering. Besides, this version was written before reading his paper.
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combination of vectors. We will later see that Lemma 1 below is the critical factor in the
proof of a generalized Hartman-Stampachia theorem and enables us to use the compactness
argument.

Lemma 1. Let C be a non-empty and compact set of RN , ζ a non-empty valued correspon-
dence from C into R

N . Let r > 0. There exists a continuous mapping f from C into R
N

satisfying the following condition:

Condition R. For each x ∈ C, there are at most N + 1 vectors z1, . . . , zN+1 in ζ
(

B(x, r)
)

and positive numbers β1, . . . , βN+1 such that 4

f(x) =
N+1
∑

i=1

βiz
i (2.2)

with
∑N+1

i=1 βi = 1.

See the Proof of Lemma 1 in Appendix A on page 14.
Note that the N+1 vectors z1, . . . , zN+1 and numbers β1, . . . , βN+1 are allowed to depend on
the parameters of x, r and M functions (αi)

M
i=1 (see these functions in the proof). However

for simplicity, these elements are omitted.

Remark 3. We could explain this lemma as follows: the value f(x) of a continuous mapping
is expressed as a convex combination of, at most, length N + 1 of elements belonging to
ζ
(

B(x, r)
)

. The feature, in which the length of the combination is fixed, enable us to deploy
the “compactness argument”.

Remark 4. The conclusion of Lemma 1 still holds under two extra assumptions. More
precisely, in addition to the hypotheses of Lemma 1, we assume that C is convex in R

N and
the correspondence ζ is from C into C. The conclusion of the existence of a continuous
mapping f satisfying Condition R is the same. Besides, the mapping f is admitted from C
into C.

We now introduce an extension of Hartman-Stampacchia theorem (Theorem 1) to cor-
respondence. Such extension concerns some characteristics of the correspondence. The
extension of Hartman-Stampacchia to upper semi-continuous correspondence seems to be
the key in getting a proof of the generalized GND lemma. In this case, the generalization of
the theorem is precisely stated in Theorem 2. The corresponding proof of the theorem will
be relied on the original theorem and the “compactness argument”, involving the concept
of unity subordinated to a covering and Caratheodory convexity theorem. We also provide
another generalized Hartman-Stampacchia theorem with lower semi-continuity, expressed in
Corollary 1, where the proof makes use of a continuous selection theorem, based on the work
of Michael (1956).

4Note the convention that superscripts are used for labelling vectors while subscripts give real numbers.
For example, as in Condition R , the parameters β1, . . . , βN+1 are real numbers and z1, . . . zN+1 are vectors
belonging to the finite dimensional space RN .
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Theorem 2 (Hartman-Stampacchia theorem for convex-valued and upper semi-continuous
correspondence). Let C be a compact and convex set in R

N , ζ a non-empty, convex and
compact valued correspondence from C into R

N . If ζ is upper semi-continuous, then there
are some x ∈ C and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C.

See Proof of Theorem 2 in the Appendix A on page 14.

Corollary 1 (Hartman-Stampacchia theorem for lower semi-continuous correspondence).
Let C be a compact and convex set in R

N , ζ a non-empty, convex and compact valued
correspondence from C into R

N . If ζ is lower semi-continuous, then there are some x ∈ C
and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C.

See Proof of Corollary 1 in Appendix A on page 15.

3. Gale-Nikaido-Debreu Lemmas

We aim in this section to provide proofs of not only Gale-Nikaido-Debreu lemma (Theo-
rem 3) but also its generalized version (Theorem 4) by the means of Hartman-Stampacchia
theorem. These lemmas are precisely recalled in Section 3.1. The main arguments involved
in the proofs are Lemma 1 or Hartman-Stampacchia theorem for convex-valued and upper
semi-continuous correspondence and the concept of retract mapping. The former is intro-
duced in Section 2.2. The latter and a supporting lemma are given in Section 3.2. Finally,
by the means of Hartman-Stampacchia theorem (Theorem 1) and its generalized version
(Theorem 2), we give the direct proofs in Sections 3.3 and 3.4 respectively.

3.1. Gale-Nikaido-Debreu Lemma and its Generalized Version

Arrow and Debreu (1954) prove a fundamental equilibrium existence result of theoretical
economics. Later with the papers of Gale (1955) Debreu (1956) and Nikaidô (1956), a
celebrated formulation so-called Gale-Nikaido-Debreu lemma provides more inside economic
explanation. The core argument for the classic proof5 of the lemma is based on the Kakutani
fixed point theorem. Let us recall the GND lemma.

