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Abstract

We show that
√

n-consistent heteroskedasticity-robust and cluster-robust regression estima-
tors and confidence intervals can be derived from fully Bayesian models of population sampling.
In our model, the vexed question of how and when to “cluster” is answered by the sampling
design encoded in the model: simple random sampling implies a heteroskedasticity-robust
Bayesian estimator, and clustered sampling implies a cluster-robust Bayesian estimator, pro-
viding a Bayesian parallel to the work of Abadie et al. (2017). Our model is based on the Finite
Dirichlet Process (FDP), a well-studied population sampling process that apparently originates
with R.A. Fisher, and our findings may not be surprising to readers familiar with the frequen-
tist properties of the closely related Bayesian Bootstrap, Dirichlet Process, and Efron “pairs” or
“block” bootstraps. However, our application of FDP to robust regression is novel, and it fills a
gap concerning Bayesian cluster-robust regression. Our approach has several advantages over
related methods: we present a full probability model with clear assumptions about a sampling
design, one that does not assume that all possible data-values have been observed (unlike many
bootstrap procedures); and our posterior estimates and credible intervals can be regularized
toward reasonable prior values in small samples, while achieving the desirable frequency prop-
erties of a bootstrap in moderate and large samples. However, our approach also illustrates
some limitations of “robust” procedures.

1 Introduction

Economists usually expect a regression’s unobserved residuals to contain heteroskedasticity, where
the variance is a function of the regressors; or to contain clustered covariances, where correlations
exist within, but not between, known groups or “clusters” of residuals. Heteroskedasticity and clus-
tered covariances do not bias the ordinary least squares (OLS) coefficient estimator. But they do
render OLS inefficient, and they invalidate the classical covariances and confidence intervals auto-
matically produced by most regression programs, which assume homoskedasticity — the absence
of heteroskedasticity or clustered covariances. To draw valid inferences about the regression coeffi-
cients, economists often combine OLS with a “sandwich”1 covariance estimator such as the Eicker
(1967), Huber (1967), and White (1980a) heteroskedasticity-robust estimator (“HC0”) or the Liang
and Zeger (1986) cluster-robust estimator (“LZ”), or various bootstrap methods that are first-order

∗PhD candidate at University of Massachusetts at Amherst. Email: gdlewis@umass.edu
1So called because of their shape, as we’ll see.
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equivalent to these.(Lancaster, 2006) These robust covariance estimators have transformed applied
econometrics, (MacKinnon, 2019) allowing researchers to construct confidence intervals that cap-
ture the true regression coefficients at the nominal rate (e.g. 95% of the time) under relatively
weak regularity assumptions while making essentially no modeling assumptions about the pattern
of covariance between residuals, except to group observations into clusters.2

But why and how, exactly, should a researcher group observations into clusters? And which
covariance estimator should a researcher choose, among the dozens that have been invented?3 More
fundamentally, does using robust covariance estimators merely shirk the necessary task of more fully
modeling the scientific phenomenon at hand — including the residual covariances — as some have
forcefully argued? (Freedman, 2006; King and Roberts, 2015; Leamer, 2010; Meng and Xie, 2014;
Pelenis, 2012; Sims, 2010). These questions are important: Bertrand et al. (2004) established that
different approaches to clustering or modeling residual covariances can yield substantially different
economic conclusions from real panel data, and some approaches appear to be more reliable than
others; in our examples, we will show much the same.

Many of the above questions have been answered authoritatively. However, authoritative an-
swers have disagreed. Our brief and necessarily incomplete overview will largely focus on a literature
where clustering has been particularly relevant: the labor economic literature concerning the ef-
fects of U.S. state policies as measured in monthly or annual U.S. census data on individuals or
households. In this context, Bertrand et al. (2004) use simulations and heuristics to argue that
attempts to parametrically model the residual covariance often fail badly, whereas results are sat-
isfactory if one simply clusters by the cross-section (U.S. state), using the LZ or similar covariance
estimators; this remains a conventional rule of thumb (Cameron and Miller, 2015). Abadie et al.
(2017) and Abadie et al. (2020), in contrast, propose a more formal design-based framework and
derive a different estimator in which uncertainty comes from randomized sampling and treatment
assignment within a fixed population; they conclude that one should usually cluster at the level
at which the treatment is assigned, with the caveat that clustering must be adjusted to account
for whether one has observed the entire population of clusters. J. MacKinnon and Webb (2019)
strongly object to Abadie et al.’s finite population framework, while largely endorsing Abadie et
al.’s advice (and that of Bertrand et al. (2004)), while also saying to the contrary that one should
generally cluster at “at the broadest feasible level” (p.11) — using fewer, larger clusters — another
conventional rule of thumb. J. MacKinnon and Webb (2019) also add that one could try clustering
by both cross-section and time in panel data (p.12). At least in some cases, these different pieces
of advice, or the different lines of reasoning that support them, conflict.

Some of the above advice is simply ambiguous. It may seem pragmatic to cluster “broadly,”
following the intuition that allowing for more observations to be correlated produces wider con-
fidence intervals, and so is in a sense “conservative.” However, in economics there is usually a
plausible argument for clustering even more broadly (are observations from different U.S. states
really independent?); so when should the researcher stop broadening? Broader clustering brings
its own concerns: the fewer the clusters, the more tenuous are the asymptotic approximations
which underpin both sandwich estimators and bootstrap methods (Carter et al., 2017); and from
a decision-theoretic perspective, a policy of increasing the widths of one’s confidence intervals is
not necessarily conservative at all, if there is a cost to professing ignorance about the true param-
eter.(Rice et al., 2008) With the latitude that such ambiguity affords, a researcher may gravitate

2Provided that an asymptotic approximation holds, which it does in many applications, even in moderate samples.
The crucial assumption is that fourth mixed moments of all variables can be consistently estimated.

3See Abadie et al. (2017), Cameron and Miller (2015), and MacKinnon (2019) for reviews.
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toward choosing whatever kind of clustering preserves the statistical significance (or nonsignificance)
that he may desire.

In the above debate about how (and if) to apply sandwich methods, a key source of disagreement
is the very reason that such methods are so useful and popular in econometrics: they are “model
agnostic” — they are not typically derived from a model (a likelihood function, for example) which
specifies the probability distribution of the data-generating process (perhaps up to some normaliz-
ing constant) given unknown parameters. (Buja et al., 2019) Given such a model, there would be
(arguably) less room for debate about estimators: the pattern of covariance is determined by the
model’s parameters, and choosing the parameter-values that maximize the likelihood usually pro-
duces both estimators and confidence intervals that are consistent and asymptotically efficient from
a frequentist perspective;(van der Vaart, 1998) alternatively, placing a prior probability distribu-
tion over the unknown parameters produces a Bayesian posterior distribution that satisfies various
proposed axioms of rationality.(Ramsey, 1926) Moreover, the maximum likelihood confidence in-
tervals and the Bayesian credible intervals would usually tend to converge asymptotically, known
as a Bernstein-von Mises theorem,(van der Vaart, 1998) providing relatively strong guarantees that
whichever method one uses, one’s inferences are approximately correct from both Bayesian and
frequentist perspectives, at least with sufficient data. Accordingly, in this model-guided paradigm,
the debate would be less about the covariance estimator, than about the scientific question of how,
precisely, the data was generated. The challenge, in the model-guided paradigm, is to develop
a plausible model that delivers valid inferences in the presence of heteroskedasticity or clustered
covariances, without pretending to implausible a priori knowledge about the covariance structure.

In this paper we present a Bayesian model-based perspective which may help clarify why and
how to cluster one’s data in both Bayesian and non-Bayesian contexts. Within a simple Bayesian
model of population sampling, we define the regression coefficients β as the “best” (squared-error-
minimizing) linear approximation to the population distribution, following an approach outlined
by Buja et al. (2019) and Szpiro et al. (2010), similar to that of White (1980b). Inference about
these coefficients is necessarily clustered according to sampling: if one’s model specifies simple
random sampling, then the Bayes estimate and credible intervals asymptotically converge to OLS
with the usual heteroskedasticity-robust confidence intervals; and if one’s model specifies clustered
sampling, then the Bayes estimate and credible intervals converge to OLS with the usual cluster-
robust confidence intervals. Much has been made of the difficulty or subjectivity of eliciting the
prior, or indeed of fully modeling the data beyond its first moments; (e.g. see Buja et al., 2019)
but in our case the prior vanishes asymptotically, while the direct logical implication from sampling
model to posterior distribution essentially solves the problem of clustering.

Here is a summary of our main theoretical result. We have the following convergence in posterior
distribution, almost surely under the true data-generating process as the number of sampled clusters
n −→ ∞:

√
n
(

βn − β̂n

)

|yn,Xn
d−→ N

(

0, lim
n→∞

nV̂n

)

(1)

where

V̂n =

(

n
∑

c=1

X⊤
i Xi

)−1 [ n
∑

i=1

X⊤
i ǫ̂iǫ̂

⊤
i Xi

](

n
∑

i=1

X⊤
i Xi

)−1

(2)

Informally, the above expression says that the Bayesian regression coefficients βn given data
(yn,Xn) are asymptotically distributed as a Gaussian random variable whose mean is the OLS
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coefficients β̂n, and whose covariance V̂n is a standard robust covariance estimator constructed from
OLS residuals ǫ̂ and regressors Xi. Here, i indexes the sampling units (not necessarily individual
rows of data) and so the form of sampling directly implies the form of the clustered covariance.

Convergence in distribution does not imply convergence of moments, but under stronger regu-
larity assumptions much like those in White (1980b), one finds consistency of the posterior mean
and posterior covariance of βn.

1.1 Related Bayesian literature

The conventional Bayesian approach to heteroskedasticity and clustered observations is either to
ignore them (Gelman, Hill, et al., 2021, p.154) or to build a conditional model in which the re-
gressors are taken as given (ancillary), and the distribution of the outcome given the regressors
has some parametric distribution, making strong assumptions about the functional dependence of
the covariance on the regressors (Gelman, Carlin, et al., 2020, Chapter 14). Alternatively, Norets
(2015) and Zhao (2015) show that certain classes of Bayesian nonparametric heteroskedasticity
models do produce efficient coefficient estimators and CIs with good coverage rates; unfortunately,
their methods cannot be extended to clustered covariances, and their results critically depend on
correctly estimating the smoothness of the true covariance function, making them substantially
more assumption-heavy than OLS with robust covariance estimators. Conditional modeling has
considerable merits, but we set it aside in this paper. A critical review with simulations appears in
the Appendix.

Various authors have developed quasi-Bayesian interpretations or analogues of robust covariance
estimators. Hoff and Wakefield (2012), Startz (2012), and Yin (2009) achieve their results by
collapsing the data into its first and second sample moments and modeling only these moments.
Because this approach no longer provides a model of the full data-generating process, we set it aside
as well.

