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Abstract

This paper provides a simple technique of carrying out inference robust to serial correlation,
heteroskedasticity and spatial correlation on the estimators which follow an asymptotic normal
distribution. The idea is based on the fact that the estimates from a larger sample tend to have
a smaller variance which can be expressed as a function of the variance of the estimator from
smaller subsamples. The major advantage of the technique other than the ease of application
and simplicity is its finite sample performance both in terms of the empirical null rejection
probability as well as the power of the test. It does not restrict the data in terms of structure
in any way and works pretty well for any kind of heteroskedasticity, autocorrelation and spatial
correlation in a finite sample. Furthermore, unlike theoretical HAC robust techniques available
in the existing literature, it does not require any kernel estimation and hence eliminates the
discretion of the analyst to choose a specific kernel and bandwidth. The technique outperforms
the Ibragimov and Müller (2010) approach in terms of null rejection probability as well as the
local asymptotic power of the test.
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1 Introduction

The existing econometrics literature has a long history of estimation procedures for heteroskedas-

ticity and autocorrelation consistent (HAC) variance-covariance estimators and the asymptotic

theory regarding the use of these estimators for HAC robust inference. The major contributions

include White (1984), Newey and West (1987), Gallant (1987), Andrews (1991), Andrews and

Monahan (1992), Robinson (1998), de Jong and Davidson (2000), Jansson (2002) and Kiefer and

Vogelsang (2005). There has also been some literature regarding the inference robust to spa-

tial correlation, such as Kelejian and Prucha (2001), Ibragimov and Müller (2010), Driscoll and

Kraay (1998), Alan Bester, Conley, Hansen and Vogelsang (2009), Dale and Fortin (2009), Cameron

and Miller (2010), Ibragimov and Müller (2010) and Vogelsang (2012), etc.

There are several papers in the literature which give overviews of various aspects of bootstrap-

ping time series. Among them are Hongyi Li and Maddala (1996), Berkowitz and Kilian (2000),

Bühlmann (2002), Ruiz and Pascual (2002), Härdle, Horowitz and Kreiss (2003), and Paparoditis

and Politis (2009). These papers suggest that even though there are some promising bootstrap

methods available for time series data, however, there is a considerable need for further research in

the application of the bootstrap to time series. There may be instances where the bootstrap pro-

cedures used are not adequate. Although bootstrapping is (under some conditions) asymptotically

consistent, it does not provide general finite-sample guarantees.

In Ibragimov and Müller (2010), an approach to robust inference has been developed with efficiency

in terms of local asymptotic power. The power of the test varies with the choice of the number of

groups, i.e., q and it is not possible to use data dependent methods to determine an appropriate q,

which leaves a lot of ambiguity. There certainly are instances, where choosing q = 2 would lead to

acceptance of the null as the critical value for q = 2 with one degree of freedom is 12.706 leading to

a pretty wide confidence interval, and a higher value of q with better local asymptotic power (and

worse null rejection probability) would lead to rejection of the null.

This paper provides a simple technique of carrying out inference robust to serial correlation, het-

eroskedasticity and spatial correlation on the estimators which follow an asymptotic normal dis-

tribution. The technique outperforms the approach of Ibragimov and Müller (2010) in terms of

null rejection probability as well as the local asypmtotic power. The idea is based on the fact that

the estimates from a larger sample tend to have a smaller variance which can be expressed as a

function of the variance of the estimator from smaller subsamples. The major advantage of the

technique other than the ease of application and simplicity is its finite sample performance both in

terms of the empirical null rejection probability as well as the power of the test. It does not restrict

the data in terms of structure in any way and works pretty well for any kind of heteroskedasticity,

autocorrelation and spatial correlation in a finite sample. Furthermore, unlike theoretical HAC
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robust techniques available in the exisiting literature, it does not require any kernel estimation and

hence eliminates the discretion of the analyst to choose a specific kernel and bandwidth. Unlike

Ibragimov and Müller (2010), it provides a unique rule for the estimation of standard errors and

the confidence intervals irrespective of the structure of the data leaving no room for ambiguity.

The remainder of this paper is organized as follows: Section 2 provides the details of the variance

estimator. Section 3 discusses the inference procedure and the asymptotic properties of the t-

statistics. Section 4 presents the finite sample null rejection probabilities and the power of the test

through Monte Carlo simulations. Section 5 concludes.

2 Variance Estimator

Suppose that the sample mean of time series, Yt follows an asymptotic normal distribution, i.e.,

aT (Y T − µ)
d−→ N(0, V ),

where aT is the scaling factor, and is of order T
γ , where γ > 0. An estimator of variance of Y T

can be written as

̂V ar
[
Y T
]
=
V̂T
a2T
.

The estimator of variance of mean of a subsample of size t can be written as

̂V ar
[
Y t
]
=
V̂t
a2t
.

Similarly the variance estimator of mean of a subsample of size τ can be written as

̂V ar
[
Y τ
]
=
V̂τ
a2τ
.

If the ratio T/τ is the same as τ/t, then

P lim
[
̂V ar
[
Y T
]]

P lim
[
̂V ar
[
Y τ
]] =

P lim
[
̂V ar
[
Y τ
]]

P lim
[
̂V ar
[
Y t
]] ,

which implies that

P lim
[
̂V ar
[
Y T
]]
= P lim

[
̂V ar
[
Y τ
]]2

[
̂V ar
[
Y t
]] . (1)

Therefore, if we can construct subsamples of size τ and t, then immediate, empirical estimators of

V ar
[
Y τ
]
and V ar

[
Y t
]
can be constructed from the many size-τ and t sample means respectively
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that can be extracted from our data Y1, Y2, ..., YT . Furthermore, in order to use the empirical

formulas

̂V ar
[
Y τ
]
=

1

K − 1

K∑

i=1

(Y τi − Y τ )2,

̂V ar
[
Y t
]
=

1

J − 1

J∑

i=1

(Y ti − Y t)2,

the sample means from the subsamples must be asymptotically i.i.d (the conditions mentioned in

Ibragimov and Müller (2010)), which implies that there cannot be overlapping observations in two

subsamples. Also

P lim
[
̂V ar
[
Y T
]]
= P lim

[
̂V ar
[
Y τ
]]

a2T /a
2
τ

. (2)

Equations (1) and (2) provide two consistent estimators for V ar
[
Y T
]
, however, their performance

in finite samples remain to be seen, which will be presented later in this paper. For an improved

finite sample performance, an average of the two estimators is taken to construct the standard error

for Y T .

seY T =
1

2




̂V ar
[
Y τ
]

√
̂V ar
[
Y t
] +

√
̂V ar
[
Y τ
]

aT /aτ


 . (3)

For the panel data, suppose that the sample mean of data, Yit follows an asymptotic normal

distribution, i.e.,

aNT (Y NT − µ)
d−→ N(0, V ),

where aNT is the scaling factor. Under T → ∞, N → ∞, asymptotics, the sample means from
the subsamples must be asymptotically i.i.d. The assumption of an asymptotic normal distribution

for the sample mean rules out the non-stationarity in either dimension, i.e., T as well as N . An

estimator of variance of Y NT can be written as

̂V ar
[
Y NT

]
=
V̂NT
a2NT

.

