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A correlation between regressors and disturbances presents challenging 

problems in linear regression. Issues like omitted variables, measurement 

error and simultaneity render ordinary least squares (OLS) biased and 

inconsistent.  In the context of heteroscedastic linear regression, this note 

proposes a bias test that is simple to apply. It does not reveal the size or 

sign of OLS bias but instead provides a statistic to assess the probable 

presence or absence of bias. The test is examined in simulation and in real 

data sets.  
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Introduction 

 

 A correlation between regressors and disturbances presents 

challenging problems in linear regression. Issues like omitted variables, 

measurement error and simultaneity render ordinary least squares (OLS) 

biased and inconsistent  (Greene 2003, 74-83, 148-149, 378-381; Basu 

2020). In the context of heteroscedastic linear regression, this note 

proposes a bias test that is simple to apply. It does not reveal the size or 

sign of OLS bias but instead provides a statistic to assess the probable 

presence or absence of bias. The test is examined in simulation and in real 

data sets.  

         In a linear model the higher moments of the regressors and/or the 

residuals may enable the identification of OLS bias. For example Dagenais 

and Dagenais (1997) and Erickson and Whited (2002) derive instrumental 

variables from measures of skewness. On the other hand Lewbel (2012) 

and Milunovich and Yang (2018) make use of heteroscedasticity, as does 

this note.   

 OLS bias occurs when the unobservable disturbances are correlated 

with a regressor. But the correlation between the OLS residuals and each 

regressor is identically zero so a test for bias cannot be based on that 

moment condition. An alternative is another linear regression method for 

which that moment condition holds approximately but not identically under 

the null hypothesis of unbiasedness. Potential candidates include various 

robust estimators which can in principle be interpreted as weighted least 

squares procedures; the weights are non-linear functions of the data. This 

paper focuses on regression by least absolute deviations (LAD), an 

important instance of quantile regression (Koenker 2005, 2011; Portnoy 

and Walsh 1992). LAD estimates the median of a dependent variable 

conditional on the values of the regressors.  

 Consider a sample of n observations (x,y) on the bivariate linear 

model  

 

            y = α + βx + u ,                                                                  (1) 



where the disturbances u may or may not exhibit heteroscedasticity and 

may or may not be correlated with x. Let b denote the LAD estimate of β, 
and let r denote the Pearson correlation between x and the LAD residuals. 

Then Fisher’s transformation (Anderson 1984, 123; Cox 2008) is 

           z = 0.5(ln(1+r) – ln(1-r)) ,                                                   (2) 

which has asymptotically a normal distribution with expectation zero and 

standard deviation σz under the null hypothesis of unbiasedness—that is, 

the correlation between x and u is zero. The null hypothesis is rejected if 

          zstat = z/σz                   (3)                                  

is statistically significant at conventional levels, e. g., |zstat| > 1.96.  

On the assumption that x and the LAD residuals have a bivariate 

normal distribution, the estimate of σz is 1/√(n-3). But since that assumption 

makes no allowance for nonspherical disturbances u, I use simulation and 

the bootstrap to estimate σz and to produce confidence intervals for zstat.  

 

Three simulations 

 The large-sample performance of the bias test is examined in three 

simulations where w ~ N(μ,σ)  denotes a gaussian random variable w with 

expected value μ and standard deviation σ.  Each simulation reports the 

average values of b, r and zstat when the sample of n = 500 observations 

is replicated five thousand times.   

 OLS bias due to an omitted variable is explored in Table 1. The linear 

model is  

 

 y = α + βx + δv + u,                  (4) 

 

where α = 0 and β = δ = 1. Moreover x ~ N(0,2), u ~ N(0,1), and the omitted 
regressor v = 0.5N(0,2) + λx. If λ = 0, the OLS regression of y on x is 

inefficient but unbiased. There is no heteroscedasticity, b correctly 

estimates β, and zstat = 0.006.   

 

                     



                  Table 1. Omitted variable simulation 

                    n = 500 

     

              heteroscedasticity 

         Yes      No 

       Yes b = 1.339 b = 1.500 

   r = 0.182 r = -0.000 

         Are x and v   zstat = 4.580 zstat = -0.014 

         correlated ?    

      No b= 1.000 b= 1.000 

   r = 0.000 r = 0.000 

   zstat = 0.011 zstat = 0.006 

 

 
                

 

Heteroscedasticity is introduced when the disturbance is reformulated 

as ui  ~ N(0,| vi |), and the test again confirms that b estimates β accurately 

since zstat = 0.011. However if λ = 0.5, x and v are positively correlated, 

and the omission of v is expected to bias b upward. Indeed b = 1.339, and 

the bias is signaled since zstat = 4.580.   