In our model, the regression observations (yi, Xi) are jointly drawn from a Finite Dirichlet
Process (FDP). The FDP was first described in a modern Bayesian context by Pitman (1996),
who attributes the model to R.A. Fisher; important work was subsequently done by Ishwaran
and Zarepour (2002) and Muliere and Secchi (2003), but not in a regression context and without
reference to heteroskedasticity. Our theoretical results may not be surprising to readers familiar
with the asymptotic frequency properties of the Dirichlet Process (introduced by Ferguson, 1973)
and the Bayes Bootstrap (due to Rubin, 1981), to which the FDP is closely related and converges in
certain cases. It has been known since at least the work of Hjort (1994) and A. Lo (1987b) that both
the Bayes Bootstrap and Dirichlet Process converge in various senses to the Efron (1979) “pairs”
bootstrap, which is known to have heteroskedasticity robustness properties (Freedman, 1981).

Our work is particularly indebted to the relatively small literature in which the Bayesian
bootstrap and related methods are specifically considered for heteroskedasticity robust regression
(Aitkin, 2008; Chamberlain and Imbens, 2003; Karabatsos, 2016; Lancaster, 2006; Poirier, 2011;
Szpiro et al., 2010). Of these, Karabatsos (2016) is perhaps our nearest precedent, but this pa-
per uses a mixture-of-Dirichlet-Processes model, and when discussing robustness it focuses on an
improper prior in which the model becomes equivalent to the Bayes Bootstrap. No one in this
literature discusses cluster-robust regression in any detail.

Our novel contribution is to show how a fully Bayesian population sampling model (which the
Bayes Bootstrap is not) can deliver inferences which are equivalent to OLS with either heteroskedasticity-
robust or cluster-robust covariance estimators (which the aforementioned Dirichlet Process liter-
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ature does not discuss). This allows us to provide a relatively elementary explanation (one that
does not require empirical process theory) from a Bayesian perspective of how one can address
both heteroskedasticity and clustered correlations, while also having frequency guarantees. Since
the Bayesian Bootstrap and the Dirichlet Process are limiting cases of our model, they are cov-
ered by our results. Other systematic sampling schemes, and formal causal analysis, can also be
incorporated into this framework.

1.2 Notation and Aims

In this section we clarify what we are trying to accomplish and so must introduce some notation.
We will omit measure-theoretic details. Throughout this paper, we will focus on the simplest kinds
of linear regressions, where observations zi = (yi, Xi), with i = 1, 2, . . . , n, are drawn independently
and identically from some (true) data-generating probability distribution P ∗ with expectations
E
∗ that we may think of as an unknown population about which we are seeking inferences; the

distribution of a sequence of datasets is given by an infinite product measure P∗(∞) whose properties
we will stipulate when we need them. To simplify discussion, we will sometimes refer to a generic
observation (yi, Xi) = (y,X).

1.2.1 Notation for heteroskedasticity and clustering

In the heteroskedasticity scenario, we have yi taking values in R and Xi in R
k (as a row-vector), so

that (yi, Xi) can be considered a “row” of observations. In this case, the population P ∗ consists of
j = 1, . . . ,M points (ẙj , X̊j) with associated proportions θj .

In the cluster-robustness scenario, each yi is a column-vector with some dimension Ni, and each
Xi is an Ni × k matrix, so that each observation(yi, Xi) is a “block” of data. In this case, n is the
number of clusters, not the sum of all rows in all clusters.4 We will sometimes stack n observations
in the usual way, writing y := (y1, . . . , yn)

⊤ , and X := (X⊤
1 , . . . X

⊤
n )⊤ .

1.2.2 Our estimand

In both the clustering and the heteroskedasticity case, we hope to draw inferences about a squared-
error-minimizing linear approximation:

β∗ := argmin
β

E
∗
[

(y −Xβ)
⊤
(y −Xβ)

]

= E
∗[X⊤X]−1

E
∗[Xy] (3)

Throughout, we will assume that E
∗[X⊤X] is indeed invertible. In regular cases, an equivalent

definition is β∗ := argminβ E
∗
[

(E∗[y|X]−Xβ)
⊤
(E∗[y|X]−Xβ)

]

, clarifying that we are approxi-

mating the conditional expectation function E
∗[y|X].

If the true conditional expectation does happen to be linear, then E
∗[y|X] = Xβ∗, and so β∗

quantifies the “slope” of the conditional expectation, making β∗ clearly a useful estimand in this
case. However, we need not (and our model does not) assume linearity in order to fit a linear
regression. This perspective is advocated in an recent paper by Buja et al. (2019) and is implicit in

4If Ni may vary in the population from 1 to some maximum size N̄ , then the marginal draws of yi take values
in Y = R

1∪, . . . ,∪RN̄ , and Xi in X = R
1×k∪, . . . ,∪RN̄×k; and jointly, (yi, Xi) takes values in Y × X . The true

conditional expectation E
∗[yi|Xi] can be viewed as mapping an Ni × k matrix Xi ∈ X , to a vector in R

Ni ⊂ Y; the
true conditional variance function V

∗(yi|Xi) maps Xi to a positive semidefinite matrix in R
Ni×Ni ⊂ Y × Y.
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a pivotal paper on the Bayes Bootstrap by Chamberlain and Imbens (2003). This view of regression
perhaps originates in the seminal work of White (1980b), in which heteroskedastic-robust estimators
are presented as generally robust to model misspecification.

1.2.3 Frequentist estimation

In the frequentist literature, a key attraction of choosing β∗ for one’s estimand is that β∗ is relatively
easy to draw inferences about, at least when k remains much smaller than n. As is well-known, the
sample OLS coefficients β̂ := (X′X)

−1
X⊤y are consistent, in the sense that β̂ −→ β∗ in probability

as n −→ ∞, under relatively mild regularity conditions. In particular, consistency does not require
that the conditional distribution of y given X be Gaussian or homoskedastic.

Under slightly stronger regularity conditions, but still without assuming that the conditional
mean or conditional variance functions have any particular functional form, one can construct
consistent confidence intervals for β̂: that is, nominal (1 − α)% intervals around β̂ that (under
hypothetically repeated sampling) capture the true β∗ at a rate rapidly approaching (1 − α)% as

n −→ ∞. To make such confidence intervals, one uses an estimator of the covariance of β̂ such as
that attributed to Eicker (1967), Huber (1967), and White (1980b):

V̂
HC0 (β̂) = (X⊤X)−1

[

n
∑

i=1

X⊤
i ǫ̂

2
iXi

]

(X⊤X)−1 (4)

where ǫ̂i = yi−Xiβ̂ are the OLS residuals. In the case of clustered covariances with c = 1, . . . , C
clusters, using our notation the Liang-Zeger covariance estimator (Liang and Zeger, 1986) is nearly
identical:

V̂
LZ(β̂) = (X⊤X)−1

[

C
∑

c=1

X⊤
c ǫ̂cǫ̂

⊤
c Xc

]

(X⊤X)−1 (5)

where the Nc-vector ǫ̂c and the Nc × k matrix Xc correspond to the Nc rows of observations
in cluster c. In our discussion, we will sometimes use V̂ to generically denote a robust covariance
estimator. A large literature is devoted to variants of the above covariance estimators, with various
“finite-sample” and “degree-of-freedom” corrections; for a review see Cameron and Miller (2015).

1.2.4 When heteroskedasticity matters

To gain a concrete understanding of how heteroksedasticity can cause problems, we briefly consider
the bivariate regression case whereXi = (1, wi) and w is univariate. Focusing on the slope coefficient

β̂2 (usually the parameter of interest),5

5See Buja et al. (2019, p.26) for the first equality.

6



ˆVHC0(β̂2) =
1

n

1
n

∑

i ǫ̂
2
i (wi − w̄)2

(

1
n

∑

i(wi − w̄)2
)2

=
1

n

1
n

∑

i

(

ǫ̂2i − 1
n

∑

j ǫ̂
2
j

)

(

(wi − w̄)2 − 1
n

∑

l(wl − w̄)2
)

(

1
n

∑

i(wi − x̄)2
)2 +

1

n

1
n

(
∑

i ǫ̂
2
i

) (

1
n

∑

i(wi − w̄)2
)

(

1
n

∑

i(wi − w̄)2
)2

=
1

n

ˆCov(ǫ̂2, (w − w̄)2)

V̂ar(x)2
+ V̂

OLS(β̂2) (6)

We recognize the second term as the classical (homoskedastic) OLS variance estimator, written

V̂
OLS(β̂2). Since V̂HC(β̂) is (usually) consistent, we can conclude that V̂

OLS(β̂2) is too small
whenever the first term is positive: that is, when the squared residuals are positively correlated
with (w − w̄)2, the squared distance of the regressor from its mean. In other words, if the linear
model’s fit worsens (either due to increasing variance or nonlinearity) as W gets farther from its

mean, confidence intervals based on the classical V̂OLS(β̂2) would capture the true parameter at
less than the nominal 95% rate.

1.2.5 Bayesian inference

A Bayesian model can be built from 1) a “sampling model” P(dzn|λ) =
∏n

i=1 P (dzi|λ), in which the
n datapoints zn are independently and identically distributed P (·|λ) with unknown parameters λ
in some set Θ, and 2) a prior distribution P(dλ) over the parameters. Together, these produce a
joint distribution P(dzn, dλ), and hence a posterior distribution of the parameters λ given the data
zn. 6.

Within the Bayesian modeling framework, we will write probabilities P, expectations E, and
variances V without asterisks, taking care not to confuse these with their true (data-generating)
counterparts that have asterisks. We take the view that a Bayesian model represents beliefs or
inferences about (“or models”) some true unknown P ∗, setting aside philosophical concerns about
the well-foundedness of P ∗, P or P for the purposes of this paper.

We will define our Bayesian linear regression coefficients just as frequentist econometricians
define their estimand, with

βn := argmin
β

E

[

(y −Xβ)
⊤
(y −Xβ) |λ

]

(7)

, where y and X are distributed according to a distribution P (dy, dX|λ) that we will describe in
greater detail in subsequent sections.

2 Our model: Finite Dirichlet Process

2.1 Sampling model

Suppose z̊ = (̊z1, . . . , z̊M ) = ((ẙ1, X̊1), . . . , (ẙM , X̊M )) is a set of M < ∞ distinct unknown val-
ues with respective unknown proportions θ = θ1, . . . , θM in some population about which we seek

6This holds even when Bayes’ Theorem does not apply. (Polpo et al., 2015, Ch.1)
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inferences. Under simple random sampling with replacement, each observation zi is drawn inde-
pendently and identically from a categorical distribution on the given points z̊ = z̊1, . . . , z̊M with
given probabilities θ = θ1, . . . , θM , which is described by the following probability transition kernel:

P (dzi |̊z,θ) :=
M
∑

j=1

θjδz̊j (dzi) (8)

Recall that the Dirac delta measure δz̊(dz) simply places all prbability at point z̊, and behaves
as
∫

δz̊(dz)f(z) = f (̊z) for any measurable f .
Here, P represents the unknown population. One can think of each z̊j as a collection of numerical

quantities associated with a distinct category j of sampling unit in the population, and θ1, . . . , θM
as proportions of the total population in each category. Unlike basic categorical models, the values
(̊z1, . . . , z̊M ) are not all known before sampling occurs.