The estimator of variance of mean of a subsample of size ňt can be written as

̂V ar
[
Y ňt

]
=
V̂ňt
a2ňt
.
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Similarly the variance estimator of mean of a subsample of size ņτ can be written as

̂V ar
[
Y ņτ

]
=
V̂ņτ
a2ņτ

.

If the ratio NT/ņτ is the same as ņτ/ňt, then

P lim
[

̂V ar
[
Y NT

]]

P lim
[

̂V ar
[
Y ņτ

]] =
P lim

[
̂V ar
[
Y ņτ

]]

P lim
[

̂V ar
[
Y ňt

]] ,

which implies that

P lim
[

̂V ar
[
Y NT

]]
= P lim

[
̂V ar
[
Y ņτ

]]2

[
̂V ar
[
Y ňt

]] . (4)

Therefore, if we can construct subsamples of size ņτ and ňt, then immediate, empirical estimators

of V ar
[
Y ņτ

]
and V ar

[
Y ňt

]
can be constructed from the many size-ņτ and ňt sample means

respectively that can be extracted from our data Y11, Y12, ...Y21, Y22, ..., YNT . Furthermore, in order

to use the empirical formulas

̂V ar
[
Y ņτ

]
=

1

K − 1

K∑

l=1

(Y ņτl − Y ņτ )2,

̂V ar
[
Y ňt

]
=

1

J − 1

J∑

m=1

(Y ňtm − Y ňt)2,

the sample means from the subsamples must be i.i.d, which implies that there cannot be overlapping

observations in two subsamples. Also

P lim
[

̂V ar
[
Y NT

]]
= P lim

[
̂V ar
[
Y ņτ

]]

a2NT /a
2
ņτ

. (5)

Equations (4) and (5) provide two consistent estimators for V ar
[
Y NT

]
, however, their performance

in finite samples remain to be seen, which will be presented later in this paper. For an improved

finite sample performance, an average of the two estimators is taken to construct the standard error

for Y NT .

seY NT =
1

2




̂V ar
[
Y ņτ

]
√

̂V ar
[
Y ňt

] +

√
̂V ar
[
Y ņτ

]

aNT /aņτ


 . (6)
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3 Inference and Asymptotic Results for t-statistic

Suppose we are interested in testing the null hypothesis

H0 : µ = µ0, (7)

against the alternative hypothesis

H1 : µ = µ1 6= µ0. (8)

It is straightforward to construct the test statistic for time series data as

t =
Y T − µ0
seY T

, (9)

and for panel data as

t =
Y NT − µ0
seY NT

. (10)

The alternative value of µ1 is modeled local to µ0 as

µ1 = µ0 + a
−1
T µ∆, (11)

and

µ1 = µ0 + a
−1
NTµ∆, (12)

for time series and panel data respectively.

The parameter µ∆ measures the magnitude of the departure from the null under the local alterna-

tive. The standard error, i.e., seY T to be used in expression (9) for time series data is calculated

as follows:

Initially subsamples of size K and J are chosen in sequence without any overlapping data main-

taining the structure of the data involved, e.g., for T = 100, 10 subsamples of size 10 are formed

by choosing T from1 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 70, 71 to 80, 81

to 90, and 91 to 100. Sample variance for T = 10 is calculated from the ten sample means. As

a second draw, the first observation is moved to the 100th place and the 100th observation takes

the 99th place, and so on. For the third draw, the second observation takes the 100th place, the

first observation takes the 99th place, the 100th observation takes the 98th place, and so on. By

rotating the placement of the data observations in this manner, we are able to have one hundred

draws, i.e., equal to the number of data points. Through each draw, we calculate sample variance

for T = 10 from the ten sample means. In this way, we have 100 values of the sample variance for
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a sample size T = 10. Taking an average of these 100 values, we get an estimate of the variance of

mean of sample size T = 10 (Note: when T/τ is an integer, the number of unique draws is equal

to τ instead of T ).

By choosing different values of τ and t such that the ratio T/τ is the same as τ/t, we estimate the

standard error for the mean of sample size T using eq. (3). For various combinations of τ/t, we

get different values of the standard error for the mean of sample size T . By taking an average of

those standard errors, we construct a standard error for the mean of sample size T. The following

formula has been used for calculating the sequence of standard errors for the mean of sample size

T .

seM =
1

2M

M∑

i=1




̂V ar
[
Y τi
]

√
̂V ar
[
Y ti
] +

√
̂V ar
[
Y τi
]

aT /aτi


 , (13)

where τ1 = 10, t1 = 1; τ2 = 14, t2 = 2; τ3 = 17, t3 = 3; τ4 = 20, t4 = 4; τ5 = 22, t5 = 5; τ6 = 24,

t6 = 6; τ7 = 26, t7 = 7; τ8 = 28, t8 = 8; τ9 = 30, t9 = 9; τ10 = 32, t10 = 10; τ11 = 33, t11 = 11;

τ12 = 35, t12 = 12; τ13 = 36, t13 = 13; τ14 = 37, t14 = 14; τ15 = 39, t15 = 15; τ16 = 40, t16 = 16;

τ17 = 41, t17 = 17; τ18 = 42, t18 = 18; τ19 = 44, t19 = 19; τ20 = 45, t20 = 20; τ21 = 46, t21 = 21;

τ22 = 47, t22 = 22; τ23 = 48, t23 = 23; τ24 = 49, t24 = 24; τ25 = 50, t25 = 25 for T = 100, and

τ1 = 14, t1 = 1; τ2 = 20, t2 = 2; τ3 = 24, t3 = 3; τ4 = 28, t4 = 4; τ5 = 32, t5 = 5; τ6 = 35, t6 = 6;

τ7 = 37, t7 = 7; τ8 = 40, t8 = 8; τ9 = 42, t9 = 9; τ10 = 45, t10 = 10; τ11 = 47, t11 = 11; τ12 = 49,

t12 = 12; τ13 = 51, t13 = 13; τ14 = 53, t14 = 14; τ15 = 55, t15 = 15; τ16 = 57, t16 = 16; τ17 = 58,

t17 = 17; τ18 = 60, t18 = 18; τ19 = 62, t19 = 19; τ20 = 63, t20 = 20; τ21 = 65, t21 = 21; τ22 = 66,

t22 = 22; τ23 = 68, t23 = 23; τ24 = 69, t24 = 24; τ25 = 71, t25 = 25; τ26 = 72, t26 = 26; τ27 = 73,

t27 = 27; τ28 = 75, t28 = 28; τ29 = 76, t29 = 29; τ30 = 77, t30 = 30; τ31 = 79, t31 = 31; τ32 = 80,

t32 = 32; τ33 = 81, t33 = 33; τ34 = 82, t34 = 34; τ35 = 84, t35 = 35; τ36 = 85, t36 = 36; τ37 = 86,

t37 = 37; τ38 = 87, t38 = 38; τ39 = 88, t39 = 39; τ40 = 89, t40 = 40; τ41 = 91, t41 = 41; τ42 = 92,

t42 = 42; τ43 = 93, t43 = 43; τ44 = 94, t44 = 44; τ45 = 95, t45 = 45; τ46 = 96, t46 = 46; τ47 = 97,

t47 = 47; τ48 = 98, t48 = 48; τ49 = 99, t49 = 49; τ50 = 100, t50 = 50 for T = 200.