Theorem 3 (Gale-Nikaido-Debreu lemma). Let ∆ be the unit-simplex of RN . Let ζ be an
upper semi-continuous correspondence with non-empty, compact, convex values from ∆ into
R

N . Suppose ζ satisfies the following condition:

∀p ∈ ∆, ∀z ∈ ζ(p), ⟨p, z⟩ ≤ 0. (3.1)

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∩R
N
− ̸= ∅.

5We refer to Debreu (1959) or Debreu (1982) for more details.
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Remark 5. An equivalent statement of Theorem 3 is obtained by replacing condition (3.1)
by condition (3.2) below

∀p ∈ ∆, ∃z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0. (3.2)

It is clear that condition (3.1) implies condition (3.2). Conversely, assume that the cor-
respondence ζ satisfies condition (3.2). We define the correspondence ζ ′ : ∆ → R

N by
ζ ′(p) = {z ∈ ζ(p) : ⟨p, z⟩ ≤ 0}. It follows that ζ ′ is non-empty, convex, compact valued and
upper semi-continuous correspondence from ∆ into R

N such that

∀p ∈ ∆, ∀z ∈ ζ ′(p), ⟨p, z⟩ ≤ 0.

From Theorem 3, there exits p̄ ∈ ∆ such that ζ ′(p̄) ∩R
N
− ̸= ∅. Since ζ ′(p̄) ⊂ ζ(p̄), it follows

ζ(p̄) ∩R
N
− ̸= ∅.

If the correspondence ζ is a mapping, Theorem 3 is restated as follows:

Theorem 3′. Let ∆ be the unit-simplex of RN , ζ a continuous mapping from ∆ into R
N .

Suppose ζ satisfies the following condition:

∀p ∈ ∆, ⟨p, ζ(p)⟩ ≤ 0.

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∈ R
N
− .

Now we turn our attention to a generalization of Gale-Nikaido-Debreu lemma which is es-
tablished by Geistdoerfer-Florenzano (1982). One of the interest of Geistdoerfer-Florenzano
(1982) is to give a proof of the lemma without Kakutani fixed point argument, where she
provides the proof by contradiction6. It makes use of the strict separation theorem for two
disjoint convex sets (one of them is closed, the other one is compact) and a partition of unity
subordinated to a covering, together with the Brouwer theorem.

Theorem 4 (Florenzano(1982)). Let P be a closed convex cone with vertex 0N in R
N . Let

ζ be an upper semi-continuous and non-empty, compact convex valued correspondence from
B̄ ∩ P into R

N . If ζ satisfies the condition

∀p ∈ S ∩ P, ∃z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0, (3.3)

then there exists p̄ ∈ B̄ ∩ P such that ζ(p̄) ∩ P ◦ ̸= ∅.

Remark 6. Obviously, without loss of generality, we can replace condition (3.3) by

∀p ∈ S ∩ P, ∀z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0. (3.4)

Note that Florenzano and Le Van (1986) provided the following example, showing that in
general the vector p̄ of Theorem 4 might be 0N .

6See Lemma 1 in Geistdoerfer-Florenzano (1982) on page 115 or Lemma 2.1.1 in Florenzano (2003) on
page 45
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Example 1. Consider a cone P = R
2 and a single-valued correspondence ζ from B̄(0, 1) into

R
2 defined as follows: ζ(p) = −p for all p ∈ B̄(0, 1). Obviously, all conditions of Theorem 4

hold.

Indeed, it is easy to see that ζ(p̄)∩P ◦ ̸= ∅ if and only if p̄ = 02. In the case ζ is a single-valued
correspondence, we could rewrite Theorem 4 as follows:

Theorem 4′. Let P be a closed convex cone with vertex 0N in R
N . Let ζ be a continuous

mapping from B̄ ∩ P into R
N . If ζ satisfies the condition

∀p ∈ S ∩ P, ⟨p, ζ(p)⟩ ≤ 0, (3.5)

then there exists p̄ ∈ B̄ ∩ P such that ζ(p̄) ∈ P 0.

3.2. Retract Mapping and Supporting Lemma

By preparing the proof in the next sections, we introduce the concept of retract mapping.
The existence of such a mapping is showed by structuring an explicit one in Lemma 2. This
concept is used in the proof of Theorem 4 in the cases where the cone P is not a linear
subspace of RN . Besides, we state and prove Lemma 3, a supporting lemma.

