

Robust Inference by Sub-sampling

Nawaz, Nasreen

Federal Board of Revenue

31 August 2017

Online at https://mpra.ub.uni-muenchen.de/116721/ MPRA Paper No. 116721, posted 17 Mar 2023 10:08 UTC

Robust Inference by Sub-sampling

Nasreen Nawaz* Federal Board of Revenue

August, 2017, revised June 08, 2019

Abstract

This paper provides a simple technique of carrying out inference robust to serial correlation, heteroskedasticity and spatial correlation on the estimators which follow an asymptotic normal distribution. The idea is based on the fact that the estimates from a larger sample tend to have a smaller variance which can be expressed as a function of the variance of the estimator from smaller subsamples. The major advantage of the technique other than the ease of application and simplicity is its finite sample performance both in terms of the empirical null rejection probability as well as the power of the test. It does not restrict the data in terms of structure in any way and works pretty well for any kind of heteroskedasticity, autocorrelation and spatial correlation in a finite sample. Furthermore, unlike theoretical HAC robust techniques available in the existing literature, it does not require any kernel estimation and hence eliminates the discretion of the analyst to choose a specific kernel and bandwidth. The technique outperforms the Ibragimov and Müller (2010) approach in terms of null rejection probability as well as the local asymptotic power of the test.

Keywords: HAC, Spatial Correlation, Robust, Inference

^{*}Email: nawaznas@msu.edu

1 Introduction

The existing econometrics literature has a long history of estimation procedures for heteroskedasticity and autocorrelation consistent (HAC) variance-covariance estimators and the asymptotic theory regarding the use of these estimators for HAC robust inference. The major contributions include White (1984), Newey and West (1987), Gallant (1987), Andrews (1991), Andrews and Monahan (1992), Robinson (1998), de Jong and Davidson (2000), Jansson (2002) and Kiefer and Vogelsang (2005). There has also been some literature regarding the inference robust to spatial correlation, such as Kelejian and Prucha (2001), Ibragimov and Müller (2010), Driscoll and Kraay (1998), Alan Bester, Conley, Hansen and Vogelsang (2009), Dale and Fortin (2009), Cameron and Miller (2010), Ibragimov and Müller (2010) and Vogelsang (2012), etc.

There are several papers in the literature which give overviews of various aspects of bootstrapping time series. Among them are Hongyi Li and Maddala (1996), Berkowitz and Kilian (2000), Bühlmann (2002), Ruiz and Pascual (2002), Härdle, Horowitz and Kreiss (2003), and Paparoditis and Politis (2009). These papers suggest that even though there are some promising bootstrap methods available for time series data, however, there is a considerable need for further research in the application of the bootstrap to time series. There may be instances where the bootstrap procedures used are not adequate. Although bootstrapping is (under some conditions) asymptotically consistent, it does not provide general finite-sample guarantees.

In Ibragimov and Müller (2010), an approach to robust inference has been developed with efficiency in terms of local asymptotic power. The power of the test varies with the choice of the number of groups, i.e., q and it is not possible to use data dependent methods to determine an appropriate q, which leaves a lot of ambiguity. There certainly are instances, where choosing q = 2 would lead to acceptance of the null as the critical value for q = 2 with one degree of freedom is 12.706 leading to a pretty wide confidence interval, and a higher value of q with better local asymptotic power (and worse null rejection probability) would lead to rejection of the null.

This paper provides a simple technique of carrying out inference robust to serial correlation, heteroskedasticity and spatial correlation on the estimators which follow an asymptotic normal distribution. The technique outperforms the approach of Ibragimov and Müller (2010) in terms of null rejection probability as well as the local asymptotic power. The idea is based on the fact that the estimates from a larger sample tend to have a smaller variance which can be expressed as a function of the variance of the estimator from smaller subsamples. The major advantage of the technique other than the ease of application and simplicity is its finite sample performance both in terms of the empirical null rejection probability as well as the power of the test. It does not restrict the data in terms of structure in any way and works pretty well for any kind of heteroskedasticity, autocorrelation and spatial correlation in a finite sample. Furthermore, unlike theoretical HAC robust techniques available in the exisiting literature, it does not require any kernel estimation and hence eliminates the discretion of the analyst to choose a specific kernel and bandwidth. Unlike Ibragimov and Müller (2010), it provides a unique rule for the estimation of standard errors and the confidence intervals irrespective of the structure of the data leaving no room for ambiguity.