For panel data, in order to calculate the standard error, i.e., seY NT , the data is arranged as

follows: Y11, Y12, ...Y21, Y22, ..., YNT . The subsamples of size K and J are drawn in a similar manner

as described above. By choosing different values of ņτ and ňt such that the ratio NT/ņτ is the

same as ņτ/ňt, we estimate the standard error for the mean of sample size NT using eq. (6). For

various combinations of ņτ/ňt, we get different values of the standard error for the mean of sample

size NT . By taking an average of those standard errors, we construct a standard error for the mean

of sample size NT. The following formula has been used for calculating the sequence of standard

errors for the mean of sample size NT .
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seM =
1

2M

M∑

m=1




̂V ar
[
Y (ņτ)m

]
√

̂V ar
[
Y (ňt)m

] +

√
̂V ar
[
Y (ņτ)m

]

aNT /a(ņτ)m


 . (14)

A sequence of t-statistics in eq. (9) can be written as follows:

tM =
aT (Y T − µ1) + µ∆

aT
2M

M∑

i=1




̂V ar[Y τi ]√
̂V ar[Y ti ]

+

√
̂V ar[Y τi ]

aT /aτi



. (15)

The above expression can be written as

tM =
aT (Y T − µ1)/

√
Vµ1 + µ∆/

√
Vµ1

aT
2M

M∑

i=1


 ati
a2τi

a2τi
̂V ar[Y τi ]/Vµ1

ati

√
̂V ar[Y ti ]/

√
Vµ1

+
a2τi

√
̂V ar[Y τi ]/

√
Vµ1

aT



,

where

aT (Y T − µ1)/
√
Vµ1 ⇒ Z,

Z ∼ N(0, 1),

a2τi
̂V ar
[
Y τi
]
/Vµ1 ⇒ κ2Ki−1/(Ki − 1),

ati

√
̂V ar
[
Y ti
]
/
√
Vµ1 ⇒

√
κ2Ji−1

/(Ji − 1),

aT .
ati
a2τi

= 1.

The denominator in eq. (15) is a function of random variables having some specific asymptotic

distributions. Furthermore, those random variables have the same functional dependence irrespec-

tive of the data type involved by virtue of the assumption aT (Y T − µ)
d−→ N(0, V ), e.g., the

ratio
̂V ar[Y τi ]√
̂V ar[Y ti ]

contains random variables ̂V ar
[
Y τi
]
and ̂V ar

[
Y ti
]
which have the same functional

dependence irrespective of the data type involved. Similarly the random variables
̂V ar[Y τi ]√
̂V ar[Y ti ]

and

√
̂V ar[Y τi ]

aT /aτi
have the same functional dependence, therefore even though the distribution for the t-

statistic is hard to derive, the critical values for the unknown distribution of the t-statistic can be
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easily simulated by an i.i.d data generating process provided that the subsampling scheme remains

the same. As the chi squared distributions in the denominator capture the sizes of the subsamples

chosen by the practitioner, the t-statistic should perform well in finite samples.

When µ∆ 6= 0, in which case we are under the alternative, the t-statistic has an additional term

in the limit which pushes the distribution away from the null distribution giving the test’s power.

The greater the departure from the null, the higher should be the power.

The asymptotic theory for the sample mean also applies to the estimators of regression parameters

provided that they satisfy the assumptions stipulated for the sample mean. Consider the regression

model

yit = x
′

itβ + εit, i = 1, ..., N ; t = 1, ..., T,

where yit is a scalar, xit is a (k×1) vector of regressors, β is a (k×1) vector of regression parameters,
and εit is the regression error. Suppose that β̂ follow an asymptotic normal distribution, i.e.,

aNT (β̂ − β)
d−→ N(0, V ),

where aNT is the scaling factor. Under T →∞, N →∞, asymptotics, the estimates of β from the

subsamples must be asymptotically i.i.d. The assumption of an asymptotic normal distribution for

β̂ rules out non-stationarity in regressors as well as the dependent variable in either dimension, i.e.,

T as well as N .

4 Finite Sample Null Rejection Probabilities and Power

Using DGP’s with different data structure, the simulated finite sample null rejection probabilities

and power of the t-statistic in comparison with the Ibragimov and Müller (2010) (abbreviated as

IM) approach are reported in this section. Tables 1-13 report null rejection probabilities for 5%

nominal level tests for testing H0 : µ = µ0 = 0 against the two-sided alternative H1 : µ 6= 0. Results
are reported for T = 100, 200, and 1000 replications are used in all these cases. Using eq. (13)

for the standard error, the results have been reported for se1 to se10. The results have also been

reported for seavg which is calculated as follows:

seavg =
1

N

N∑

M=1

seM ,

where N is the maximum possible value of M , e.g., for T = 100, the maximum possible value of

M is 25, therefore M takes values from 1 to 25 in the above mentioned formula. For a comparison

with Ibragimov and Müller (2010) (IM) approach, different values of q (notation in their paper),

i.e., the number of groups are chosen. For the panel data, eq. (14) is used for the calculation of
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standard errors. We simulate the critical values for the test statistic through an i.i.d process by

subsampling technique explained in section 3, e.g., for estimating only the intercept in regression,

we use the following data generating process:

yi = µ+ εi, εi ∼ N(0, 1).

The values of standard errors are reported for different values ofM for comparison with the standard

deviation of the sample mean. The standard errors are pretty accurate for almost all values of M

reported in the tables, however, for inference purposes seavg seems to provide the most reliable

and robust formula for the calculation of standard error in finite samples. The results suggest that

the performance of seavg to construct a test statistic is better than all other seM in terms of the

empirical null rejection probability as well as the width of the confidence interval. The confidence

intervals constructed through seavg have the minimum width in nearly all the cases reported in

tables 1-12. Tables 11-12 report the results for heteroskedasticity and the panel data with serial

correlation, spatial correlation and heteroskedasticity altogether.

As is evident from the tables that for the IM approach, the null rejection probability is the most

accurate for q = 2, however, the critical value in this case is 12.706, leading to a pretty wide

confidence interval and lower local asymptotic power. From q = 4 onwards, the IM approach

shows overrejections when the serial correlation is strong and underrejections when the data is

heteroskedastic and/or panel.

