
Munich Personal RePEc Archive

Logistic Regression Collaborating with

AI Beam Search

Tom, Daniel

25 December 2021

Online at https://mpra.ub.uni-muenchen.de/116592/

MPRA Paper No. 116592, posted 06 Mar 2023 07:12 UTC

Logistic Regression Collaborating with AI Beam Search
Rivals Neural Network and Gradient Boosted Machine

Daniel Tom, Ph.D.
https://orcid.org/0000-0003-4853-2498

DTom Computing
https://www.linkedin.com/in/DanielTom

December 25, 2021†

March 4, 2023 (rev.) 

Abstract

We systematically explore the universe of all models using AI search methods.
We automate much of the data preparation and testing of each model built
along the way. The result is a method and system that generate superior
production ready logistic regression models, beating an industry standard
consumer credit risk score, GBM and NN ML models. We also incorporate into
our system a method to eliminate disparate impact used by the FRB and the
FTC.

Keywords: Modeling, Regression, Logistic, AIC, IRLS, AI, ML, NN, GBM, KS, IV,
GC, Wald, X2, PSI, VIF, correlation coefficient, condition index, proportion-of-
variation, reject inference, FRB, FTC, CRA, disparate impact, BISG, SBC, ARM,
Intel, GPU, GPGPU, BLAS, LAPACK, transformation, normalization

Introduction

Logistic regression has been around for over half a century. It has found use
in a wide array of binary classification tasks in medical fields, social sciences,
and risk management in banking and financial services. Many risk models
have been built with logistic regression using modeling practices that are
passed down. Being log-linear, a logistic model is easy to explain, and this
satisfies regulatory requirements in consumer banking credit decisions.

Machine learning (ML) models are relatively newcomers. While ML models
often appear to have an edge in performance, some don’t perform well in
validation, especially with novel data samples, leading to stability and
generalization concerns. Another shortcoming holding back acceptance is
that ML models are rather nontransparent with their structure and/or
complexity, therefore not lending themselves to explanation.

In this article, we review, redefine, and refine modeling processes and
methods to generate superior logistic models rivaling ML models. We
automate much of these processes in software in our research and
development system. We could describe this system following its processing

† engrxiv.org/vz496

Dr. D.Tom 1 ©2023

steps from beginning to end, but that would be rather dry. Rather we
describe the construction of our research system, beginning with the core
implementation of the iterative reweighted least squares (IRLS) algorithm,
and explain the motivations behind adding another step, or another
component, or enhancing and revamping conventional processes. We take a
page out of the playbook of successful consumer products (e.g., the Apple
iPhone) with successive refinements in each release. The reader may find
this easier to digest than a full-blown system requirements specification.

Iterative Reweighted Least Squares

IRLS is the algorithm that produces a maximum likelihood optimization of a
set of binary logistic regression model coefficients. This is our starting place
as the algorithm is well-defined and has many implementations. We want to
make sure our IRLS implementation is done right and bulletproof, so with
every chance we cross-check our model with a leading enterprise statistical
and data management software. Our tests begin with very small binary
classification data sets and, when matching, progress to more and more
observations and larger and larger set of predictor variables.

We envision very early on that our system should handle weighted data
samples, not only frequencies, but also fractional weights. This turns out to
be crucial in handing Bayesian inferred demographic data for mitigating
disparate impact. Another use is reject inference (RI), where a RI model may
infer a rejected credit application (hence no performance on the books) to
have simultaneously good outcome with a probability, and bad outcome with
the complementary probability. Our enterprise statistical software could
handle frequencies in whole numbers, but when it does, most output
statistics are still based on the observations (i.e., unweighted) while the
estimated coefficients do reflect the frequencies in each observation. The
only other option is to use the events/trials specification to pick up fractional
weights in real-valued data fields, and so that is what we use to cross-check
our IRLS implementation.

Using the logistic function (a.k.a. sigmoid),

S (⋅)=
exp (⋅)

exp (⋅)+1
=

1

1+exp (−⋅)
(1)

we can express in matrix form IRLS for weighted data as:

β t+1=β t+[xT (W⊙D) x]
−1

x
T
W (y−S (x β t)) (2)

Dr. D.Tom 2 ©2023

where β contains the logistic regression coefficients, x and y are independent
(predictor) and dependent (target) variables, respectively, W and D are

diagonal matrices representing the weights and S (x β t)(1−S (x β t)), respectively,

and ⊙ represents element-wise multiplication. Rather than online (i.e., per
observation) update, we update the coefficients after each epoch (iteration)
through the data set. Therefore x and y are respectively matrix and vector.

Everywhere we need to be quite conscious of the computing requirements.
Typically, IRLS converges within 6 iterations. While this is much faster than
training some ML models, e.g., neural networks (NN), this is only estimating
one of the many models within a huge universe (explained below). In some
situations we managed to reduce the number of iterations to as few as three.