So in the three cases just examined, the test for bias points to the 

correct conclusions. However the fourth situation –no heteroscedasticity 

and λ = 0.5—involves a failure of identification: the upward bias in b is not 

reflected in zstat.  

 The data plots at the end of this paper provide some intuition about 

the outcomes in Table 1. In Figure 1, the simulation of an omitted variable 

without heteroscedasticity shows clearly that the LAD residuals are not 

significantly correlated with x. The simulation of heteroscedasticity with no 

omitted variable appears in Figure 2, where r is again negligible because 

the observations are distributed almost symmetrically between positive and 

negative LAD residuals. In Figure 3, however, the combination of an 

omitted variable and heteroscedasticity generates high-leverage data 

points in the southwest and northeast quadrants which induce a significant 

positive correlation.  

Table 2 explores OLS bias due to measurement error. Equation (1)  

is parameterized by α = 0, β = 1 and x ~ N(0,2). When x is uncorrelated 

with the disturbance u ~ N(0,1), this is the case of no measurement error 

and no heteroscedasticity; and b correctly estimates β. Moreover no bias is 



detected since zstat is -0.001. Heteroscedasticity arises when the 

disturbance is restated as ui ~ N(0,| xi |). Measurement error is introduced 

when ux ~ N(0,1) is subsequently added to x. When both measurement 

error and heteroscedasticity are present, b is smaller than β (“attenuation”); 
and zstat is statistically significant at 2.929, signaling the presence of bias. 

But in the case of measurement error without heteroscedasticity the 

downward bias in b is not reflected in zstat.  

 

               

                  Table 2. Measurement error simulation 

                    n = 500 

     

               heteroscedasticity 

         Yes      No 

       Yes b = 0.665 b = 0.800 

   r= 0.138 r = -0.001 

   measurement   zstat= 2.929 zstat = -0.022 

             error    

      No b= 1.002 b= 1.000 

   r = -0.000 r = -0.000 

   zstat = -0.008 zstat = -0.001 

     

 

 

 Table 3 summarizes the effects of simultaneity bias in a perfectly-

competitive market for an agricultural commodity (Blankmeyer 2013). The 

log-linear demand function includes two endogenous variables, the price of 

the commodity and the quantity demanded; three exogenous variables –-

household income, the price of a substitute commodity, and the price of a 

complementary commodity; and a random disturbance ud. The log-linear 

supply function includes the price and the quantity supplied; the exogenous 

variables rainfall, the price of fertilizer, and the ambient temperature; and a 

random disturbance us. 

 A researcher wants to estimate the price elasticity of demand, whose 

“true” value is -1. The model implies that the price and ud are indeed 

correlated so OLS cannot estimate the price elasticity consistently (e. g., 

Greene 2003, 378-379). Table 3 shows that the test detects the bias when 



ud is heteroscedastic (zstat = 4.307) but fails to do so when ud is 

homoscedastic (zstat = -0.013).  

 

                    

                Table 3. Demand elasticity simulation 

                    n = 500  

      

             heteroscedasticity  
         Yes      No  
        simultaneity bias b = -0.699 b = -0.481  
           Yes r = 0.148 r = 0.000  
               zstat = 4.307 zstat = -0.013   

 

     

The administrator’s salary 

 

 A report of the Texas Health and Human Services Commission 

(2002) provides annual data on the administrator’s salary in 842 nursing 
facilities operated for profit. In a log-linear model the salary is regressed on   

variables that affect the facility’s profitability and presumably the manager’s 
compensation: occupancy rate, revenue, area (in square feet) and staff 

size. For OLS the regressors are statistically significant, and 

heteroscedasticity is confirmed by the Breusch-Pagan test (e.g., Greene 

2003, 223-225). No regressor is significantly correlated with the LAD 

residuals so bias is not detected (Table 4).  

However if the occupancy rate is dropped from the model, zstat = 

3.575 when the LAD residuals are correlated with revenue, reflecting the 

omitted-variable bias.  Furthermore the bootstrap confidence interval 

indicates that the probability of observing an insignificant zstat when OLS is 

in fact biased would be less than 5 percent.  