Table 13 shows the finite sample power performance of the test in comparison with IM approach

(q = 4) for time series data (AR(1) process) with different magnitudes of serial correlation. The

results are reported for T = 100, and 1000 replications are used in each case. The power of the test

increases rapidly as we move father away from the null, with higher power for lower magnitude of

the serial correlation as compared to the higher one, the reason being that the variance increases

as the serial correlation becomes stronger. The IM approach has much lower power.

Table 14 presents results for regression parameters and a comparison is also drawn with White

(1984), and Newey and West (1987).1Table 15 presents results for 1000 data points.

5 Conclusion:

In this paper a simple technique for carrying out inference robust to serial correlation, heteroskedas-

ticity and spatial correlation on the estimators which follow an asymptotic normal distribution has

been devised. The standard error of the sample mean from a larger sample size has been expressed

as a function of the standard errors of the sample means from smaller subsamples. The Monte

Carlo simulation results show that the technique works pretty well in finite samples both in terms

1Table 14 is prepared as per suggestions of anonymous referees.
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of the empirical null rejection probability as well as the power of the test. The technique is ex-

tremely simple and can be programmed in any statistical software for ease of application just like

an i.i.d. bootstrap. The technique works pretty well for any kind of data structure in terms of

heteroskedasticity, autocorrelation and spatial correlation in a finite sample. For time series data,

it does not require any kernel estimation (unlike theoretical HAC robust techniques available in

the existing literature) and eliminates the need for bandwidth choice procedures. The technique

outperforms the Ibragimov and Müller (2010) approach in terms of null rejection probability as

well as the local asypmtotic power of the test.
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Table 1: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.0964563 0.0947298 [−0.2351893, 0.2279247] 0.042 −
se2 2.3328373 0.0990655 [−0.234736, 0.2274714] 0.045 2 0.054
se3 2.4233392 0.0968687 [−0.238378, 0.2311134] 0.048 −
se4 2.5100734 0.094756 [−0.2414769, 0.2342123] 0.053 4 0.044
se5 2.5143351 0.0953288 [−0.2433208, 0.2360562] 0.047 5 0.041
se6 2.4522659 0.0971599 [−0.2418941, 0.2346295] 0.042 −
se7 2.5034686 0.0959467 [−0.2438318, 0.2365672] 0.045 −
se8 2.5178804 0.0959016 [−0.245101, 0.2378364] 0.046 −
se9 2.5029468 0.0964672 [−0.2450845, 0.2378199] 0.038 −
se10 2.4459803 0.0979359 [−0.2431817, 0.2359171] 0.045 10 0.047
seavg 2.4174228 0.098128 [−0.2408491, 0.2335845] 0.044

φ1 = 0 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.069950 0.0693725 [−0.1562712, 0.0374605] 0.053 −
se2 1.3839202 0.0697918 [−0.1583042, 0.0394934] 0.051 2 0.057
se3 1.371984 0.0695271 [−0.1575635, 0.0387528] 0.052 −
se4 1.355027 0.0699338 [−0.1600374, 0.0402266] 0.050 4 0.044
se5 1.3508825 0.0690563 [−0.1549379, 0.0361271] 0.055 5 0.042
se6 1.3681737 0.0694819 [−0.1562996, 0.0389489] 0.052 −
se7 1.3686779 0.0698397 [−0.1597813, 0.0399706] 0.051 −
se8 1.391217 0.0694178 [−0.1556333, 0.0388226] 0.053 −
se9 1.40414 0.0693352 [−0.1553368, 0.0387261] 0.054 −
se10 1.4054723 0.0697124 [−0.1582514, 0.0394406] 0.051 10 0.046
seavg 1.397614 0.0697559 [−0.1505429, 0.0347321] 0.051
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Table 2: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.1 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1070215 0.1087097 [−0.2699164, 0.2615422] 0.046 −
se2 2.3328373 0.1120459 [−0.2655721, 0.2571979] 0.041 2 0.034
se3 2.4233392 0.1091766 [−0.2687591, 0.2603849] 0.046 −
se4 2.5100734 0.106531 [−0.2715876, 0.2632134] 0.048 4 0.046
se5 2.5143351 0.1069318 [−0.2730494, 0.2646752] 0.043 5 0.031
se6 2.4522659 0.1086605 [−0.2706515, 0.2622773] 0.047 −
se7 2.5034686 0.1072284 [−0.2726301, 0.2642559] 0.033 −
se8 2.5178804 0.1070881 [−0.2738221, 0.265448] 0.031 −
se9 2.5029468 0.1076556 [−0.2736433, 0.2652692] 0.037 −
se10 2.4459803 0.1090902 [−0.2710196, 0.2626454] 0.042 10 0.057
seavg 2.4174228 0.1092987 [−0.2684082, 0.260034] 0.045

φ1 = 0.1 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.081369 0.0821973 [−0.1759334, 0.0349085] 0.049 −
se2 1.3839202 0.0815916 [−0.1740895, 0.0340646] 0.051 2 0.037
se3 1.371984 0.0819877 [−0.1757784, 0.0347535] 0.052 −
se4 1.355027 0.0820981 [−0.1759073, 0.0348824] 0.049 4 0.040
se5 1.3508825 0.0820407 [−0.175831, 0.03488061] 0.049 5 0.032
se6 1.3681737 0.0812884 [−0.1738474, 0.0338225] 0.051 −
se7 1.3686779 0.0815873 [−0.1739925, 0.0339675] 0.048 −
se8 1.391217 0.0810504 [−0.1735589, 0.033434] 0.052 −
se9 1.40414 0.0809073 [−0.1725762, 0.0333513] 0.053 −
se10 1.4054723 0.0812735 [−0.173824, 0.0337605] 0.052 10 0.056
seavg 1.397614 0.0812958 [−0.1709146, 0.0333497] 0.051
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Table 3: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.2 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1202334 0.1264811 [−0.3140503, 0.3042888] 0.042 −
se2 2.3328373 0.1285461 [−0.3047578, 0.2949963] 0.039 2 0.054
se3 2.4233392 0.1247986 [−0.30731, 0.2975486] 0.040 −
se4 2.5100734 0.1214474 [−0.3097226, 0.2999611] 0.029 4 0.046
se5 2.5143351 0.1216001 [−0.3106241, 0.3008626] 0.031 5 0.051
se6 2.4522659 0.1231606 [−0.3069034, 0.2971419] 0.030 −
se7 2.5034686 0.1214372 [−0.3088949, 0.2991334] 0.034 −
se8 2.5178804 0.1211618 [−0.3099517, 0.3001902] 0.031 −
se9 2.5029468 0.1217103 [−0.3095152, 0.2997537] 0.037 −
se10 2.4459803 0.1230789 [−0.3059293, 0.2961679] 0.041 10 0.047
seavg 2.4174228 0.1233528 [−0.3030766, 0.2933151] 0.043

