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Abstract
We offer a comprehensive empirical study on hidden-city ticketing (HCT), a pricing

phenomenon in the airline industry that occurs when the fare for a nonstop trip from
A to B is more expensive than a connecting trip from A to B and B to C. Exploiting a
unique panel of over 473 thousand fares for flights departing between October 15¢, 2019
and December 315, 2019, we find that HCT depends on route competition (both on
A-B and A-C routes), largely occurs in the last week to departure, is less likely when
airport C is a hub, and primarily occurs on carriers that operate large hub-and-spoke

networks (e.g., American, Delta, and United).
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1 Introduction

Hidden-city ticketing (HCT) is a pricing phenomenon in the airline industry that occurs when
the price for a nonstop trip from A to B is more expensive than the price for a connecting trip
from A to C that connects at B (i.e., the “hidden city”).! When this phenomenon occurs,
passengers traveling from A to B can save money by purchasing the connecting A-B-C trip.
These HCT passengers would take the first flight from A to B, then deliberately forego the
trip’s second flight from B to C.

From a price discrimination perspective, HCT can be viewed as a unique, and perhaps
counterintuitive, case of mixed bundling.? In the typical case, the bundle of products is sold
at a cheaper price than the sum of the prices of the individual components (e.g., a vacation
package that includes flight and hotel). However, in the HCT case, the bundle of products
(i.e., the flights from A to B and B to C) is sold at a cheaper price than one component of
the bundle (i.e., the flight from A to B).

Figure 1 presents an example of HCT on American Airlines. In this example, the A-B
route is a nonstop trip from Chicago O’Hare to Reagan National (DCA) in Washington,
D.C. The A-C route is a connecting trip from Chicago O’Hare (city A) to Boston (city C)
that connects at DCA (i.e., “hidden-city” B). In this instance, the price of the connecting
A-B-C trip ($178) is $209 cheaper than the price of the nonstop A-B trip ($387). Hence,
passengers whose final destination is Washington, D.C. will save money if they purchase the
connecting Chicago to Boston trip and then, after deplaning at DCA, ending their journey
by not boarding the second flight to Boston.

Although passengers can save money by purchasing hidden-city tickets, only one-way
passengers are eligible to take advantage of these opportunities. For instance, failure to show

up for the second flight on the outbound portion of a roundtrip will result in the cancellation

THCT is also referred to as “skiplagging”. For a comprehensive review on different aspects of HCT, see
Meire and Derudder (2022). For some theory behind the cause and impact of HCT, see Wang and Ye (2016)
and Oh and Huh (2022).

2For a review on bundle pricing, see Venkatesh and Mahajan (2009).



Figure 1: Example of Hidden-City ticketing
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of the rest of the roundtrip ticket. In addition, only passengers with carry-on luggage may

engage in HCT because checked luggage will not be transferred to baggage claim at the



connecting city on a hidden-city ticket.

There is another key risk that prospective HCT passengers should be aware of. Specif-
ically, most airlines prohibit HCT in their contract of carriage (e.g., American, Delta, and
United explicitly state that a passenger must complete all segments of a purchased ticket).
As a result, passengers engaging in HCT may suffer retaliatory consequences including re-
ceiving a lifetime ban from the airline or having their frequent flyer membership revoked. In
rare instances, airlines have even sued HCT passengers.?

Even though there are risks associated with HCT, the focus of this article is on the poten-
tial factors (e.g., network, route, and ticket characteristics) that contribute to the existence
of HCT opportunities. One obvious factor is the extensive hub-and-spoke network structure
of the large full-service carriers (e.g., American, Delta, and United). By funneling passengers
through a hub, carriers are able to exploit economies of traffic density, resulting in a lower
cost per passenger (Caves et al., 1984; Brueckner et al., 1992; Brueckner and Spiller, 1994).
However, by controlling a large fraction of flights and gates at their hubs, carriers are also
able to exercise market power and charge a “hub premium” to passengers who originate or
terminate their trips at the hub (Borenstein, 1989; Lederman, 2008; Ciliberto and Williams,
2010; Escobari, 2011; Bilotkach and Pai, 2016). In other words, fares for A-B trips may be
high due to the hub premium while fares for A-B-C trips may be low due to the density
savings that are passed on to passengers who connect or “flow through” the hub.

A second factor that likely contributes to the existence of HCT opportunities is an airline’s
yield management strategy.! For example, airlines employ a variety of mechanisms (e.g.,
advance-purchase requirements and other ticket restrictions such as Saturday night stay,
minimum stay, and non-refundability) to segment passengers with different price elasticities

of demand.? All else equal, HCT opportunities will likely arise if passengers on the A-C route

3For example, Lufthansa sued a passenger in 2019 for missing the last leg of his ticketed journey. See
https://www.cnn.com/travel/article/lufthansa-sues-passenger-scli-intl/index.html.

4For background on airline yield management practices, see Talluri et al. (2004) and Belobaba (2009).

SFor specific examples of price discrimination in the airline industry, see Dana (1998), Stavins (2001),
Bischoff et al. (2011), Puller and Taylor (2012), Aslani et al. (2014), Escobari and Jindapon (2014), Wang



are more price-elastic (i.e., have a higher price elasticity of demand) than passengers on the
A-B route.

In the sections that follow, we examine how various route and ticket characteristics af-
fect the prevalence of HCT opportunities. Related to the first factor mentioned above, we
hypothesize that the level of competition within an airline’s hub-and-spoke network is a key
driver of HCT. In particular, the level of competition on A-B and A-C routes should have
countervailing effects on the frequency of HCT opportunities. Since HCT occurs when the
nonstop A-B fare is more expensive than the connecting A-C fare (i.e., Fareag > Fareac),
additional competition on A-C routes should decrease Fareac, increasing the likelihood that
Fareag > Fareac holds. In contrast, additional competition on A-B routes should decrease
Fareag, decreasing the likelihood that Fareag > Fareac holds.

In addition to competition, we hypothesize that advance-purchase requirements are an-
other key driver of HCT. Assuming that passengers who purchase tickets closer to departure
are more price-inelastic and have higher search costs than passengers who book further in
advance, then HCT opportunities are expected to be more frequent closer to departure. In
other words, passengers who purchase tickets further in advance are more likely to seek out
HCT opportunities given their low search costs and high price elasticity. In contrast, passen-
gers who purchase tickets closer to departure are less likely to seek out these opportunities
given their high search costs and low price elasticity. Armed with this knowledge of the
customer base, airlines may respond by ensuring that HCT opportunities are scarce during
the early booking period.

Although HCT opportunities may be common in hub-and-spoke networks,® the lack of
sufficient data has likely been the reason why we are aware of only two prior empirical studies

conducted on this topic (Liu, 2020; Sun et al., 2022).” Sun et al. (2022) use aggregated data

and Ye (2016), Escobari et al. (2019), and Luttmann (2019b), among others.

SFor example, a study conducted by Hopper in 2015 found that HCT opportuni-
ties exist in 26% of U.S. domestic routes. See https://media.hopper.com/research/
hidden-city-ticket-opportunities-common-think.

"The Airline Origin and Destination Survey (DB1B) released by the United States Department of Trans-



at the annual level to identify airports that are more prone to HCT. The authors find that
intercontinental routes involving large hubs (especially those in the Middle East and China)
are major sources of HCT. Liu (2020) is the closest study to ours in terms of data structure
since she examines HCT in the United States (U.S.) using fares collected two months prior to
departure. She finds that HCT only occurs on airlines that employ hub-and-spoke networks.
However, contrary to our sample, she considers a single departure date with corresponding
fares collected only sixty days prior to departure. We take a step forward by examining the
dynamics of HCT during the booking period which was not possible with the data used in
Liu (2020) or Sun et al. (2022). Compared to Sun et al. (2022), our study also offers a more
refined analysis at the day-flight level rather than the year-airport level.

To examine when and why HCT opportunities occur, we rely on a unique panel of over
473 thousand published fares collected over a five-month period from a major online travel
agency. Flights in our sample depart between October 15¢, 2019 and December 315, 2019 and
encompass many of the most densely traveled routes across the continental United States.
Notably, because we track the price of both nonstop (A-B trips) and connecting trips (A-B-C
trips) in the sixty-day period before departure, we are able to examine how advance-purchase
requirements affect HC'T opportunities.

We have four primary findings. First, the level of competition on both A-B and A-C routes
are key determinants of HCT. Consistent with expectations, we find that an additional carrier
providing nonstop service on the A-C route increases the likelihood of HCT by 1.8%-4.7%
while an additional nonstop carrier on the A-B route decreases the likelihood of HCT by
2.2%-3.8%.8

portation has been used in several previous empirical studies of the airline industry (e.g., see Brueckner et al.
(1992), Gerardi and Shapiro (2009), Brueckner et al. (2013), or Dai et al. (2014), among others). However,
the DB1B currently does not include information on the specific flight(s) purchased or the exact purchase and
departure dates (only the quarter of travel is reported). As a result, the DB1B cannot be used to examine
how factors such as advance-purchase requirements affect the frequency of HCT opportunities.

8 As we mentioned earlier, HCT occurs when the nonstop A-B fare is more expensive than the connecting
A-C fare (i.e., Fareap > Faresc). Therefore, additional competition on A-C routes should decrease Fareac,
increasing the likelihood that Fareap > Fareac holds. In contrast, additional competition on A-B routes
should decrease Fareap, decreasing the likelihood that Fareap > Fareac holds.



Second, we find that advance-purchase requirements are another key determinant of HCT.
In particular, HC'T opportunities are more frequent in the last week before departure because
nonstop A-B fares increase at a higher rate than connecting A-C fares during this period.
As we previously discussed, one possible explanation for this result is related to passenger
heterogeneity during the booking period. Because most passengers purchasing tickets a few
days before departure are price-inelastic customers with high search costs, airlines may be
less concerned about passengers seeking out HCT opportunities during this period.