To generate statistics we compute them along the way with each pass
through the data. Other than the IRLS convergence criterion, first and
foremost we want to know the performance of the logistic model separating
the binary targets. We also need to check the signs of all the regression
coefficients, as well as the Wald statistics to ensure all coefficients are
significant. Our modelers have long complained that in some open source
modeling software assessing a model’s performance is a function call
separate from fitting a model, thus requiring another pass through the data
which may be time-consuming with large data sets. We should note that in a
computer, central processing unit (CPU) arithmetic computation is orders of
magnitude (easily 1000x) faster than data storage access. Therefore,
generating model performance statistics should not be much overhead when
data is already loaded. This is one of many examples (more below) of design
optimizations we engineer into our system.

Also worthy of note is that many linear regression related statistics can be
computed with only one pass through the data. In particular, we need the
variance inflation factor (VIF), condition index, correlation among predictor
variables, etc. With one pass through the data we compute x

T
W x for all

predictor variables. Before estimating any logistic model we first compute
these statistics using a submatrix of x

T
W x by selecting relevant rows and

columns that contain the model’s predictors. We check the statistics, and if
any VIF, condition index, or correlation coefficient is beyond acceptable
limits, we don’t even spend computing time running IRLS as the logistic
regression model will not be a viable candidate.

If the data contain multiple vintages, it would be beneficial to compute the
population shift/stability index (PSI) for each predictor variable. PSI could be
computed in advance and may be used to whittle down the predictors to a
subset of stable predictors for logistic regression. Else we would need to
check the PSI of every predictor selected, and the logistic model would not
be viable if any variable is unstable.

Dr. D.Tom 3 ©2023

AI Search in the Universe of Models

With a set of p predictors in x, there are 2
p possible logistic models in our

search space, where each model selects a distinct subset of predictors. Via

combinatorics there are C k
p different models with k predictors each.

Summing C k
p for k from 0 to p would give a total of 2

p. We liken this to

genetics, where each predictor is a characteristic or trait that is dominant
when selected in the model, or recessive when not. For example,
considering p=4 personality traits alone, there are 2

4 =16 unique Myers-
Briggs personality types. With thousands of genes and traits in a person,
there is amazing diversity in humanity. The larger the set of predictors, the
larger is the universe of models.

In banking and financial services data sets we encounter a lot of predictors.
These could be a combination of on-us (in-house/account) data as well as off-
us data typically obtained from consumer credit reporting agencies (CRA). In
this context and according to some regulatory guidance documents raw data
are customer characteristics, while aggregated or derived data would be
called attributes. Here we refer to characteristics, attributes, predictors, and
independent variables interchangeably. The number of attributes we deal
with has climbed from 300 or so years ago to over 1000 these days. If there
are 10 attributes we could search through all 2

10 =1024 models. If there are
20 attributes, then universe has well over a million possible models. If there
are 30 attributes, then over a billion, etc., etc. With 1000+ attributes, the
search space is enormous. Therefore, we need a smart way to navigate
efficiently through the universe of models to find the best one. This is where
we employ classic artificial intelligence (AI) search techniques.

Beam search is an AI technique that helps manage the process of searching
through a vast space of possibilities. The general idea is that like a beam of
light, we focus on the possibilities illuminated by the search beam as our
next target(s). This technique has many variants. A pencil or laser beam
search may refer to picking the best one as the next target. A searchlight
beam search may refer to exploring the best N (constant) targets. A
flashlight beam search may refer to exploring a progressively larger set of
best targets.

Flashlight beam search is the one we engineer into our system. The base of
exploration into the universe of all models is the null model. The null model
has only an intercept but no predictors. The null model intercept should
equal the log odds (logarithm of the odds of an event vs. non-event) of the
samples in the data set. This would be a good test for any implementation of
IRLS. As a boundary condition the null model is a perfect starting point as
we keep building the model by adding predictors.

Dr. D.Tom 4 ©2023

The first step is to explore the immediate vicinity of the base. Starting from
the null model, we reach into the space of models with 1 predictor (there are
p of them). The second step is to pick the 2 best performing viable models
from these p+1 (null model included), and add another predictor to each. We
should note that the null model is unlikely to be among the top 2,
nevertheless it needs to be on reserve. Say the 2 best viable models at this
point are single predictor models. Each would have p−1 possibilities of
adding another predictor. However, there is overlap, as each may add the
predictor in the other model. We could go ahead and estimate these
models, even though they are identical. But if we could save some
computation time, we would rather skip the duplicate work.

A database containing already built models comes in handy here. In the N-th
step of the flashlight beam search we pick the top N viable models from the
database, and add another predictor to each provided the expanded model
is not already built. We would query the database whether the expanded
model is already there. If not, we estimate the model, and insert it into the
database.

For simplicity, we rig our database of models out of the computer’s file
system instead of using proper database software. We note that a file
system is a type of database in its own right, providing the two database
operations we need – query and insert. Representing a model as a path/file,
we can query its existence in the file system before attempting to build the
model, or insert it into file system after one is built.

We could go on adding predictors until all possible models are built (if
predictors are few), but we need a criterion to terminate searching the vast
space of models when the prospects are bleak. We set up the search
termination condition as follows: We compare the top N+1 viable models in
the N+1st step to the top N+1 viable models in the previous (i.e., N-th) step.
If there is no difference, i.e., adding another predictor makes no further
improvement, we terminate the search. The best performing viable
candidate becomes our final model.