φ1 = 0.2 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.087232 0.0877668 [−0.1908837, 0.0423623] 0.042 −
se2 1.3839202 0.0828754 [−0.1889536, 0.0404323] 0.055 2 0.057
se3 1.371984 0.0828077 [−0.1878716, 0.0393502] 0.056 −
se4 1.355027 0.0825091 [−0.1860627, 0.0375413] 0.057 4 0.040
se5 1.3508825 0.0821989 [−0.1853018, 0.0367804] 0.059 5 0.052
se6 1.3681737 0.0812049 [−0.1853631, 0.0368417] 0.065 −
se7 1.3686779 0.081414 [−0.1856902, 0.0371688] 0.063 −
se8 1.391217 0.0807199 [−0.1865595, 0.0380382] 0.066 −
se9 1.40414 0.0804914 [−0.1872819, 0.0387605] 0.067 −
se10 1.4054723 0.0808347 [−0.1878717, 0.0393503] 0.066 10 0.046
seavg 1.397614 0.0847581 [−0.1847197, 0.0341984] 0.052

15



Table 4: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.3 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1372048 0.1496581 [−0.3716065, 0.3600403] 0.040 −
se2 2.3328373 0.1500708 [−0.3558739, 0.3443077] 0.038 2 0.044
se3 2.4233392 0.145173 [−0.3575865, 0.3460203] 0.039 −
se4 2.5100734 0.1408789 [−0.3593995, 0.3478333] 0.018 4 0.066
se5 2.5143351 0.1406734 [−0.3594831, 0.3479169] 0.029 5 0.057
se6 2.4522659 0.141958 [−0.3539017, 0.3423356] 0.031 −
se7 2.5034686 0.139837 [−0.3558606, 0.3442944] 0.034 −
se8 2.5178804 0.1393662 [−0.3566906, 0.3451245] 0.033 −
se9 2.5029468 0.1398613 [−0.3558485, 0.3442824] 0.032 −
se10 2.4459803 0.1411056 [−0.3509246, 0.3393584] 0.042 10 0.067
seavg 2.4174228 0.1415067 [−0.3478645, 0.3362984] 0.044

φ1 = 0.3 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.104423 0.1043189 [−0.2234573, 0.0537771] 0.050 −
se2 1.3839202 0.0977657 [−0.2201401, 0.0504599] 0.052 2 0.047
se3 1.371984 0.0970598 [−0.2180046, 0.0483244] 0.053 −
se4 1.355027 0.0961848 [−0.215173, 0.0454928] 0.054 4 0.060
se5 1.3508825 0.0955149 [−0.2138695, 0.0441893] 0.054 5 0.053
se6 1.3681737 0.0941856 [−0.2137024, 0.0440222] 0.055 −
se7 1.3686779 0.0942575 [−0.2138483, 0.0441681] 0.054 −
se8 1.391217 0.0933438 [−0.2147015, 0.0450213] 0.056 −
se9 1.40414 0.0929922 [−0.2154141, 0.0457339] 0.057 −
se10 1.4054723 0.0932936 [−0.2159617, 0.0462814] 0.056 10 0.067
seavg 1.397614 0.0973369 [−0.2208796, 0.0511994] 0.052
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Table 5: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.4 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1597824 0.1808641 [−0.4491099, 0.4350964] 0.040 −
se2 2.3328373 0.1790882 [−0.4247903, 0.4107768] 0.045 2 0.044
se3 2.4233392 0.1726673 [−0.4254383, 0.4114248] 0.031 −
se4 2.5100734 0.167095 [−0.4264274, 0.412414] 0.025 4 0.068
se5 2.5143351 0.16637 [−0.4253167, 0.4113032] 0.036 5 0.057
se6 2.4522659 0.1672044 [−0.4170363, 0.4030229] 0.030 −
se7 2.5034686 0.1645263 [−0.4188931, 0.4048797] 0.031 −
se8 2.5178804 0.1637664 [−0.4193509, 0.4053375] 0.032 −
se9 2.5029468 0.1641486 [−0.4178618, 0.4038484] 0.035 −
se10 2.4459803 0.1651659 [−0.4109992, 0.3969857] 0.042 10 0.047
seavg 2.4174228 0.1657708 [−0.4077448, 0.3937313] 0.041

φ1 = 0.4 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.115998 0.1269269 [−0.2675621, 0.0697547] 0.032 −
se2 1.3839202 0.1181525 [−0.2624173, 0.0646099] 0.045 2 0.043
se3 1.371984 0.1165477 [−0.2588053, 0.0609979] 0.047 −
se4 1.355027 0.1148399 [−0.2545148, 0.0567074] 0.052 4 0.069
se5 1.3508825 0.1136483 [−0.2524292, 0.0546218] 0.053 5 0.059
se6 1.3681737 0.111842 [−0.251923, 0.0541156] 0.054 −
se7 1.3686779 0.111702 [−0.2517878, 0.0539804] 0.055 −
se8 1.391217 0.1104717 [−0.2525938, 0.0547864] 0.056 −
se9 1.40414 0.1099374 [−0.2532712, 0.0554638] 0.061 −
se10 1.4054723 0.110165 [−0.2537376, 0.0559302] 0.056 10 0.049
seavg 1.397614 0.1149732 [−0.2586135, 0.0608061] 0.052
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Table 6: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.5 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1912783 0.2245867 [−0.5577294, 0.5402274] 0.010 −
se2 2.3328373 0.2198794 [−0.5216938, 0.5041917] 0.037 2 0.044
se3 2.4233392 0.2114198 [−0.5210929, 0.5035908] 0.020 −
se4 2.5100734 0.204084 [−0.5210169, 0.5035149] 0.021 4 0.048
se5 2.5143351 0.2026002 [−0.5181558, 0.5006537] 0.026 5 0.047
se6 2.4522659 0.2027028 [−0.5058322, 0.4883302] 0.030 −
se7 2.5034686 0.1992212 [−0.5074952, 0.4899931] 0.031 −
se8 2.5178804 0.1980233 [−0.5073501, 0.4898481] 0.032 −
se9 2.5029468 0.1981863 [−0.5048007, 0.4872986] 0.043 −
se10 2.4459803 0.1987971 [−0.4950048, 0.4775027] 0.046 10 0.057
seavg 2.4174228 0.199689 [−0.4914838, 0.4739817] 0.042