Third, we find that the major full-service carriers (i.e., American, Delta, and United) are
responsible for majority of HCT, while HCT opportunities are relatively rare on low-cost
carriers (e.g., Frontier, JetBlue, Spirit, and Sun Country). As alluded to earlier, the hub-
and-spoke network structure provides passengers with more opportunities to exploit HCT. In
contrast, the business models of low-cost carriers typically do not involve funneling passengers
through large connecting hubs.

Fourth, we find that HCT opportunities are 4.8%-8.3% less likely when airport C is a
hub. This finding is sensible considering that airlines are able to charge a premium for trips
that originate or terminate at one of their hubs. As a result, A-C fares will be high when
airport C is a hub, decreasing the likelihood that Fareag > Faresc holds.

Although the focus of this article is on the airline industry, we believe our results are ap-
plicable to other transport modes that operate using hub-and-spoke networks. For example,
Eurolines, Eurostar, and FlixBus all operate hub-and-spoke networks. These companies also
offer discounted fares to early purchasers. Hence, HCT opportunities may also exist in the
long-distance bus and passenger rail markets.

The rest of this article is structured as follows. Section 2 describes the data sources used
in the analysis. Section 3 presents a descriptive analysis of HCT. Section 4 conducts the

econometric investigation of HCT. Finally, Section 5 provides concluding remarks.



2 Data

The data we use are obtained from several sources. However, the data underlying our main
empirical results are obtained from two sources: fare and itinerary information from a major
online travel agency (OTA) and supplementary airline data from the U.S. Department of
Transportation (DOT). Section 2.1 describes our primary source of fare and itinerary data,
Section 2.2 the data sources used to construct instrumental variables, and Section 2.3 the
source of our transacted fare data. Finally, Appendix Table Al provides summary statistics

and a brief description of the variables included in our empirical analysis.

2.1 Fare and Itinerary Data

Our primary source of fare and itinerary data information comes from a major OTA.Y From
the OTA, one-way economy-class fare quotes for both nonstop and connecting trips were
obtained for flights departing between October 1%, 2019 and December 315, 2019.1° Our
data encompasses over 100 of the most densely traveled routes in the continental U.S.*! For
each route, the lowest observed economy-class fare for each of the next sixty travel days were
collected. This data collection procedure allows us to track the evolution of economy fares for
an individual flight (or pair of flights for connecting trips) over the sixty-day period before

departure.!?

9Major OTAs include Expedia, Google Flights, Kayak, and Priceline. Several previous studies have
relied on data from a major OTA. Among others, see Bergantino and Capozza (2015), Bilotkach et al.
(2015), Escobari (2012), Gaggero and Piga (2010), Gaggero and Piga (2011), Koenigsberg et al. (2008), and
Luttmann (2019a).

ORoundtrips are not included because only one-way passengers can take advantage of HCT opportunities.
Because our analysis sample ends on December 315¢, 2019, the COVID-19 pandemic does not impact our
results. In the U.S., COVID-19 was declared a national emergency on March 13, 2020. Moreover, California
became the first state to issue a statewide stay-at-home order on March 19", 2020.

1Tn lieu of collecting published fares for all possible routes in the U.S. market, we relied on the DOT’s
Airline Origin and Destination Survey from the third and fourth quarters of 2018 to identify the major airport-
pairs within the continental U.S. ranked by total passenger traffic. A market in our analysis is defined as a
directional pair of origin and destination airports. Therefore, Los Angeles (LAX)-New York City (JFK) and
JFK-LAX are treated as separate markets.

12Roughly 60% of passengers purchase tickets in the sixty-day period before departure. For example, see
Table 4 in Aryal et al. (2023) or Figure 1 in Williams (2022).



Figure 2: Hidden-City routes (i.e., A-B routes) in our analysis sample
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To determine if HCT occurs within an airline-route combination on a given day, we
matched the fare for each of our one-stop connecting trips (A-B-C trips) with the corre-
sponding nonstop fare (A-B trips) for the first segment of the connecting trip. Our resulting
dataset contains 473,642 fare observations. The airlines included in our sample include four
full-service carriers (Alaska, American, Delta, and United) and four low-cost carriers (Fron-
tier, JetBlue, Spirit, and Sun Country).”® The total number of A-B routes in our sample is
101. Figure 2 presents a visual representation of the these routes (see Table 2 in Section 3

for the complete list).

13 Although fare quotes for Southwest Airlines are not available from any of the major OTAs, the presence
of Southwest is accounted for in our empirical analysis when we construct any variable controlling for the

number of carriers serving a given route.



2.2 Instrumental Variables

In general, measures of market concentration such as the number of competitors or the
Herfindahl-Hirschman Index are endogenous in analyses of airline pricing. For instance,
markets with high fares may be attractive for new entrants. At the same time, these markets
may be unattractive if high fares are a direct result of entry barriers such as limited slot
or gate access at the endpoint airports. Accordingly, the potential simultaneity bias that
results from an airline’s decision to enter or exit a given route may bias coefficient estimates
in regressions of airline pricing. To correct for this potential endogeneity, we employ an
instrumental variables strategy (see Section 4 for specific details).

To construct our instruments, we rely on data from the U.S. DOT and the U.S. Census
Bureau. From the U.S. DOT’s T-100 Domestic Segment database, we retrieved the total
number of nonstop passengers on each route and month between October 2018 and Decem-
ber 2018. From the U.S. Census Bureau, we obtained yearly population measures at the

metropolitan statistical area for each endpoint airport in our analysis sample.
2.3 Transacted Fare Data

There exists substantial uncertainty regarding whether passengers actually exploit HCT in
the U.S. domestic market. To demonstrate that a subset of passengers are likely engaging in
HCT, we rely on transacted fare data from the U.S. DOT’s Airline Origin and Destination
Survey (DB1B). These data are released quarterly and represent a 10% random sample of
tickets purchased for domestic air travel. To capture the same time period as our published

fare data, we rely on DB1B data from the fourth quarter of 2019.

3 Descriptive Analysis

As discussed in Section 2.1, we are able to identify if a HCT opportunity occurs on a given
day by matching an airline’s connecting A-B-C fare with the airline’s nonstop fare for the

first segment of the connecting trip (A-B segment). HCT occurs if the fare for the connecting

10



A-B-C trip is cheaper than the nonstop fare for the A-B trip on the same airline.

Table 1 displays the probability of observing HCT across the four full-service and four
low-cost carriers in our sample. Across all carriers, HCT occurs 13.8% of the time (21.7%
on full-service carriers and 3.1% on low-cost carriers). This finding is consistent with a U.S.
Government Accountability Office report from 2001. Analyzing fare data for six major U.S.
airlines across 2,302 markets, GAO (2001) found that HCT opportunities occur approxi-
mately 17% of the time.

In Table 1, the three largest full-service carriers (American Airlines, Delta, and United)
are responsible for the majority of HCT, as they jointly account for almost 91% of the
instances of HCT observed in our sample.

Notably, we find that HCT rarely occurs on Frontier or JetBlue and almost never occurs
on Sun Country (a small low-cost carrier). Nevertheless, these findings are expected. HCT
opportunities are more likely to occur on carriers that operate large hub-and-spoke networks
(e.g., American, Delta, and United) while they are less likely to occur on carriers that operate
point-to-point networks (e.g., Frontier, JetBlue, Spirit, and Sun Country).

Table 1: Probability of HCT by airline

Airline Type of airline HCT Total observations
Alaska Full-service 1.9% 27,776
American Airlines Full-service 20.9% 115,030
Delta Full-service 27.5% 46,577
United Full-service 26.1% 82,948
Frontier Low-cost 0.8% 21,321
JetBlue Low-cost 2.6% 17,343
Spirit Low-cost 3.5% 160,000
Sun Country Low-cost 0.1% 2,647
Overall Full-service 21.7% 272,331
Overall Low-cost 3.1% 201,311
Overall All carriers 13.8% 473,642

To illustrate how the probability of observing HCT evolves in the sixty-day period before
departure, Figure 3 displays the probability of observing HCT (denoted by a gray bar) and,

when HCT occurs, the average difference between the nonstop A-B fare and the connect-

11



ing A-B-C fare (denoted by the connected solid blue line). The number above each gray
bar indicates the probability of observing HCT while the number below the solid blue line
indicates the average fare difference. For example, the gray bar at 60 days to departure in
the top panel of Figure 3 indicates that the probability of HCT occurring 60 days before
departure is 11.4% and the solid blue line indicates that the average fare difference is $26.
Similarly, the gray bar at 29 days to departure in the bottom panel of Figure 3 indicates
that the probability of HCT occurring 29 days before departure is 10% and the solid blue
line indicates that the average fare difference is $26.

As depicted in the top panel of Figure 3, the probability of observing HCT is relatively
unchanged during the early booking period, ranging from 9.5% to 11.7%. The likelihood of
observing HCT remains relatively stable until two weeks before departure, when the prob-
ability of observing HCT begins to increase monotonically from 10.4% fourteen days before
departure to 37.8% one day before departure.

Similarly, the average fare difference between the nonstop A-B fare and the connecting
A-B-C fare, which is computed only under HCT and depicted by the connected solid blue line
in the figure, is generally constant in the early part of the booking period, hovering around
$24 until three weeks to departure. Then, the average fare difference increases to about
$40 between two and three weeks to departure, and continues to increase until reaching a
maximum of $134 three days before departure.

To provide a comprehensive summary of the hidden-city routes in our sample, Table 2
reports each A-B route (first column) with the probability of observing HCT on the route
(second column). The last column of the table, displays the final destination(s) of the A-B-C
tickets sorted in descending order by the percentage of HCT observed for each destination
C on the given A-B route. For example, EWR-MIA, the last entry in the first panel of
Table 2, may be the first leg of a connecting trip to Los Angeles (LAX), Orlando (MCO), or
Chicago (ORD). Considering all fare observations from Newark (EWR) to one of these three

destinations with a connection in Miami (MIA), the probability of observing HCT on EWR-

12
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MIA is 13%. However, if we only consider MCO (i.e., we only select the trips from EWR
to MCO with connection in MIA), the probability of observing HCT is 50%. In particular,
no instances of HC'T are observed for connecting trips from EWR via MIA to the other two
destinations of LAX and ORD.