The remainder of this paper is organized as follows: Section 2 provides the details of the variance estimator. Section 3 discusses the inference procedure and the asymptotic properties of the *t*-statistics. Section 4 presents the finite sample null rejection probabilities and the power of the test through Monte Carlo simulations. Section 5 concludes.

2 Variance Estimator

Suppose that the sample mean of time series, Y_t follows an asymptotic normal distribution, i.e.,

$$a_T(\overline{Y}_T - \mu) \xrightarrow{d} N(0, V),$$

where a_T is the scaling factor, and is of order T^{γ} , where $\gamma > 0$. An estimator of variance of \overline{Y}_T can be written as

$$\widehat{Var\left[\overline{Y}_{T}\right]} = \frac{\widehat{V}_{T}}{a_{T}^{2}}$$

The estimator of variance of mean of a subsample of size t can be written as

$$\widehat{Var\left[\overline{Y}_{t}\right]} = \frac{\widehat{V}_{t}}{a_{t}^{2}}$$

Similarly the variance estimator of mean of a subsample of size τ can be written as

$$\widehat{Var\left[\overline{Y}_{\tau}\right]} = \frac{\widehat{V}_{\tau}}{a_{\tau}^2}$$

If the ratio T/τ is the same as τ/t , then

$$\frac{P \lim \left[\widehat{Var\left[\overline{Y}_{T}\right]} \right]}{P \lim \left[\widehat{Var\left[\overline{Y}_{\tau}\right]} \right]} = \frac{P \lim \left[\widehat{Var\left[\overline{Y}_{\tau}\right]} \right]}{P \lim \left[\widehat{Var\left[\overline{Y}_{t}\right]} \right]},$$

which implies that

$$P \lim \left[\widehat{Var\left[\overline{Y}_{T}\right]} \right] = P \lim \frac{\left[\widehat{Var\left[\overline{Y}_{\tau}\right]} \right]^{2}}{\left[\widehat{Var\left[\overline{Y}_{t}\right]} \right]^{2}}.$$
(1)

Therefore, if we can construct subsamples of size τ and t, then immediate, empirical estimators of $Var\left[\overline{Y}_{\tau}\right]$ and $Var\left[\overline{Y}_{t}\right]$ can be constructed from the many size- τ and t sample means respectively

that can be extracted from our data $Y_1, Y_2, ..., Y_T$. Furthermore, in order to use the empirical formulas

$$\widehat{Var\left[\overline{Y}_{\tau}\right]} = \frac{1}{K-1} \sum_{i=1}^{K} (\overline{Y}_{\tau i} - \overline{\overline{Y}_{\tau}})^{2},$$
$$\widehat{Var\left[\overline{Y}_{t}\right]} = \frac{1}{J-1} \sum_{i=1}^{J} (\overline{Y}_{t i} - \overline{\overline{Y}_{t}})^{2},$$

the sample means from the subsamples must be asymptotically i.i.d (the conditions mentioned in Ibragimov and Müller (2010)), which implies that there cannot be overlapping observations in two subsamples. Also

$$P \lim \left[\widehat{Var\left[\overline{Y}_{T}\right]} \right] = P \lim \frac{\left[\widehat{Var\left[\overline{Y}_{\tau}\right]} \right]}{a_{T}^{2}/a_{\tau}^{2}}.$$
(2)