φ1 = 0.5 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.145693 0.1504033 [−0.3302164, 0.0931427] 0.027 −
se2 1.3839202 0.1487447 [−0.3225917, 0.0855181] 0.039 2 0.043
se3 1.371984 0.1485322 [−0.3168327, 0.079759] 0.041 −
se4 1.355027 0.1478271 [−0.3103852, 0.0733115] 0.043 4 0.049
se5 1.3508825 0.1476117 [−0.3071359, 0.0700622] 0.044 5 0.049
se6 1.3681737 0.1471052 [−0.3061203, 0.0690467] 0.046 −
se7 1.3686779 0.1466314 [−0.3055412, 0.0684675] 0.047 −
se8 1.391217 0.1449278 [−0.3062507, 0.069177] 0.049 −
se9 1.40414 0.1441125 [−0.3068496, 0.069776] 0.050 −
se10 1.4054723 0.1442104 [−0.3071659, 0.0700922] 0.051 10 0.059
seavg 1.397614 0.1428239 [−0.3017422, 0.0691686] 0.052
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Table 7: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.6 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.2382851 0.2890184 [−0.7178931, 0.6950561] 0.010 −
se2 2.3328373 0.2804254 [−0.6656053, 0.6427683] 0.017 2 0.044
se3 2.4233392 0.269239 [−0.663876, 0.6410389] 0.018 −
se4 2.5100734 0.2594337 [−0.6626163, 0.6397792] 0.028 4 0.048
se5 2.5143351 0.2568362 [−0.6571908, 0.6343538] 0.026 5 0.057
se6 2.4522659 0.2557502 [−0.638586, 0.615749] 0.025 −
se7 2.5034686 0.2510788 [−0.6399863, 0.6171493] 0.027 −
se8 2.5178804 0.2492048 [−0.6388863, 0.6160493] 0.028 −
se9 2.5029468 0.2489527 [−0.634534, 0.611697] 0.040 −
se10 2.4459803 0.2488425 [−0.6200825, 0.5972454] 0.041 10 0.067
seavg 2.4174228 0.2500641 [−0.6159291, 0.593092] 0.041

φ1 = 0.6 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.181605 0.2086768 [−0.425236, 0.1293365] 0.032 −
se2 1.3839202 0.1923892 [−0.414201, 0.1183015] 0.038 2 0.043
se3 1.371984 0.1874853 [−0.4051765, 0.109277] 0.043 −
se4 1.355027 0.1826155 [−0.3953987, 0.0994992] 0.047 4 0.049
se5 1.3508825 0.1794332 [−0.3903429, 0.0944434] 0.051 5 0.059
se6 1.3681737 0.17586 [−0.3885567, 0.0926573] 0.052 −
se7 1.3686779 0.1748458 [−0.3872573, 0.0913578] 0.057 −
se8 1.391217 0.1724024 [−0.3877989, 0.0918994] 0.058 −
se9 1.40414 0.1711371 [−0.3882501, 0.0923507] 0.062 −
se10 1.4054723 0.1710024 [−0.3882889, 0.0923894] 0.065 10 0.069
seavg 1.397614 0.1765728 [−0.3869352, 0.0910357] 0.048
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Table 8: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.7 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.316008 0.3905051 [−0.9705136, 0.9385828] 0.012 −
se2 2.3328373 0.377099 [−0.895676, 0.8637452] 0.018 2 0.054
se3 2.4233392 0.3624281 [−0.8942516, 0.8623208] 0.017 −
se4 2.5100734 0.3491941 [−0.8924683, 0.8605375] 0.027 4 0.058
se5 2.5143351 0.3449971 [−0.8834036, 0.8514728] 0.025 5 0.067
se6 2.4522659 0.3419981 [−0.8546356, 0.8227048] 0.021 −
se7 2.5034686 0.3355449 [−0.8559914, 0.8240606] 0.026 −
se8 2.5178804 0.332624 [−0.8534727, 0.8215419] 0.029 −
se9 2.5029468 0.3315947 [−0.8459292, 0.8139984] 0.040 −
se10 2.4459803 0.3302009 [−0.8236304, 0.7916996] 0.046 10 0.077
seavg 2.4174228 0.3315832 [−0.8175423, 0.7856115] 0.043

φ1 = 0.7 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.241153 0.2707476 [−0.5834842, 0.189197] 0.022 −
se2 1.3839202 0.267998 [−0.5680315, 0.1737443] 0.028 2 0.053
se3 1.371984 0.2599864 [−0.5538408, 0.1595535] 0.027 −
se4 1.355027 0.2520536 [−0.5386831, 0.1443959] 0.037 4 0.059
se5 1.3508825 0.246914 [−0.5306953, 0.1364081] 0.035 5 0.069
se6 1.3681737 0.2416625 [−0.5277799, 0.1334927] 0.038 −
se7 1.3686779 0.2397455 [−0.525278, 0.1309908] 0.037 −
se8 1.391217 0.2360891 [−0.5255948, 0.1313076] 0.039 −
se9 1.40414 0.2340723 [−0.5258139, 0.1315267] 0.049 −
se10 1.4054723 0.2335112 [−0.5253371, 0.1310499] 0.051 10 0.077
seavg 1.397614 0.2355784 [−0.5163913, 0.1299041] 0.048
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Table 9: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.8 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.4686303 0.5664212 [−1.409759, 1.359353] 0.012 −
se2 2.3328373 0.5485023 [−1.30477, 1.254363] 0.018 2 0.044
se3 2.4233392 0.5302791 [−1.310249, 1.259843] 0.029 −
se4 2.5100734 0.5127817 [−1.312323, 1.261916] 0.027 4 0.068
se5 2.5143351 0.5066161 [−1.299006, 1.248599] 0.025 5 0.077
se6 2.4522659 0.5007495 [−1.253174, 1.202768] 0.028 −
se7 2.5034686 0.4917829 [−1.256366, 1.20596] 0.032 −
se8 2.5178804 0.4873622 [−1.252323, 1.201917] 0.045 −
se9 2.5029468 0.4849576 [−1.239026, 1.18862] 0.047 −
se10 2.4459803 0.4813079 [−1.202473, 1.152066] 0.046 10 0.097
seavg 2.4174228 0.4818551 [−1.190051, 1.139644] 0.049