The most common hidden-city route in our sample is Chicago O’Hare to Reagan National
in Washington, D.C. (ORD-DCA). HCT occurs 87% of the time on ORD-DCA, and within
this route, Boston is the most likely final destination on a hidden-city ticket. However, this

finding is not entirely surprising considering that DCA is a hub for American Airlines.

14



a1

Table 2: A-B routes and probability of HCT

A-B routes HCT Final destinations C, sorted by percentage instances of HCT within each final destination in parentheses
ATL-BOS 0% LAS(0%), LAX(0%), LGA(0%)

ATL-FLL 1% MCO(5%), BOS(1%), LGA(0%), LAS(0%), LAX(0%)

ATL-LAS 5% FLL(100%), LAX(4%)

ATL-LAX  36% LAS(36%)

ATL-LGA  60% BOS(60%)

ATL-MCO  25% FLL(55%), BOS(3%), LGA(1%), LAS(0%), LAX(0%)

BOS-ATL 22% DCA(56%), ORD(50%), FLL(36%), RSW(26%), MCO(25%), MIA(21%), SFO(3%), LAX(2%)
BOS-DCA  15% ORD(47%), MCO(22%), MIA(16%), RSW(5%), ATL(5%), SFO(3%), FLL(2%), LAX(0%)
BOS-FLL 9% ORD(39%), ATL(11%), MCO(7%), SFO(3%), DCA(0%), LAX(0%)

BOS-LAX  21% SFO(21%)

BOS-MCO  19% ORD(48%), FLL(20%), ATL(1%), DCA(0%), LAX(0%)

BOS-MIA 15% ATL(50%), MCO(11%), LAX(0%), SFO(0%)

BOS-ORD 2% RSW(6%), FLL(5%), ATL(3%), MIA(2%), SFO(2%), LAX(1%), MCO(0%)

BOS-RSW 0% ORD(0%)

BOS-SFO 41% LAX(41%)

BWI-FLL 7% MCO(7%), LAS(6%)

BWI-LAS 0% FLL(0%)

BWI-MCO 1% FLL(1%), LAS(0%)

DEN-LAS 2% PHX(14%), LAX(2%), MCO(0%)

DEN-LAX  55% PHX(67%), LAS(54%)

DEN-MCO 0% LAS(0%)

DEN-PHX  38% LAS(47%), LAX(26%)

DFW-LAS 9% LAX(10%), ORD(6%), MCO(3%)

DFW-LAX 12% ORD(89%), LAS(12%), MCO(0%)

DFW-MCO 38% ORD(69%), LAS(0%), LGA(0%)

DFW-ORD 22% LGA(32%), MCO(1%), LAS(0%), LAX(0%)

DTW-FLL 7% MCO(7%), LAS(0%)

DTW-LAS  11% FLL(12%), MCO(0%)

DTW-MCO 1% FLL(1%), LAS(0%)

EWR-FLL 8% LAX(13%), IAH(9%), MCO(7%), ORD(3%), SFO(1%)

EWR-IAH  12% RSW(81%), SFO(44%), LAX(10%), MCO(7%), ORD(2%), FLL(0%), MIA(0%), PBI(0%)
EWR-LAX 6% SFO(6%)

EWR-MCO 6% ORD(18%), FLL(5%), IAH(2%), LAX(0%), SFO(0%)

EWR-MIA  13% MCO(50%), LAX(0%), ORD(0%)

Continuing
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EWR-ORD 28% FLL(85%), IAH(55%), RSW(52%), PBI(44%), MCO(38%), MIA(34%), SFO(12%), LAX(8%)

EWR-RSW 20% ORD(20%)

EWR-SFO  15% LAX(15%)

TAH-LAS 0% EWR(0%)

JFK-FLL 0% MCO(0%), LAS(0%), LAX(0%), SFO(0%)

JFK-LAS 13% LAX(13%), SFO(8%)

JFK-LAX 21% SFO(21%), LAS(21%)

JFK-MCO 1% LAX(1%), FLL(1%)

JFK-MIA 16% MCO(16%), SFO(0%)

JFK-SFO 14% LAX(34%), LAS(10%)

LAX-ATL  36% DFW(100%), LAS(100%), BOS(82%), MCO(62%), EWR(60%), ORD(40%), JAX(29%), JFK(0%)

LAX-BOS  13% JFK(40%), EWR(1%), JAX(0%), ATL(0%), MCO(0%), ORD(0%)

LAX-DEN 12% DFW(45%), SFO(39%), BOS(22%), ATL(14%), EWR(14%), MCO(11%), JAX(3%), ORD(2%), SEA(1%), LAS(0%), OAK(0%)
LAX-DFW 11% ORD(39%), BOS(21%), ATL(17%), MCO(16%), EWR/(8%), JFK(8%), JAX(7%), DEN(0%), OAK(0%), SEA(0%)
LAX-EWR  48% ATL(91%), MCO(81%), BOS(49%), JAX(8%)

LAX-JFK 13% MCO(68%), BOS(62%), ATL(37%), JAX(2%)

LAX-LAS 1% DFW(3%), OAK(2%), ORD(1%), DEN(1%), JAX(0%), SEA(0%), EWR(0%), ATL(0%), BOS(0%), JFK(0%), MCO(0%), SFO(0%)
LAX-MCO 13% JFK(29%), ATL(13%), EWR(2%), BOS(0%), DEN(0%), JAX(0%)

LAX-OAK 0% LAS(0%), ORD(0%)

LAX-ORD 26% LAS(100%), DEN(67%), BOS(40%), MCO(32%), ATL(30%), EWR(13%), JAX(5%), JFK(3%), DEFW(2%), OAK(0%), SEA(0%)
LAX-SEA 4% ATL(83%), ORD(39%), DEN(38%), MCO(35%), BOS(4%), OAK(0%), DFW(0%), EWR(0%), JFK(0%)

LAX-SFO 3% LAS(48%), DFW(33%), BOS(1%), ATL(1%), MCO(1%), SEA(1%), EWR(0%), DEN(0%), JAX(0%), JFK(0%), ORD(0%)
LGA-ATL  24% MIA(27%), MCO(9%), FLL(9%), ORD(0%)

LGA-FLL 29% ORD(48%), ATL(32%), MCO(22%)

LGA-MCO 4% ORD(28%), FLL(2%), ATL(2%), MIA(0%)

LGA-MIA  22% ATL(44%), MCO(19%), ORD(0%)

LGA-ORD 16% FLL(40%), MCO(26%), MIA(16%), ATL(4%)

MSP-LAS 0% PHX(0%), MCO(0%)

MSP-MCO  17% LAS(17%)

MSP-PHX 6% LAS(6%)

OAK-LAS 1% LAX(2%), SAN(1%), BUR(0%)

OAK-LAX 1% LAS(1%), SAN(0%)

ORD-BOS 0% LGA(3%), FLL(0%), DCA(0%), DEN(0%), DFW(0%), LAS(0%), LAX(0%), MCO(0%), MIA(0%), SFO(0%)

ORD-DCA  87% BOS(100%), LGA(87%), MCO(84%), MIA(80%), SFO(67%), FLL(60%)

ORD-DEN 5% PHX(18%), LAX(16%), LGA(3%), LAS(3%), DCA(1%), SFO(1%), DFW (1%), MIA(0%), FLL(0%), MCO(0%)
ORD-DFW  34% SFO(69%), MIA(60%), LAX(46%), MCO(42%), DEN(42%), LAS(36%), FLL(31%), BOS(15%), PHX(12%), LGA(0%)
ORD-FLL 5% BOS(11%), MCO(6%), LGA(6%), DEN(6%), DCA(0%), DEW(0%), LAS(0%), LAX(0%), PHX(0%)

ORD-LAS  16% LAX(20%), DFW(6%), DEN(5%), FLL(5%), MCO(0%), PHX(0%), SFO(0%)

ORD-LAX  14% PHX(15%), SFO(14%), LAS(13%), DFW(0%)
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L1

ORD-LGA 31% BOS(71%), DFW(46%), MCO(36%), DCA(30%), MIA(27%), FLL(16%), DEN(0%)
ORD-MCO 18% MIA(43%), BOS(35%), DEN(9%), DCA(7%), FLL(3%), DFW(1%), LAS(0%), LGA(0%), PHX(0%)
ORD-MIA  14% MCO(28%), DCA(0%), DEN(0%), LAS(0%), PHX(0%), SFO(0%)

ORD-PHX  63% LAX(76%), LAS(54%), SFO(47%), DFW(0%)

ORD-SFO  70% LAS(84%), LAX(42%), PHX(41%), DEN(0%)

PDX-LAS 1% LAX(4%), FLL(0%)

PDX-LAX 3% LAS(12%), FLL(0%)

PHL-FLL  18% MCO(18%)

PHL-MCO 7% FLL(7%), SNA(0%)

SAN-SFO  61% SMF(61%)

SAN-SMF 0% OAK(0%)

SEA-LAS 7% LAX(13%), SAN(1%), SFO(1%), PHX(0%)

SEA-LAX  56% SAN(81%), LAS(65%), PHX(41%), SFO(35%)

SEA-PHX  36% SFO(43%), SAN(43%), LAX(19%), LAS(14%)

SEA-SAN 0% SFO(0%)

SEA-SFO  37% SAN(38%), LAS(38%), PHX(36%), LAX(36%)

SFO-BOS  19% EWR(22%), JFK(3%), ORD(0%)

SFO-EWR  21% BOS(21%), ORD(0%)

SFO-JFK  26% BOS(26%), ORD(17%)

SFO-LAS 1% SEA(2%), ORD(1%), BDL(0%), BOS(0%), EWR(0%), JFK(0%), LAX(0%)
SFO-LAX 5% LAS(40%), SAN(11%), SEA(4%), BDL(1%), JFK(1%), ORD(0%), BOS(0%), EWR(0%)
SFO-ORD  19% EWR(49%), JFK(47%), BOS(33%), BDL(9%)

SFO-SAN 0% BDL(0%), BOS(0%), EWR(0%), ORD(0%), SEA(0%)

SFO-SEA 1% BOS(2%), ORD(1%), BDL(0%), EWR(0%), JFK(0%)

SJC-SAN 0% SNA(0%)

SMF-SAN 0% BUR(0%), SNA(0%)

SNA-SJIC 0% MCO(0%)




To provide additional context on the routes that are more affected by HCT, Table 3 dis-
plays means and standard deviations for several key route characteristics. These averages are
computed when HCT occurs (column one) and when HCT is absent (column two). Column
three displays the difference in means between columns one and two.