Equations (1) and (2) provide two consistent estimators for $Var\left[\overline{Y}_{T}\right]$, however, their performance in finite samples remain to be seen, which will be presented later in this paper. For an improved finite sample performance, an average of the two estimators is taken to construct the standard error for \overline{Y}_{T} .

$$se\overline{Y}_{T} = \frac{1}{2} \left[\frac{\widehat{Var[\overline{Y}_{\tau}]}}{\sqrt{Var[\overline{Y}_{t}]}} + \frac{\sqrt{Var[\overline{Y}_{\tau}]}}{a_{T}/a_{\tau}} \right].$$
(3)

For the panel data, suppose that the sample mean of data, Y_{it} follows an asymptotic normal distribution, i.e.,

$$a_{NT}(\overline{Y}_{NT} - \mu) \xrightarrow{d} N(0, V),$$

where a_{NT} is the scaling factor. Under $T \to \infty$, $N \to \infty$, asymptotics, the sample means from the subsamples must be asymptotically i.i.d. The assumption of an asymptotic normal distribution for the sample mean rules out the non-stationarity in either dimension, i.e., T as well as N. An estimator of variance of \overline{Y}_{NT} can be written as

$$\widehat{Var\left[\overline{Y}_{NT}\right]} = \frac{\widehat{V}_{NT}}{a_{NT}^2}$$

The estimator of variance of mean of a subsample of size $\check{n}t$ can be written as

$$\widehat{Var\left[\overline{Y}_{\check{n}t}\right]} = \frac{\widehat{V}_{\check{n}t}}{a_{\check{n}t}^2}.$$

Similarly the variance estimator of mean of a subsample of size $\eta \tau$ can be written as

$$\widehat{Var\left[\overline{Y}_{\mathbf{y}\tau}\right]} = \frac{\widehat{V}_{\mathbf{y}\tau}}{a_{\mathbf{y}\tau}^2}$$

If the ratio $NT/\eta\tau$ is the same as $\eta\tau/\check{n}t$, then

$$\frac{P \lim \left[\widehat{Var\left[\overline{Y}_{NT}\right]}\right]}{P \lim \left[\widehat{Var\left[\overline{Y}_{\eta\tau}\right]}\right]} = \frac{P \lim \left[\widehat{Var\left[\overline{Y}_{\eta\tau}\right]}\right]}{P \lim \left[\widehat{Var\left[\overline{Y}_{\check{n}t}\right]}\right]}$$

which implies that

$$P \lim \left[\widehat{Var\left[\overline{Y}_{NT}\right]} \right] = P \lim \frac{\left[\widehat{Var\left[\overline{Y}_{y\tau}\right]} \right]^2}{\left[\widehat{Var\left[\overline{Y}_{\check{n}t}\right]} \right]^2}.$$
(4)

Therefore, if we can construct subsamples of size $\eta \tau$ and $\check{n}t$, then immediate, empirical estimators of $Var\left[\overline{Y}_{\eta\tau}\right]$ and $Var\left[\overline{Y}_{\check{n}t}\right]$ can be constructed from the many size- $\eta\tau$ and $\check{n}t$ sample means respectively that can be extracted from our data $Y_{11}, Y_{12}, ..., Y_{21}, Y_{22}, ..., Y_{NT}$. Furthermore, in order to use the empirical formulas

$$\widehat{Var\left[\overline{Y}_{\eta\tau}\right]} = \frac{1}{K-1} \sum_{l=1}^{K} (\overline{Y}_{\eta\tau l} - \overline{\overline{Y}}_{\eta\tau})^{2},$$
$$\widehat{Var\left[\overline{Y}_{\check{n}t}\right]} = \frac{1}{J-1} \sum_{m=1}^{J} (\overline{Y}_{\check{n}tm} - \overline{\overline{Y}}_{\check{n}t})^{2},$$

the sample means from the subsamples must be i.i.d, which implies that there cannot be overlapping observations in two subsamples. Also

$$P \lim \left[\widehat{Var\left[\overline{Y}_{NT}\right]} \right] = P \lim \frac{\left[\widehat{Var\left[\overline{Y}_{\eta\tau}\right]} \right]}{a_{NT}^2 / a_{\eta\tau}^2}.$$
(5)