Definition 1 (Retract mapping). A subspace A of a topological space X is a retract of X
if there is a continuous mapping f : X 7→ A such that f(y) = y for all y ∈ A. The mapping
f is called a retraction of X onto A.

Lemma 2. Let P be a closed convex cone in R
N . If P ⊊ span(P ), then there exists a retract

r from B̄ ∩ P into S ∩ P .

See Proof of Lemma 2 in Appendix A on page 15.

Remark 7. Lemma 2 means that if the cone P is not a vector space, then there is some
retract mapping from B̄ ∩ P into S ∩ P .

Lemma 3. (Supporting Lemma) Let P be a closed convex cone with vertex 0N in R
N . Let

ζ be a correspondence from B̄ ∩ P into R
N satisfying condition:

∀p ∈ S ∩ P, ∀z ∈ ζ(p) : ⟨p, z⟩ ≤ 0. (3.6)

If there are some x ∈ B̄ ∩ P and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B̄ ∩ P, (3.7)

then z ∈ P ◦ ∩ ζ(x).

See the Proof of Lemma 3 in Appendix A on page 17.

Remark 8. Normally, the class of correspondence for which conditions (3.6) and (3.7) hold
is upper semi-continuous. However, it is not the case in Lemma 3.

Remark 9. In the case ζ is single-valued, the conclusion of Lemma 3 means that there is
some x ∈ B̄ ∩ P such that ζ(x) ∈ P ◦.
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3.3. Proof of Theorem 3 (Gale-Nikaido-Debreu Lemma)

In Section 3.3, we present the proof of Theorem 3. The proof splits into 2 cases associating
with the correspondence ζ being either single- or multi-valued. Section 3.3.1 carries out
single-valued correspondence. As for multi-valued correspondence, the proof is shown in
Section 3.3.2. We directly apply Theorem 1 and the generalized Hartman-Stampacchia
theorem (Theorem 2) to the cases respectively.

3.3.1. The Correspondence ζ is Single-valued Continuous

Proof. 7 In this case, we need to seek p̄ ∈ ∆ such that ζ(p̄) ∈ R
N
− . Indeed, applying

Hartman-Stampacchia theorem to the mapping ζ on ∆, we obtain some p̄ ∈ ∆ such that

⟨p, ζ(p̄)⟩ ≤ ⟨p̄, ζ(p̄)⟩ ∀p ∈ ∆.

Since the hypothesis on ζ of Theorem 3 (or condition (3.1)) implies ⟨p̄, ζ(p̄)⟩ ≤ 0, we see that

⟨p, ζ(p̄)⟩ ≤ 0 ∀p ∈ ∆.

It is obvious that this implies ζ(p̄) ∈ ∆◦ = R
N
− .

3.3.2. The Correspondence ζ is Upper Semi-continuous with Non-empty, Compact, Convex
Values

Proof. Since ζ is upper semi-continuous, we apply Theorem 2 with C replaced by ∆; conse-
quently, we obtain x ∈ ∆ and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ ∆.

Since z ∈ ζ(x), by the hypotheses on ζ of Theorem 3 (or condition (3.1)), it follows ⟨x, z⟩ ≤ 0.
Therefore,

⟨p, z⟩ ≤ 0, ∀p ∈ ∆.

Equivalently, z ∈ ∆◦ = R
N
− . We have proved that z ∈ ζ(x) ∩R

N
− .

3.4. Proof of Theorem 4 (Florenzano(1982))

Section 3.4 is dedicated to prove Theorem 4 with condition (3.3) replaced by condition
(3.4). One of the main aims of this paper is to give alternative and direct proofs for not only
the original GND lemma (Theorem 3) but also its generalized version (Theorem 4). As a
result of the extension, the proof of Theorem 4 is done with cost, i.e., the complicated proof
with more tools deployed, compared with that of Theorem 3. To make the proof easy to
read, each section below deals with separate cases of the correspondence: ζ is either single- or
multi-valued. In both cases, when the cone P is not linear space of RN , the proofs are based
on the concept of retract mapping together with Theorem 1 and Theorem 2 respectively; the
existence result is a direct consequence of Lemma 3. When the cone P is a subspace of RN ,
in both cases, the existence results are reduced from Theorem 1 and Theorem 2 respectively.