As hypothesized in Section 1, the number of competitors providing nonstop service on
A-B and A-C routes are expected to have differential impacts on the likelihood of HCT.
Specifically, additional competition on A-B routes should decrease Faresg, decreasing the
likelihood that Fareap > Faresyc holds. In contrast, additional competition on A-C routes
should decrease Faresc, increasing the likelihood that Fareag > Faresyc holds. The means
displayed in the first two rows of Table 3 are consistent with these expectations. In our
sample, HCT is more prevalent when there are fewer carriers providing nonstop service on
the A-B route (-0.40 fewer carriers on average) and when there are more carriers providing
nonstop service on the A-C route (0.63 more carriers on average).

Given that American, Delta, and United account for the majority of HCT in our sample
(see Table 1), the number and location of hubs on A-B-C trips are also expected to affect the
prevalence of HCT opportunities. As Table 3 demonstrates, there are an average of 1.66 hubs
involved on an A-B-C trip when HCT occurs compared to 0.97 hubs when HCT is absent.!*
This difference is also maintained when examining whether airports A, B, or C are hubs.
When HCT occurs, airport A is a hub 62.6% of the time (compared to 34.4% when HCT is
absent), airport B a hub 86.9% of the time (compared to 51.3% when HCT is absent), and
airport C a hub 16.2% of the time (compared to 11.8% when HCT is absent). As expected,
the largest mean value across the hub indicators is observed for Hub B, indicating that HCT
opportunities are more likely when airport B (i.e., the hidden-city) is a hub. This finding
is sensible considering that the “hub premium” will tend to increase fares on A-B routes

if airport B is a hub, increasing the likelihood that Fareap > Fareac holds. Applying a

4The hub airports for each airline are: Alaska (ANC, LAX, PDX, SEA, SFO), American (CLT, DCA,
DFW, JFK, LAX, LGA, MIA, ORD, PHL, PHX), Delta (ATL, BOS, DTW, JFK, LAX, LGA, MSP, SEA,
SLC), Frontier (DEN), Sun Country (MSP), and United (EWR, DEN, TAD, TAH, LAX, ORD, SFO).
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similar argument, it is also sensible that the smallest mean value across the hub indicators
is observed for Hub C. If airport C is a hub, the hub premium will tend to increase fares on
A-C routes, decreasing the likelihood that Fareag > Fareac holds.

The last few rows of Table 3 display the average nonstop distance between airports A and
B (Distance A-B) and airports A and C (Distance A-C). In our sample, the average length of
the A-B route is 1,298 miles when HCT occurs compared to 977 miles when HCT is absent.
However, the mean A-C distance is similar with and without HCT, averaging 1,687 miles
under HCT and 1,641 without HCT. Finally, 1(Dist. A-C > Dist. A-B) is a dummy variable
that indicates whether the A-C route is longer than the A-B route. When HCT occurs, the
A-C distance is longer than the A-B distance 84.2% of the time compared to 80.9% of the
time in the absence of HCT.

Table 3: HCT and route characteristics

HCT=1 HCT=0 Difference

in means
(1) (2) (3)

Competition A-B 3.551 3.953 -0.402
(1.020) (1.411)

Competition A-C 2.987 2.355 0.632
(1.523) (1.646)

Number of Hubs 1.656 0.974 0.682
(0.754) (0.942)

Hub A 0.626 0.344 0.282
(0.484) (0.475)

Hub B 0.869 0.513 0.356
(0.338) (0.500)

Hub C 0.162 0.118 0.044
(0.368 (0.322)

Distance A-B, in miles 1,298 977 321
(621) (598)

Distance A-C, in miles 1,687 1,641 46
(701) (808)

1(Dist. A-C > Dist. A-B) 0.842 0.809 0.033
(0.365) (0.393)

Notes: Average values, standard deviation in parentheses. Competition A-B (Competition A-C') refers to
the number of nonstop carriers serving the A-B (A-C) route on the itinerary’s departure date.
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4 FEconometric Analysis

We aim to accomplish two primary objectives with our econometric analysis. Foremost,
we wish to understand the main drivers of HCT (Section 4.2). Second, we would like to
determine the possible savings that a passenger gains from HCT, but also the potential loss
that an airline incurs if a passenger engages in HCT (Section 4.3). Before doing so, we first
show that passengers are likely exploiting HCT opportunities in the U.S. market (Section
4.1).15

4.1 Exploitation of HCT

To determine if a subset of U.S. passengers are likely taking advantage of HCT opportunities
during our sample period, we rely upon transacted fare data provided in the DOT’s DB1B
database. As discussed in Section 2.3, these data are released quarterly and represent a 10%
random sample of all airline tickets purchased for travel in the domestic U.S. market. For the
best correspondence of the DB1B with the time period of our published fare and itinerary
data (October 2019-December 2019), we use DB1B data from the fourth quarter of 2019.°

Although the DB1B does not provide information on the specific date each ticket was
purchased and, more importantly, the actual flight(s) each passenger boarded, it is still
possible to test for potential exploitation of HCT by passengers. Specifically, we assume that
a passenger cannot exploit HCT on a roundtrip ticket, since failure to show up for the second
leg of the outbound portion of the trip typically results in cancellation of the rest of the
roundtrip ticket. Therefore, to exploit HCT, a roundtrip passenger would need to purchase

two separate one-way tickets.

15We are grateful to Jan Brueckner for this insightful suggestion.
16Ty prevent outliers from affecting results, we exclude tickets with prices below the 5" and above the 9
percentiles.

5th
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Based on this idea, we estimate the following regression,

HCT%eq = Po + b1 - AveragePriceDifference, ., + 0o + €rca (1)

where the main independent variable of interest is the average price difference (AveragePriceD-
ifference,c,), computed as the difference between AverageFareap, the average one-way non-
stop fare on airline a and route r (i.e., A-B routes), and AverageFarexc, airline a’s average
one-way connecting fare that uses route r to a given final destination ¢ (i.e., A-B-C routes).!”
The dependent variable (HCT%,.,) is the percentage of tickets on route r, airline a, and final

destination ¢ that were purchased on a one-way basis, so as to exploit HCT. Formally,

One-Way Tickets,q
One-Way Tickets,., + One-Way Tickets,,

HCT Y% = (2)
where One-Way Tickets,, is the number of one-way connecting tickets (i.e., A-B-C tickets)
and One-Way Tickets,, is the number of one-way nonstop tickets (i.e., A-B tickets).

A positive coefficient on /31 in equation (1) would indicate that an increase in the differ-
ence between the average one-way nonstop fare and the average one-way connecting fare is
associated with an increase in the number of tickets purchased on a one-way basis (i.e., an
increase in the number of passengers potentially exploiting HCT). Airline fixed effects (d,)
are included as controls.

Note that f; may suffer from simultaneity bias because changes in the quantity of tickets
sold affects fares, which is a determinant of the AveragePriceDifference% variable. In other
words, HCTY% may also cause the AveragePriceDifference. However, any bias that results

will decrease the magnitude of the AwveragePriceDifference coefficient because the sign of

TFor example, ORD-DCA-BOS and ORD-DCA-MIA trips on American constitute two separate observa-
tions. In this example, ORD-DCA is the “A-B” route (i.e., route 7) and ORD-DCA-BOS and ORD-DCA-MIA
are two separate “A-C” routes that use route r (i.e., rc routes). Because AveragePriceDifference is intended
to measure the savings from HCT, AveragePriceDifference is set to zero in the case of negative values (i.e.,
when HCT does not occur).
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the bias is negative.!® Since we are only interested in documenting the positive correlation
between AveragePriceDifference and HCT% to demonstrate that a subset of passengers may
be engaging in HCT, a biased (; that is estimated to be positive would be, a fortiori, still
positive if the simultaneity bias were corrected.

The results of estimating equation (1) are reported in Table 4. The first column displays
ordinary least squares (OLS) estimates while the second column displays fractional logit
estimates. Because the dependent variable is a percentage that is bounded between zero and
one, our preferred estimates are the fractional logit estimates in column (2).

The positive and statistically significant coefficient on AwveragePriceDifference in both
Table 4 columns indicate that passengers are likely exploiting HCT in the U.S. domestic mar-
ket. Furthermore, consistent with our Table 1 findings, the positive coefficients on American,
Delta, and United indicate that HCT typically arises on full-service carriers that operate large
hub-and-spoke networks (although the coefficient on United is statistically insignificant).!?

Having established that a subset of passengers are likely exploiting HCT opportunities,
we now turn our attention to examining the main drivers of HCT in Section 4.2 and the
potential savings that passengers may obtain from engaging in HCT in Section 4.3.