Equations (4) and (5) provide two consistent estimators for $Var\left[\overline{Y}_{NT}\right]$, however, their performance in finite samples remain to be seen, which will be presented later in this paper. For an improved finite sample performance, an average of the two estimators is taken to construct the standard error for \overline{Y}_{NT} .

$$se\overline{Y}_{NT} = \frac{1}{2} \left[\frac{\widehat{Var\left[\overline{Y}_{\eta\tau}\right]}}{\sqrt{Var\left[\overline{Y}_{\check{n}t}\right]}} + \frac{\sqrt{Var\left[\overline{Y}_{\eta\tau}\right]}}{a_{NT}/a_{\eta\tau}} \right].$$
(6)

3 Inference and Asymptotic Results for t-statistic

Suppose we are interested in testing the null hypothesis

$$H_0: \mu = \mu_0, \tag{7}$$

against the alternative hypothesis

$$H_1: \mu = \mu_1 \neq \mu_0.$$
 (8)

It is straightforward to construct the test statistic for time series data as

$$t = \frac{\overline{Y}_T - \mu_0}{se\overline{Y}_T},\tag{9}$$

and for panel data as

$$t = \frac{\overline{Y}_{NT} - \mu_0}{se\overline{Y}_{NT}}.$$
(10)

The alternative value of μ_1 is modeled local to μ_0 as

$$\mu_1 = \mu_0 + a_T^{-1} \overline{\mu}_\Delta, \tag{11}$$

and

$$\mu_1 = \mu_0 + a_{NT}^{-1} \overline{\mu}_\Delta, \tag{12}$$

for time series and panel data respectively.

The parameter $\overline{\mu}_{\Delta}$ measures the magnitude of the departure from the null under the local alternative. The standard error, i.e., $se\overline{Y}_T$ to be used in expression (9) for time series data is calculated as follows:

Initially subsamples of size K and J are chosen in sequence without any overlapping data maintaining the structure of the data involved, e.g., for T = 100, 10 subsamples of size 10 are formed by choosing T from1 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 70, 71 to 80, 81 to 90, and 91 to 100. Sample variance for T = 10 is calculated from the ten sample means. As a second draw, the first observation is moved to the 100th place and the 100th observation takes the 99th place, and so on. For the third draw, the second observation takes the 100th place, the first observation takes the 99th place, the 100th observation takes the 98th place, and so on. By rotating the placement of the data observations in this manner, we are able to have one hundred draws, i.e., equal to the number of data points. Through each draw, we calculate sample variance for T = 10 from the ten sample means. In this way, we have 100 values of the sample variance for a sample size T = 10. Taking an average of these 100 values, we get an estimate of the variance of mean of sample size T = 10 (Note: when T/τ is an integer, the number of unique draws is equal to τ instead of T).

By choosing different values of τ and t such that the ratio T/τ is the same as τ/t , we estimate the standard error for the mean of sample size T using eq. (3). For various combinations of τ/t , we get different values of the standard error for the mean of sample size T. By taking an average of those standard errors, we construct a standard error for the mean of sample size T. The following formula has been used for calculating the sequence of standard errors for the mean of sample size T.

