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Abstract

The per capita Shapley support levels value extends the Shapley value to cooperative games
with a level structure. This value prevents symmetrical groups of players of different sizes
from being treated equally. We use efficiency, additivity, the null player property, and
two new properties to give an axiomatic characterization. The first property, called joint
productivity, is a fairness property within components and makes the difference to the
Shapley levels value. If all players of two components are only jointly productive, they
should receive the same payoff. Our second axiom, called neutral collusions, is a fairness
axiom for players outside a component. Regardless of how players of a component organize
their power, as long as the power of the coalitions that include all players of the component
remains the same, the payoff to players outside the component does not change.

Keywords Cooperative game · Level structure · Per capita Shapley support levels value

· Joint productivity · Neutral collusions

1 Introduction

Probably, the most important and commonly used solution concept for games with trans-
ferable utility is the Shapley value (Shapley, 1953b). There now exist numerous axiomatic
characterizations of the Shapley value that recommend its use for countless real-world appli-
cations (see, e.g., Lipovetsky (2020)). Shapley (1953b) axiomatized his value by efficiency
(the final output of the grand coalition should be fully transferred to the players), the null
player property (a player contributing nothing to the game also receives nothing), additivy
(a player’s payoff from the sum of two games is equal to the sum of the player’s payoffs for
the two games), and symmetry (players who contribute the same to the game should have
the same payoff).
With larger player sets, groupings often occur. Ideally, these form a partition of the player

set. Games in this form are called games with a coalition structure (Aumann and Drèze,
1974). The Owen value (Owen, 1977) extends the Shapley value to games with a coalition
structure. Often, a coalition structure does not sufficiently reflect the actual structure of
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a player set, especially if the set is organized hierarchically, such as a large corporation or
a governmental or political entity. As suggested by Owen (1977), Winter (1989) defined
for such games a model called cooperative games with a level structure (LS-games) and
extended the Owen value and, therefore, also the Shapley value to the Shapley levels value.
A level structure comprises a sequence of coalition structures (the different levels). At

each level, the player set is divided into components with each lower level being finer than
the next higher.
Both Owen (1977) and Winter (1989) extended the axiomatization of Shapley (1953b),

in particular, they used a symmetry between components axiom. It stays that if two
components which are subsets of the same component one level higher are symmetric in
a game where these components are the players, the total payoff to all players of the first
component is equal to the total payoff to all players of the second component.
In many situations, this axiom seems to be questionable. For the case where there

are reasons not to treat symmetric players equally, Shapley (1953a) introduced the class of
weighted Shapley values. Kalai and Samet (1987) examine games in which players represent
groups of individuals and state,

“Such is the case for example when the players are parties, cities, or management

boards. The use of the symmetric Shapley value seems to be unjustified in certain

cases of this type because the players represent constituencies of different sizes. A

natural candidate for a solution is the weighted Shapley value where the players are

weighted by the size of the constituencies they stand for.”

The representation as a TU-game, where a player represents a group of individuals, has the
disadvantage that the TU-game does not reflect the impact of the individuals personally,
but only as a group. For this purpose, games with a coalition structure are required.
McLean (1991) extended the class of weighted Shapley values to games with a coalition
structure, in Dragan (1992) called McLean weighted coalition structure values.
Harsanyi (1977) observes that in simple bargaining processes, when two or more players

join to form an acting bargaining unit, their bargaining position worsens relative to the
remaining players. Moreover, Harsanyi notes that this holds for all solution concepts that
satisfy efficiency and the symmetry axiom, hence also for the Shapley value.
This effect, in Vidal-Puga (2012) called the Harsanyi paradox, is, of course, also noticeable

for the Owen value. For example, if all players of two components are symmetric in a game
in which all coalitions achieve a cooperative win, the players of the larger component will
receive a smaller payoff than those of the other component.
In light of this, Vidal-Puga (2012) introduced a value for games with a coalition struc-

ture with weights for the components determined by the size of the coalitions, which is
extended by Gómez-Rúa and Vidal-Puga (2011) to games with a level structure which can
be seen, similar to the Shapley levels value, as a special case of the class of weighted Shapley
hierarchy levels values in Besner (2019).
Gómez-Rúa and Vidal-Puga (2010) have the merit of axiomatically comparing three