7For the sake of providing intuition, we provide the proof for this case. Actually, the proof for this case
could be viewed as to be included in the case of correspondence
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3.4.1. The Correspondence ζ is Single-valued Continuous

Proof. In this case, we need to seek p̄ ∈ B̄ ∩ P such that ζ(p̄) ∈ P ◦. The proof splits into 2
separate cases:

Case 1. P ⊊ span(P )
According to the hypothesis on ζ, the mapping ζ is continuous. By Lemma 2 on page 8,
there is some retract r : B̄ ∩ P → S ∩ P . Since ζ and r are continuous on B̄ ∩ P , it follows
that so is the mapping ζ ◦ r. We apply Theorem 1 to the mapping ζ ◦ r on B̄ ∩ P , and thus
obtain some x̄ ∈ B̄ ∩ P such that

⟨p, ζ ◦ r(x̄)⟩ ≤ ⟨x̄, ζ ◦ r(x̄)⟩ ∀p ∈ B̄ ∩ P. (3.8)

We now deploy Lemma 3 with ζ replaced by ζ ◦r, x by x̄, z by ζ(r(x̄)) to prove that p̄ = r(x̄)
satisfies Theorem 4. It remains to verify conditions (3.6) and (3.7) of Lemma 3. On one
hand, for condition (3.6), let p ∈ S∩P . Since r is a retract mapping, it follows r(p) = p, and
consequently ζ ◦ r(p) = ζ(p). Combining this with condition (3.4) (more precisely condition
(3.5)), we obtain

⟨p, ζ ◦ r(p)⟩ = ⟨p, ζ(p)⟩ ≤ 0,

implying that condition (3.6) holds. On the other hand, by inquality (3.8), condition (3.7)
holds for x = x̄ and z = ζ(r(x̄)). The proof is over.

Case 2. P = span(P )
Appy Theorem 1 to the mapping ζ on B̄ ∩ P , and obtain some p̄ ∈ B̄ ∩ P such that

⟨p, ζ(p̄)⟩ ≤ ⟨p̄, ζ(p̄)⟩ for all p ∈ B̄ ∩ P. (3.9)

We want to conclude that ζ(p̄) ∈ P 0; we split the argument into three subcases:

❼ If p̄ ∈ int(B̄ ∩ P ), since ζ(p̄) ∈ NB̄∩P (p̄), where NB̄∩P (p̄) is the normal cone to B̄ ∩ P
at p̄, we conclude ζ(p̄) = 0N . Consequently, ζ(p̄) ∈ P 0. Note that this circumstance
happens only if the cone P is RN .

❼ If p̄ ∈ ri(B̄ ∩P ), i.e., p̄ belongs to the relative interior8 of B̄ ∩P then ζ(p̄) ∈ NB̄∩P (p̄).
We know that since P is the subspace, it follows NB̄∩P (p̄) = NP (p̄) = P⊥ = P 0. Hence
ζ(p̄) ∈ P 0.

❼ If p̄ /∈ ri(B̄ ∩ P ), then p̄ ∈ Bdr(B̄ ∩ P ), i.e., the relative boundary 9 of B̄ ∩ P . Since P
is the subspace, Bdr(B̄ ∩P ) = S ∩P . Consequently, p̄ ∈ S ∩P . By the hypotheses on
ζ, we deduce that ⟨p̄, ζ(p̄)⟩ ≤ 0. Combining this with inequality (3.9), we obtain,

⟨p, ζ(p̄)⟩ ≤ 0 for any p ∈ B̄ ∩ P. (3.10)

Since P is a cone , it follows that inequality (3.10) can be extended to any p ∈ P . As
a result, ζ(p̄) ∈ P 0.

8For notion of relative interior and relative boundary, see, for example, Florenzano and Le Van (2001)’s
Section 1.2.2 on page 11.

9See footnote 8
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In conclusion, there is some p̄ ∈ B̄ ∩ P such that ζ(p̄) ∈ P 0. The proof for the mapping is
over.