$$se_M = \frac{1}{2M} \sum_{i=1}^M \left[\frac{\widehat{Var[\overline{Y}_{\tau_i}]}}{\sqrt{Var[\overline{Y}_{t_i}]}} + \frac{\sqrt{Var[\overline{Y}_{\tau_i}]}}{a_T/a_{\tau_i}} \right],\tag{13}$$

where $\tau_1 = 10, t_1 = 1; \tau_2 = 14, t_2 = 2; \tau_3 = 17, t_3 = 3; \tau_4 = 20, t_4 = 4; \tau_5 = 22, t_5 = 5; \tau_6 = 24, t_6 = 6; \tau_7 = 26, t_7 = 7; \tau_8 = 28, t_8 = 8; \tau_9 = 30, t_9 = 9; \tau_{10} = 32, t_{10} = 10; \tau_{11} = 33, t_{11} = 11; \tau_{12} = 35, t_{12} = 12; \tau_{13} = 36, t_{13} = 13; \tau_{14} = 37, t_{14} = 14; \tau_{15} = 39, t_{15} = 15; \tau_{16} = 40, t_{16} = 16; \tau_{17} = 41, t_{17} = 17; \tau_{18} = 42, t_{18} = 18; \tau_{19} = 44, t_{19} = 19; \tau_{20} = 45, t_{20} = 20; \tau_{21} = 46, t_{21} = 21; \tau_{22} = 47, t_{22} = 22; \tau_{23} = 48, t_{23} = 23; \tau_{24} = 49, t_{24} = 24; \tau_{25} = 50, t_{25} = 25 \text{ for } T = 100, \text{ and } \tau_1 = 14, t_1 = 1; \tau_2 = 20, t_2 = 2; \tau_3 = 24, t_3 = 3; \tau_4 = 28, t_4 = 4; \tau_5 = 32, t_5 = 5; \tau_6 = 35, t_6 = 6; \tau_7 = 37, t_7 = 7; \tau_8 = 40, t_8 = 8; \tau_9 = 42, t_9 = 9; \tau_{10} = 45, t_{10} = 10; \tau_{11} = 47, t_{11} = 11; \tau_{12} = 49, t_{12} = 12; \tau_{13} = 51, t_{13} = 13; \tau_{14} = 53, t_{14} = 14; \tau_{15} = 55, t_{15} = 15; \tau_{16} = 57, t_{16} = 16; \tau_{17} = 58, t_{17} = 17; \tau_{18} = 60, t_{18} = 18; \tau_{19} = 62, t_{19} = 19; \tau_{20} = 63, t_{20} = 20; \tau_{21} = 65, t_{21} = 21; \tau_{22} = 66, t_{22} = 22; \tau_{23} = 68, t_{23} = 23; \tau_{24} = 69, t_{24} = 24; \tau_{25} = 71, t_{25} = 25; \tau_{26} = 72, t_{26} = 26; \tau_{27} = 73, t_{27} = 27; \tau_{28} = 75, t_{28} = 28; \tau_{29} = 76, t_{29} = 29; \tau_{30} = 77, t_{30} = 30; \tau_{31} = 79, t_{31} = 31; \tau_{32} = 80, t_{32} = 32; \tau_{33} = 81, t_{33} = 33; \tau_{34} = 82, t_{34} = 34; \tau_{35} = 84, t_{35} = 35; \tau_{36} = 85, t_{36} = 36; \tau_{37} = 86, t_{37} = 37; \tau_{38} = 87, t_{38} = 38; \tau_{39} = 88, t_{39} = 39; \tau_{40} = 89, t_{40} = 40; \tau_{41} = 91, t_{41} = 41; \tau_{42} = 92, t_{42} = 42; \tau_{43} = 93, t_{43} = 43; \tau_{44} = 94, t_{44} = 44; \tau_{45} = 95, t_{45} = 45; \tau_{46} = 96, t_{46} = 46; \tau_{47} = 97, t_{47} = 47; \tau_{48} = 98, t_{48} = 48; \tau_{49} = 99, t_{49} = 49; \tau_{50} = 100, t_{50} = 50 \text{ for } T = 200.$