extensions of the Shapley value to games with a coalition structure, the Owen value, the
per capita value in Vidal-Puga (2012) and a value of the class of the McLean weighted
coalition structure values, in this case also with weights for the components determined by
the size of the coalitions.
The latter value is the starting point of the value for games with a level structure examined

in this study. Since this value is a special case of the class of weighted Shapley support
levels values in Besner (2022a), we will call it the per capita Shapley support levels value.
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In today’s era of increasing use of artificial intelligence and machine learning, it is be-
coming more and more important to adopt methods from cooperative game theory into
practice. In application, the computational complexity to compute the Shapley value turns
out to be a hurdle because for a player set with n players, the coalitional worths of all 2n

many possible coalitions (except those of the empty set) are needed for computation. This
is one motivation for dedicating a separate study to the per capita Shapley support levels
value. In Besner (2022b), it is shown that all three of the previously mentioned values for
games with a level structure have a polynomial running time for their computation and are
thus preferable to the Shapley value in general in this respect.
While the Shapley levels value has been extensively axiomatically investigated, and there

is already a separate investigation for the value in Vidal-Puga (2012) and Gómez-Rúa and
Vidal-Puga (2011), for the per capita Shapley support levels value there exists so far only
the summary work by Gómez-Rúa and Vidal-Puga (2010) mentioned above (and only for
the special case for games with a coalition structure). Apart from that, this value, which is
very important from our point of view, especially for the applications, is unknown so far.
As argued above, both per capita values for games with a level structure are preferable to

the Shapley levels value in many applications with respect to the symmetry axiom and the
Harsanyi paradox. However, with the value in Gómez-Rúa and Vidal-Puga (2011), many
users may be bothered by the fact that it does not satisfy the null player property. This
shortcoming does not occur with the per capita Shapley support levels value. Nevertheless,
here are the null players “not so null” (see the relevant comments in Vidal-Puga (2012),
Gómez-Rúa and Vidal-Puga (2011), and in the Conclusion in Besner (2022a)).
To avoid a “two-step” approach with two different behaviors, one for the game between

the components and one within components, we deal here from the beginning with games
with a level structure and have the same behavior for each step or level. In general, this also
makes the axiomatization more compact. A game with a coalition structure is considered
here as a special case, just as a conventional TU-game is another special case of a game
with a level structure.
For axiomatization, we use the standard axioms efficiency, the null player property, and

additivity and two new axioms. Unlike in Gómez-Rúa and Vidal-Puga (2010), we do not
use unanimity games. As a special feature, in contrast to all other axiomatizations of the
Owen or Shapley levels value known to us, such as, e.g., in Owen (1977), Winter (1989),
Calvo et al. (1996), Khmelnitskaya and Yanovskaya (2007), Alvarez-Mozos and Tejada
(2011), or Casajus and Takeng (2023), our axiomatization does not need quotient games,
also referred to as intermediate games, i.e., games with components as players.
Our first new axiom, called joined productivity, is a weakening and extension of symmetry.

It implies that if for two components of the same level, which are subsets of the same
component one level higher, all players make cooperative gains only if all players join
forces, then each player should receive the same payoff.
While collusion studies in the literature (see Harsanyi (1977), Haller (1994), or Segal

(2003)) are mainly concerned with how collusive arrangements affect the colluding actors,
in our second new axiom, called neutral collusions, we focus on the effects on the other,
non-colluding actors. This axiom then states that it does not matter how players in a
component use their powers in different coalitions, as long as the total power remains the
same for the coalitions involving all players in the component, nothing changes for players
outside the component.
In short, it is recommended to consider the per capita Shapley support levels value as a

fair payoff method when players are able to join forces to form larger actionable units, for
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whatever reason. These include, to name just a few application examples, the distribution
of costs in large companies, the distribution of profits in company shareholdings or to
participants in supply chains, payments for the generation or storage of green electricity
to individual participants, who can join together regionally and locally, the weighting of
votes of members of individual parties and countries in parliaments, or the scheduling of
processes in computer cores.
The paper is organized as follows. Section 2 contains some preliminaries. As the main

section, we give in Section 3 the definition of the per capita Shapley support levels value,
introduce the new axioms and give an axiomatic characterization. Section 4 concludes our
results. The Appendix (Section 5) shows the logical independence of the axioms in our
axiomatization.