18Consider a two-equation structural model where the first equation is equation (1) and the second equa-
tion is AweragePriceDifferencercq, = g + a1 HCT%req + 00 + rca- It can be shown (e.g., see chapter 16.2
in Wooldridge, 2008) that Cov(AveragePriceDifferencee) = [a1/(1 — a181)]Var(e). Thus, the bias of the
ordinary least squares (OLS) estimator of (1) has the same sign as «;/(1 — a3 8;1). First, note that oy is
negative. To prove this, start from the definition of HCT% in equation (2), which shows that the HCT%
variable increases if One-Way Tickets,., goes up: if the demand for one-way connecting tickets increases, so
do their prices AverageFaresc, implying that the AveragePriceDifference=AverageFare,p—AverageFareac
decreases. Second, the expectation from equation (1) is that §; is positive because a larger AveragePriceD-
ifference will induce more passengers to exploit HCT opportunities. This implies that (1 — ay /1) is positive
and hence that aq/(1 — «1/51) is negative, meaning that any simultaneity bias that results is negative. In
other words, when we estimate equation (1) with OLS, we are likely underestimating the “true” effect of the

AveragePriceDifference on HCT%.
9The omitted airline fixed effect is Sun Country, a small low-cost carrier.
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Table 4: Test for exploitation of HCT with DB1B data

(1) (2)
Estimator: OLS Fractional Logit
Dependent variable: HCT% HCT%
Average Price Difference 0.0003%** 0.004***
(0.000) (0.000)
Alaska -0.016*** -0.506***
(0.006) (0.172)
American Airlines 0.025%** 0.533***
(0.006) (0.154)
Delta 0.022%** 0.498***
(0.006) (0.150)
Hawaiian -0.015%** -0.533***
(0.006) (0.191)
United 0.004 0.172
(0.006) (0.154)
Frontier -0.019%** -0.705%**
(0.005) (0.155)
JetBlue -0.026*** -1.048%**
(0.006) (0.210)
Spirit -0.022%** -0.855%**
(0.005) (0.153)
Southwest -0.012** -0.348**
(0.005) (0.149)
Allegiant -0.018%** -0.6827%**
(0.005) (0.159)
R? or Pseudo-R? 0.081 0.031
Observations 162,889 162,889

Notes: Data are from the DOT’s DB1B database for the fourth quarter of 2019. Sun Country is the omitted
airline fixed effect. Standard errors are provided in parentheses and clustered at the route A-B level. Constant
is included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, *
Significant at the 10 percent level.
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4.2 Determinants of HCT
4.2.1 Probability of Observing HCT

To determine how various route and ticket characteristics affect the prevalence of HCT oppor-
tunities, we model the probability of observing HCT as a function of route-level competition
(both on A-B and A-C routes), hub airports, route distance, advance-purchase requirements,
ticketing carrier, and other itinerary-specific characteristics such as the month-of-departure,
day-of-the-week-of-departure, and the time-of-day-of-departure.

Specifically, we estimate equation (3) below,
Pr(HCTyequr = 1) = f(CompetitionA-B,.q, Competition A-Cieq, Hubj, (3)

Distance;.., DaysToDeparture;, Airline;q, d;q)

where the subscript ¢ indexes the itinerary, r» the A-B route, ¢ the final destination for
the itinerary that uses route r (i.e., the A-C route), d the departure date, a the airline,
and t the time dimension, measured in the number of days to departure (i.e., how far in
advance the itinerary is booked). Competition on A-B and A-C routes (CompetitionA-B
and CompetitionA-C') are measured by the number of nonstop carriers serving the route on
the itinerary’s departure date. The effect of hub endpoints on HCT is measured using the
Hub A, Hub B, and Hub C indicator variables that were previously defined in Table 3 while
distance is accounted for using the 1(Dist. A-C > Dist. A-B) indicator that was also defined
in Table 3.

To account for nonlinear fare changes that occur during the booking period, we follow
Gaggero and Luttmann (2020, 2022) and split the days to departure variable into five cat-
egories: 1 to 2, 3 to 6, 7 to 13, 14 to 20, and 21 to 60; the indicator for 21 to 60 days to
departure serves as the reference category. The ticketing carrier for each itinerary is repre-
sented by a separate indicator (Airline) with Sun Country serving as the reference category

(Table 1 indicates that HCT opportunities are least prevalent on Sun Country). Finally, o
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is a matrix of fixed effects that control for each itinerary’s month-of-departure, day-of-week-
of-departure, and time-of-departure.

We recognize that there may exist some unobserved factor that is correlated with both the
number of carriers serving A-B and/or A-C routes and the prevalence of HCT opportunities.
To correct for the possible endogeneity of Competition A-B and Competition A-C| we employ
a two-stage least squares (2SLS) approach with six instruments: (i) the number of nonstop
passengers on route A-B during the same month of the previous year, (ii) the number of
nonstop passengers on route A-C during the same month of the previous year, (iii) the natural
logarithm of the arithmetic mean of the metropolitan statistical area (MSA) populations of
the endpoint cities on route A-B, (iv) the natural logarithm of the arithmetic mean of the
MSA populations of the endpoint cities on route A-C, (v) the natural logarithm of the
geometric mean of the MSA populations of the endpoint cities on route A-B, and (vi) the
natural logarithm of the geometric mean of the MSA populations of the endpoint cities on
route A-C. These instruments are similar to those used in Gerardi and Shapiro (2009) and
Dai et al. (2014). The rationale behind these instruments is straightforward. The past-year
number of passengers and the population of the endpoint cities impact the suitability of a
given route to a particular airline’s fleet type and size, which directly affects an airline’s route
entry decision (and thus, the overall level of competition on the route). Furthermore, there
is no reason to believe that city populations or previous passenger traffic levels are direct
determinants of HCT.

In our baseline specification, we estimate equation (3) using 2SLS with standard errors
that are clustered at the A-B route level. However, because our dependent variable is a binary
indicator taking the values of zero or one, we also estimate equation (3) using instrumental
variables (IV) probit.

The regression results are reported in Table 5. To ensure that the linear estimates of
columns (1) and (2) are directly comparable with the output from the probit regressions,

columns (3) and (4) report the marginal effects. The corresponding probit coefficients are
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reported in Appendix Table A2. The last two columns of Table A2 also report the first-stage
estimates for Competition A-B and Competition A-C, respectively.?’ Notably, the statistically
significant Kleibergen-Paap rk Wald F statistic in column (2) of Table 5 indicates that our
instruments are both strong and relevant.?!

As the Table 5 results indicate, competition is one of the primary drivers of HCT, es-
pecially on A-C routes. An additional nonstop carrier serving the A-C route increases the
likelihood of HCT by 3.9%-4.7% under the linear estimates and by 1.8%-3.5% under the
probit estimates. The effect of Competition A-B on HCT is slightly less pronounced, as
the marginal effect is statistically insignificant in column (4). Considering only the statisti-
cally significant estimates, an additional nonstop carrier serving the A-B route decreases the
likelihood of HCT by 2.2%-3.8% in the linear model and by 2.5% in the probit model.

The signs on both competition variables are consistent across all Table 5 specifications
and in line with expectations of a negative effect of Competition A-B and a positive effect
of Competition A-C on the likelihood of observing HCT. For instance, standard economic
theory predicts that additional competition should result in lower market prices. Because
HCT occurs when Fareag > Faresc, additional competition on A-C reduces Fareac, thereby
increasing the likelihood that this inequality holds (expected positive sign on Competition
A-C). In contrast, additional competition on A-B reduces Fareap, decreasing the likelihood

that Fareag > Faresc holds (expected negative sign on Competition A-B).

20The first-stage regressions for the 2SLS and IV probit models are identical (i.e., linear first-stage estimated
by OLS with the same six instruments).

21Since we have more instruments (six) than endogenous variables (two), we are also able to test whether
our overidentifying restrictions are valid using Hansen’s J test. As evidenced by the statistically insignificant
Hansen J statistic in column (2) of Table 5, we fail to reject the null hypothesis that our overidentifying
restrictions are valid (i.e., we have valid instruments).
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Table 5: Probability of observing HCT

M) ) @) @)
Estimator: OLS 2S5LS Probit IV-Probit
Dependent variable: HCT HCT HCT HCT
Estimated Estimated Marginal Marginal
coefficients coefficients effects effects
Competition A-B -0.0227%** -0.038%*** -0.025** -0.003
(0.008) (0.013) (0.010) (0.011)
Competition A-C 0.039*** 0.047%** 0.035%** 0.018%**
(0.006) (0.007) (0.005) (0.006)
Hub A 0.048 0.051 0.032 0.029
(0.050) (0.048) (0.032) (0.031)
Hub B 0.036 0.017 0.017 0.003
(0.039) (0.036) (0.039) (0.036)
Hub C -0.074* -0.083* -0.048* -0.066%**
(0.041) (0.043) (0.025) (0.023)
1(Dist. A-C > Dist. A-B) -0.029 -0.013 -0.035 -0.024
(0.023) (0.025) (0.025) (0.024)
DaysToDeparture 1-2 0.219%** 0.21 7% 0.203%+* 0.206%**
(0.049) (0.049) (0.035) (0.035)
DaysToDeparture 3-6 0.116%*** 0.116%** 0.105%** 0.105%**
(0.044) (0.044) (0.037) (0.036)
DaysToDeparture 7-13 0.017 0.016 0.015 0.014
(0.024) (0.024) (0.021) (0.022)
DaysToDeparture 14-20 -0.017 -0.018 -0.016 -0.015
(0.013) (0.013) (0.012) (0.012)
Alaska 0.056 0.086 0.019** 0.024**
(0.058) (0.063) (0.009) (0.011)
American Airlines 0.249%** 0.271%%* 0.202%** 0.203***
(0.062) (0.065) (0.031) (0.029)
Delta 0.314%%* 0.343%#* 0.288%#* 0.309%*#*
(0.083) (0.091) (0.079) (0.075)
United 0.264*** 0.2817%** 0.209%** 0.236%**
(0.070) (0.069) (0.039) (0.043)
Frontier 0.049 0.081 0.009** 0.008**
(0.066) (0.071) (0.003) (0.003)
JetBlue 0.105* 0.126* 0.030 0.019
(0.061) (0.068) (0.022) (0.014)
Spirit 0.111%* 0.117** 0.045%** 0.038%**
(0.050) (0.053) (0.017) (0.014)
Kleibergen-Paap rk LM stat. 14.198**
Hansen J Statistic 2.885
Kleibergen-Paap rk Wald F stat. 21.862***
R? or Pseudo-R? 0.165 0.161 0.224
Observations 473,642 473,642 473,642 473,642

Notes: All specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the
omitted airline fixed effect. Columns (3) and (4) report the marginal effects for the Probit regressions. Probit coefficient
estimates are reported in Appendix Table A2. The endogenous variables in columns (2) and (4) are Competition A-B and
Competition A-C and the corresponding first-stage regressions are reported in Appendix Table A2. Standard errors are provided
in parentheses and clustered at the route A-B level. Constant is included but not reported. *** Significant at the 1 percent
level, ** Significant at the 5 percent level, * Significant at the 10 percent level.