For panel data, in order to calculate the standard error, i.e., $se\overline{Y}_{NT}$, the data is arranged as follows: $Y_{11}, Y_{12}, ..., Y_{21}, Y_{22}, ..., Y_{NT}$. The subsamples of size K and J are drawn in a similar manner as described above. By choosing different values of $\eta\tau$ and $\check{n}t$ such that the ratio $NT/\eta\tau$ is the same as $\eta\tau/\check{n}t$, we estimate the standard error for the mean of sample size NT using eq. (6). For various combinations of $\eta\tau/\check{n}t$, we get different values of the standard error for the mean of sample size NT. By taking an average of those standard errors, we construct a standard error for the mean of sample size NT. The following formula has been used for calculating the sequence of standard errors for the mean of sample size NT.

$$se_{M} = \frac{1}{2M} \sum_{m=1}^{M} \left[\frac{\widehat{Var\left[\overline{Y}_{(\eta\tau)_{m}}\right]}}{\sqrt{Var\left[\overline{Y}_{(\check{n}\tau)_{m}}\right]}} + \frac{\sqrt{Var\left[\overline{Y}_{(\eta\tau)_{m}}\right]}}{a_{NT}/a_{(\eta\tau)_{m}}} \right].$$
(14)

A sequence of t-statistics in eq. (9) can be written as follows:

$$t_M = \frac{a_T(\overline{Y}_T - \mu_1) + \overline{\mu}_{\Delta}}{\frac{a_T}{2M} \sum_{i=1}^M \left[\frac{Var[\overline{Y}_{\tau_i}]}{\sqrt{Var[\overline{Y}_{t_i}]}} + \frac{\sqrt{Var[\overline{Y}_{\tau_i}]}}{a_T/a_{\tau_i}} \right]}.$$
(15)

The above expression can be written as

$$t_M = \frac{a_T (\overline{Y}_T - \mu_1) / \sqrt{V_{\mu_1}} + \overline{\mu}_\Delta / \sqrt{V_{\mu_1}}}{\frac{a_T}{2M} \sum_{i=1}^M \left[\frac{a_{ti}}{a_{\tau_i}^2} \frac{a_{\tau_i}^2 \sqrt{ar[\overline{Y}_{\tau_i}]} / V_{\mu_1}}{a_{ti} \sqrt{Var[\overline{Y}_{t_i}]} / \sqrt{V_{\mu_1}}} + \frac{a_{\tau_i}^2 \sqrt{Var[\overline{Y}_{\tau_i}]} / \sqrt{V_{\mu_1}}}{a_T} \right]}$$

where

$$a_T(\overline{Y}_T - \mu_1) / \sqrt{V_{\mu_1}} \Rightarrow Z,$$

 $Z \sim N(0, 1),$

$$a_{\tau_i}^2 \widehat{Var\left[\overline{Y}_{\tau_i}\right]} / V_{\mu_1} \Rightarrow \varkappa_{K_i-1}^2 / (K_i - 1),$$

$$a_{ti} \sqrt{\widehat{Var\left[\overline{Y}_{ti}\right]}} / \sqrt{V_{\mu_1}} \Rightarrow \sqrt{\varkappa_{J_i-1}^2 / (J_i - 1)},$$

$$a_T \cdot \frac{a_{ti}}{a_{\tau_i}^2} = 1.$$

The denominator in eq. (15) is a function of random variables having some specific asymptotic distributions. Furthermore, those random variables have the same functional dependence irrespective of the data type involved by virtue of the assumption $a_T(\overline{Y}_T - \mu) \stackrel{d}{\longrightarrow} N(0, V)$, e.g., the ratio $\frac{Var[\overline{Y}_{\tau_i}]}{\sqrt{Var[\overline{Y}_{t_i}]}}$ contains random variables $Var[\overline{Y}_{\tau_i}]$ and $Var[\overline{Y}_{t_i}]$ which have the same functional

dependence irrespective of the data type involved. Similarly the random variables $\frac{Var[\overline{Y}_{\tau_i}]}{\sqrt{Var[\overline{Y}_{t_i}]}}$ and

 $\frac{\sqrt{Var[\overline{Y}_{\tau_i}]}}{a_T/a_{\tau_i}}$ have the same functional dependence, therefore even though the distribution for the t-statistic is hard to derive, the critical values for the unknown distribution of the t-statistic can be

easily simulated by an i.i.d data generating process provided that the subsampling scheme remains the same. As the chi squared distributions in the denominator capture the sizes of the subsamples chosen by the practitioner, the t-statistic should perform well in finite samples.