Comparing with Traditional Modeling Practice

The experienced modeler may know that stepwise logistic regression
procedure has been around. So how is this IRLS logistic regression + AI
search different? Say we put the data into a stepwise logistic regression
procedure, and we put the same data into IRLS+AI. The stepwise logistic
regression procedure builds and selects a final model based on the Akaike
Information Criterion (AIC). Rarely, if at all, does AIC stepwise logistic
produce a viable model for us. First, the sign of a coefficient may not be
right. It must align to our understanding so the modeler can explain the

Dr. D.Tom 5 ©2023

model. Second, a coefficient may not be significant by the Wald test, i.e.,
having a non-negligible likelihood that the coefficient is zero. The Wald
statistic may be displayed with the stepwise logistic regression procedure,
but it is not a built-in check for model viability at any step. Needless to say,
the modeler needs to run separately linear regression as well as correlation
procedures just to obtain VIF, condition indices, correlation among variables,
etc. to check for viability. IRLS+AI has engineered into the system model
viability checks all along the way as it builds up the model.

So the AIC stepwise logistic regression procedure gives us an unviable
model, what is a model to do? Many a modeler would start dropping one by
one those offending variables that make the model unviable, e.g., a
coefficient that is insignificant, or having the wrong sign, or large PSI, VIF,
condition index, or correlation coefficient. However, dropping variables could
have the unintended consequence of decreasing the model’s separation
performance. In the limiting case if the modeler ends up dropping all
predictors, then the result is the null model which has no separation
whatsoever. How about adding predictors to AIC stepwise logistic
regression’s model? We have not met a modeler who makes this attempt.
Having an unviable model to begin with, adding predictors would be
perpetuating with another unviable model, so this effort is futile. This is the
reason we scrap traditional modeling practice, instead, add predictors only to
viable models and checking for model viability along the way when building
our IRLS logistic regression model with AI search.

Systems Implementation

We engineer our IRLS+AI search modeling system to implement on widely
available computing hardware and operating systems. We make design
considerations and choices based on computing technology at present. This
could change in the future with rapid advancement in computing.

The reference implementation is a server/background/batch processing
software running in a 64-bit linux operating system (OS) on an Intel CPU.
Our implementation can be ported to run on some other ubiquitous PC
operating system, ARM CPUs, server, or commodity hardware like
laptop/notebook or SBC (single-board computer). Output stream and files
provide a monitoring mechanism into background batch processes. Most
output files can be opened in a generic text editor or a spreadsheet
application.

The key processing is one step (the N+1st) in the IRLS+AI search from a
base model. The boundary condition being N=1 which is the null model.
The base model for this N+1st step is one of the top N performing viable
models in the previous (the N-th) step. We build the next set of models

Dr. D.Tom 6 ©2023

simultaneously (via POSIX threads or pthreads) by adding one predictor not
already in the base model. We record/de-duplicate this set of models in our
database of already built models. Additional scripts implement the flashlight
beam search, and filters thoroughly check for model viability.

Multithreading allows IRLS threads to read modeling data in shared memory
without needing separate loads. As mentioned storage access is rather slow,
so eliminating unnecessary data loads speeds up the overall process
significantly. We do not load the entire data set into memory, rather we use
a fixed size buffer so our system can run as well on lowly computing
platforms with limited memory. We may need to cycle through the data per
epoch, but we still manage to build thousands upon thousands of models
with multithreading. We should note that there may be more threads than
the actual number of CPUs or hyperthreads in hardware, but that can be
handled by a 64-bit linux OS. In contrast, a 32-bit OS can only handle a
smaller number of threads and is therefore limited to much fewer predictors.
A 32-bit OS is not recommended; it is on the way out anyway.

We considered using graphical processing units (GPUs) and processor
intrinsic vector computing. After all this author created a neural network
(NN) backpropagation learning shared library over a third of a century ago
with inner loop vectorized FORTRAN driving a graphics computer of that era,
wrapped it around with a research grade batch NN trainer, and shared it with
fellow NN researchers. Incidentally the NN backpropagation training
procedure can be compactly expressed in matrix language.

General purpose GPUs (GPGPUs) are amenable to vector and matrix
computing. Nevertheless, these are specialty components akin to
coprocessors of yesteryear. Even if vector and matrix operations take next
to zero time, considerable cycles are taken to copy or move data off-chip to
the GPU and bring the results back to the CPU. Communications off-chip on
system bus or network is always slower.

Processor intrinsic vector operations need no off-chip data transfer.
However, intrinsic vector operations only run in a specific instruction
architecture. Intel AVX intrinsics are not supported in ARM CPUs. Vice versa,
ARM NEON intrinsics are not supported in Intel silicon. Moreover, newer
intrinsic operations support wider and wider vectors with newer CPU
releases, which may not be backward compatible.