In the standard heteroskedasticity scenario, each ẙj takes values in Y = R and each X̊j take
values in X = R

k , so z̊j in Y ×X is essentially a row of regression-variables that would be sampled
as a single unit, perhaps associated with an individual in a population. Naturally, observations zi
also occur in Y × X .

In the cluster-robustness scenario, things are similar, except that each ẙj is a vector of Nj

values, and each X̊j is a matrix of N̊j × k values, so that each (ẙj , X̊j) is a “cluster” of rows
of regression-variables that would be sampled from the population as a single unit. To be more
precise, if N̊j can be any integer from 1 to some maximum cluster size N̄ , then each ẙj takes values

in Y = R
1∪, . . . ,∪RN̄ , and X̊j in X = R

1×k∪, . . . ,∪RN̄×k.7

2.1.1 What constitutes a cluster?

In this model, “clustering” is determined by our population of interest and how it is being sampled.
If we are conducting a simple random cross-sectional sample of people from a population, then each
(ẙj , X̊j) is a single “row” of data for person j. If are randomly cross-sectionally sampling entire
households from the population and collecting data on each member of the household, then each
household is a cluster of size N̊j with observations(ẙj , X̊j).

Data-generating processes like the above seem to describe a wide variety of social-science sce-
narios where we are sampling individuals or groups of individuals from a finite population. We
conjecture that our model may also approximate sampling without replacement in large-population
cases, similar to the closely related models by A. Lo (1987a) and Aitkin (2008), an extension that
we may consider in a later paper.

2.2 Regression functional

The parameters z̊,θ themselves are not necessarily of great interest, but they can be used to define a
wide range of quantities of interest. Here, we focus on the usual least squares regression functional,
assuming throughout that

∑M

j=1 θjX̊
⊤
j X̊j is (almost surely) invertible:

7Probability distributions on Y×X are not hard to construct from standard probability distributions: for example,
first draw N̊j from some probability distribution on 1, . . . N̄ , then draw the N̊j “rows” of (ẙj , X̊j) independently from
some standard 1 + k-dimensional distribution. Since these are finite unions of standard Borel spaces, they do not
raise any concern about measurability.
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β(̊z,θ) := argmin
β

E

[

(y −Xβ)
⊤
(y −Xβ) |̊z,θ

]

=





M
∑

j=1

θjX̊
⊤
j X̊j





−1
M
∑

j=1

θjX̊
⊤
j ẙj (9)

The prior and posterior distributions of z̊,θ induce prior and posterior distributions of β. The
exact distribution of β is hard to characterize in closed form, but easy to draw samples from, since
both the prior and the posterior z̊,θ are easy to sample from.

Other parameters could be derived by minimizing other objective functions, in a Bayesian par-
allel to frequentist “M-estimators” (see Chamberlain and Imbens 2003). We would expect such
parameters to have similar robustness properties to this one.

2.3 Priors

In Bayesian reasoning, all unknowns need prior probability distributions. We assign the vector
of unknown population proportions θ the usual conjugate Dirichlet distribution on the M − 1-
dimensional simplex:

Dir(dθ|α1, . . . , αM ) =
Γ(
∑

k αk)
∏

k Γ(αk)

M
∏

k=1

θαk−1
k dθ (10)

with the Dirichlet distribution parameters αj > 0 all fixed at αj = α/M; here,Γ represents the
Gamma function.

The unknown population-values are given independent and identical priors:

z̊j
iid∼ F (11)

for some distribution F on Y × X that has no atoms and has positive density everywhere.8 Con-
cretely, to draw a single z̊j from F , the analyst might start with a fixed prior “best guess” of the

regression slope β̊0, then draw N̊j from some prior (fix N̊j = 1 in the heteroskedasticity case),

then draw the N̊j rows of X̊j independently from some suitable k-dimensional distribution with
full support, then draw ǫ̊j from some distribution (independently of Xj , for simplicity) with full

support on R
Nj and mean zero, then define the N̊j elements of ẙj as ẙj = Xjβ0+ ǫ̊j . Other schemes

could be devised; the main requirement is that they have full support on Y × X .
Putting it all together, we will write the prior distribution as follows:

Π0(dθ, d̊z) = Dir(dθ|α1, . . . , αM )

M
∏

k=1

F (dz̊k) (12)

These priors bear some explanation. As we will see from the posterior distribution, the param-
eters αj can be interpreted as “counts” of (hypothetical) observations of the unknown population-
values z̊j . It makes sense to set αj = α

M
, since this is symmetric and keeps the sum of our prior

counts
∑

j αj invariant with respect to the number of latent points M ; we do not want our “total
prior data” to automatically increase with M .

8In the cluster case, I have in mind that every cluster-size Nj up to some N̄ is given positive probability, and for any

given cluster size the observations (ẙj , X̊j) are drawn iid from a standard distribution with a (Lebesgue-dominated)
density that is positive everywhere.

9



The fixed parameter α essentially governs the “concentration” of the population; the smaller it
is, the greater prior certainty we have that the population is concentrated at fewer values (a few θj
are relatively large while the rest are small).

The distribution F describes one’s prior expectations about how the population values are
distributed, as we will see from the prior predictive distribution. The non-atomicity of F is simply
a logical requirement: if z̊j are independently and identically distributed as F but we also want
them to be distinct (almost surely), then their distribution can have no atoms.

The postulated number of distinct values M could be endowed with a prior, but for simplicity
we consider it fixed at some sufficiently large value in any given analysis. We will discuss this more
in our section on asymptotics, showing that the precise value of M matters little.

2.4 Prior Predictive Distribution

The prior predictive distribution is helpful for understanding the prior and is essential for defining
the posterior distribution. We will derive it here.

For a single predicted value z, the prior predictive distribution is defined (Mazzi and Spizzichino
in Polpo et al. (chapter by Mazzi and Spizzichino, 2015)) as any probability measure P0(dz) that
satisfies

∫

P0(dz)h(z) =

∫

Π0(dθ, d̊z)

∫

P (dz |̊z,θ)h(z) (13)

for any arbitrary measurable function h(z) taking values in R. Here,

∫

P0(dz)h(z) =

∫

Dir(dθ|α1, . . . , αM )

∫ M
∏

k=1

F (dz̊k)
∑

j

θj

∫

δz̊j (dz)h(z) (14)

∑

j

αj
∑

k αk

∫

F (dz̊j)h(̊zj) (15)

=

∫

F (dz̊j)h(̊zj) (16)

using the fact that αj =
α
M

.
Thus, the prior predictive distribution is simply F . This is why we say that F represents one’s

prior “best guess” about the population distribution.

2.5 Posterior Distribution

Given observed data zn = z1, . . . , zn consisting of m distinct values z̃1, . . . , z̃m with respective
multiplicities n1, . . . , nm such that

∑m

j=1 nj = n and m ≤ M , we learn that the “first” m popula-
tion values z̊1, . . . , z̊m are fixed at the observed values z̃1, . . . , z̃m, respectively, which we represent
using Dirac delta distributions δz̃1(dz̊1), . . . , δz̃m(dz̊m). We learn nothing about the remaining un-
observed population values z̊m+1, . . . , z̊M , each of which retains the distribution F , independently
and identically. Given the data zn and z̊, the conditional posterior distribution of θ is Dirichlet,
with the observed counts added to the “prior counts,” much as in a standard Multinomial-Dirichlet
categorical model.

Putting it all together, we may write the posterior distribution as

10



Πn(dθ, d̊z|zn) = Dir(dθ|α/M + n1, . . . α/M + nm, α/M, . . . , α/M)

m
∏

j=1

δz̃j (dz̊j)

M
∏

k=m+1

F (dz̊k) (17)

In (arbitrarily) picking the “first” m population-values specifically, we have rather freely used a
property of our model called exchangeability to make the above expression as simple as possible, and
arguably simpler. The true expression contains expressions like the above, but within a sum of all
possible ways to assign population values to observed points. All of these assignments are equivalent
in a precise sense, allowing us to pick one assignment arbitrarily. In the technical appendix, we
discuss exchangeability and show that our simplification does not affect any meaningful posterior
inferences.

A more formal argument

As Ishwaran and Zarepour (2002) write, Corollary 20 in Pitman (1996) states that for the Fisher
model that we use, given distinct observed values z̃1, . . . , z̃m with multiplicities n1, . . . , nm, the
kernel P (dz) can be represented in the following way:

P |zn =
m
∑

j=1

πjδz̃j (dz) + πm+1P̊ (dz) (18)

where
(π1, . . . , πm, πm+1) ∼ Dir(α/M + n1, . . . , α/M + nm, (M −m)α/M) (19)

independently of

P̊ (dz) :=

M−m
∑

k=1

λkδz̊j (·) (20)

with iid z̊k ∼ F (·) and (λ1, . . . , λM−m) ∼ Dir(α/M, . . . , α/M).
Picking up where Isharan and Zarepour leave off, we observe that λ1, . . . , λM−m are essen-

tially proportions that subdivide or “decimate” the variable πm+1. Since both λ1, . . . , λM−m and
(π1, . . . , πm, πm+1) are jointly Dirichlet, and moreover πm+1 corresponds to parameter (M −m)α/M =
∑M−m

k=1 α/M , we may apply the “decimation” or “expansion” rule for Dirichlet distributions, (see
Zhang (2008)), yielding:

(π1, . . . , πm, πm+1λ1, . . . , πm+1λM−m) ∼ Dir(α/M + n1, . . . , α/M + nm, α/M, . . . , α/M) (21)

So in the posterior distribution,

P (dz|θ, z̊) =
m
∑

j=1

θjδz̃j (dz) +

M
∑

k=m+1

θkδz̊j (dz) (22)

with
θ ∼ Dir(α/M + n1, . . . α/M + nm, α/M, . . . , α/M) (23)

and iid z̊k ∼ F (·) for k = m+ 1, . . . ,M .
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2.6 Posterior Predictive distribution

The posterior predictive distribution is helpful for understanding the posterior distribution, and also
the effect (and therefore the meaning) of the prior distribution. It also allows us to draw connections
to other closely-related models, and to begin considering our model’s asymptotic properties.

Let h be any integrable real-valued function of a single prediction z. The posterior predictive
distribution is fully characterized by the following expectation:

E[h(z)|zn] =

∫

Πn(dθ, d̊z|zn)
∫ M
∑

l=1

θlδz̊l(dz)h(z)

Using the posterior Πn that we have just derived,

E[h(z)|zn] =
∫

Dir(dθ|α/M+n1, . . . α/M+nm, α/M, . . . , α/M)

[

m
∑

l=1

θlh(z̃j) +

M
∑

l=m+1

θl

∫

F (dz̊l)h(̊zl)

]

(24)
Taking the expected value of the Dirichlet vector and rearranging,

E[h(z)|zn] =
n

n+ α





1

n

m
∑

j=1

njh(z̃j)



+
α

n+ α

m

M





1

m

m
∑

j=1

h(z̃j)



+
α

n+ α

M −m

M
E0[h(̊z)] (25)

So the posterior expectation of h(z) is a weighted average of, from left to right, 1) the sample
mean, 2) the mean of the distinct observed values, and 3) the prior expectation, with weights that
sum to one.