Using the IV-Probit estimates (our preferred specification), Figure 4 depicts the predicted
probability of HCT as competition increases on A-B routes (left diagram) and A-C routes
(right diagram). The bars stemming from the point estimates represent the 95% confidence
interval. As the figure illustrates, the predicted probability of HCT monotonically increases
as the number of nonstop carriers serving route A-C increases, in line with expectations. In
contrast, as the number nonstop carriers serving the A-B route increases, the overall proba-
bility of HCT decreases. However, the slope of the line connecting the predicted probabilities
is not very steep, pointing towards a relatively lower impact of Competition A-B on HCT,

as already suggested by column (4) of Table 5.

Figure 4: Predicted probability of HCT as competition increases with 95% conf. interval
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The coefficient on the airline fixed effects are consistent with the findings in Table 1, where
HCT opportunities were found to be more prevalent on American, Delta, and United, the
major full-service carriers in the U.S. domestic market. Relative to Sun Country, the omitted

airline fixed effect in the regressions, HCT opportunities are approximately 20% more likely
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on American, 31% more likely on Delta, and 24% more likely on United. A smaller effect is
found for Alaska. However, our sample excludes routes to Alaska (see Figure 2). In addition,
Alaska’s hubs are confined to cities on the west coast instead of being dispersed across the
continental U.S. like the hub networks for American, Delta, and United.??

We believe the dispersed hub-and-spoke network structure of the three major full-service
carriers provides passengers with more opportunities to exploit HCT. In contrast, HCT op-
portunities are less likely on low-cost carriers because their business models do not involve
operating large connecting hubs. Consistent with this story, the coefficients for the low-
cost carriers (Frontier, JetBlue, and Spirit) are substantially lower in magnitude than the
coefficients for American, Delta, and United.

To further decompose the importance of hub-and-spoke networks, the coefficients on Hub
A, Hub B, and Hub C' in Table 5 test whether the specific location of hubs on an A-B-C
itinerary affects the likelihood of HCT. Because carriers are able to charge a “hub premium”
to passengers who originate or terminate their trips at a hub (Borenstein, 1989; Lederman,
2008; Ciliberto and Williams, 2010; Escobari, 2011; Bilotkach and Pai, 2016), hub location
likely affects HCT opportunities. For example, if airport B is a hub, then fare levels on A-B
routes will be high, increasing the likelihood that Fareap > Fareac holds. In contrast, if
airport C is a hub, then fare levels on A-C routes will be high, decreasing the likelihood that
Fareag > Fareac holds. An interesting case occurs when airport A is a hub, since the hub
premium applies to both A-B and A-C routes. In these instances, the hub status of airport
A is not expected to significantly affect the likelihood of HCT.

Consistent with expectations, the coefficient on Hub A is statistically insignificant, the
coefficient on Hub B is positive, and the coefficient on Hub C' is negative in all Table 5
specifications. However, only the coefficient on Hub C' is statistically significant. In our

preferred specification in column (4), the coefficient on Hub C' indicates that HCT is 6.6%

22 Alaska currently has hubs at Anchorage (ANC), Los Angeles (LAX), Portland (PDX), San Francisco
(SFO), and Seattle (SEA).
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less likely when airport C is a hub. Although Hub B has the expected positive sign, we must
mention that the legacy carrier fixed effects are likely absorbing some of the “Hub B effect”
since almost all connecting itineraries on American, Delta, and United connect at one of the
airline’s hubs.

Since longer distances imply higher fares, HCT ticketing is expected to be less likely
when the nonstop distance of the A-C route is greater than the nonstop distance of the A-B
route. Consistent with expectations, the coefficient on 1(Dist. A-C > Dist. A-B) is negative.
However, this coefficient is statistically insignificant in all Table 5 specifications.

Finally, the coefficients on the DaysToDeparture variables indicate that HCT oppor-
tunities are more prevalent in the last week before departure, consistent with the pattern
previously displayed in Figure 3. The coefficients in Table 5 indicate that, relative to trips
booked 21 to 60 days in advance, the likelihood of observing HCT increases by about 11%
between three and six days before departure, and by about 21% in the last two days to de-
parture. This finding may result from different pricing patterns of A-B and A-C fares as the
departure date approaches, with a possible steeper trajectory for A-B fares. We investigate

this presumption further in the next subsection.

4.2.2 Fare Regressions

To test the conjecture that the increased probability of observing HCT closer to the depar-
ture date is due to the steeper increase of nonstop A-B fares relative to connecting A-C fares,
we regress the natural logarithm of fare on the same set of regressors deployed in the HCT
regressions (i.e., we estimate equation (3) with the natural logarithm of fare as the depen-
dent variable). Because the dependent variable is in logs, the estimated coefficients on the
DaysToDeparture dummies represent the percentage change in fare relative to DaysToDe-

parture 21-60, the omitted days to departure category in the regressions.??

23Gince the dependent variable is in logs and the DaysToDeparture variables are indicators, marginal
effects are interpreted as the 100 x (e — 1)% change in fare.
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Due to the potential endogeneity of the competition variables (see Section 2.2), we esti-
mate our fare regressions using 2SLS with the same set of instruments used in equation (3).
Table 6 reports results when the natural logarithm of the A-B fare (column 1) and A-C fare
(column 2) are the dependent variables. Comparing the DaysToDeparture 1-2, DaysToDepar-
ture 3-6 and DaysToDeparture 7-13 coefficients across columns, both coefficients are larger
in magnitude when log(Fareap) is the dependent variable. This finding implies that A-B
fares increase at a higher rate than A-C fares, supporting the presumption that the increased
likelihood of observing HCT in the last two weeks before departure is driven by a steeper
growth rate of the nonstop A-B fare relative to the connecting A-C fare.

Another key finding emerges from Table 6. In addition to the expected result that addi-
tional competition on route A-B (A-C) decreases A-B (A-C) fares, we observe that Compe-
tition A-B is statistically insignificant in the log(Faresc) regression, while Competition A-C
is negative and marginally significant in the log(Faresp) regression. We believe that A-C
fares are less directly related to the extent of competition on A-B routes than the A-B fare
is to competition on A-C routes. The rationale is that the effect of A-B competition on the
A-C fare should be minimal, because the relevant competition measure for A-C routes is
broader, not only involving route A-B, but all other routes that start in A, terminate at C,

and connect at airports other than B.
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Table 6: Fare regressions

(1) (2)
Estimator: 2SLS 2SLS
Dependent variable: log(Fareap) log(Fareac)
Competition A-B -0.077HF* 0.018
(0.023) (0.020)
Competition A-C -0.034* -0.124%**
(0.019) (0.018)
Hub A 0.195%+* 0.098
(0.071) (0.064)
Hub B 0.296*** 0.163*
(0.092) (0.091)
Hub C -0.047 0.087
(0.053) (0.070)
1(Dist. A-C > Dist. A-B) 0.048 0.125%%%
(0.062) (0.036)
DaysToDeparture 1-2 0.868%*** 0.684***
(0.053) (0.040)
DaysToDeparture 3-6 0.5247#4* 0.430%**
(0.058) (0.031)
DaysToDeparture 7-13 0.201%** 0.193***
(0.045) (0.025)
DaysToDeparture 14-20 0.035%* 0.058***
(0.018) (0.016)
Alaska 0.123 0.511%**
(0.117) (0.141)
American Airlines 0.325%** 0.150
(0.103) (0.147)
Delta 0.506*** 0.199
(0.184) (0.155)
United 0.334%4* 0.169
(0.110) (0.155)
Frontier 0.023 0.124
(0.112) (0.141)
JetBlue 0.747%*% 0.528%***
(0.138) (0.142)
Spirit 0.182%* 0.160
(0.094) (0.128)
Kleibergen-Paap rk LM stat. 14.198** 14.198**
Hansen J Statistic 7.394 6.168
Kleibergen-Paap rk Wald F stat. 21.862%+* 21.862%**
R? 0.494 0.435
Observations 473,642 473,642

Notes: All specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun
Country is the omitted airline fixed effect. The endogenous variables in columns (1) and (2) are Competition
A-B and Competition A-C. The corresponding first-stage regressions are reported in columns (3) and (4)
of Appendix Table A2. Standard errors are provided in parentheses and clustered at the route A-B level.
Constant is included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent
level, * Significant at the 10 percent level.



4.3 Savings from HCT

The analysis thus far has shown when and why HCT is more likely to occur. Our next step
is to examine the price differential due to HCT, which represents the possible savings that a
passenger may accrue from engaging in HCT, or, alternatively, the airline’s potential revenue
loss from a HCT passenger. To do so, we construct a new variable, PriceDifference, which is
set equal to the difference between Fareap and Faresc. If this difference is negative (i.e., HCT
does not occur), PriceDifference is set equal to zero. Because PriceDifference is nonnegative
and censored at zero, we estimate a Tobit model. We use the same set of regressors described
in equation (3), as well as the same set of instruments to correct for the potential endogeneity
of the competition variables. In other words, we estimate equation (3) using a Tobit model
with PriceDifference as the dependent variable.

The Tobit results are presented in Table 7. The signs on the competition variables are
consistent with expectations. In the same manner that additional competition on A-B routes
decreases the likelihood of HCT, additional competition on A-B routes also decreases the
price difference due to HCT. Furthermore, consistent with how additional competition on
A-C routes increases the likelihood of HCT, additional A-C competition also increases the
HCT price difference.

Considering the estimates from our preferred specification in column (2) of Table 7, an
additional nonstop carrier on route A-C increases the average price difference by almost
$26, while an additional nonstop carrier on route A-B decreases the average price difference
by almost $28. In addition, the price difference due to HCT is higher on the major full-
service carriers: Delta has the largest average price difference, followed by United, and then
American.