We estimate there may only be a few percent speed up using processor
intrinsic or GPGPU outside of BLAS (basic linear algebra subroutines) and
LAPACK (linear algebra package) which handle the IRLS vector/matrix
operations. There are plenty of testing and branching (if-then-else code) that
would break parallel processing. At a high level, building a set of models
concurrently is better served by multithreaded processing. The actual
hardware threading capability is transparent to POSIX thread enabled

Dr. D.Tom 7 ©2023

software, which runs on multithreaded CPUs as well as single threaded CPUs
without modification. We are not ruling out processor intrinsics or GPGPU.
As computing technology makes advances, e.g., when GPGPU becomes
ubiquitous or integrated into the CPU die, we would definitely reevaluate the
possibilities.

We have also experimented with multinode distributed or cluster computing.
Recall at the N+1st step we have the top N performing viable models as
bases of exploration. Each exploration (a key processing step described
above) is handled by our multithreaded software. With multiple nodes in a
cluster, each node can host a base and launch its exploration simultaneously
with other nodes. We have completed runs of our system in distributed
mode, launching concurrent jobs via a load sharing facility into a cluster of
disparate nodes having Intel CPUs of various ages, rarely with a GPU, and all
connected to a centralized file server. Theoretically we should get an N-fold
speed up, but that is just our hope. Synchronization, connectivity, and data
transfer bottlenecks all play a role in the timing. This is consistent with our
prior experience on a pachyderm themed cluster which is touted to sort
enormous text files, but that says nothing about technical computing. There
are other clusters proven for scientific/technical computing. If we get our
hands on a supercomputing cluster, we would surely try out the message
passing interface (MPI).

Now that we have described the core IRLS+AI search, let us move on to
other associated processing in our system which contribute to increase in
performance, give us a unique understanding of the logistic model, and help
gain acceptance in the model validation and approval work stream.

Variable Reduction

Given a large number of attributes, putting all of them through any
regression would take much computing time. When asked how can we
reduce the number of predictors passed into stepwise logistic regression, a
senior modeler told us to run a stepwise logistic regression and see what it
gives you. Needless to say we got the runaround with this chicken and egg
conundrum. If this ever works, it would buck the tradition. Before we
describe our own variable reduction methods below, we first review
preexisting practices.

A popular variable reduction method involves selecting only predictors with
high information value (IV). Jeffreys divergence, a symmetrized version of
the information theoretic Kullback-Leibler divergence, is a distance measure
between two analytic (idealized) probability distribution functions.

Dr. D.Tom 8 ©2023

∫
−∞

∞

(p (x)−q (x)) ln(p (x)
q (x))dx (3)

As our data come in samples, the integral in Jeffreys divergence is replaced
by a discrete summation to calculate the IV.

∑
k

(pk−qk) ln (pkqk) (4)

Here pk and qk are probability densities of the two target classes, but
frequently either could be zero, making the quotient of the term and
therefore IV undefined. One remedy creates contiguous bins out of the
range, and making them fewer and wider until both the numerator and the
denominator are non-zero. It may work with the development data, but this
remedy could break again with validation samples. Another dubious practice
zeros out the term so it would not ruin the whole summation. Zeroing out
the term means we ignore the bin, even when witnessing an extinction. If
extinction is not surprising (surprise is information) then what is? Neither
approach is satisfactory. We know the number of bins affect the IV quantity
– collapsing to one single bin would make IV exactly zero. We also learned
that other metrics, e.g., Hosmer and Lemeshow (HL) statistic, are also
impacted by binning. Recent software that allows changing the historical 10
bins show highly varying HL statistics as a result.

We seek alternatives to computing IV as binning hundreds of predictors is a
burdensome chore. Often our enterprise statistical software’s decile
procedures fails to produce ten bins as many attributes are highly skewed.
Fundamentally binning is a noise generating irreversible quantization. We
need a metric that requires no binning. Our breakthrough comes when we
encounter a risk score among the predictors. So do we compute the IV for
this score? Or do we use the KS (Kolmogorov-Smirnov) separation for this
score? Well, an attribute or a score is just a number. If we can compute IV,
we can compute KS. While we are at it, why don’t we also throw in GC (Gini
coefficient, same as Somers’ D) and compute all three of them at the same
time? KS and GC need no binning.

It will become obvious why we end up choosing GC and not IV or even KS.
Examples below illustrate the similarities and differences among them. Our
first example shown in Exhibit A looks like a fairly good attribute with
IV=0.860, KS=0.399, and GC=0.495:

Dr. D.Tom 9 ©2023

Exhibit A

Attribute % Class 0 % Class 1

0 9.8% 38.7%

1 9.8% 18.8%

2 10.1% 12.1%

3 10.0% 8.0%

4 10.1% 5.4%

5 9.9% 4.2%

6 10.0% 3.3%

7 9.9% 3.3%

8 10.1% 3.3%

9 10.3% 2.9%

All 100.0% 100.0%

In the next example below the attribute does not have as fat a separation in
the ROC chart. GC shows decrease, yet IV and KS remain the same. The
second example in Exhibit B has IV=0.860, KS=0.399, and GC=0.306.