If the model “saturates” and m = M , then then the posterior expectation comprises the first
two terms only:

n

n+ α





1

n

m
∑

j=1

njh(z̃j)



+
α

n+ α





1

m

m
∑

j=1

h(z̃j)



 (26)

This is the posterior predictive mean of a basic multinomial model supported on M known
points with a symmetric Dirichlet prior with parameter α/M , to which the model reduces in this
case. In comparison to the basic multinomial, the posterior mean of the FDP generally takes M−m

M

away from the weight of the mean of the population points and gives it to the prior mean, reflecting
the lack of prior certainty about the unknown points.

The mean of distinct values, 1
m

∑m

j=1 h(z̃j) in the second term, introduces a bias toward “more
uncertain” (i.e. higher-entropy) distributions on the observed points. Desirable or not, this bias
is usually small. As m approaches n, the mean of distinct values approaches the simple mean, so
the term introduces less bias as its weight α

n+α
m
M

increases. Furthermore, in many applications
M >> m, making the term’s contribution quite small. In fact, taking M −→ ∞, the second term
of (25) vanishes and we have the posterior predictive mean of a Dirichlet Process (DP):

n

n+ α





1

n

m
∑

j=1

njh(z̃j)



+
α

n+ α
E0[h(̊z)] (27)
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Because in the “M −→ ∞” case the prior predictive distribution of the FDP is simply F , also as
in a DP, and furthermore the DP is the only distribution with these prior and posterior predictive
distributions (A. Y. Lo, 1991), this observation functions as a simple demonstration that the FDP
converges weakly (see Muliere and Secchi, 2003)to the DP as M −→ ∞. Indeed, this gives us license
to consider M −→ ∞ as a well-defined Bayesian model. In comparison to the DP, the posterior
mean of the FDP takes m

M
from the weight of the prior mean and adds it to weight of the mean of

the distinct observed values, making the FDP slightly more responsive to the data than the DP.
If α −→ 0 (an improper prior), then the posterior distribution reduces to a Bayes Bootstrap,

with a posterior mean equal to the sample mean. In this case, F has no effect on inferences; for
this reason, this may be considered a “noninformative prior.”

2.7 Posterior Distribution of the Regression Functional

Recall that our main quantity of interest is the regression functional

β(̊z,θ) =





M
∑

j=1

θjX̊
⊤
j X̊j





−1
M
∑

j=1

θjX̊
⊤
j ẙj (28)

, and that in the posterior distribution,

(θ1, . . . , θm, θm+1, . . . , θM ) ∼ Dir(α/M + n1, . . . , α/M + nm, α/M, . . . , α/M) (29)

while the variables (X̊j , ẙj) for 1 < j ≤ m are fixed at the observed values (X̃j , ỹj) , and the

remaining (X̊k, ẙk)
iid∼ F (dX̊k, dẙk) for m < k ≤M .

2.7.1 A convenient representation using Gamma-distributed variables

The above construction with Dirichlet variables is inconvenient mathematically because the θj
are correlated, and inconvenient computationally because many θj may be very small when n is
large, causing numerical underflow. Like Lancaster (2006), we will use the well-known fact that
any Dirichlet vector (θ1, . . . , θM ) ∼ Dir(α1, . . . , αM) can be equivalently defined as θj =

gj∑
M
k=1

gk

using independent Gamma-distributed random variables gk ∼ Gamma(αk, 1)
9. We divide out

the denominators
∑M

k=1 gk in the regression functional, which will render the terms of the sums
independent and simplify our analysis considerably.

Then the posterior regression functional is:

β =





m
∑

j=1

gjX̃
⊤
j X̃j +

M
∑

k=m+1

gkX̊
⊤
k X̊k





−1 



m
∑

j=1

gjX̃
⊤
j ỹj +

M
∑

k=m+1

gkX̊kẙk



 (30)

with gj ∼ Gamma(nj + α/M, 1) for 1 ≤ j ≤ m and gk ∼ Gamma(α/M, 1) for m < k ≤ M , with

(X̊k, ẙk)
iid∼ F (dX̊k, dẙk), and with X̃, ỹ fixed.

For more compact notation, we can collect gj ∼ Gamma(nj + α/M, 1) for 1 ≤ j ≤ m into the

diagonal matrix G̃ , and collect gk ∼ Gamma(α/M, 1) for m < k ≤ M into the diagonal matrix G̊.
Writing X̃ = (X̃⊤

1 , . . . , X̃
⊤
m)⊤, ỹ = (ỹ1, . . . , ỹm)⊤, and similarly for the X̊k, ẙk variables, we have:

9We use the “shape-scale” parametrization, so that E[gk] = V(gk) = αk.
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β =
[

X̃⊤G̃X̃+ X̊⊤G̊X̊
]−1 [

X̃⊤G̃ỹ + X̊⊤G̊ẙ
]

(31)

2.7.2 The posterior is a weighted average of the prior and the data

The following quantity behaves much like a Bayes Bootstrap OLS estimator (see Lancaster, 2006)
and ultimately carries the influence of the data, and the desirable asymptotic properties of our
model:

β̃ :=
[

X̃⊤G̃X̃
]−1

X̃⊤G̃ỹ (32)

Let us show how β is a weighted average of β̃ and a prior regression parameter β̊0. Without loss
of generality, we may suppose that the prior is of the form we suggested earlier, with ẙj = X̊j β̊0+ ǫ̊j
for some fixed “prior best guess” slope parameter β̊0 and some error term ǫ̊j such that E[̊ǫj |X̊, G̊] = 0.
Then

β =

[

1

n
X̃⊤G̃X̃+

1

n
X̊⊤G̊X̊

]−1(
1

n
X̃⊤G̃X̃

)

β̃ + (33)

[

1

n
X̃⊤G̃X̃+

1

n
X̊⊤G̊X̊

]−1(
1

n
X̊⊤G̊X̊

)

β̊0 + (34)

[

1

n
X̃⊤G̃X̃+

1

n
X̊⊤G̊X̊

]−1
1

n
X̊⊤G̊̊ǫ (35)

We see that the posterior β is a weighted average of 1) the bootstrap-like β̃ which contains the

contribution of the data, 2) the prior expectation β̊0, and 3) a mean-zero error term X̊⊤G̊̊ǫ. The
weights X̃⊤G̃X̃ and X̊⊤G̊X̊ have the form of the classical least squares precision, and so can be
interpreted naturally as describing the informativess of the data and the prior, respectively.

2.7.3 Computation of the posterior distribution

Equation (30) suggests a straightforward weighted bootstrap procedure for simulating directly from
the posterior distribution. Repeat the following s = 1, . . . , S times:

1. Draw g
(s)
j ∼ Gamma(nj + α/M, 1) for 1 ≤ j ≤ m, and g

(s)
k ∼ Gamma(α/M, 1) for m < k ≤M ,

all independently.

2. Draw (X̊k, ẙk)
(s) iid∼ F (dX̊k, dẙk) for m < k ≤M , for some user-specified F .

3. Construct β(s) as in 30. This is a simple weighted least squares computation, where the
weights are given by the Gamma variables gi, and some of the “data” are (X̊k, ẙk)

(s) drawn
from the prior.

To approximate the posterior expectation
∫

h(β)Πn(dβ|zn) for an arbitrary function h, one can use

the Monte Carlo estimate 1
S

∑S

s=1 h(β
(s)).

14



3 Asymptotics

We will consider infinite sequences of datasets (zn) of n observations, with each observation drawn
independently and identically from some unknown distribution P ∗. The sequence of datasets is
drawn from some true product distribution P

∗∞. For each dataset zn, we consider a single poste-
rior distribution Πn(dθn, d̊zn|zn) of the parameters θn, z̊n, as defined above, inducing a posterior
distribution of the least squares functional βn = βn(θn, z̊n). We will not assume that the model
is correct; there need not exist any λ∗ ∈ Θ such that P (dzi|λ∗) = P ∗. Our general strategy is as
follows:

1. Observe that under plausible regularity conditions such as those in (White, 1980b), the se-
quence of datasets(zn) has certain limit properties P

∗∞-almost surely, namely that the OLS

coefficients β̂n and the (scaled) robust covariance estimator nV̂n are well-defined and consis-
tent estimators. Assume that these conditions hold.

2. Show that for any given sequence (zn) with the above limiting properties, the sequence of

posterior distributions converges:
√
n
(

βn − β̂n

)

|zn d−→ N (0, limn→∞ nV̂n), under some mild

regularity assumptions on the prior. So the regression coefficients βn converge in posterior
distribution to a Gaussian random variable with mean β̂n and covariance V̂n.

3. [Not yet done] We would like to formally conclude that the posterior mean E [βn|zn] is a√
n-consistent estimator. As described in van der Vaart (1998, p.17), asymptotic uniform

integrability of
√
nβn|zn10 is the necessary and sufficient condition to ensure that the posterior

expectation of
√
nβn|zn also converges,

√
nE [βn|zn]−

√
nβ̂n −→ 0. Since β̂n is

√
n-consistent,

we could then conclude that
√
nE [βn|zn]−

√
nβ∗ −→ 0.

4. [Not yet done] As above, under further regularity conditions the sequence

(

n
(

βn − β̂n

)(

βn − β̂n

)⊤
)

is asymptotically uniformly integrable, ensuring that that nV [βn|zn]−nV̂n −→ 0. This allows
us to conclude that the posterior covariance does converge as suggested above.

3.1 Asymptotic regimes

We will consider several asymptotic regimes in which data within each dataset are drawn indepen-
dently and identically from some unknown distribution P ∗, for the usual “triangular array” of data
with increasing n. Recall that our model supposes that observations can take up to M <∞ distinct
values; mn represents the number of distinct values in the sample.

• Regime 0: As n increases, the number of distinct observations in the sample, mn, eventually
exceeds our model’s assumed total number of distinct values M and cause the model to fail.

• Regime 1: As n increases, the nondecreasing mn eventually reaches some true number of
distinct values M∗ ≤M in the population and stops increasing.

10A sequence (Wn) of random variables is asymptotically uniformly integrable if
limb→∞ lim supn→∞

E [|Wn|1 [|Wn| > b]] < ∞. This essentially requires that the tails of the distribution of
Wn contribute little to its mean for sufficiently large n. This is not especially difficult to obtain in realistic settings;
a sufficient condition for uniform integrability (and hence asymptotic uniform integrability) is that the sequence be
(uniformly) Lp-bounded for p > 1 (Cinlar, pp. 72); that is, E[|Wn|

p] < ∞ for all n.
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• Regime 2: As n increases, the nondecreasing mn continues increasing without bound; how-
ever we also allow Mn to increase with n, setting Mn = bn for some b ≥ 1.

• Regime 3: Informally, one could consider first taking Mn −→ ∞, yielding a Dirichlet Process
(Muliere and Secchi, 2003), then allowing n to increase, with mn nondecreasing however we
like.