2 Preliminaries

An n-person cooperative game with transferable utility (TU-game) (N, v) on a non-empty
and finite player set N is given by a coalition function v : 2N → R, v(∅) = 0. Since
throughout the paper we are only dealing with a fixed player set N , N is usually omitted as
an argument. The subsets T ⊆ N are called coalitions, v(T ) is the worth of the coalition
T , and the set of all nonempty subsets of N is denoted by ΩN. We denote the cardinality
of any coalition T by |T | and the set of all TU-games on N is denoted by V.
The dividends ∆v(T ) (Harsanyi, 1959) are defined inductively by

∆v(T ) :=

{

v(T )−
∑

S⊊T ∆v(S), if T ∈ ΩN, and
0, if T = ∅.

A TU-game uT ∈ V, T ∈ ΩN, with uT (S) := 1 if T ⊆ S and uT (S) := 0 otherwise for
all S ⊆ N is called a unanimity game. Any coalition function v on N has a unique
representation, given by

v =
∑

T∈ΩN

∆v(T )uT . (1)

A coalition T ⊆ N is called essential in v, if ∆v(T ) ̸= 0. We call a player i ∈ N a null

player in v if v(T ∪ {i}) = v(T ) for all T ⊆ N\{i} and we call two players i, j ∈ N, i ̸= j,

mutually dependent (Nowak and Radzik, 1995) in v if v(T ∪ {i}) = v(T ) = v(T ∪ {j})
for all T ⊆ N\{i, j} or, equivalently, ∆v(T ∪ {k}) = 0, k ∈ {i, j}, for all T ⊆ N\{i, j}.
This means, mutually dependent players are only jointly productive.
A set B := {B1, ..., Bm} of coalitions of players is called a coalition structure on N if

B is a partition of the player set N , i.e., a collection of nonempty, pairwise disjoint, and
mutually exhaustive subsets of N . Each B ∈ B is called a component and B(i) denotes
the component containing the player i ∈ N .
A finite sequence B := {B0, ...,Bh+1} of coalition structures Br, 0 ≤ r ≤ h + 1, on N is

called a level structure (Winter, 1989) on N if

❼ B0 =
{

{i}: i ∈ N
}

,

❼ Bh+1 = {N}, and

❼ for each r, 0 ≤ r ≤ h, Br is a refinement of Br+1, i. e., Br(i) ⊆ Br+1(i) for all i ∈ N .
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Br is called the rth level of B and L denotes the set of all level structures on N . A TU-game
v ∈ V together with a level structure B ∈ L is an LS-game which we denote by (v,B).
The set of all LS-games on N is denoted by VL.
A TU-value ϕ is an operator that assigns to any v ∈ V a payoff vector ϕ(v) ∈ RN. As

probably the most important representative of TU-values, the Shapley value Sh (Shapley,
1953b), given by

Shi(v) :=
∑

T⊆N, T∋i

∆v(T )

|T |
for all i ∈ N,

distributes the dividend of each coalition equally to its members.
An LS-value φ is an operator that assigns to any LS-game (v, B) ∈ VL a payoff vector

φ(v, B) ∈ RN. As probably the most important representative of LS-values, the Shapley

levels value ShL (Winter, 1989) is given by (see Calvo et al. 1996, Eq. (1))

ShLi (v,B) :=
∑

T⊆N,T∋i

KB,T (i)∆v(T ) for all i ∈ N, (2)

where, for all T ∈ ΩN, T ∋ i, we have

KB,T (i) :=
h
∏

r=0

1

|{B ∈ Br : B⊆ Br+1(i), B ∩ T ̸= ∅}|
.

This means that from the dividend of a coalition T , all components of the hth level contain-
ing members of T initially receive an equal share. Then, the share of each such component
is distributed equally among the subsets of that component that are components of the
next lower level and also contain members of T , and so on, until finally only members of
T itself, as members of a component of the first level, divide the share of that component
equally among themselves.
It is easy to see that ShL coincides with Sh if we have B = {B0,B1} and it is well-known

that ShL coincides with the Owen value (Owen, 1977) if B = {B0,B1,B2}.
The following axioms for LS-values φ are simple adaptations of standard axioms for

TU-values.