Exhibit B

Attribute % Class 0 % Class 1

A 10.1% 12.1%

B 9.8% 18.8%

C 9.8% 38.7%

D 10.1% 3.3%

E 9.9% 3.3%

F 10.3% 2.9%

G 10.0% 3.3%

H 9.9% 4.2%

I 10.1% 5.4%

J 10.0% 8.0%

All 100.0% 100.0%

Dr. D.Tom 10 ©2023

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

ROC Chart

Class 1

Class 0

Separat ion

A B C D E F G H I J

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Population Density

% Class 0

% Class 1

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

ROC Chart

Class 1

Class 0

Separat ion

0 1 2 3 4 5 6 7 8 9

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Population Density

% Class 0

% Class 1

The third example in Exhibit C has IV=0.860, KS=0.236, and GC=0.053.

Exhibit C

Attribute % Class 0 % Class 1

I 10.1% 3.3%

II 10.3% 2.9%

III 9.8% 18.8%

IV 9.8% 38.7%

V 9.9% 3.3%

VI 10.0% 3.3%

VII 9.9% 4.2%

VIII 10.1% 5.4%

IX 10.0% 8.0%

X 10.1% 12.1%

All 100.0% 100.0%

The attribute in the third example looks even worse in the ROC chart.
However, IV remains the same. KS now shows decrease. GC decreases
further.

The astute reader will notice the second and third examples are just row-
permutations of the first. IV staying the same means it is insensitive to rank
ordering anywhere. Between the first and second examples, we see KS is
insensitive to rank ordering on either side of the maximum separation. GC is
the separation measure that is sensitive to rank ordering everywhere. Thus,
for variable reduction, we select attributes with high GC instead of IV.

As with traditional modeling practice, we further reduce the number of
predictors by screening variables for shift/instability with PSI, and for high
correlation to each other. We should note that the computation of PSI uses
the same formula (4) as IV and inherits the same problems. Detecting shifts
and instability is a bit more nuanced, and we should have a replacement for
PSI in an upcoming article.

We remove variables with high correlation to each other by building and
pruning a correlation clustering tree. The Lance and Williams general
algorithm with complete linkage is used for hierarchical clustering of the
independent variables. The clustering algorithm begins with the calculating
the correlation matrix of the independent variables. Then the algorithm

Dr. D.Tom 11 ©2023

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

ROC Chart

Class 1

Class 0

Separat ion

I II III IV V VI VII VIII IX X

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Population Density

% Class 0

% Class 1

iterates by finding the highest correlation in the matrix. The two variables
having this highest correlation become a cluster. The correlation table is
revised to include the remaining variables plus the newly formed cluster
node. The iteration stops when the correlation matrix contains only one
entry, at which point the final clustering tree remains.

Pruning the clustering tree reveals major clusters of variables that are highly
correlated among themselves. Pruning starts with highly correlated
branches, and progress to moderated correlated branches. With each
pruning, the variable having the highest separation is selected, thereby
securing a high separation power of the model. This step significantly
reduces the number of variables, leaving those with high separation, but not
high correlation.

We have deferred until now to disclose the performance measure we use in
IRLS+AI search. Based on the observation in the examples above and the
same reasoning discussed, the Gini coefficient is our favorite choice for
separation performance measure. We have not computed IV or KS at all in
IRLS+AI search (though we have them ready for independent validation).
Using GC is a key design consideration as we engineer a system that builds
superior logistic regression models.

Variable Transformation

Experience like we have with GC, KS, and IV also influence our approach to
variable transformation, normalization, and the treatment of missing values.
Some modelers do not transform any variable. Those who do transform a
predictor so it becomes linear with the log odds, thus satisfying one of the
assumptions (requirements) of logistic regression. The square root,
logarithmic, double log, reciprocal, and exponential are a few of the
transformations. There could be infinitely many functional transformations,
some with better fit than others, but we should not get carried away.

For clear explanation, we stick to these traditionally accepted functional
transformations, with minor adjustments. First, we would make the
transformation function pass through the origin. For example, the log
function does not pass through the origin. Instead, we use ln (1+x) as the
logarithmic transformation as this passes through the origin. Second, we
make sure it is monotonic increasing. The reciprocal is not, so we use
1−1/ (1+x) which is monotonic increasing, and passes through the origin as
well. These adjustments are fundamental to variable normalization
(unrelated to Gaussian; not centering), discussed below.

Dr. D.Tom 12 ©2023

Normalization

While a functional transformation makes a predictor variable linear with the
log odds, normalization further transforms a predictor completely to the log
odds. For example if T (x) is a functional transformation, then N (x)=mT (x)+c is
a normalized transformation. Normalization can be readily achieved via a
simple logistic regression of a functional transformed variable. Of the
acceptable transformation functions, we pick the one that has the highest
adjusted R-squared coefficient of determination. With the sign of the
variable incorporated in the coefficient m, the sign test in the IRLS+AI model
build reduces to ensuring all positive coefficients, which greatly simplifies the
model viability check.