Regime 0 is unlikely to pose a problem in practice. If, as is often the case in economics, observations
are sampled from a population that is large but finite, then it always possible in principle to set
M large enough that it will never be exceeded, particularly for sample sizes that economists will
actually see. Consequently, we will set Regime 0 aside.

Regime 1 is not problematic for our model. However, a non-increasing mn may not be partic-
ularly relevant to many economic studies, in which the true number of possible data-values M∗ is
much larger than n, and so mn increases with n. Here, the problem is similar to that described
in Abadie et al. (2017), who also consider increasingly large samples in a finite population. They
argue that in most social science applications, the relevant asymptotic regime is not the one where
the entire population is sampled.

Regime 2 is similar to that of Abadie et al. (2017), who consider a sequence of increasingly large
populations as n increases. Regime 2 need not be taken as an un-Bayesian procedure to increase the
prior parameter M as n increases in any given analysis; rather, it is a way of considering a sequence
of analyses of increasingly large datasets, none of which has yet exhausted the set of distinct values in
the model. Another interpretation of Regime 2 is that it approximates the Dirichlet Process model,
a fully Bayesian model to which our model converges as M increases without bound (Muliere and
Secchi, 2003), indicating that this approach is valid. Since the Dirichlet Process model is necessarily
simulated using finite models like ours as approximations, our analysis will give us a concrete idea
of how the simulated regression functional depends on the size (M) of our approximating model
and sample size.

Regime 3 considers the case where we essentially use the Dirichlet Process itself (Muliere and
Secchi, 2003). The following discussion applies to this case as well.

3.1.1 Lemma: we can focus on the bootstrap-like β̃ in any asymptotic regime

Here, we will show that
(

1
n
X̊⊤G̊X̊

)

and 1√
n
X̊⊤G̊̊ǫ in (34) and (35) vanish asymptotically, for any

data-generating distribution and any asymptotic regime. This allows us to focus attention on β̃.

Consider 1√
n
X̊⊤G̊X̊ = 1√

n

∑Mn

k=mn+1 gkX̊
⊤
k X̊k, where gk

iid∼ Gamma(α/Mn, 1) and (ẙk, X̊k)
iid∼ F .

All of the following expectations and variances are with respect to the posterior distribution. Notice
that X̊⊤

k X̊k is always a k×k matrix, even in the cluster case. Suppose that in the prior distribution,

E[X̊⊤
k X̊k] and V

(

(

X̊⊤
k X̊k

)

i,j

)

are finite and constant across k formn < k ≤Mn. We will explicitly

subscript mn and Mn to emphasize that in some regimes they increase with n. Then

E[
1√
n

Mn
∑

k=mn+1

gkX̊
⊤
k X̊k] =

1√
n
(Mn −mn)

α

Mn

E[X̊⊤
k X̊k] (36)

Above, we see that the mean diminishes to zero as n increases in Regimes 1, 2, and 3.
For the variance, we consider the i, jth element of the matrix X̊⊤

k X̊k:
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V

(

1√
n

Mn
∑

k=mn+1

gk

(

X̊⊤
k X̊k

)

i,j

)

=
1

n
V

(

E

[

Mn
∑

k=mn+1

gk

(

X̊⊤
k X̊k

)

i,j
|X̊
])

+
1

n
E

[

V

(

Mn
∑

k=mn+1

gk

(

X̊⊤
k X̊k

)

i,j
|X̊
)]

1

n
V

(

Mn
∑

k=mn+1

α

M

(

X̊⊤
k X̊k

)

i,j

)

+
1

n
E

[

Mn
∑

k=mn+1

α

M

(

X̊⊤
k X̊k

)2

i,j

]

(37)

1

n

(

α

Mn

)2

(Mn −mn)V

(

(

X̊⊤
k X̊k

)

i,j

)

+
1

n

α

Mn

(Mn −mn)E

[

(

X̊⊤
k X̊k

)2

i,j

]

(38)

Similar to above, we see that the covariance matrix converges elementwise in probability to zero
as n increases, in Regimes 1, 2, and 3.

By Chebyshev’s inequality, 1√
n
X̊⊤G̊X̊ −→ 0 in posterior probability.

The same reasoning applies to 1√
n
X̊⊤G̊̊ǫ.

By the continuous mapping theorem, we have rapid convergence in posterior probability:

√
n
(

βn − β̃n

)

p−→ 0 (39)

for any data sequence with (zn) with mn and Mn behaving as specified in Regimes 1,2, or 3. This
will allow us to derive asymptotic results for β̃n that we can transfer to βn.

3.1.2 A Bernstein von Mises theorem

Here, we derive a central limit theorem for the Bayesian posterior distribution given a fixed sequence
of datasets ((y,X)n). For conciseness, we use E[·] and V(·) to denote expectations and variances
under the posterior distribution, leaving it implicit that we condition on y,X.

We begin by relating the Bayesian β̃ :=
[

X̃⊤G̃X̃
]−1

X̃⊤G̃ỹ to the OLS β̂. First define the

residuals of the distinct observed values. ˆ̃ǫ := ỹ − X̃β̂. Then β̃ = β̂ +
(

X̃⊤G̃X̃
)−1

X̃⊤G̃ˆ̃ǫ, so we

can construct the variable that will have a normal limiting distribution:

√
n
(

β̃ − β̂
)

=

(

1

n
X̃⊤G̃X̃

)−1
1√
n
X̃⊤G̃ˆ̃ǫ (40)

Taking this apart, we begin by considering sequences of 1√
n
X̃⊤G̃ˆ̃ǫ = 1√

n

∑mn

j=1 g̃jX̃
⊤
j
ˆ̃ǫj , with

g̃j ∼ Gamma(nj + α/Mn, 1). For a central limit theorem, we prefer to work with sums of n terms,
so we use the fact that each Gamma-distributed g̃j is equal in distribution to the sum g̊j +

∑nj

i=1 gji
for independent g̊j ∼ Gamma(α/Mn, 1) and gji ∼ Gamma(1, 1), so with a slight abuse of notation,

1√
n
X̃⊤G̃ˆ̃ǫ =

1√
n

n
∑

j=1

gjX
⊤
j ǫ̂j +

1√
n

mn
∑

j=1

g̊jX̃
⊤
j
ˆ̃ǫj (41)
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Keeping the data fixed, this has following posterior mean:

µ̄n =
1√
n

n
∑

j=1

X⊤
j ǫ̂j +

α

Mn

1

n

mn
∑

i=1

X̃⊤
i
ˆ̃ǫi =

α

Mn

1

n

mn
∑

i=1

X̃⊤
i
ˆ̃ǫi (42)

where the first term vanishes due to the orthogonality of X and the residuals. The posterior
variance is:

Q̄n =
1

n

n
∑

i=1

X⊤
i ǫ̂iǫ̂

⊤
i Xi +

α

Mn

1

n

mn
∑

i=1

X̃⊤
i
ˆ̃ǫiˆ̃ǫ

⊤
i X̃i (43)

Notice that the first term of (43) is the center of the robust covariance estimator; we need the
second term to vanish.

We assume that we are Regimes 1, 2, or 3 , and that the following hold:

1. Asymptotic non-colinearity: 1
n

∑n

i=1X
⊤
i Xi −→ E

∗[X⊤X], where E
∗[X⊤X] is positive defi-

nite.

2. Bounded mixed fourth moments of X: limn→∞
1
n

∑n

i=1

(

X⊤
i Xi

)2

j,k
<∞ for all j , k.

3. Second moments of distinct residuals vanish when multiplied by α
Mn

mn

n
:

(

α

Mn

mn

n

)

(

1

mn

mn
∑

i=1

X̃⊤
i
ˆ̃ǫi

)

−→ 0 (44)

4. Fourth mixed moments of distinct residuals vanish when multiplied by α
Mn

mn

n
:

(

α

Mn

mn

n

)

(

1

mn

mn
∑

i=1

X̃⊤
i
ˆ̃ǫiˆ̃ǫ

⊤
i X̃i

)

−→ 0 (45)

5. Asymptotic variance is well defined: limn→∞
1
n

∑n

i=1X
⊤
i ǫ̂iǫ̂

⊤
i Xi = Q, where Q is positive

definite and finite.

6. Levy condition: For all i, limn→∞
(

nQ̄n

)−1
V(wi) = 0

Assumption 3) implies µ̄n −→ 0. Assumption 4) implies Q̄n −→ Q. Then Assumptions 3-6 provide
the conditions for the multivariate Lindberg-Levy Central Limit Theorem (Greene, 2012), so that
as n −→ ∞,

1√
n
X̃⊤G̃ˆ̃ǫ|yn,Xn

d−→ N (0, Q) (46)

Now we turn to the other constituent of β̃ and show that it converges in posterior probability.
Assumption 1) implies E[ 1

n
X̃⊤G̃X̃] −→ E

∗[X⊤X]. Since

V

(
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1
n
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n2
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, Assumption 2) implies V
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−→
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0. Then by Chebyshev’s inequality, 1) and 2) imply the following convergence in posterior proba-
bility as n −→ ∞:

1

n
X̃⊤G̃X̃

p−→ E
∗[X⊤X] (47)

By Slutsky’s Lemma and the continuous mapping theorem, (46) and (47) imply:

√
n
(

β̃ − β̂
)

|yn,Xn
d−→ N

(

0,E∗[X⊤X]−1QE
∗[X⊤X]−1

)

(48)

By (39), we can substitute β for β̃, above.

Discussion of the conditions

Assumption 1), which ensures non-collinearity, Assumption 2, which assumes that the fourth mixed
moments of the X distribution are finite, and Assumption 5), which ensures a well-defined asymp-
totic variance, are all standard assumptions for frequentist robust regression, holding P

∞
∗ -almost

surely under regularity conditions used by White (1980b). Assumptions 3) and 4) are not standard,
but they clearly hold P

∞
∗ -almost surely under the White (1980b) regularity conditions in Regime

1 (where mn eventually reaches an upper bound less than M), Regime 2 (where Mn = bn where
b ≥ 0) and Regime 3 (the Dirichlet Process case). Given assumptions 3) and 4), Assumption 6 is
simply the standard Levy condition that each variance is vanishingly small compared to the sum of
variances, also holding P

∞
∗ -almost surely under standard assumptions. This allows us to conclude

that (48) holds P
∞
∗ -almost surely.

4 Simulations

4.1 Heteroskedasticity

In very small samples, using our method with a well-informed (i.e. fairly accurate concerning the
true slope) prior may substantially improve the coverage rate of Bayesian CIs in comparison to
White’s HC0 intervals. A poorly-informed prior would probably worsen the coverage rate.

Table 1: Coverage Rates: Bayes vs. HC0 - Small sample, good prior

Coeff Coverage Bayes Boot Coverage Hc0

1 1 0.839
2 1 0.833

Using 10000 simulated datasets of size n = 10. Prior slope = 0.9; true slope = 1

In small-to-moderate samples, there may be worse coverage, perhaps due to higher-order asymp-
totics.