Efficiency, E. For all (v,B) ∈ VL, we have
∑

i∈N φi(v,B) = v(N).

Efficiency means that the complete total payoff matches exactly the output of the grand
coalition.

Null player, N. For all (v,B) ∈ VL and i ∈ N such that i is a null player in v, we have
φi(v,B) = 0.

According to the null player property, a player who does not contribute to the game at all
should not receive a payoff.

Additivity, A. For all (v,B), (v′,B) ∈ VL, we have
φ(v,B) + φ(v′,B) = φ(v + v′,B).

Additivity requires that an LS-value be an additive function of LS-games, which means
that a player’s payoff from the sum of two games is the sum of the player’s payoff for the
two games.
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3 The per capita Shapley support levels value

We can see the Shapley levels value as a special case of the class of the weighted Shapley
support levels values in Besner (2022a). The following LS-value is also a special case of
this class. Therefore, the algorithm for the distribution of dividends is quite similar, but
instead of the shares of the components involved in each level being equal, each component
always receives a share corresponding to the number of members of the component.

Definition 3.1. For all (v, B) ∈ VL, B = {B0, ...,Bh+1}, and for all T ∈ ΩN, T ∋ i, define

KPC
B,T (i) :=

h
∏

r=0

|Br(i)|
∑

B∈Br:B⊆Br+1(i),
B∩T ̸=∅

|B|
. (3)

Then, the per capita Shapley support levels value ShPCSL is given by

ShPCSL

i (v, B) =
∑

T⊆N, T∋i

KPC
B,T (i)∆v(T ) for all i ∈ N. (4)

Also here, it is easy to see that ShPCSL coincides with Sh if we have B = {B0,B1} and, using
the presentation of the class of the McLean weighted coalition structure values (McLean,
1991), given in Dragan (1992, Sec. 2(e)), ShPCSL can be seen as a special case of this class
if B = {B0,B1,B2}.
In what follows, we show axiomatically that the per capita Shapley support levels value,

rather than just the Shapley levels value, can be viewed as a useful extension of the Shapley
value.

Joint productivity, JP. For all (v,B) ∈ VL,B = {B0, ...,Bh+1}, and two components
B1, B2 ∈ Br, 0 ≤ r ≤ h, such that B1, B2 ⊆ B,B ∈ Br+1, and all players i, j, i ∈ B1 and
j ∈ B2, are mutually dependent in v, we have φi(v) = φj(v).

This axiom is a fairness property within components. It means that if all players of two
components, which are subsets of the same component one level higher and are only jointly
productive, they should receive the same payoff.
For our last property, we introduce a game related to an origin game, where the players

of a component can make collusions of the power of all coalitions containing some players
of the component. The only condition is that the coalitions that contain all players of the
component have the same power as these coalitions in the origin game.

Definition 3.2. Let (v,B) ∈ VL,B = {B0, ...,Bh+1}, and B ∈ Br, 0 ≤ r ≤ h, be a compo-
nent. Then an LS-game (vB,B) ∈ VL is called a component collusion game to (v,B) if
we have that

vB(S) = v(S) if S ⊆ N\B or B ⊆ S.

Neutral collusions, NC. For all (v,B) ∈ VL, B = {B0, ...,Bh+1}, a component B ∈
Br, 0 ≤ r ≤ h, and a component collusion game (vB,B) to (v,B), we have

φi(v,B) = φi(vB,B) for all i ∈ N\B.

We can also consider this axiom as a fairness property but for players outside a component.
Regardless of how players within a component organize their power, as long as the power
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of the coalitions that include all players of the component remains the same, the payoff to
players outside the component does not change.
The next theorem characterizes the per capita Shapley support levels value.

Theorem 3.3. An LS-value φ satisfies E, N, A, JP, and NC if and only if φ equals

ShPCSL.