3.4.2. The Correspondence ζ is Upper Semi-continuous with Non-empty, Compact, Convex
Values

Case 1. P ⊊ span(P ) By Lemma 2 on page 8, there is some retract mapping r from
B̄ ∩ P into S ∩ P . Since r is continuous and according to the hypotheses of Theorem 4, ζ
is upper semi-continuous, we obtain that ζ ◦ r is upper semi-continuous. Obviously, ζ ◦ r is
also non-empty, convex, compact valued.
We are now applying Theorem 2 with C replaced by B̄ ∩ P , ζ by ζ ◦ r, and thus obtain
x ∈ B̄ ∩ P and z ∈ ζ ◦ r(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B̄ ∩ P. (3.11)

We verify that conditions (3.6) and (3.7) of Lemma 3 hold with ζ replaced by ζ ◦ r. On
one hand, inequality (3.11) leads to condition (3.7) holding (with ζ replaced by ζ ◦ r). On
the other hand, noting that ζ(x) = ζ ◦ r(x) for all x ∈ S ∩ P , from the hypothesis on ζ of
Theorem 4 (or condition (3.4)), we see that condition (3.7) of Lemma 3 holds. As a result
of Lemma 3, we obtain z ∈ P ◦ ∩ ζ ◦ r(x).

Case 2. P = span(P )
On one hand, according to Theorem 2 with C replaced by B̄ ∩ P , we obtain that there are
some x ∈ B̄ ∩ P and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B̄ ∩ P.

On the other hand, by the hypothesis on ζ of Theorem 4

∀p ∈ S ∩ P, ∀z ∈ ζ(p) ⟨p, z⟩ ≤ 0. (3.12)

Lemma 3 implies that z ∈ P ◦ ∩ ζ(x). This concludes Theorem 4.

Remark 10. In the statement of Theorem 4, it is possible that p̄ equals 0N . It is worth
pointing out that in the direct proof of Theorem 4, p̄ is different from 0N when the cone P is
not a linear subspace of RN .

4. Brouwer and Kakutani Fixed Point Theorems

In Section 4, we first show in Proposition 1 that the Brouwer theorem is a direct con-
sequence of the Hartman-Stampacchia theorem. Second, we demonstrate the proofs of the
Kakutani theorem using the Brouwer fixed point and Hartman-Stampacchia arguments in
Proposition 2.

Proposition 1 (Brouwer theorem). Let C be a non-empty, convex, compact set in R
N . Let

f be a continuous mapping from C into itself. Then, there exists a fixed point of f .

11



Proof. Define g(x) = f(x)− x. Applying Hartman-Stampacchia theorem to the mapping g,
we obtain some x̄ ∈ C such that

⟨p, g(x̄)⟩ ≤ ⟨x̄, g(x̄)⟩ ≤ 0 ∀p ∈ C.

We claim that x̄ is a fixed point of f . Indeed, take p = f(x̄) ∈ C. Then

⟨f(x̄)− x̄, f(x̄)− x̄⟩ ≤ 0.

In other words, f(x̄) = x̄.

Proposition 2 (Kakutani theorem). Let C be a non-empty, convex, compact, subset of RN .
Let ζ be a non-empty, convex, compact, valued correspondence from C into itself. If ζ is an
upper semi-continuous, then there exists a fixed point of the correspondence ζ. That is, there
exists some x ∈ C such that x ∈ ζ(x).

Proof of Proposition 2 using the Brouwer’s fixed point theorem. Let (εk) be a non-negative
sequence being decreasing and convergent to 0. According to Remark 4 on page 5, for any
k ∈ N

∗, there is some continuous mapping fk for which Condition R (on page 5) holds. From
Proposition 1, there exists some fixed point xk of the mapping fk for any k ≥ 1. Again,
by Remark 4, there exist at most N + 1 vectors z1,k . . . , zN+1,k in ζ

(

B(xk, εk)
)

and strictly
positive numbers β1,k, . . . , βN+1,k such that

fk(xk) =
N+1
∑

i=1

βi,kz
i,k, (4.1)

with
∑N+1

i=1 βi,k = 1. Now using the compactness argument shows the existence of a fixed
point of ζ. Indeed, note that there exists ui,k ∈ B̄ such that zi,k ∈ ζ(xk + εku

i,k) for any

i = 1, . . . , N + 1 and k ∈ N
∗. Since the sequence

(

(

xk, (βi,k)
N+1
i=1 , (ui,k)N+1

i=1

)

)

k
in a compact

set C × [0, 1]N+1 × B̄N+1, without of loss generality, we might assume that the sequence
converges to

(

x, (βi)
N+1
i=1 , (ui)N+1

i=1

)

. For any i = 1, . . . , N + 1, since lim
k→∞

(

xk + εku
i,k
)

= x ,

by the compactness of ζ(x) and upper semi-continuity of ζ, we conclude that there is some
zi ∈ C and a subsequence (zink

) such that lim
k→∞

zink
= zi and zi ∈ ζ(x). It is clear that

∑N+1

i=1 βi = 1. The convexity of ζ(x) implies
∑N+1

i=1 βizi ∈ ζ(x). As proved above, xk is the
fixed point of fk and lim

k→∞
xnk = x, implying that

lim
k→∞

fnk(xnk) = x.