 

 

 

        



 

   Table 4. The administrator's salary 

 (the dependent variable is ln salary, 

 

standard errors are under coefficients*) 

                        n = 842 

    

                OLS                  OLS 

occupancy rate 0.303   omitted 

  0.075  variable 

    
ln revenue 0.421 0.664 

  0.047 0.075 

    
ln area  -0.086 -0.263 

  0.036 0.047 

    
ln staff size -0.095 -0.099 

  0.035 0.036 

    
zstat for:       

        occupancy 0.378      --- 

        ln revenue 1.289 3.575 

        ln area 1.315 1.433 

        ln staff size 0.531 1.233 

 

*  The standard errors for coefficients are hetero-   

scedasticity- and autocorrelation-consistent (HAC),  
 Newey-West version.   

The zstats are bootstrap estimates.  

 

   

 

Household expenditures on food 

The data set “VietnamH” (Croissant 2015) is a 1997 survey of 
expenditures by 5,999 Vietnamese households. Outlays for food can be 

modeled as a function of total expenditures, household size and other 

factors. OLS might be biased since total expenditure “and its 

components…are endogenous to the consumer and are determined 
simultaneously” (Liviatan 1961, 336). Liviatan argues that OLS will be 
skewed downward when the dependent variable is a relatively stable 



component of expenditure like food while an upward bias should be 

expected for highly variable items such as major appliances. 

The Breusch-Pagan test strongly confirms heteroscedasticity. In 

Table 5 the OLS elasticity of food outlays with respect to total household 

expenditures is 0.659, but it is probably biased since zstat = -3.667 when 

the LAD residuals are correlated with total expenditures.   

 

 

                 Table 5. Food expenditure elasticity  

           (the dependent variable is ln food expenditure, 

               standard errors are  under coefficients*)  

                                        n = 5999    

    
                                                                  OLS          

     
   ln total expenditure                          0.659    
                                                                 0.012    

    
  household size                                    0.043    

                 0.003    

    
  gender (male = 1)                               0.056    

                 0.009    

    
  farm (yes = 1)                                      0.037    

                 0.011    

    
   zstat                                                   -3.667    

    
*  The standard errors for coefficients are      

are heteroscedasticity- and autocorrelation- 

consistent (Newey-West version)   
 

  
The zstat is a bootstrap estimate.    

 

 

 

 

 

   



The demand for nursing services 

 

 Drawing on a data base of the Texas Health and Human Services 

Commission (2002), I estimate the demand curve for nursing services in   

Texas long-term care facilities. The sample is comprised of 824 for-profit 

nursing homes licensed by the state in 2002. According to the textbook 

model of a competitive market, the demand for a resource depends on its 

price, on the usage levels of other inputs, and on the price of the good or 

service to be produced–in this case a nursing facility’s average revenue per 
resident day. In conjunction with the supply curve for the resource, this 

resource-demand function determines the wage rate.  

 I focus on the demand curve for the services of licensed vocational 

nurses (LVN), also called licensed practical nurses, who have typically 

completed one or two years of formal training and who work under the 

supervision of registered nurses (RN) and physicians. In the log-linear 

model the jointly endogenous variables are the total LVN hours worked 

during 2002 and the average hourly LVN wage rate in each facility. The 

included exogenous variables are the total hours worked by RN, by nurse’s 
aides (AIDE), and by laundry and housekeeping personnel (L+H) together 

with the number of beds in the facility and the revenue per resident day.   

 The Breusch-Pagan test confirms heteroscedasticity. In Table 6 each 

OLS coefficient is statistically significant at conventional levels except for 

RN hours. The demand is inelastic, -0.396, but zstat = -2.387. The 

endogeneity of hours worked and the hourly wage could produce 

simultaneity bias. Excluded exogenous variables would presumably be the 

determinants of the LVN supply curve, e. g., the LVN’s age, the number of 
young children in the family, a spouse’s income, and the local cost of living.  
However, these potential instrumental variables are unavailable. 

Blankmeyer (2022) uses canonical correlation to estimate the LVN demand 

elasticity at -0.649.  

 

 

 

 

      



 

 

             Table 6. The LVN demand model     

       (the dependent variable is ln LVN hours,   
       standard errors are under coefficients*)  

                                n = 824      

      

      OLS     
   ln LVN hourly wage -0.396     
    0.104     

      
   ln number of beds 0.158     

 0.040     

      
   ln RN hours 0.045     

 0.033     

      
  ln aide hours 0.669     

 0.072     

      
  ln L+H hours 0.138     

 0.058     

      
  ln revenue per 0.350     
  resident-day 0.075     

      
   zstat   -2.387      

      
* HAC standard errors with Newey-West /Bartlett window  

   are reported for the regression coefficients, and zstat 

   is a bootstrap estimate.      