Another benefit normalization brings is a unit-free multiple logistic regression
model. Where x may have a unit (e.g., dollars of delinquent balance), N (x) is
log odds (of bad credit outcome when having x dollars of delinquent
balance). The multiple logistic regression model expresses the log odds of
an event as a linear combination of normalized predictors in log odds. This is
just natural or “normal” (hence normalization) with no need to explain away
mismatched units among predictors.

Treatment of Missing Values

Our system’s treatment of missing values is unique, as it is a natural
extension of our design described above. We do not use any missing value
imputation. We do not assume the worst (prevalent in risk management) nor
the best (preferred in marketing). Instead, the way we treat missing values
of a predictor is the same way we treat numeric values – transform them to
normalized log odds. Having a unified treatment means we can handle
mixed numeric/categorical variables just as well as numeric variables and
categorical variables.

This insight comes along as we explore the relationship between IV, KS, and
GC. GC is the only one among the three that is sensitive to rank ordering
everywhere. Categorical variables have no inherent ordering, so we can
rearrange the categories however we want. If we need to divide the
categories into a left pile and a right pile with the highest separation, how
could we do it? It turns out sorting the categories from left to right by their
log odds does the trick. This is akin to the first example above in Exhibit A.
Sorting by log odds gives the highest GC separation.

For the missing in a numeric predictor, where would we put it to give the
highest separation? Sticking it beyond the minimum or the maximum may
not work. We can put it in between numeric values with trial and error. The
highest GC always occurs when the missing is in line with the neighboring

Dr. D.Tom 13 ©2023

numeric values in the log odds space. Therefore, as we create a normalized
predictor, any categorical variable or any missing category in an attribute
simply gets the log odds of the category.

Relative Normalization

Relative normalization gives us additional advantages. The inspiration
comes along as we work with the aforementioned “absolute” normalization.
We create a relative normalization R (x) of a predictor x by subtracting the
sample population log odds β0 from the absolute normalization N (x).

R (x)=N (x)−β0=mT (x)+c −β0 (5)

A simple logistic regression of a relative normalized predictor gives β0+R (xk).
A multiple logistic regression of relative normalized predictors gives
β0+∑ βkR (xk). With no predictor, the logistic model is just β0, which is the null

model. Despite being subtracted in relative normalization of the predictor,
the population log odds reappears as the logistic model intercept.

Relative normalization gives us a unique model explanation. Our logistic
model expresses the log odds of an event above the population level as a
weighted combination of relative normalized predictors, which themselves
are log odds above the population level. When all predictors have log odds
at the population level, the model log odds are also at the population level.
If a predictor shows an increase/decrease in log odds above the population
level, the model log odds get a contributed increase/decrease as weighted
by the corresponding coefficient. This uniquely explains the logistic model
by contributions of relative normalized predictors. If not for relative
normalization, a predictor's contribution can be made nonsensically large by
adding an arbitrarily constant, and the regression would just absorb the
change right into the intercept.

Contributions cannot be used alone in generating reasons for adverse action.
When a customer's attribute is at its best, the attribute cannot be used as an
adverse action reason. For example, a delinquent balance attribute may
make significant contribution to a credit model score. A customer may have
zero dollars of delinquent balance, so this cannot be used against the
customer. Therefore, there needs to be a gating principle in governing the
generation of adverse action reasons. We take this gating principle even
further. We rank the drop in contribution from the best value, and take the
highest few as reasons for adverse action (no drop, no reason).

Relative normalization helps us simplify model build and viability checks in
our system. In our system, relative normalization helps us manage the

Dr. D.Tom 14 ©2023

logistic regression intercept, which stays close to the population log odds
even with a large number of predictors. Congruent with traditional modeling
practices, we check the condition index for model viability since the matrix
inverse is theoretically involved in IRLS. If we encounter a condition index
(intercept-included) that is unacceptably high, we check the proportion of
variation for collinearity. Without relative normalization we may find
predictors highly collinear with a large intercept. The reason is that the
intercept has become a “catch all” term with various transformations or the
lack thereof. With relative normalization the intercept is controlled, so is the
condition index. With an acceptable condition index, we don't need to
compute the proportion of variation, thus streamlining the model build.

Preprocessing and Postprocessing

Preprocessing and postprocessing help integrate our system into the
modeling workflow, creating a seamless drop-in replacement for the
stepwise AIC logistic regression procedure. We start with exporting the data
from the proprietary format in our enterprise statistical software to IEEE 754
binary floating point format. When the final model is completed, we export
the model as macro code of the statistical software, which gets expanded
into full scoring code for validation and/or production.

With the data in IEEE binary we immediately compute PSI as well as basic
variable statistics like sample count, frequency of missing, mean, standard
deviation, skewness, kurtosis, percentiles, min and max, etc. which only
need to be computed one time. We also include submax, which is the
highest value smaller than the maximum. Frequently the nines (e.g., 9999)
is a code for a default value, which we would recognize if it is much larger
than the submax (e.g., 100). Another likely default value is zero, which may
be the result of misspecification or miscoding/uninitialized variables in
attribute derivation. This may overload true attribute zeros, in which case it
would be hard to disentangle the two. We suspect zero is a default if its log
odds are not in line with that of one and above, which we can detect in our
system through non-monotonicity of the log odds by a second order
(quadratic) normalization. To satisfy the monotonicity logistic regression
assumption we can segment the data by the non-monotonic attribute into
piecewise monotonic segments. With attributes in abundance we could
simply let the system pick up other attributes that are monotonic.