On the other hand, the convergences of {βnk

i } and {zink
} implies

lim
k→∞

N+1
∑

i=1

βnk

i zink
=

N+1
∑

i=1

βiz
i.
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Combining the above convergences with identity (4.1) proves x =
N+1
∑

i=1

βiz
i. Since the set

ζ(x) is convex and zi ∈ ζ(x) for i = 1, . . . , N +1, it follows that
N+1
∑

i=1

βiz
i ∈ ζ(x). As a result,

x ∈ ζ(x). This concludes the existence of a fixed point of ζ.

Proof of Proposition 2 using Hartman-Stampacchia theorem.
Let (εk) be a decreasing non-negative sequence converging to 0. By Remark 4, for any
k ∈ N

∗, there is some continuous mapping fk satisfying Condition R . Applying the Hartman-
Stampacchia gives xk such that

⟨fk(xk)− xk, p− xk⟩ ≤ 0 ∀p ∈ C.

Substituting p for fk(xk) into the above inequality implies fk(xk) = xk. Then we repeat the
procedure of the proof of Proposition 2 using fixed point theorem on page 12 and conclude
that there exists a fixed point of ζ.

5. Hartman-Stampacchia and Brouwer Theorems

Theorem 5 (Generalized Hartman-Stampacchia theorem). Let C be a non-empty, compact
and convex set of RN . Let ζ be a correspondence from X into R

N . If ζ is lower or upper
semi-continuous, then there exist x ∈ C and z ∈ ζ(x) such that

⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C. (5.1)

Proof of Theorem 5. We consider three cases:

Case 1. ζ is single-valued. Let g(x) = πC(x + ζ(x)) for any x ∈ C, where πC denotes
the convex projection of RN onto C. The mapping g is continuous from C into C. From
Proposition 1 (Brouwer theorem), there is a fixed-point of g, i.e., x̄ = g(x̄) or equivalently
x̄ = πC(x̄ + ζ(x̄)). In this case ζ(x̄) = x̄ + ζ(x̄) − x̄ belongs to normal cone of C at x̄. We
get inequality (2.1) of Hartman-Stampacchia theorem.

Case 2. ζ is multi-valued upper semi-continuous See Theorem 2 on page 6.

Case 3. ζ is multi-valued lower semi-continuous See Corollary 1 on page 6.
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A. Appendix

A.1. Proof of Lemma 1

First we build a mapping f using the partition of unity subordinated to a covering.
Second, we show that such a mapping satisfies Condition R .

By the compactness of C, there exists a finite covering of C, say B(xi, r), i = 1, . . . ,M .

Let (αi) be a partition of unity10 over C subordinated to the covering
{

B(xi, r)
}M

i=1
. Take

yi ∈ ζ(xi) for all i = 1, . . . ,M . Set

f(x) =
M
∑

i=1

αi(x)y
i

for all x ∈ C. Obviously, the mapping f is continuous on C. Now we prove that Condition
R holds for the mapping f . Indeed, fix some x in C. Let J = {i ∈ N : 1 ≤ i ≤ M and x ∈
B(xi, r)}. Observe that x ∈ ∩i∈JB(xi, r) implying that xi ∈ B(x, r) and yi ∈ ζ(B(x, r)) for
all i ∈ J . Note that if i /∈ J , it follows that x /∈ B(xi, r) and thus that the partition of unity

over C subordinated to the covering
(

B(xj, r)
)M

j=1
implies αi(x) = 0. Consequently,

f(x) =
M
∑

i=1

αi(x)y
i =

∑

i∈J

αi(x)y
i +

∑

i/∈J

αi(x)y
i

=
∑

i∈J

αi(x)y
i.

Since
∑

i∈J αi(x) = 1, we conclude that f(x) ∈ co
(

ζ
(

B(x, r)
)

)

. According to Carathéodory’s

convexity theorem 11, there exist at most N+1 vectors z1, . . . , zN+1 in ζ
(

B(x, r)
)

and strictly
positive numbers β1, . . . , βN+1 such that

f(x) =
N+1
∑

i=1

βiz
i

with
∑N+1

i=1 βi = 1.