      

 

An earnings equation  

 

 An earnings equation explains workers’ wages as a function of their 
schooling, job experience, ethnicity, location, and other factors (e. g., 

Heckman et al. 2003). The data set CPS88 (Kleiber and Zeileis, 2015) 

draws on a U. S.  Census survey of 28,155 male workers who were not 

self-employed. The Breusch-Pagan test confirms heteroscedasticity, and 

the OLS regression is displayed in Table 7. In particular, the rate of return 



to an additional year of education, 9.3 percent, is broadly consistent with 

the findings of many other studies.  

 However a perennial concern is the omission of a regressor to control 

for a worker’s skills and innate ability, which are difficult to quantify. 

Presumably the regressor would be positively correlated with both 

education and earnings, so its omission would skew the OLS coefficient for 

education upwards. Indeed the zstat in Table 7 is -5.600, strongly indicative 

of bias.  

        

            Table 7. The earnings equation    

   (the dependent variable is ln weekly wage,  
      standard errors are under coefficients)  

                              n = 28,155    

     

      OLS     
 ln education (years) 0.093    
    0.001    

     
 experience (years) 0.017    

 0.000    

     
  ethnicity 0.218    
  (T = caucasian) 0.012    

     
  smsa 0.157    
  (T = yes) 0.008    

     
  Northeast region 0.038    
  0.010    

     
  South region -0.050    

  0.009    

     
  West region 0.018    

 0.010    

     
  part time -1.071    
  (T = yes)  0.012    

     
  zstat (bootstrap) -5.600    

     



      

     

 

Income and infant mortality 

  The dataset “UN” (Fox and Weisberg 2015) reports infant mortality 
(deaths per 1,000 live births) and per-capita gross domestic product (gdp in 

thousand U. S. dollars) for 193 nations in 1998. The OLS regression shows 

that mortality decreases as income rises: the slope is -2.211 with a 

standard error of 0.228. Moreover heteroscedasticity is confirmed by the 

Breusch-Pagan test. Bias is highly probable since zstat = -4.200. 

Furthermore the bootstrap confidence interval indicates that the probability 

of observing an insignificant zstat when OLS is in fact biased would be less 

than 5 percent.  

Does the OLS bias reflect attenuation due to measurement error ? It 

seems likely that gdp is significantly mismeasured for countries with large 

underground sectors, poorly-funded data collection programs and 

unrealistic exchange rates vis-a-vis the dollar.  

 

Summary and outlook 

 This note offers preliminary evidence that the test can signal the 

presence or absence of OLS bias in heteroscedastic linear regression. 

Application of the bias test involves negligible marginal costs of data 

acquisition and computation. Indeed if the Breusch-Pagan test confirms 

heteroscedasticity and if zstat is not statistically significant, a search for 

valid instrumental variables may be avoided.   

 Ongoing work includes simulating alternative versions of 

heteroscedasticity, e. g.  σi = √(c1 + c2xi
2) or σi = √(c1 + c2vi

2), where c1 and 

c2 are non-negative constants chosen to calibrate the strength of the 

identification criterion. In Tables 1 and 2 of this paper, c1 = 0 and c2 = 1, 

which may be considered rather strong heteroscedasticity. However 

c1 = 0.3 and c2 = 0.5 might represent relatively weak heteroscedasticity.  

 In addition, research is underway to examine alternatives to LAD. 

Simulation tentatively indicates that high-breakdown regression (Hubert et 

al. 2010, 2015; Maronna et al. 2006, chapter 5; Rousseeuw and Van 



Driessen 2006) may detect bias more effectively than LAD in challenging 

situations where heteroscedasticity is weak, or the sample is not very large, 

or the bias is not very severe. For example the LVN demand function in 

Table 6 has |zstat| = 2.387, but a bootstrap confidence interval indicates 

that the probability of |zstat| < 2 is almost 50 percent –a strong likelihood of 

a false negative conclusion if the OLS estimate is in fact biased. On the 

other hand, the high-breakdown DetLTS regression (Vakili 2018) produces 

|zstat| = 3.953; and the bootstrap probability of a false negative is less than 

5 percent.  

In the examination of five real data sets I have attributed each large 

zstat to an omitted variable, simultaneity bias, or measurement error. Of 

course those attributions cannot be categorical since additional 

specification problems or data issues may also be skewing the OLS 

estimates.   
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Fig. 1.Omitted variable, no heteroscedasticity 
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Fig. 2.No omitted variable, heteroscedasticity 

x

L
A

D
 r

e
s
id

u
a

ls



 

-6 -4 -2 0 2 4 6

-5
0

5
Fig. 3.Omitted variable and heteroscedasticity 
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