Our reference logistic regression model that beats ML is not segmented. We
do not subscribe to heuristics or customary/traditional segmentations. We
always ask our modelers to proof segmentation is better than not splitting,
by comparing the separation of the unsegmented model vs. the combined
segmented models. If there is no benefit segmenting, we need to stop
creating unnecessary work. Segmentation creates data sets with fewer

Dr. D.Tom 15 ©2023

samples each, which lowers the Wald statistics of attribute coefficients. With
fewer significant predictors, each viable segment model is bound to have
lower separation. This is on top of the segmentation tree carrying away
separation (we have the math) like a decision tree. The only exception is
segmentation by a random number which has no association to the event,
which is what we use to partition data for validation vs. development.

The system’s collection of output give us insight into the superiority of the
models it builds. The number of models gone through by our system as
recorded in model database is typically in the thousands (depends much on
sample size). The final model is the highest separation viable model among
these thousands upon thousands. We also notice there more predictors than
in an AIC stepwise build. Looking at the separation along the way as the
system add predictors, we can observe the relationship between separation
and the number of predictors. For example, separation with 10–15
predictors (about as many as AIC stepwise in this experiment) is about 2
points down. Separation with 15–20 attributes is still about 1 point down.
Separation only begins to flatten out around 30–40 variables. This says AIC
stepwise leaves much separation on the table. The traditional approach to
drop variables until the model is viable is not going to get better separation.
In contrast, a comparably performing NN uses about twice as many
predictors.

Eliminating Disparate Impact in Model

As required by the Fair and Accurate Credit Transactions Act (FACTA) of
2003, the Federal Reserve Board (FRB) and the Federal Trade Commission
(FTC) both submitted to the US Congress in 2007 their reports on credit and
insurance scoring and their effect on disparate impact. In particular the FRB
report describes two methods to create demographically neutral models.
The first creates separate models for each demographic, using only the
demographic's subpopulation data. The second combines all demographics,
but includes demographic indicator/control/dummy coded variables to adjust
the intercept. Our system implements the second method in the FRB report
to create demographically neutral models. Further we use the same FRB
method to eliminate disparate impact in attribute normalization, as it too
involves simple logistic regression.

Theoretically we could add a third method that combines the benefits of the
two FRB methods. We could build a demographically neutral model including
all demographics in the data, with demographic indicator/control/dummy
variables adjusting not only the model intercept, but also interacting with the
attributes/predictor variables. Therefore, the model coefficients as well as
the intercept are different by demographic, in effect giving each
demographic a model of its own. However, in this third method the number

Dr. D.Tom 16 ©2023

of coefficients is as many folds as the number of demographics, and this
often leads to numerical/convergence issues in estimating such models with
a large degree of freedom and/or rare demographics.

In consumer credit fair lending, we consider six racial demographics:

Note: vulnerable demographics in italics require protection

Indicator Race

W White

B Black/African American

H Hispanic

P Asian/Pacific Islander

N American Indian/Alaska Native

O Multiracial/Other

There are two age demographics:

Indicator Age

A Adult Less Than 62 Years Of Age

S Senior Age 62+

There are three gender demographics:

Indicator Gender

M Male

F Female

U Unknown Gender

Altogether, there are 36 distinct demographics considering all interactions
between race, age, and gender:

Dr. D.Tom 17 ©2023

Interaction Demographic

W*A*M White adult male

W*A*F White adult female

W*A*U White adult of unknown gender

W*S*F White senior female

W*S*M White senior male

W*S*U White senior of unknown gender

B*A*F Black/African American adult female

B*A*M Black/African American adult male

B*A*U Black/African American adult of unknown gender

B*S*F Black/African American senior female

B*S*M Black/African American senior male

B*S*U Black/African American senior of unknown gender

H*A*F Hispanic adult female

H*A*M Hispanic adult male

H*A*U Hispanic adult of unknown gender

H*S*F Hispanic senior female

H*S*M Hispanic senior male

H*S*U Hispanic senior of unknown gender

P*A*F Asian/Pacific Islander adult female

P*A*M Asian/Pacific Islander adult male

P*A*U Asian/Pacific Islander adult of unknown gender

P*S*F Asian/Pacific Islander senior female

P*S*M Asian/Pacific Islander senior male

P*S*U Asian/Pacific Islander senior of unknown gender

N*A*F American Indian/Alaska Native adult female

N*A*M American Indian/Alaska Native adult male

N*A*U American Indian/Alaska Native adult of unknown gender

N*S*F American Indian/Alaska Native senior female

N*S*M American Indian/Alaska Native senior male

N*S*U American Indian/Alaska Native senior of unknown gender

O*A*F Multiracial/Other adult female

O*A*M Multiracial/Other adult male

O*A*U Multiracial/Other adult of unknown gender

O*S*F Multiracial/Other senior female

O*S*M Multiracial/Other senior male

O*S*U Multiracial/Other senior of unknown gender

Dr. D.Tom 18 ©2023

The white adult male demographic is not culturally considered vulnerable.
Correspondingly the white adult male demographic is the base or reference
category in modeling. All the other 35 demographics are vulnerable by one
or more of race, age, and gender requiring protection. Only the interaction
terms of these 35 demographics appear in regression as dummy variables.
In regression modeling, indicator/control/dummy variables can be thought of
as beacons that attract explanation or association to the outcome in the
data. Without them, other predictors fill in the role to explain nuances in the
outcome.

We follow the second FRB disparate impact eliminating method: In model
estimation these interaction terms create a demographic shift to the
intercept from the reference. In validation and scoring production these
demographic interaction terms are dropped, creating a degenerate model
without intercept shift. The degenerate model scores everyone as white
adult male, thus eliminating disparate impact to protected demographics.

A modeler would be inclined to think that dropping the dummy variables post
regression would hurt the model’s performance. On the contrary, high
performance in the final model can still be achieved. Case in point, in the
not so distant past students learned to look up the logarithmic table, add the
values and look up the antilog to perform a multiplication. The student
learned the concept that addition in log scale is multiplication. Then the
calculator came along and made it far easier, but calculators were not
allowed in exams. With good training and exercise with using the log table,
exam performance was not affected at all.

We only need to make one adaptation to use the FRB method. Instead of
selecting the highest performing viable models, we select the highest
performing viable degenerate models at each step of IRLS+AI search starting
from the null model. With this adaptation, our system continues to build
demographically neutral models with high performance. We find no
appreciable loss in separation at the end.

Conclusion

In this article we describe a system for building superior logistic regression
models via IRLS+AI beam search.

Launching from a base we explore the immediate space of models with one
additional predictor in simultaneity via multithreaded computation. We
select top performing viable models that pass multiple modeling criteria as
the new bases for the next explorations, and iterate the step until there is no
improvement in the top performers list. At which time the system would

Dr. D.Tom 19 ©2023

have built thousands and thousands of models, so the best viable model is
the best among thousands and thousands.

We discuss the engineering considerations in the system design and
implementation. We review separation measures and choose the Gini
coefficient (Somers' D) as the sole measure of performance throughout the
system. The Gini coefficient drives variable reduction via separation and
correlation clustering. Its omnipresent rank ordering inspires our treatment
of missing values, transformation, and absolute/relative normalization. As a
result we get a better explanation of predictor contributions and generation
of adverse action reasons. The system also incorporates tools for data
discovery and segmentation, integrates into our enterprise platform as a
drop-in replacement, and goes as far as generating model scoring code for
validation and production.

The system builds demographically neutral models with no loss of
performance. It implements a method used by the Federal Reserve to
eliminate disparate impact. This we find no parallels in other machine
learning models.

A number of models have already been built and installed and are currently
in production. In a recent project our reference logistic regression model
beats an industry standard consumer credit risk score by a significant
margin. It also beats gradient boosted machine (GBM) models built by our
modelers. It performs comparably to the best neural network model built by
our team. We find the logistic regression model to be rather stable and
much more transparent to explain. All else being equal, having transparency
wins. Arbitrary baseline or reference in some ML attribution methods only
creates arbitrary explanations. The recent big blue flop lays bare the pitfalls
of opacity in ML models. Giving unsafe healthcare advice could put a patient
in jeopardy. Not being able to give an elementary explanation of that advice
just compounds the problem. Adverse action in consumer credit requires
transparency. If the modeler cannot explain the model, we cannot expect
the computer to do so.

We are performing modeling research made possible only with this system.
Our latest success [3] shows the AI flashlight beam search is very efficient.
It is able to find the highest separation/highest likelihood viable solution in a
vast search space after building only a small number of candidate models.
In one research we achieve higher validation separation by restricting the
development data diet. In another we find reject inference may be
unnecessary, provided we perform tests with multiple models built with this
tool. We hope to document these results in other articles.

Dr. D.Tom 20 ©2023

References

1. Report to the Congress on Credit Scoring and Its Effects on the Availability and Affordability of Credit
(2007, August). Board of Governors of the Federal Reserve System.
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/creditscore.pdf

2. Credit-Based Insurance Scores: Impacts On Consumers Of Automobile Insurance (2007, July). A
Report to Congress by the Federal Trade Commission.
https://www.ftc.gov/sites/default/files/documents/reports/credit-based-insurance-scores-impacts-
consumers-automobile-insurance-report-congress-federal-trade/p044804facta_report_credit-
based_insurance_scores.pdf

3. Tom, Daniel, Ph.D. (2023, January 17). Eliminating Disparate Treatment in Modeling Default of Credit
Card Clients. https://doi.org/10.31219/osf.io/cfyzv

Dr. D.Tom 21 ©2023