The magnitude on the DaysToDeparture indicators are also plausible because the HCT
price difference increases as the departure date approaches. Consistent with Figure 3, the

peak of the price difference occurs in the last two days to departure. Relative to trips booked
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Table 7: Determinants of PriceDifference

(1)

(2)

Estimator: Tobit IV-Tobit
Dependent variable: PriceDifference PriceDifference
Competition A-B -13.700%* -27.515%**
(7.742) (8.651)
Competition A-C 19.645%F* 25.623***
(2.802) (4.089)
Hub A 21.201 23.660
(23.800) (23.073)
Hub B 13.031 -4.586
(27.379) (23.954)
Hub C -32.692* -37.313*
(18.572) (19.883)
1(Dist. A-C > Dist. A-B) ~13.081 0.838
(15.010) (15.764)
DaysToDeparture 1-2 125.694%** 125.838%**
(33.058) (33.101)
DaysToDeparture 3-6 97.980%** 99.624***
(30.985) (31.197)
DaysToDeparture 7-13 29.191* 30.579*
(17.373) (18.064)
DaysToDeparture 14-20 -3.686 -3.861
(9.441) (9.528)
Alaska 153.073%*** 168.966***
(37.328) (39.693)
American Airlines 300.399%*** 306.814***
(47.174) (48.241)
Delta 357.117%** 372.394%**
(81.300) (91.130)
United 304.195%%* 310.789%**
(46.033) (48.038)
Frontier 106.456*** 125.557#%*
(38.831) (38.236)
JetBlue 183.3577#%* 185.427#%*
(51.700) (51.536)
Spirit 9201.235%++ 196.405%**
(45.680) (44.563)
Pseudo-R? 0.087
Observations 473,642 473,642

Notes: The dependent variable (PriceDifference) is equal to max(0, Fareag—Fareac). All specifications include month-of-year,
day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the omitted airline fixed effect. The endogenous variables
in column (2) are Competition A-B and Competition A-C. The corresponding first-stage regressions are reported in columns (3)
and (4) of Appendix Table A2. Standard errors are provided in parentheses and clustered at the route A-B level. Constant is
included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10
percent level.
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21 to 60 days in advance, the HCT price difference increases by almost $126 in the last two
days to departure.

Finally, a robustness check based on a different dependent variable (the percentage price
difference) and model (fractional logit) yields similar qualitative results to Table 7. These

results are not reported here, but are available in Appendix Table A3.

5 Conclusion

This article has offered a comprehensive empirical analysis of hidden-city ticketing (HCT),
which, to the best of our knowledge has never been conducted before. HCT is a pricing
phenomenon that occurs when the fare for a nonstop trip from A to B (i.e., A-B routes) is
more expensive than a connecting trip from A to C that connects at B (i.e., the “hidden
city”). Exploiting a unique panel of over 473 thousand fares collected over a five-month
period (flights in our sample depart between October 1%, 2019 and December 315, 2019), we
find that HCT opportunities arise approximately 14% of the time. In particular, the major
U.S. carriers that operate large hub-and-spoke networks (i.e., American, Delta, and United)
account for the majority of HCT.

Analyzing the determinants of HCT, we find that competition is one of the primary
drivers, especially on A-C routes. An additional nonstop carrier on route A-C increases the
likelihood of HCT by 1.8%-4.7% while an additional nonstop carrier on route A-B decreases
the likelihood of HCT by 2.2%-3.8%. These findings are consistent with standard economic
theory that predicts that additional competition results in lower market prices. Because HCT
occurs when Fareyg > Fareac, additional competition on A-C should reduce Farec, thereby
increasing the likelihood that Fareag > Fareac holds. Conversely, additional competition on
A-B reduces Farepp, decreasing the likelihood that Fareag > Fareac holds.

We also find that hub endpoints are another key determinant of HCT, with the likelihood

of HCT decreasing by 4.8%-8.3% when airport C is a hub. This finding is sensible considering
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that carriers are able to charge a premium for trips that originate or terminate at their hubs
(i.e., the “hub premium”). As a result, fares on A-C routes will tend to be high if airport C
is a hub, decreasing the likelihood that Farexg > Faresc holds.

We also find that advance-purchase requirements are another key driver of HCT, with
HCT opportunities more likely closer to the date of departure. In particular, HCT is more
prevalent in the last week to departure because nonstop A-B fares increase at a higher rate
than connecting A-C fares during this period. One possible interpretation of this finding is re-
lated to the heterogeneity of passengers during the booking period. Because early purchasers
are typically price-sensitive passengers with low search costs, they are more likely to seek out
HCT opportunities. Accordingly, airlines may respond by ensuring that HCT opportunities
are rare during the early booking period. In contrast, most passengers purchasing tickets
a few days before departure are price-insensitive customers with high search costs (i.e., late
purchasers who are less likely to seek out HCT opportunities). For this reason, airlines may
decide to extract additional surplus by raising nonstop A-B fares at a higher rate than con-
necting A-C fares in the final week because they are less concerned about passengers taking
advantage of HCT opportunities during this period.

In addition to examining the determinants of HCT, we also quantify the savings that a
passenger receives from engaging in HCT. We find that an additional nonstop carrier serving
the A-B (A-C) route leads to a $28 reduction ($26 increase) in average savings. Moreover,
average savings from HCT increase by $100 and $126 for trips purchased three to six and
one to two days before departure, respectively.

As internet search engines become more sophisticated, they are increasingly helping con-
sumers quickly identify HCT opportunities. However, HCT is clearly detrimental to airline
operations and profits. In addition to the revenue loss that results from lower fares paid by
HCT passengers, HCT may also delay the departure of the B-C flight if the airline waits in
vain for HCT passengers (Skorupski and Wierzbiniska, 2015). There is also an opportunity

cost associated with reserving a seat on the B-C flight for a HCT passenger when that seat
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could instead be sold to another customer.

It is also worth mentioning that if all connecting A-C passengers were HCT passengers
at connecting city B, the B-C flight would fly empty. This is obviously an extreme and
unlikely outcome, but it clearly demonstrates that HCT could have important environmental
consequences that should be considered by regulators (Kang et al., 2022). In other words,
HCT passengers are unnecessary polluters that should not only be discouraged by airlines,
but also discouraged by regulatory authorities.

Given that HCT decreases profits, our findings should be of interest to airline yield
managers. For example, yield managers may be able to improve their pricing strategy by
using our results to identify when yield management algorithms should be altered to prevent
HCT. In this way, our findings on advance-purchase requirements, competition, and hub
endpoints can help yield managers identify specific routes and booking horizons where the
risk of losses from HCT passengers are high (e.g., competitive A-B routes within one week
of departure). When potential losses are high (i.e., above some specified threshold), a new
pricing rule could be implemented that alters fares to either (i) remove HCT opportunities
or (ii) reduce the severity of the potential revenue loss. Nevertheless, imposing a restriction
that removes all HC'T opportunities from the output of yield management algorithms is not
likely to be optimal. For instance, ruling out HCT opportunities by decreasing nonstop A-B
fares and /or increasing connecting A-C fares will often result in decreased revenues from A-B
passengers who are charged lower fares, and decreased revenues from A-C passengers who
decide not to purchase at the higher price.

An interesting extension to the analysis presented in this article would be to examine
whether airlines attempt to circumvent HCT by applying differential pricing for one-ways
and roundtrips that connect through attractive intermediate cities. To circumvent HCT, it is
expected that the usual one-way premium would be higher for trips connecting at attractive
destinations (e.g., Los Angeles, New York, Miami) than for trips connecting at relatively

unattractive destinations (e.g., Atlanta, Houston, or Phoenix). In other words, airlines may
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raise one-way fares that connect in attractive cities, so that the gain from exploiting HCT
on these routes is diminished.

More generally, future research could extend the present analysis to other countries or
continents. The U.S. domestic market is quite consolidated, but elsewhere it is not. For
example, the airline industry is at an earlier stage of consolidation in Europe, with almost
every European country having its own flag carrier and few steps taken towards consolida-
tion (e.g., the Air France/KLM merger in 2004 and the British Airways/Iberia merger in
2011). The European market is characterized by differences in airline network structures,
with full-service carriers spatially operating around a small number of central hubs and
low-cost carriers evenly spreading flights across their networks (Bubalo and Gaggero, 2021).
Given these differences, it would be interesting to test whether the results we find on route
competition also extend to the European airline market.

Furthermore, the present analysis could be extended to other modes of transport that,
like airlines, operate using hub-and-spoke networks. Examples include passenger rail and
long-distance bus, to see if these transport modes, which started applying rudimentary yield
management techniques by offering discounted fares to early purchasers, have HCT oppor-

tunities.
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A Appendix

A.1 Summary statistics

Table A1: Summary statistics and a brief description of the variables included in the analysis

‘Description ‘ Mean Std. Dev. Min  Max

DEPENDENT VARIABLES

HCTY%! oy Tidts s Gy Trcketors) 0.055 0.094 0.000 0.907

HCT Dummy=1 in case of Hidden-City Ticketing 0.138  0.345 0.000 1.000

log(Fareap) Fare A-B, nonstop flight, in logs 4.697  0.628  2.708 7.955

log(Fareac) Fare A-C with layover in B, in logs 5149 0.535  3.555 7.901

PriceDifference max(0, Fareap— Fareac) 8.418 38.212 0.000 2,277

PriceDifference% max (0> FareAﬁga;eAF;reAc) 0.029  0.098 0.000 0.880

REGRESSORS

AveragePriceDifferenceT max(0, AverageFareap— AverageFareac) 30.905 60.011 0.000 600.0

Competition A-B Number of nonstop carriers serving route A-B| 3.898  1.370  1.000 8.000
on the flight’s day of departure

Competition A-C Number of nonstop carriers serving route A-C| 2.442  1.644  0.000 8.000
on the flight’s day of departure

Hub A Dummy=1 if airport A is a hub 0.383  0.48  0.000 1.000

Hub B Dummy=1 if airport B is a hub 0.562  0.496  0.000 1.000

Hub C Dummy=1 if airport C is a hub 0.124  0.329  0.000 1.000

1(Dist. A-C > Dist. A-B)  |Dummy=1 if Distance A-C > Distance A-B 0.813  0.390  0.000 1.000

DaysToDeparture 1-2 Dummy=1 if DaysToDeparture € [1, 2] 0.043  0.204  0.000 1.000