Proof. Let (v,B) ∈ VL, B = {B0, ...,Bh+1}.
I. Existence: Since ShPCSL is obviously a special case of the weighted Shapley support

levels values, E, N, and A are satisfied by Besner (2022a).
• JP: Let B1, B2 ∈ Bk, 0 ≤ k ≤ h, be such that B1, B2 ⊆ B,B ∈ Bk+1, and all players

i, j, i ∈ B1 and j ∈ B2, are mutually dependent in v. Since all players from B1, B2 are
mutually dependent, in the sum in (4), for a player i ∈ B1 or j ∈ B2, we have only to
regard coalitions T such that B1 ∪ B2 ⊆ T . All other coalitions containing a player i or j
have a dividend of zero.
For each r, 0 ≤ r < k, in (3), the denominator of the fraction equals |Br+1(i)| or |Br+1(j)|,

respectively, for r = k, the denominators of the fractions are equal for i and j, and for r > k,
the fractions are equal for i and j. Therefore, we have KPC

B,T (i) = KPC
B,T (j) for all i, j, i ∈ B1

and j ∈ B2 and the claim follows by (4).
•NC: Let B ∈ Br, 0 ≤ r ≤ h, (vB,B) be a component collusion game to (v,B), S ⊆ N\B

be a coalition of players, and i ∈ S be a player outside of B. Then, in the sum in (4), there
is no difference between summands containing dividends for coalitions T with T ∩ B = ∅
between the games (v,B) and (vB,B) for the player i.
Now, we regard coalitions T such that T = S ∪R, R ⊆ B, R ̸= ∅. For all such T , in (4)

theKPC
B,T (i) are equal and depend not on the coalition function. Since we have vB(T ) = v(T )

if B ⊆ T , we have vB(S ∪ B) = v(S ∪ B) and (v,B) = (vB,B) . Therefore, if a dividend
of such a coalition T changes in vB compared to v, a dividend of one or more such other
coalitions T ′ = S ∪ R, R ⊆ B, R ̸= ∅, must also change.1 In any case, the total amount of
the dividends from all such coalitions remains the same in both games. Thus, since from
these amounts of dividends the player i gets always the same share in both games and this
holds for all S defined above, ShPCSL satisfies NC.
II. Uniqueness: Let φ be an LS-value which satisfies all axioms from Theorem 3.3. By

A and (1), it is sufficient to show that φ is unique for all games ∆v(T )uT , T ∈ ΩN. For all
such games such that ∆v(T ) = 0, φ is unique by N. Let now T such that ∆v(T ) ̸= 0.
The following part of the proof is constructive. For each such T , we always start with the

game ∆v(T )uN , for which φ is unique by JP, and, using the satisfied axioms, we modify
step by step the game to the game ∆v(T )uT , preserving uniqueness.
If T = N , φ is already unique. Let now T ⊊ N . Then there is a highest level r, 0 ≤ r ≤ h,

such that all players of some components Br ∈ Br which are subsets of the same component
Br+1 ∈ Br+1 one level higher are null players in ∆v(T )uT . Note that there exist always
some components of the rth level which are also subsets of Br+1 where not all members are
null players in ∆v(T )uT . We delete all the players from the components Br which contain
only null players in ∆v(T )uT from the coalition N and obtain a new coalition T r

1 . Then,
the game ∆v(T )uT r

1
is a component collusion game to ∆v(T )uN . Therefore, by NC, φ is

unique on the game ∆v(T )uT r

1
for all players i ∈ N\Br+1 again and, by JP, φ is also unique

on ∆v(T )uT r

1
for all players i ∈ Br+1.

1T ′ must always contain S because if we use instead S a proper subset S′ ⊊ S, the dividends must be
already be “balanced” within S′ ∪B due to vB(S

′ ∪B) = v(S′ ∪B).



8

If there are further components of the rth level where all players are null players in
∆v(T )uT , we repeat the same procedure and obtain that φ is unique on the game ∆v(T )uT r

2

and so on. At the end, we have that φ is unique on a game ∆v(T )uT r

k
.

Then there is, eventually, again another highest level ℓ, 0 ≤ ℓ < r, such that all players
of some components Bℓ ∈ Bℓ which are subsets of the same component Bℓ+1 ∈ Bℓ+1 one
level higher are null players in ∆v(T )uT . Again, we apply the same procedure and when
we are done with this level we descend to the next level and so on. If there are no more
components within our unanimity coalition that contain only null players in ∆v(T )uT , the
unanimity coalition is exactly our coalition T and it is shown that φ is unique on the game
∆v(T )uT and the proof is complete.