A.2. Proof of Theorem 2

Let (εk)k be a non-negative sequence converging to 0. For any k ≥ 1, apply Lemma 1 on
page 5 with r = εk and obtain some continuous mapping fk : C → R

N satisfying Condition

10For the notion of partition of unity, see, for instance, Aliprantis and Border (2006)’s Section 2.19. on
page 66.

11Carathéodory (1907)’s convexity theorem states that: In an n-dimensional vector space, every vector in
the convex hull of a nonempty set can be written as a convex combination using no more than n+1 vectors
from the set. For a simple proof, see Florenzano and Le Van (2001)’s Proposition 1.1.2 or Aliprantis and
Border (2006)’s Theorem 5.32.
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R. Applying Hartman-Stampacchia theorem on page 4 to the mapping fk on C, we obtain
some xk ∈ C such that

⟨p, fk(xk)⟩ ≤ ⟨xk, fk(xk)⟩ ∀p ∈ C. (A.1)

Again, according to Lemma 1, there exist12 at most (N + 1) vectors z1,k, . . . , zN+1,k in
ζ
(

B(xk, εk)
)

and positive numbers β1,k . . . , βN+1,k such that

fk(xk) =
N+1
∑

i=1

βi,kz
i,k (A.2)

with
∑N+1

i=1 βi,k = 1. For any i = 1, . . . , N + 1 and k ∈ N
∗, since zi,k ∈ ζ

(

B(xk, εk)
)

,
there is some ui,k in closed unit ball B̄ such that zi,k ∈ ζ

(

xk + εku
i,k
)

. Observe that the

sequence
(

(

xk, (βi,k)
N+1
i=1 , (ui,k)N+1

i=1

)

)

k
is in the compact set C × [0, 1]N+1 × B̄N+1 implying

that, without loss of generality, the sequence converges to
(

x, (βi)
N+1
i=1 , (ui)N+1

i=1

)

. Note that
lim
k→∞

εk = 0. Consequently, lim
k→∞

xk + εku
i,k = x. In addition, since ζ(x) is compact and

zi,k ∈ ζ(xk + εku
i,k), the upper semi-continuity of ζ implies that there is a subsequence

(

zi,nk

)

k
being convergent to zi ∈ ζ(x) for all i = 1, . . . , N + 1. It is obvious from identity

(A.2) that

lim
k→∞

fnk(xnk) =
N+1
∑

i=1

βiz
i := z. (A.3)

Note that zi ∈ ζ(x) and
∑N+1

i=1 βi = 1. By the convexity of ζ(x), we obtain z ∈ ζ(x).
Since lim

k→∞
xk = x, combining inequality (A.1) with identity (A.2) and convergence (A.3), we

obtain
⟨p, z⟩ ≤ ⟨x, z⟩, ∀p ∈ ∆.

The proof of Theorem 2 is over.

A.3. Proof of Corollary 1

Indeed, since ζ is lower semi-continuous, due to Michael (1956)(Theorem 3.1′′′), we ob-
tain13 a continuous selection mapping f of ζ. Applying Theorem 1 to mapping f with K
replaced by C, we obtain x ∈ C such that

⟨p, f(x)⟩ ≤ ⟨x, f(x)⟩ ∀p ∈ C. (A.4)

Since f is a selection mapping of ζ, it follows that f(x) ∈ ζ(x). Define z = f(x) to end the
proof.

A.4. Proof of Lemma 2

Since P ⊊ span(P ), then P is not a subspace ofRN , consequently, there exists a ∈ −P\P .
We show in Claim 1 below that it is possible to choose such a satisfying a ∈ P 0.

12Upper indices mark vectors and lower indices real numbers.
13This is a particular case of Theorem 3.1′′′ in Michael (1956). For detailed proof, see, e.g., Proposition

10 in Florenzano (1981) or Proposition 1.5.3 in Florenzano (2003) on page 31.

15



Claim 1. There is some a ∈ P ◦ ∩ (−P ) ∩ P c and a ̸= 0N .

Proof of Claim 1. Since P is not a subspace, there is some x ∈ P , but x /∈ −P . Define y to
be the orthogonal projection of x onto −P . Let a = y + (−x). Since x /∈ −P and −P is
closed, it follows that a ̸= 0N . On one hand, because −P is a convex cone, y and −x belong
to −P , hence a belongs to −P . On the other hand, by the choice of y,

⟨y − x, y − ȳ⟩ ≤ 0 for all ȳ ∈ −P.