In moderate-to-large samples, even poorly informed priors are washed out and the posterior
coefficient estimates and standard errors are numerically very close to OLS with HC0, which has
good coverage rates.
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Table 2: Coverage Rates: FDM vs. HC0 - Small sample, good prior

Coeff Coverage Bayes Boot Coverage Hc0

1 0.907 0.931
2 0.905 0.927

Using 10000 simulated datasets of size n = 100. Prior slope = 0.9; true slope = 1

Table 3: Bayes vs. HC0 - one moderate sample

Coeff OLS Estimate Bayes Estimate HC0 SE Bayes SE

1 0.009 0.011 0.045 0.044
2 1.014 1.009 0.072 0.072

Using 1 simulated datasets of size n = 500. Prior slope = 0; true slope = 1

5 Discussion

Our assumed sampling process tells us how to handle clustering: simple random sampling implies
a heteroskedasticity-robust Bayesian estimator, and clustered sampling implies a cluster-robust
Bayesian estimator. This provides a plausible phyiscal explanation of why one would have indepen-
dent error terms (in the heteroskedasticity case), or error terms that are correlated within clusters
but independent between clusters (in the clustered case). We assume that we know very little about
the shape of the conditional variance function and even the conditional mean function, which is in
many cases more plausible than assuming linearity and homoskedasticity.

The discreteness and finiteness of our model may be viewed as disadvantageous, but they are
simple consequences of the assumption that we are sampling from a finite, discrete population, which
is usually the case in the social sciences. Many other sampling designs could be contemplated in
a framework similar to this one, and we may pursue some of these in a later paper. Perhaps most
relevant among these is sampling without replacement, which we have strong reason to believe will
yield similar results to the above model, owing to the well-known convergence of the hypergeometric
to the multinomial as the number of categories increases (A. Lo, 1987a).

Our findings can be read as shining a critical light on common uses of robust standard errors.
Economists frequently use sandwich estimators or their equivalents in cases where sampling is
far more complex than the simple random sampling or clustered sampling described here, or in
panel data with complex time dependencies in sampling or treatment assignment; or indeed where
sampling is not systematic at all. Narrowly construed, the arguments we develop here do not
support any particular clustering scheme in these cases; rather, one may need to construct a more
complex model of how the data actually came to be.

Authors with Bayesian and other model-based perspectives have raised thoughtful objections
to the use of robust standard errors. King and Roberts (2015) have argued that “Robust Standard
Errors Expose Methodological Problems They Do Not Fix,” to quote their paper’s title (see also
Freedman, 2006; Leamer, 2010; Meng and Xie, 2014; Pelenis, 2012; Sims, 2010). These authors
point out various ways that robust standard errors, whenever they substantially differ from classical
standard errors (and traditional Bayesian credible intervals), provide evidence that one’s model is
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inefficient at best, and possibly misspecified to the point of being grossly misleading about the
scientific questions at stake. We agree, as did White (1980a, p.828) in the paper that introduced
robust standard errors to many economists. Like White, however, we argue that robust standard
errors and, we add, their Bayesian equivalents, can be part of a larger workflow in which the model
is critiqued and amended. The Bayesian framework we use here is particularly amenable to this
perspective, since we may decide that the vector of squared-error-minimizing linear coefficients β∗

is not a useful estimand, or that its Bayesian counterpart β is not a useful summary of the posterior
distribution, without changing the underlying Finite Dirichlet Process model, which remains weakly
consistent for the true P ∗ under relatively broad conditions (Muliere and Secchi, 2003). Indeed,

the decomposition (6) shows us that if ˆVHC0(β̂2) > V̂
OLS(β̂2), then the linear model’s fit worsens

specifically in the tails of the X-distribution, either due to nonlinearity or to heteroskedasticity (or
both): if we seek ways to improve on the linear model, then robust standard errors (Bayesian or
otherwise) show us a place to start.

However, not every model can be a mere stepping-stone to another model; at some point, one
must draw inferences from a model that one considers good enough. In many cases, a fully Bayesian
model which provides

√
n-consistent heteroskedasticity-robust and cluster-robust regression estima-

tors and confidence intervals, even if it is inefficient, is good enough.
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Appendix A:

Review of current Bayesian thinking about

heteroskedasticity

In current Bayesian thinking about heteroskedasticity, two views appear to be prevalent: first, that
it is usually safe to assume homoskedasticity, since heteroskedasticity usually does not matter in
practice; and second, that if heteroskedasticity does matter in practice, then the true conditional
variance V

∗(y|X) must be modeled directly (using some model V(y|X,λ)), as part of modeling the
entire conditional distribution P

∗(dy|X) (using some model P(dy|X,λ)). In both approaches, the
distribution of X is usually considered ancillary and therefore is not modeled. Our model fits within
a third, smaller Bayesian literature in which we account for heteroskedasticity, but as a byproduct
of modeling the joint distribution of y and X.

We will show using simulations and some theory that assuming homoskedasticity when het-
eroskedasticity is present can lead to credible intervals that are spuriously narrow — professing
greater precision or certainty than a frequentist model, and not due to a better model or judicious
priors, but rather due to an incorrect model that ignores the uncertainty coming from heteroskedas-
ticity. We are more sympathetic to the view that the conditional variance function must be modeled
(we will call this the “conditional modeling” view), but note that existing Bayesian conditional mod-
els make assumptions about heteroskedasticity that can be difficult to defend, and that can have
the same consequences as ignoring heteroskedasticity if incorrect, as we show. Admittedly, we do
not consider ways in which these models might be patched if their deficiencies became apparent to
the researcher.

For the rest of this section we write X⊤
i = xi as a vector, to clarify that we refer to the

heteroskedastic case. Since clustered covariances usually include heteroskedasticity, our criticisms
below also apply to them, but clustered covariances also present complexities of their own that we
will not consider in this section for lack of space.

5.1 Ignoring or downplaying heteroskedasticity

According to a popular regression textbook with a Bayesian perspective, heteroskedasticity “does
not affect what is typically the most important aspect of a regression model, which is the information
that goes into the predictors and how they are combined...” and consequently heteroskedasticity is
generally a minor issue. (Gelman, Hill, et al., 2021, p.154)

To examine this common view, let us consider a deceptively simple Bayesian model of het-
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eroskedasticity to which we will return in later sections. For now, assume the variance function is
fixed, V(yi|xi) = σ2(xi), and observations (yi,xi) are independently Normally distributed:

[yi|X,β,γ] ∼ N
(

x⊤
i β, σ

2(xi|γ)
)

(49)

For illustrative purposes, we use an improper uniform prior on the regression coefficients β.
This impropriety will not affect our point; proper priors will yield increasingly similar conclusions
as data increases.11 Collecting the variances into a diagonal matrix Ω = diag{σ2(xi)}, standard
manipulations (George E.P. Box and Tiao, 1973) show that the posterior distribution of β given
y, X,Ω is a Normal distribution with mean

β̂GLS :=
(

X⊤Ω−1X
)−1

X⊤Ω−1y (50)

and covariance V̂GLS :=
(

X⊤Ω−1X
)−1

; that is, the posterior distribution is centered on the (fre-
quentist) Generalized Least Squares estimator, which happens to be asymptotically efficient. 12

Crucially, we see that in this model, both the posterior mean and the posterior variance of β
depend on Ω, which encodes the heteroskedasticity. Heteroskedasticity therefore affects not only the
width of one’s credible intervals, but also one’s point estimates. As emphasized by Leamer (2010),
this is not a minor effect, and it runs counter to Gelman and Hill’s claim that heteroskedasticity
does not affect important aspects of the model. Indeed, as we shall see in the next section, in cases
where Ω is not known and must be modeled using a prior distribution, a poorly-chosen model for
Ω can cause serious problems.

Still, in the above model, we also see that assuming homoskedasticity, so that Ω = σ2In with
some variance σ2, results in the classical OLS coefficients β̂ := (X⊤X)−1X⊤y and classical covari-

ance V̂OLS := σ2
(

X⊤X
)−1

; for our argument, little changes if σ2 is given a prior and estimated

rather than known. Since β̂ is usually consistent for β∗ even when heteroskedasticity exists, a
pragmatic Bayesian might still insist that little is to be lost from ignoring known heteroskedasticity,
except perhaps efficiency. This is not the case: one also risks overconfidence.

As we have shown in (6), classical confidence intervals that use V̂OLS can be spuriously narrow
in the presence of heteroskedasticity and clustered correlations. To illustrate an extreme case, we
show the results of a Bayesian OLS (homoskedastic) regression with a diffuse prior when data are
in fact strongly heteroskedastic.

11As usual, the distribution of x is assumed to be ancillary and is not modeled. This is not the same as assuming
that x is non-random.

12As Norets (2015) discusses, this model’s Normality assumption often leads to excellent frequency properties even
when the data are not in fact normally distributed.
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Above, we see that the Bayesian 95% probability region for E[y|x, β] = x⊤β , (blue) is much

narrower than the frequentist 95% sampling band for the Bayes estimator x⊤β̂ (green), and it
happens that the Bayesian 95% posterior credible intervals capture the true slope coefficient only
64% of the time.13 Here, Bayesian estimates that ignore heteroskedasticity are asymptotically
consistent, but Bayesian inferences have much greater inferential certainty than a frequentist would
think is warranted. There may be times when such certainty from a Bayesian model is justified,
but this is not one of them, we argue. Here, the Bayesian model’s extra certainty comes not from
a better model or judicious use of prior information, but rather from simply ignoring an important
source of uncertainty: heteroskedasticity.

5.2 Conditional modeling of heteroskedasticity

It is clear that if a Bayesian knows there is heteroskedasticity, then her model must incorporate it
somehow. In this subsection, we discuss recent work in which which V

∗(y|x) is modeled explicitly,
E
∗[yi|xi] is assumed to be linear in x, and the distribution of x is considered ancillary and not

modeled; we call this the “conditional modeling” approach, following (Gelman, Carlin, et al., 2020).
Bayesian conditional models for heteroskedasticity are numerous and we do not attempt to

review or categorize them all here. 14 However, we can arrange many Bayesian conditional models

13We estimated this with 10,000 simulated regressions. Currently, the coverage rate is calculated for a frequentist
OLS model, which we’d expect to behave extremely similarly to a Bayesian OLS model with a diffuse prior, but
is much faster to simulate. Different priors could be contemplated, but the usual recommended informative prior
centered at a zero slope will not improve the coverage rate here, where the true regression slope is positive.

14An extensive Bayesian literature is devoted to modeling heteroskedasticity, particularly in financial time-series,
where the conditional variance is known as “volatility,” and is essential to asset-pricing models such as the Black-
Scholes model. We do not attempt to review this literature here.
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along a specrum of how “wiggly”15 V(y|x) is. We take readers on a brief tour of three kinds of
heteroskedastic models: one that is not wiggly enough, some cutting-edge models that can be made
just wiggly enough, and one that is altogether too wiggly.