4 Conclusion

To keep the theoretical foundations of the study as simple as possible, no obvious axiom-
atization of the per capita Shapley support levels value in terms of the weighted support
levels values in Besner (2022a, Proposition 4.5) was undertaken. There is only a need to
replace the weights by the size of the components for the w-weighted dependence between
components property.
Purely for reasons of proof, our two new axioms could also be weakened. It would

be sufficient if the joint productivity property and the neutral collusions property were
formulated only for unanimity games. However, we believe that these axioms are more
meaningful in the form chosen.
We can see the neutral collusions property as an important argument for all parties

involved in the payoff calculation to agree on a value. In particular, smaller or weaker
participants, who rarely have control over all operations at the larger partners, can be
assured that activities in which they are not involved will not rip them off.
From a technical point of view, the neutral collusion property is responsible for the fact

that the LS-values discussed here are preferable to the Shapley value in terms of runtime
complexity. Simply, not all coalitions are needed to compute the payoff (see Besner (2022b)).
Of course, if the components on each level each have the same size, the per capita Shapley

support level value also satisfies the symmetry between components axiom2, which is always
satisfied by the Shapley levels value. Moreover, in this case, the per capita Shapley support
levels value, the LS-value in Gómez-Rúa and Vidal-Puga (2011), and the Shapley levels
value coincide.
Table 1 shows the main characteristics of the three LS-values discussed here. For a

numerical example comparing the three LS-values, we refer to Besner (2022a, Section 5,
Example).

2Two players i, j ∈ N, i ̸= j, are symmetric in v if v(T ∪ {i}) = v(T ∪ {j}) for all T ⊆ N\{i, j}. The
symmetry between components axiom (Winter, 1989) states that if two components of the same level that
are subsets of the same component one level higher are symmetric in a game with the components as
players, the total payoff to all players of the first component is equal to the total payoff to the players of
the second component.

3The Shapley value Sh is here interpreted as an LS-value, the LS-value from Gómez-Rúa and Vidal-Puga
(2011) is denoted here, as a special case of the weighted Shapley hierarchy levels values in Besner (2019),
by ShPCHL.

4The balanced per capita contributions property (Gómez-Rúa and Vidal-Puga, 2011) states that for two
components that are subsets of the same component one level higher, in a game with the components
as players, the change per capita in the payoffs of the players in the first component when the second
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Table 1: Properties of some LS-values3

LS-value Sh ShL ShPCHL ShPCSL

Efficiency + + + +
Null player + + – +
Additivity + + + +
Symmetry between components – + – –
Balanced per capita contributions4 – – + –
Joint Productivity + – + +
Neutral collusions – + + +

5 Appendix

5.1 Logical independence

Remark 5.1. The axioms in Theorem 3.3 are logically independent.

Proof. ❼ E: The LS-value Ψ, given by

Ψi(v, B) = 2 ·
∑

T⊆N,T∋i

KPC
B,T (i)∆v(T ) for all i ∈ N.

where the KPC
B,T (i) are the coefficients defined in (3), satisfies N, A, JP, and NC but

not E.

❼ N: The equal division value ED, interpreted as an LS-value, given by

EDi(v, B) =
v(N)

|N |
for all i ∈ N,

satisfies E, A, JP, and NC but not N.

❼ A: The LS-value ψ, given by

ψi(v, B) :=







0, if i is a null player in v,
v(N)

|{j ∈ N : j is no null player in v|
, otherwise,

for all i ∈ N , satisfies E, N, JP, and NC but not A.

❼ JP: The Shapley levels value ShL satisfies E, N, A, and NC but not JP.

❼ NC: The Shapley value Sh, interpreted as an LS-value, given by

Shi(v B) :=
∑

T⊆N, T∋i

∆v(T )

|T |
for all i ∈ N,

satisfies E, N, A, and JP but not NC.

component leaves the game should be equal to the change per capita in the payoffs of the players in the
second component when the first component leaves the game.
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