DaysToDeparture 3-6 Dummy=1 if DaysToDeparture € |3, 6] 0.094 0.292  0.000 1.000

DaysToDeparture 7-13 Dummy=1 if DaysToDeparture € |7, 13] 0.141  0.348  0.000 1.000

DaysToDeparture 14-20 Dummy=1 if DaysToDeparture € [14, 20] 0.118  0.323  0.000 1.000

DaysToDeparture 21-60 Dummy=1 if DaysToDeparture € [21, 60], omit-| 0.604  0.489  0.000 1.000
ted category in the regressions

Alaska Dummy=1 for Alaska 0.059 0.235 0.000 1.000

American Airlines Dummy=1 for American Airlines 0.243  0.429  0.000 1.000

Delta Dummy=1 for Delta 0.098  0.298  0.000 1.000

United Dummy=1 for United 0.175  0.380  0.000 1.000

Frontier Dummy=1 for Frontier 0.045  0.207  0.000 1.000

JetBlue Dummy=1 for JetBlue 0.037  0.188  0.000 1.000

Spirit Dummy=1 for Spirit 0.338  0.473  0.000 1.000

Sun Country Dummy=1 for Sun Country, omitted category| 0.006 ~ 0.075  0.000 1.000
in the regressions

INSTRUMENTS

Passengers A-B Monthly number of nonstop passengers on route|88.194 32.035 19.194 168.542
A-B, in thousands

Passengers A-C Monthly number of nonstop passengers on route|51.834 35.120  0.000 168.542
A-C, in thousands

log(\/PopA * PopB) Geometric mean of population of A and B, in|15.690 0.443 14.480 16.588
logs

log(v/PopAx PopC) Geometric mean of population of A and C, in|15.613 0.471 14.480 16.588
logs

log(P(’pA;P"pB) Arithmetic mean of population of A and B, in|15.798 0.450 14.687 16.606
logs

log (PopAtLorC) Arithmetic mean of population of A and C, in|15.777  0.452  14.687 16.606
logs

Notes: Number of observations is 473,642, except 162,889 for the variables marked with  (DB1B data).
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A.2 Estimated probit coefficients and first-stage regressions

The estimated probit coefficients corresponding to the last two columns of Table 5 are pro-
vided in columns (1) and (2) of Table A2 while the first-stage estimates for Table 5, Table
6, and Table 7 are reported in columns (3) and (4).

In the first-stage regressions, the days to departure indicators are generally statistically
insignificant, indicating that the number of competitors on both A-B and A-C routes is
unaffected by how far in advance airfare is purchased. Moreover, relative to Sun Country (a
small low-cost carrier), the presence of other carriers reduces the total number of competitors
operating on a given route.

With respect to our instruments, the number of passengers has the expected positive
sign, indicating that denser routes are able to sustain more competitors. This passenger-
traffic effect is also only observed for the route that the variable directly corresponds to.
For example, Passengers A-B is only positive and statistically significant in column (3)
when the dependent variable is Competition A-B. Similarly, Passengers A-C'is only positive
and statistically significant in column (4) when the dependent variable is Competition A-C.
Finally, the effect of endpoint city populations is less clear. However, the arithmetic mean
has the expected positive sign and is statistically significant in column (3) when Competition
A-B is the dependent variable.

44



Table A2: First-stage regressions and estimated probit coefficients for Table 5

@) ) ©) )
Estimator: Probit IV-Probit OLS OLS
Dependent variable: HCT HCT Comp. A-B Comp. A-C
Competition A-B -0.146** -0.242%**
(0.059) (0.061)
Competition A-C 0.207*** 0.270%**
(0.025) (0.039)
Hub A 0.182 0.216 0.042 -0.221
(0.180) (0.176) (0.217) (0.175)
Hub B 0.103 -0.017 0.001 0.206
(0.231) (0.210) (0.272) (0.198)
Hub C -0.305* -0.355%* 0.264 -0.091
(0.177) (0.194) (0.191) (0.260)
1(Dist. A-C > Dist. A-B) -0.193 -0.082 0.287* 0.071
(0.135) (0.142) (0.171) (0.119)
DaysToDeparture 1-2 0.906*** 0.884*** -0.013 0.133**
(0.127) (0.123) (0.039) (0.060)
DaysToDeparture 3-6 0.530*** 0.526*** -0.020 -0.049
(0.159) (0.156) (0.038) (0.049)
DaysToDeparture 7-13 0.090 0.092 0.028 -0.020
(0.125) (0.127) (0.029) (0.035)
DaysToDeparture 14-20 -0.103 -0.105 0.002 0.044**
(0.078) (0.077) (0.019) (0.021)
Alaska 1.452%%* 1.504*** -1.100%** -1.527%**
(0.306) (0.297) (0.419) (0.488)
American Airlines 2.836*** 2.793%H* -1.009** -1.675%**
(0.273) (0.253) (0.417) (0.498)
Delta 3.143%** 3.168%** -0.815 -1.476%**
(0.332) (0.350) (0.512) (0.508)
United 2.866*** 2.809%** -0.959** -0.959*
(0.281) (0.251) (0.450) (0.523)
Frontier 1.119%** 1.168%** -0.396 -1.437%*
(0.324) (0.274) (0.506) (0.594)
JetBlue 1.679*** 1.646*** -0.169 -1.796%**
(0.351) (0.339) (0.537) (0.517)
Spirit 1.875%%* 1.772%%* -0.649 -1.280%**
(0.212) (0.185) (0.416) (0.529)
Passengers A-B 0.026*** 0.000
(0.004) (0.002)
Passengers A-C 0.003 0.040%***
(0.002) (0.002)
log(v/PopA x PopB) -5.TTIHRHH 0.543
(1.307) (0.431)
log(y/PopA x PopC) -1.154%** -0.261
(0.472) (0.482)
e ) 4,798 -0.134
(1.289) (0.390)
1og(POPA+POPC) 1.246%% -0.187
(0.464) (0.456)
Wald x? test 24.519%%*
R? or Pseudo-R? 0.224 0.667 0.666
Observations 473,642 473,642 473,642 473,642

Notes: Columns (1) and (2) report the estimated probit coefficients. Columns (3) and (4) report the first-stage regressions. All
specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the omitted airline
fixed effect. Standard errors are provided in parentheses and clustered at the route A-B level. Constant is included but not
reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.



A.3 Robustness: percentage price difference

As a robustness check, we replicate the analysis reported in Table 7 using, in place of PriceD-
ifference, the price difference in percentage, i.e., PriceDifference%= max (0, W)
We then estimate a fractional logit model (see Table A3).

The potential endogeneity of the competition variables is accounted for using a control
function approach described in Wooldridge (2001), where each endogenous variable (i.e.,
Competition A-B and Competition A-C) is first regressed on the instruments and the exoge-
nous variables to obtain the residuals, ¥45 and U4c, which are then included as additional

regressors in fractional logit model to produce unbiased estimates.?*

24Because the residuals are used as regressors in the second-stage, standard errors are bootstrapped.
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Table A3: Determinants of PriceDifference%
(1) (2)

Estimator Fractional logit Fractional logit
Dependent variable PriceDifference% PriceDifference%
Estimated Marginal Estimated Marginal
coefficients effects coefficients effects
Competition A-B -0.220 -0.006 -0.431%%* -0.0117%%*
(0.168) (0.005) (0.005) (0.000)
Competition A-C 0.306%** 0.008%** 0.413%%* 0.0117%**
(0.075) (0.002) (0.004) (0.000)
Hub A 0.131 0.003 0.194%** 0.005%**
(0.371) (0.010) (0.012) (0.000)
Hub B 0.204 0.005 -0.016 -0.000
(0.477) (0.013) (0.032) (0.001)
Hub C -0.500* -0.013* -0.564*** -0.015%%*
(0.302) (0.008) (0.014) (0.000)
1(Dist. A-C > Dist. A-B) 0.028 0.001 0.219%** 0.006***
(0.291) (0.008) (0.014) (0.000)
DaysToDeparture 1-2 1.546%** 0.057*** 1.551%%* 0.057***
(0.258) (0.017) (0.015) (0.001)
DaysToDeparture 3-6 1.397%** 0.048%*** 1.405%%* 0.048***
(0.250) (0.014) (0.015) (0.001)
DaysToDeparture 7-13 0.693*** 0.017** 0.708%*** 0.017***
(0.220) (0.007) (0.014) (0.000)
DaysToDeparture 14-20 -0.038 -0.001 -0.050%** -0.001***
(0.235) (0.004) (0.017) (0.000)
Alaska 4.176%** 0.003** 4.478 0.004***
(0.838) (0.002) (3.036) (0.000)
American Airlines 6.674%F* 0.039%*** 6.863** 0.039%***
(0.732) (0.009) (3.045) (0.001)
Delta 7.388%** 0.074** 7.755%* 0.087***
(0.798) (0.032) (3.044) (0.001)
United 6.787*** 0.043*** 6.961** 0.043%*#*
(0.790) (0.013) (3.046) (0.001)
Frontier 2.708%** 0.0017%** 3.100 0.001%**
(0.791) (0.000) (3.022) (0.000)
JetBlue 4.3971%** 0.004 4.593 0.004%**
(0.814) (0.003) (3.061) (0.000)
Spirit 4.766%** 0.006** 4.845 0.006%**
(0.656) (0.003) (3.045) (0.000)
VaAB 0.459%***
(0.008)
Vac -0.236%**
(0.006)
Pseudo-R? 0.176 0.185
Observations 473,642 473,642

Farepap — Farepc

Notes: The dependent variable (PriceDifference%) is equal to max (0, Faronn

). All specifications include month-of-

year, day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the omitted airline fixed effect. Model (1) originates
from a standard fractional logit regression. Model (2) originates from a fractional logit regression with a control function
approach, where each endogenous variable (Competition A-B and Competition A-C') is first regressed on the instruments and
the exogenous variables to obtain the residuals, 45 and U4¢, which are then included as additional controls in the fractional
logit model to produce unbiased estimates (Wooldridge, 2001). Standard errors are provided in parentheses and clustered at the
route A-B level in Model (1) and bootstrapped in Model (2). Constant is included but not reported. *** Significant at the 1
percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.