We will show in simulations that Bayesian models that assume too little or too much wiggliness
can behave poorly indeed from a frequentist perspective, noting that it can be difficult or impossible
in most real-world cases to verify whether one’s wiggliness assumptions are correct.

5.2.1 Too little wiggliness

When Ω is not precisely known, but one suspects that heteroskedasticity might be lurking, perhaps
the simplest way to extend (49) is with something like the following:

σ2(xi) = exp{x⊤
i γ} (51)

giving the unknown parameters γ some prior. We choose this particular model because it
appears to be the most common starting-point for modeling heteroskedasticity in the Bayesian (and
frequentist) literature, and it is the default in Stan16, one of the most widely-used Bayesian MCMC
engines and modeling platforms. Eliding the details, we can estimate the posterior distribution of
this model using Stan’s default settings.

True beta

0

1

0.0 0.3 0.6 0.9

x

y

Probability Distribution

Sampling

Posterior
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Linear log−variance model: Sampling vs. Posterior Distribution

Coverage rate of 95% Bayesian CI for slope: 67% (from 10000 repetitions of n = 100)

Unfortunately, the result hardly looks better than in the previous subsection. The posterior
distribution is far narrower than the frequentist sampling distribution, and the Bayesian’s 95%
credible intervals for the slope coefficients contain the true slope only 67% of the time, whereas the
frequentist HC0 intervals have 92% coverage. So at least by the frequentist standard, the Bayesian
is still overconfident, although there has been a slight improvement over the case where the Bayesian
ignored heteroskedasticity entirely.

The origin of this disagreement is simple: the Bayesian model is wrong about the underlying
process. By choosing σ2(xi) = exp{x⊤

i γ}, we have put all prior (and posterior) probability on a
space of variance functions that does not contain the true variance function, which here happens
to be σ2(∗)(x) = (0.1 + 2(x − 0.5)2)2. Since this is a problem with the likelihood, not the priors,
more carefully chosen priors and more data will not generally fix the problem.

15Perhaps measured in terms of integrated squared derivatives, as in the spline literature, where “wiggliness” is in
fact a techical term.(Wood, 2017)

16Stan. (2022). Stan Development Team, Modeling.
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5.2.2 Just enough wiggliness

If unsatisfied with the above model, a Bayesian can turn to highly flexible models that use infinitely
many parameters (naturally, these are called “nonparametric” models) to describe the conditional
variance, in the hope that this much larger model-space will contain the true model, or a sufficiently
good approximation of it. To take some leading recent examples of non-parametric or semiparamet-
ric models, Norets (2015), Pelenis (2014), and Zhao (2015) essentially extend model (49) with the
unknown σ2(xi) modeled as a (perhaps transformed) linear combination of infinitely many basis
functions ψj(xi) with coefficients γj :

σ2(xi) =

∞
∑

j=1

γjψj(xi) (52)

For example, in Norets, ψj are Bernstein polynomials. The above authors prove that their
models produce consistent estimates and asymptotically correct confidence intervals under a very
wide range of data-generating processes, even when the true conditional distribution is not at all
Gaussian. As Norets explains, the key to such general success is that in large samples, Bayesian
posterior distributions tend to concentrate around models that are “close” to the data-generating
process in terms of Kullback-Liebler (KL) divergence17; and for Gaussian models like (49), the
KL divergence is minimized by matching the conditional mean and variance in the model to the
conditional mean and variance of the data-generating process — for any data-generating process.
So if one is interested in robust Bayesian models of the mean and variance, Gaussian models tend
to perform well (Kleijn and van der Vaart, 2006).

There are some difficulties with the above modeling approach. The desirable frequency prop-
erties rest heavily on smoothness assumptions about the true σ(∗)2(x) that are difficult to verify
(or even intuit) in most applications and are too technical to state precisely here, although they
involve placing stochastic bounds on partial deriviatives of σ2(x) (eg. see Norets, 2015, p.410) in a
way that matches the partial derivatives of the unknown true σ(∗)2(x). These assumptions are far
stronger than the regularity conditions that underpin frequentist robust models (compare to White
(1980b), where no assumptions about derivatives are required).

Compounding this problem, when xi has more than three dimensions or so, the nonparametri-
cally modeled σ2(xi) may converge to the truth relatively slowly and be extremely computationally
demanding, particularly if smoothness parameters are unknown and must also be given priors.18

Clustered correlations appear nearly impossible to handle as nonparametric functions in this way,
since in this case V(yc|Xc) is a matrix function whose dimension and form may change between
clusters c.

5.2.3 Too much wiggliness

Next, we will show how someone who is dissatisfied with the above models and who is searching for
arbitrarily flexible models of heteroskedasticity might construct a homoskedastic model as a limiting
case. Indeed, the use of homoskedastic Student’s-t models for heteroskedasticity (e.g., Geweke,
1993) appears to date back at least to Jeffreys’ seminal Theory of Probability (Robert et al., 2009)
and remains popular; it is currently a first-page Google search result for “Bayesian Heteroskedastic

17See Shalizi (2009)
18This is part of why we do not present MCMC simulations of these procedures here.
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regression.”1920. Unfortunately, we will see that in simulations, the Student’s t model can perform
extremely poorly when faced with realistic patterns of heteroskedasticity. Ultimately, the Student’s-
t model illustrates the practical dangers not only of using homoskedastic models when the truth is
heteroskedastic, but also of making ill-founded (non-)smoothness assumptions concerning σ2(xi).

Suppose that as above, each “error term” ǫi := yi − x⊤
i β is distributed independently as ǫi ∼

N(0, σ2(xi)), and that to model σ2(xi) we use a linear combination of basis functions ψj with
unknown coefficients γj > 0, similar to the semiparametric models in the previous section:

σ2(xi) = τ

J
∑

j=1

γjψj(xi) (53)

For reasons that will become apparent, we include τ > 0 as a scale factor; for now we will
treat τ as fixed. Suppose that our basis consists of indicator functions ψj(xi) = 1(xi ∈ Aj) for
some partition A1, . . . , AJ of the x-space. This is the simplest form of B-spline. Suppose we use
independent Inverse-Gamma priors on the coefficients, γj ∼ InvGamma( ν2 ,

ν
2 ) for some fixed ν > 0

(this enforces σ2(xi) > 0), and because we want to accommodate nearly arbitrarily wiggly forms
of heteroskedasticity, we make J much, much larger than any dataset we’re likely to see. There
is nothing intrinsically wrong with more parameters than data-points in a Bayesian analysis, and
an extremely large J might even seem necessary if we want a fine partition and x has a few dozen
dimensions.21

Consider what happens if data arrives and each observed xi falls in its own member of the parti-
tion, with no member of the partition containing multiple observations (our main point would hold
even with multiple observations per member, though the notation and qualifications would prolifer-
ate). In this case, each error term ǫi for i = 1, . . . , n is being modeled as ǫi ∼ N(0, σ2

i ) independently,
with each observation seeming to get its own variance σ2

i = τγji , with γji ∼ InvGamma( ν2 ,
ν
2 ) in-

dependently.
Interestingly, integrating out each σ2

i while holdng the other parameters fixed, one sees that
ǫi ∼ tν(x

⊤β, τ2), a Student’s t distribution with ν degrees of freedom and a scale parameter equal
to τ2. This means that in this model, which is supposed to be almost arbitrarily heteroskedastic,
each each error-term is effectively being modeled as homoskedastic for the given dataset. In many
cases, this homoskedasticity leads to problems.

19As of Feb 2022. Stable link:
https://web.archive.org/web/20220214205338/https://jrnold.github.io/bayesian_notes/heteroskedasticity.html
20This model is also sometimes recommended for outlier-robust regression, a different kind of robustness than we

are concerned with (see West (1984))
21For example, if each vector x comprises 20 variables, and we wish to partition each variable’s values into 10

subcategories, then there are J = 1020 elements of the partition in total.
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Bayes t model: Sampling vs. Posterior Distribution

Coverage rate of 95% Bayesian CI for slope: 32% (from 10000 repetitions of n = 300)

In 10,000 simulations like the one pictured above, we find that 95% credible intervals based on the
Student’s t model capture the true slope (pictured in black) only 32 % of the time. Meanwhile, the
frequentist HC-robust CIs (not pictured) capture the true value 94% of the time. In the picture,
we see that the Bayesian estimate is strongly biased upwards, and the posterior distribution is
also narrower than the sampling distribution of the Bayes estimate. This bias comes not from
the prior (which is very diffuse in this case, although proper), but rather from the poorly-chosen
Student’s t likelihood, which does not actually model the heteroskedasticity in our chosen error-
distribution. A maximum-likelihood estimator based on the same Student’s t model would have
the same pathologies. Because the problem is with the likelihood, not the prior, it only gets worse
with more data.

A short explanation for this particular problem is that the Student’s t model is akin to a weighted
least squares model, where observations get less weight if they are farther from the regression
line; more precisely, in Gibbs sampling the observations are iteratively re-weighted according to
their inverse squared distance from the previous iteration’s fitted regression line (see West (1984)
for details). We made the true error distribution asymmetric as well as heteroskedastic, with a
longer tail in the negative direction than in the positive direction, and with both tails of the error
distribution getting longer as x increases (keeping the error term mean-zero). With this kind of
error distribution, as x increases, the model systematically gives less and less weight to observations
in the lengthening tail below the fitted regression line, biasing the regression line upwards. It may
be somewhat unfair to test the Student’s t model with asymmetric data, but the world is often
unfairly asymmetrical; and as far as we are aware, no warnings about asymmetry appear in any of
the standard Bayesian texts on the Student’s t model.

What we have described is not peculiar to the Student’s t model. When faced with heteroskedas-
ticity, one would expect similar pathologies from any homoskedastic model, not just the Student’s
t.

5.3 Conclusion of review

This ladder of models, from one that ignores heteroskedasticity, to one with insufficient wiggliness
of the conditional variance, to one with just enough wiggliness, to one with too much wiggliness,
can be seen as a stylized story of how a researcher might expand a model to better fit the data.
We have shown what happens when this story goes wrong at various stages: Bayesian 95% credible
intervals may capture the true value much less often than 95%, being both biased and professing
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much greater inferential certainty than a frequentist would think is warranted — not because the
Bayesian model makes better use of information, but simply because the Bayesian model incorrectly
accounts for heteroskedasticity.

This leads us to search for other Bayesian models that do not hinge so crucially on assumptions
about the wiggliness of conditional variance function.

Technical Appendix: The posterior

distribution of a Finite Dirichlet Process

Why we can’t just use Bayes’ Theorem

Bayes’ Theorem applies only when the prior distribution dominates the posterior distribution: when
every set that has zero probability under the prior also has probability zero under the posterior.
(Polpo et al., 2015) For our model, this doesn’t hold. In this subsection, I give a concrete illustration
of what goes wrong when one tries to (improperly) apply Bayes’ Theorem to the simplest possible
non-dominated model.