φ1 = 0.8 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.359234 0.4689628 [−0.7353108, 0.5109891] 0.022 −
se2 1.3839202 0.4370496 [−0.7170026, 0.492681] 0.028 2 0.043
se3 1.371984 0.4237301 [−0.6935117, 0.4691901] 0.039 −
se4 1.355027 0.4109784 [−0.6690476, 0.444726] 0.037 4 0.061
se5 1.3508825 0.4017554 [−0.6548852, 04305636] 0.035 5 0.076
se6 1.3681737 0.392662 [−0.6493906, 0.425069] 0.038 −
se7 1.3686779 0.3876784 [−0.6427676, 0.418446] 0.040 −
se8 1.391217 0.3799619 [−0.6407702, 0.4164486] 0.046 −
se9 1.40414 0.3753938 [−0.6392662, 0.4149446] 0.049 −
se10 1.4054723 0.3734275 [−0.6370028, 0.4126811] 0.047 10 0.095
seavg 1.397614 0.3706044 [−0.6301227, 0.4058011] 0.051
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Table 10: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.9 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.8974888 0.9254669 [−2.314443, 2.209967] 0.029 −
se2 2.3328373 0.9093736 [−2.173659, 2.069182] 0.033 2 0.064
se3 2.4233392 0.8918764 [−2.213557, 2.109081] 0.034 −
se4 2.5100734 0.8723568 [−2.241918, 2.137441] 0.038 4 0.088
se5 2.5143351 0.8659517 [−2.229531, 2.125055] 0.045 5 0.109
se6 2.4522659 0.8574554 [−2.154947, 2.050471] 0.042 −
se7 2.5034686 0.8464618 [−2.171329, 2.066852] 0.045 −
se8 2.5178804 0.841077 [−2.169969, 2.065493] 0.046 −
se9 2.5029468 0.8371613 [−2.147608, 2.043132] 0.043 −
se10 2.4459803 0.8302671 [−2.083055, 1.978579] 0.066 10 0.201
seavg 2.4174228 0.8264156 [−2.050034, 1.945558] 0.062 −
φ1 = 0.9 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.702983 0.7116937 [−1.374395, 0.8797364] 0.032 −
se2 1.3839202 0.7113736 [−1.370206, 0.8755471] 0.045 2 0.063
se3 1.371984 0.710876 [−1.336845, 0.842187] 0.043 −
se4 1.355027 0.709357 [−1.299252, 0.8045939] 0.044 4 0.081
se5 1.3508825 0.708952 [−1.277994, 0.7833356] 0.054 5 0.106
se6 1.3681737 0.707455 [−1.274098, 0.7794393] 0.058 −
se7 1.3686779 0.706462 [−1.26102, 0.7694433] 0.047 −
se8 1.391217 0.705077 [−1.264573, 0.7699148] 0.047 −
se9 1.40414 0.704161 [−1.264262, 0.7696036] 0.045 −
se10 1.4054723 0.703267 [−1.260107, 0.7654488] 0.062 10 0.205
seavg 1.397614 0.7024424 [−1.229073, 0.734414] 0.052 −
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Table 11: A Comparison of the standard deviation of the sample mean with the mean value of
the standard error calculated by eq. (14) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 1 is used for T = 100.
DGP: yi = µ+ exp(βxi).εi, εi ∼ N(0, 1), xi ∼ N(0, 1); µ = 0, β = 0.4.

CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.1162029 0.116314 [−0.2908727, 0.2777617] 0.042 −
se2 2.3328373 0.1213187 [−0.2895723, 0.2764613] 0.043 2 0.000
se3 2.4233392 0.1190771 [−0.2951196, 0.2820086] 0.041 −
se4 2.5100734 0.1169148 [−0.3000202, 0.2869092] 0.046 4 0.000
se5 2.5143351 0.1178461 [−0.3028601, 0.2897491] 0.048 5 0.000
se6 2.4522659 0.1199574 [−0.3007229, 0.2876119] 0.040 −
se7 2.5034686 0.1185563 [−0.3033575, 0.2902465] 0.049 −
se8 2.5178804 0.1185558 [−0.3050649, 0.2919539] 0.046 −
se9 2.5029468 0.1193456 [−0.3052711, 0.2921601] 0.044 −
se10 2.4459803 0.1210026 [−0.3025255, 0.2894145] 0.056 10 0.000
seavg 2.4174228 0.1214158 [−0.3000689, 0.2869579] 0.051

DGP: yit = µ+ φ1yit−1 + wi + exp(βxit).εit, εit ∼ N(0, 1), xit ∼ N(0, 1); µ = 0, φ1 = 0.2,
β = 0.2; wi = λwi−1 + vi, λ = 0.3.

φ1 = 0.1 CV1 St. Dev1 St. Error1 CI1 Rej. Pr1 q IM1

se1 2.4443936 0.2059888 0.200824 [−0.4655353, 0.5162506] 0.041 −
se2 2.3328373 0.2086386 [−0.4613621, 0.5120775] 0.051 2 0.000
se3 2.4233392 0.2066676 [−0.475468, 0.5261834] 0.055 −
se4 2.5100734 0.2041653 [−0.4871121, 0.5378275] 0.057 4 0.000
se5 2.5143351 0.2061785 [−0.4930443, 0.5437596] 0.056 5 0.000
se6 2.4522659 0.2086671 [−0.4863496, 0.537065] 0.059 −
se7 2.5034686 0.2066445 [−0.4919702, 0.5426856] 0.061 −
se8 2.5178804 0.2065773 [−0.4947793, 0.5454947] 0.063 −
se9 2.5029468 0.2073685 [−0.4936746, 0.54439] 0.066 −
se10 2.4459803 0.2087266 [−0.4851834, 0.5358988] 0.062 10 0.000
seavg 2.4174228 0.2071774 [−0.4754777, 0.5261931] 0.064
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Table 12: A Comparison of the standard deviation of the sample mean with the mean value of
the standard error calculated by eq. (14) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. Subscript 2 is used for T = 200.
DGP: yi = µ+ exp(βxi).εi, εi ∼ N(0, 1), xi ∼ N(0, 1); µ = 0, β = 0.4.

CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.069950 0.0647191 [−0.1122103, 0.098671] 0.057 −
se2 1.3839202 0.0673187 [−0.1146352, 0.099981] 0.054 2 0.000
se3 1.371984 0.0680771 [−0.1156292, 0.104721] 0.053 −
se4 1.355027 0.0691489 [−0.1172963, 0.105392] 0.052 4 0.000
se5 1.3508825 0.0678461 [−0.1155983, 0.104692] 0.053 5 0.000
se6 1.3681737 0.0699574 [−0.1181392, 0.106389] 0.049 −
se7 1.3686779 0.0685563 [−0.1170479, 0.105274] 0.052 −
se8 1.391217 0.0685958 [−0.1171392, 0.105296] 0.052 −
se9 1.40414 0.0693456 [−0.1173128, 0.105429] 0.051 −
se10 1.4054723 0.0680026 [−0.1156191, 0.104542] 0.053 10 0.000
seavg 1.397614 0.0689158 [−0.1102902, 0.096361] 0.052

DGP: yit = µ+ φ1yit−1 + wi + exp(βxit).εit, εit ∼ N(0, 1), xit ∼ N(0, 1); µ = 0, φ1 = 0.2,
β = 0.2; wi = λwi−1 + vi, λ = 0.3.