Note that ȳ = −nz ∈ −P with n > 0 and z ∈ P , and that a = y − x. Substituting them
into the above inequality, we get

⟨a, ȳ + nz⟩ ≤ 0.

This leads to

⟨a, z⟩ ≤ −
1

n
⟨a, y⟩ for all n > 0 and z ∈ P.

Letting n go to infinity proves that⟨a, z⟩ ≤ 0 for all z ∈ P . In other words, a ∈ P ◦.
Furthermore, since a ∈ P ◦ and ⟨a, a⟩ > 0, we can deduce that a /∈ P or a ∈ P c. The proof
of Claim 1 is over.

Now we construct a retract mapping r. According to Claim 1, there exists a ∈ P ◦ ∩ (−P ).
Fix x ∈ B̄ ∩ P . Consider the following equation with some real variable λa(x):

||x+ λa(x)(x− a)|| = 1.

This leads the quadratic equation:

||x− a||2λ2
a(x) + 2⟨x, x− a⟩λa(x) + ||x||2 − 1 = 0. (A.5)

Since ||x−a||2 (||x||2 − 1) ≤ 0, the quadratic equation has at least one non-negative solution.
We are able to compute an explicit formula for this solution as follows:

λa(x) =
−⟨x, x− a⟩+

√

⟨x, x− a⟩2 + (1− ||x||2)||x− a||2

||x− a||2
. (A.6)

Let14

r(x) = x+ λa(x)(x− a). (A.7)

On one hand, by the construction, ||r(x)|| = 1. On the other hand, r(x) can be alternately
described as r(x) =

(

1 + λa(x)
)

x + λa(x)(−a). Because x and −a are in the convex cone
P and λa(x) ≥ 0, it follows that r(x) belongs to P . Therefore, we have constructed the
well-defined mapping r from B̄ ∩P to S ∩P . Since λa(x) is continuous with respect to x on
B̄ ∩ P , then so is the mapping r. To end the proof, it remains to show that r|S∩P = idS∩P .
Indeed, consider x ∈ S ∩P , then ||x|| = 1. Since a ∈ P ◦ and x ∈ P then ⟨x, a⟩ ≤ 0 implying
⟨x, x− a⟩ ≥ 0. From (A.6) we get λa(x) = 0. Consequently, (A.7) leads to r(x) = x.

14By the construction, the retract r is dependent on the vector a.
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A.5. Proof of Lemma 3

First we claim that
⟨x, z⟩ ≤ 0.

Indeed, the proof of the claim splits into two cases:

Case 1. ||x|| = 0 or ||x|| = 1

❼ If ||x|| = 0, then obvious ⟨x, z⟩ = 0.

❼ If ||x|| = 1, in the case x ∈ S∩P . By condition (3.6), we consequently obtain ⟨x, z⟩ ≤ 0.

Case 2. 0 < ||x|| < 1
Take p = x

||x||
. Since P is a cone, x ∈ P , and ||p|| = 1, it follows p ∈ B̄ ∩ P . Inequality (3.7)

implies that
(

1−
1

||x||

)

⟨x, x⟩ ≥ 0.

Note that 1− 1
||x||

> 0, hence ⟨x, z⟩ ≤ 0. We have finished proving the claim.

We now turn to show that z ∈ P ◦ ∩ ζ(x). Since ⟨x, z⟩ ≤ 0, it follows from inequality (3.7)
that

⟨p, z⟩ ≤ 0 ∀p ∈ B̄ ∩ P. (A.8)

Since P is a cone and {x ∈ P : ||x|| ≤ 1} ⊂ B̄ ∩ P , we could extend inequality (A.8) to all
p ∈ P . In other words, z ∈ P ◦. According to condition (3.7), z ∈ ζ(x). Therefore, we obtain
z ∈ P ◦ ∩ ζ(x), and this concludes the proof of Lemma 3.
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Maćkowiak, P., 2010. The existence of equilibrium without fixed-point arguments. Journal
of Mathematical Economics 46, 1194–1199.

Maskin, E., Roberts, K., 2008. On the fundamental theorems of general equilibrium. Eco-
nomic Theory 35, 233–240.

McKenzie, L., 1954. On equilibrium in Graham’s model of world trade and other competitive
systems. Econometrica 22, 147–161.

Michael, E., 1956. Continuous selections. I. Annals of Mathematics 63, 361–382.
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