Consider the simplest Bayesian model of all: a single error-free observation z of an unknown
parameter z̊ in R:

z ∼ δz̊(dz) (54)

with some prior z̊ ∼ π(̊z)dz̊ that is a continuous distribution with full support on R. Recall that
the Dirac delta measure δz̊(dz) simply puts all probability at z̊; it operates on measurable sets A as
δz̊(A) = 1(̊z ∈ A); or equivalently

∫

δz̊(dz)h(z) = h(̊z) for any measurable function h. To be clear,
δz̊(dz) is a measure, not a function on the real domain, and cannot be written as δ(z− z̊) whatever
the engineering textbooks may do.

Intuitively, we know what the posterior distribution must be: a Bayesian simply must believe
an error-free observation. That is, the posterior of z̊ must put all probability at the observed value
z, which we can write as z̊|z ∼ δz(dz̊).

But how can we prove this? Note that the prior is continuous, so for any fixed z, π(̊z = z) = 0,
so the prior does not dominate the posterior that we have just intuited.

Suppose we naively plug everything into Bayes’ Theorem, as though δz̊(dz) were a continuous
likelihood function on the real domain. This would give us the following expression, which is
nonsense:

”Pr(̊z ∈ A|z) =
∫

A
δz̊(dz)π(̊z)dz̊

∫

δz̊(dz)π(̊z)dz̊
” (55)

One problem with the above is that expressions like “
∫

A
δz̊(dz)π(̊z)dz̊” don’t clarify what we are

integrating or in what order; and it does not make sense to directly integrate δz̊(dz) with respect to
z̊. But suppose we forge on, noting that we want the numerator to represent someting like p(z, z̊)
so we re-interpret the numerator as the well-defined expression

∫

dz̊ π(̊z)
∫

A
δz̊(dz) =

∫

dz̊ π(̊z)1(̊z ∈
A) = π(A); but by the same logic, the denominator is π(R) = 1, so the posterior probability is
simply π(A) — the same as the prior probability. Nothing has been learned from the error-free
data!

Undeterred, we might change our approach and try the discrete form of Bayes’ Theorem:
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”Pr(̊z ∈ A|z = z̃) =
Pr(z = z̃ |̊z ∈ A) Pr(̊z ∈ A)

Pr(z = z̃)
” (56)

Each factor of the above equation now makes sense, but the whole equation does not, because
it divides by zero: for fixed z̃,

Pr(z = z̃) =

∫

π(dz̊)

∫

δz̊(dz)1(z = z̃) =

∫

π(dz̊)1(̊z = z̃) = 0 (57)

At this point, the reader may agree that we must give up on applying Bayes’ Theorem to
this model. If Bayes’ Theorem defined the posterior distribution, this would all be bad news for
Bayesians: it would be impossible to simply tell a Bayesian an error-free fact. It would be especially
bad news for this paper, since our model is just a linear combination of delta-functions.

But Bayes’ Theorem does not define the Bayesian posterior distribution; rather, it is just a
useful way to calculate the Bayesian posterior distribution, whenever the theorem applies — which
here, it obviously doesn’t. So we must turn to a more general definition of the Bayesian posterior
distribution.

The general definition of a posterior distribution

The underlying intuition is this: in elementary probability theory, probability densities are related
in the following way:

∫

θ∈C

∫

y∈A

p(θ|y)p(y)dydθ =
∫

θ∈C

∫

y∈A

p(θ, y)dydθ =

∫

y∈A

∫

θ∈C

p(y|θ)p(θ)dθdy (58)

So intuitively, once one has specified the sampling model p(y|θ) and the prior p(θ) on the right-
hand-side, and therefore also specified p(y) =

∫

p(y|θ)p(θ)dθ, the posterior density p(θ|y), the only
remaining term, can be defined as whatever valid probability density function satisfies the above
equation. Crucially, this definition avoids dividing by p(y).

A slightly more measure theoretic approach relieves us from assuming that densities exist at all,
and therefore covers the model used in this paper. For a formal treatment, see (Polpo et al., 2015);
here we merely sketch the main idea.

Suppose our model of the data zn given the unknowns (θ, z̊) is characterized by the probability
transition kernel P (dzn|θ, z̊), and our prior over the unknowns is a probability measure Π0(dθ, d̊z).

The prior predictive distribution is defined as P̂0(A) :=
∫

(θ,̊z)∈Θ
Π0(dθ, d̊z)P (A|θ, z̊).

The posterior distribution of (̊z,θ) is then defined as any probability kernel Πn(dθ, d̊z|zn) that
satisfies the following equality for all zn ∈ A, z̊ ∈ B,θ ∈ C, where A,B, C are measurable sets:

∫

zn∈A

P̂0(dzn)

∫

z̊∈B,θ∈C

Πn(dθ, d̊z|zn) =
∫

z̊∈B,θ∈C

Π0(dθ, d̊z)

∫

z∈A

P (dzn|θ, z̊) (59)

6 The posterior distribution of a Finite Dirichlet Process: a

brute-force approach

If we guess the form of Πn(dθ, d̊z|zn) by heuristic reasoning, we can use the identity (59) to check

whether our guess is correct. Our strategy is to test whether a “postulated” measure P̂(A,B, C),
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corresponding to the left-hand side of (59), equals a “target” P(A,B, C) on the right-hand side of
(59).

Target integral (single observation, z)

P(A,B, C) :=

∫

z̊∈B,θ∈C

Π0(dθ, d̊z)

∫

z∈A

P (dz|θ, z̊) (60)

=

∫

θ∈C

Dir(dθ|α1, . . . , αM )

∫

z̊∈B

M
∏

k=1

F (dz̊k)

∫

z∈A

∑

j

θjδz̊j (dz) (61)

=

∫

θ∈C

∑

j

θjDir(dθ|α1, . . . , αM )

∫

z̊∈B

M
∏

k=1

F (dz̊k)

∫

z∈A

δz̊j (dz) (62)

=

∫

θ∈C

∑

j

θjDir(dθ|α1, . . . , αM )

∫

z̊∈B

M
∏

k=1

F (dz̊k)1(̊zj ∈ A) (63)

using the fact that
∫

A
δx0

(dx)h(x) =
∫

δx0
(dx)1(x ∈ A)h(x) = 1(x0 ∈ A)h(x0)

=

∫

θ∈C

∑

j

θjDir(dθ|α1, . . . , αM )





M
∏

k 6=j

∫

Bk

F (dz̊k)





∫

z̊j∈Bj

F (dz̊j)1(̊zj ∈ A) (64)

=

∫

θ∈C

∑

j

θjDir(dθ|α1, . . . , αM )





M
∏

k 6=j

F (Bj)



F (Bj ∩A) (65)

Note:

θjDir(dθ|α1, . . . , αM ) =
Γ(
∑

k αk)
∏

k Γ(αk)
θ
(αj+1)−1
j

∏

k 6=j

θαk−1
k dθ (66)

=

(

Γ(
∑

k αk)

Γ(1 +
∑

k αk)

Γ(αj + 1)

Γ(αj)

)

Dir(dθ|α1, . . . , αj + 1, . . . , αM ) (67)

=
αj

∑

k αk

Dir(dθ|α1, . . . , αj + 1, . . . , αM ) (68)

using the identityΓ(x+1)
Γ(x) = x.

So,

P(A,B, C) =
∑

j

αj
∑

k αk

Dir(C|α1, . . . , αj + 1, . . . , αM )





M
∏

k 6=j

F (Bj)



F (Bj ∩A) (69)
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Verifying the postulated posterior given a single observation

We postulate that

Πn(dθ, d̊z|z) =
M
∑

j=1

αj
∑

k αk

Dir(dθ|α1, . . . , αj + 1, . . . , αM )δz(dz̊j)
M
∏

k 6=j

F (dz̊k) (70)

The summation of M terms comes from the fact that there are M ways to assign one of the M
latent points z̊k to the observed value z.

Verify:

P̂(A,B, C) =

∫

z∈A,̊z∈B,θ∈C

M
∑

j=1

αj
∑

k αk

Dir(dθ|α1, . . . , αj + 1, . . . , αM )δz(dz̊j)





M
∏

k 6=j

F (dz̊k)



F (dz)

(71)

=

M
∑

j=1

αj
∑

k αk

∫

θ∈C

Dir(dθ|α1, . . . , αj + 1, . . . , αM )

∫

z∈A

F (dz)

∫

z̊j∈Bj

δz(dz̊j)

M
∏

k 6=j

∫

z̊k∈Bk

F (dz̊k)

(72)

=

M
∑

j=1

αj
∑

k αk

∫

θ∈C

Dir(dθ|α1, . . . , αj + 1, . . . , αM )

∫

z∈A

F (dz)1(z ∈ Bj)

M
∏

k 6=j

F (Bk) (73)

=
M
∑

j=1

αj
∑

k αk

∫

θ∈C

Dir(dθ|α1, . . . , αj + 1, . . . , αM )F (A ∩Bj)
M
∏

k 6=j

F (Bk) (74)

So, P̂ = P; our postulated posterior distribution is correct.

Simplifying using exchangeability

Recall that we use a symmetric Dirichlet prior, αj = α/M , and the posterior distribution is

Πn(dθ, d̊z|z) =
1

M

M
∑

j=1

Dir(dθ|α1, . . . , αj + 1, . . . , αM )δz(dz̊j)

M
∏

k 6=j

F (dz̊k) (75)

This summation of M terms represents the M ways to assign a latent point to the observed
point; but there is no physical difference between these assignments, so we may (correctly) suspect
that this summation is needless bookkeeping. Here we show that we can indeed dispense with
the summation by merely picking a single term of the sum to represent our posterior distribution,
without altering our posterior inferences in any meaningful way.

In any application, we will draw inferences only about functions of the unknown parameters
z̊1, . . . , z̊M and θ1, . . . , θM that are exchangeable : functions T such that T (̊z1, . . . , z̊M , θ1, . . . , θM ) =
T (̊zς(1), . . . , z̊ς(M), θς(1), . . . , θς(M)) for any permutation ς(·) of the indices 1, . . . ,M . Exchangeabil-
ity codifies our assumption that the indices themselves do not encode any meaningful information
about the latent points (such as an ordering), except to distinguish one from another.

34



Considering the posterior expectation of h(T ) for arbitrary h, it is clear that the distribution of
an exchangeable T (̊z1, . . . , z̊M , θ1, . . . , θM ) induced by the probability measure Dir(dθ|α1, . . . , αj +

1, . . . , αM )δz(dz̊j)
∏M

k 6=j F (dz̊k) is identical to the distribution of T (̊zς(1), . . . , z̊ς(M), θς(1), . . . , θς(M))

induced by Dir(dθς|ας(1), . . . , ας(j) + 1, . . . , ας(M))δz(dz̊ς(j))
∏M

ς(k) 6=ς(j) F (dz̊ς(k)), where θς denotes
a permutation of the elements of θ.

It follows that the posterior distribution of any exchangeable function T (̊z1, . . . , z̊M , θ1, . . . , θM )
given a single datapoint can be represented by a distribution of the form

Dir(dθ|α1 + 1, . . . , αj , . . . , αM )δz(dz̊1)

M
∏

k 6=1

F (dz̊k) (76)
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