φ1 = 0.1 CV2 St. Dev2 St. Error2 CI2 Rej. Pr2 q IM2

se1 1.3287834 0.144922 0.1533778 [−0.2240488, 0.1835629] 0.041 −
se2 1.3839202 0.1457532 [−0.2219537, 0.1814678] 0.048 2 0.000
se3 1.371984 0.1458801 [−0.2203881, 0.1799023] 0.047 −
se4 1.355027 0.1460175 [−0.2181006, 0.1776147] 0.046 4 0.000
se5 1.3508825 0.1461213 [−0.2176357, 0.1771498] 0.045 5 0.000
se6 1.3681737 0.1444437 [−0.217867, 0.1773811] 0.052 −
se7 1.3686779 0.1443676 [−0.2178357, 0.1773498] 0.055 −
se8 1.391217 0.1426047 [−0.2186369, 0.1781511] 0.057 −
se9 1.40414 0.1418511 [−0.2194218, 0.1789359] 0.058 −
se10 1.4054723 0.1420772 [−0.2199285, 0.1794426] 0.057 10 0.000
seavg 1.397614 0.1487665 [−0.2181611, 0.1776752] 0.045
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Table 13: Finite sample power performance of the test statistic for seavg and IM approach for
q = 4 for 1000 reps. 5% Nominal Level, Two-sided Tests. H0 : µ = µ0 = 0, H1 : µ = µ1.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0, T = 100, CV = 2.4174228.
φ1 = 0 Rej. Pr IM φ1 = 0.1 Rej. Pr IM φ1 = 0.2 Rej. Pr IM

µ = 0.00 0.046 0.048 µ = 0.00 0.047 0.044 µ = 0.00 0.057 0.051
µ = 0.05 0.088 0.060 µ = 0.05 0.086 0.063 µ = 0.05 0.085 0.075
µ = 0.10 0.128 0.102 µ = 0.10 0.127 0.101 µ = 0.10 0.125 0.101
µ = 0.15 0.230 0.199 µ = 0.15 0.228 0.179 µ = 0.15 0.227 0.180
µ = 0.20 0.369 0.276 µ = 0.20 0.368 0.297 µ = 0.20 0.366 0.278
µ = 0.25 0.589 0.412 µ = 0.25 0.587 0.429 µ = 0.25 0.567 0.431
µ = 0.30 0.658 0.555 µ = 0.30 0.651 0.592 µ = 0.30 0.647 0.529
µ = 0.35 0.887 0.706 µ = 0.35 0.819 0.641 µ = 0.35 0.817 0.677
µ = 0.40 0.928 0.734 µ = 0.40 0.926 0.763 µ = 0.40 0.922 0.744
µ = 0.45 0.992 0.851 µ = 0.45 0.987 0.843 µ = 0.45 0.985 0.837

φ1 = 0.3 Rej. Pr IM φ1 = 0.4 Rej. Pr IM φ1 = 0.5 Rej. Pr IM

µ = 0.00 0.055 0.048 µ = 0.00 0.062 0.050 µ = 0.00 0.050 0.051
µ = 0.05 0.087 0.061 µ = 0.05 0.088 0.063 µ = 0.05 0.081 0.093
µ = 0.10 0.125 0.118 µ = 0.10 0.126 0.136 µ = 0.10 0.124 0.119
µ = 0.15 0.226 0.184 µ = 0.15 0.225 0.201 µ = 0.15 0.224 0.202
µ = 0.20 0.365 0.273 µ = 0.20 0.346 0.288 µ = 0.20 0.339 0.298
µ = 0.25 0.508 0.412 µ = 0.25 0.499 0.425 µ = 0.25 0.492 0.442
µ = 0.30 0.639 0.563 µ = 0.30 0.627 0.551 µ = 0.30 0.619 0.551
µ = 0.35 0.815 0.665 µ = 0.35 0.796 0.657 µ = 0.35 0.788 0.643
µ = 0.40 0.919 0.767 µ = 0.40 0.917 0.782 µ = 0.40 0.915 0.785
µ = 0.45 0.982 0.824 µ = 0.45 0.975 0.857 µ = 0.45 0.967 0.835
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Table 14: A Comparison of the standard deviation of the sample mean with the mean value of the standard
error calculated by eq. (14) and eq. (13) respectively through 1000 replications, and empirical null
rejection probabilities for the test statistic, White (1984) and Newey and West (1987) approach. T = 100.
DGP: yi = xiβ + εi, εi ∼ N(0, σ2i ), xi ∼ N(0, 1); σ2i takes values from 0.01 to 1, β = 0.

CV St. Dev St. Error CI Rej. Pr White (1984)

se2 1.4376333 0.0752358 0.1561381 [−0.2247313, 0.2242074] 0.040 0.081
se3 1.9541209 0.1006337 [−0.1969123, 0.1963885] 0.043
se4 2.2493941 0.0831105 [−0.1872101, 0.1866863] 0.041
se5 2.3671093 0.0769950 [−0.1825175, 0.1819937] 0.046
se6 2.2528766 0.0769994 [−0.1737321, 0.1732083] 0.042
se7 2.3821085 0.0728513 [−0.1738015, 0.1732777] 0.035
se8 2.4516591 0.0710890 [−0.1745479, 0.1740241] 0.038
se9 2.4504642 0.0708547 [−0.1738889, 0.1733651] 0.040
se10 2.2882882 0.0735069 [−0.1684669, 0.1679431] 0.044
seavg 2.1288568 0.0800460 [−0.1703876, 0.1713001] 0.043

DGP: yt = φyt−1 + εt, εt ∼ N(0, 1), φ = 0.5.
For Newey and West (1987), Kernel = Bartlett, Bandwidth = 10.

CV St. Dev St. Error CI Rej. Pr Newey&West (1987)
se3 3.7796679 0.0880726 0.0692434 [−0.0654307, 0.4580036] 0.057 0.105
se4 3.7065494 0.0761618 [−0.0860111, 0.478584] 0.056
se5 3.4024051 0.0846737 [−0.0918078, 0.4843806] 0.051
se6 2.8266524 0.0948328 [−0.0717728, 0.4643457] 0.054
se8 2.864615 0.0969039 [−0.081306, 0.4738788] 0.049
se9 2.7945549 0.0998083 [−0.0826334, 0.4752062] 0.059
se10 2.4958118 0.1054803 [−0.0669724, 04595453] 0.055
seavg 2.7289522 0.1003769 [−0.0656373, 0.4602101] 0.052

Table 15: A Comparison of the standard deviation of the sample mean with the mean value of the
standard error calculated by eq. (13) through 1000 replications, and empirical null rejection
probabilities for the test statistic and IM approach. T = 1000.
DGP: yt = µ+ φ1yt−1 + εt, εt ∼ N(0, 1); µ = 0.
φ1 = 0.5 CV St. Dev St. Error CI Rej. Pr q IM

se1 2.138258 0.0654725 0.084693 [−0.1808599, 0.1813311] 0.014 −
se2 2.1455735 0.0802065 [−0.1718532, 0.1723245] 0.026 2 0.045
se3 2.1502745 0.0777197 [−0.1668832, 0.1673544] 0.030 −
se4 2.1553015 0.0754233 [−0.1623243, 0.1627955] 0.032 4 0.047
se5 2.1652035 0.074209 [−0.160442, 0.1609133] 0.033 5 0.048
se6 2.172101 0.0728887 [−0.1580859, 0.1585572] 0.035 −
se7 2.163528 0.0718671 [−0.1552509, 0.1557221] 0.036 −
se8 2.1648155 0.0715329 [−0.1546199, 0.1550912] 0.038 −
se9 2.1893815 0.0709835 [−0.1551743, 0.1556456] 0.040 −
se10 2.19799 0.0703676 [−0.1544316, 0.1549029] 0.041 10 0.056
seavg 2.12701 0.0711599 [−0.1545033, 0.1549745] 0.043
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