When $\overline{\mu}_{\Delta} \neq 0$, in which case we are under the alternative, the *t*-statistic has an additional term in the limit which pushes the distribution away from the null distribution giving the test's power. The greater the departure from the null, the higher should be the power.

The asymptotic theory for the sample mean also applies to the estimators of regression parameters provided that they satisfy the assumptions stipulated for the sample mean. Consider the regression model

$$y_{it} = x'_{it}\beta + \epsilon_{it}, \ i = 1, ..., N; \ t = 1, ..., T,$$

where y_{it} is a scalar, x_{it} is a $(k \times 1)$ vector of regressors, β is a $(k \times 1)$ vector of regression parameters, and ϵ_{it} is the regression error. Suppose that $\hat{\beta}$ follow an asymptotic normal distribution, i.e.,

$$a_{NT}(\widehat{\beta} - \beta) \xrightarrow{d} N(0, V),$$

where a_{NT} is the scaling factor. Under $T \to \infty$, $N \to \infty$, asymptotics, the estimates of β from the subsamples must be asymptotically i.i.d. The assumption of an asymptotic normal distribution for $\hat{\beta}$ rules out non-stationarity in regressors as well as the dependent variable in either dimension, i.e., T as well as N.

4 Finite Sample Null Rejection Probabilities and Power

Using DGP's with different data structure, the simulated finite sample null rejection probabilities and power of the *t*-statistic in comparison with the Ibragimov and Müller (2010) (abbreviated as IM) approach are reported in this section. Tables 1-13 report null rejection probabilities for 5% nominal level tests for testing $H_0: \mu = \mu_0 = 0$ against the two-sided alternative $H_1: \mu \neq 0$. Results are reported for T = 100,200, and 1000 replications are used in all these cases. Using eq. (13) for the standard error, the results have been reported for se_1 to se_{10} . The results have also been reported for se_{avg} which is calculated as follows:

$$se_{avg} = \frac{1}{N} \sum_{M=1}^{N} se_M,$$

where N is the maximum possible value of M, e.g., for T = 100, the maximum possible value of M is 25, therefore M takes values from 1 to 25 in the above mentioned formula. For a comparison with Ibragimov and Müller (2010) (IM) approach, different values of q (notation in their paper), i.e., the number of groups are chosen. For the panel data, eq. (14) is used for the calculation of

standard errors. We simulate the critical values for the test statistic through an i.i.d process by subsampling technique explained in section 3, e.g., for estimating only the intercept in regression, we use the following data generating process:

$$y_i = \mu + \epsilon_i, \epsilon_i \sim N(0, 1).$$

The values of standard errors are reported for different values of M for comparison with the standard deviation of the sample mean. The standard errors are pretty accurate for almost all values of M reported in the tables, however, for inference purposes se_{avg} seems to provide the most reliable and robust formula for the calculation of standard error in finite samples. The results suggest that the performance of se_{avg} to construct a test statistic is better than all other se_M in terms of the empirical null rejection probability as well as the width of the confidence interval. The confidence intervals constructed through se_{avg} have the minimum width in nearly all the cases reported in tables 1-12. Tables 11-12 report the results for heteroskedasticity and the panel data with serial correlation, spatial correlation and heteroskedasticity altogether.

As is evident from the tables that for the IM approach, the null rejection probability is the most accurate for q = 2, however, the critical value in this case is 12.706, leading to a pretty wide confidence interval and lower local asymptotic power. From q = 4 onwards, the IM approach shows overrejections when the serial correlation is strong and underrejections when the data is heteroskedastic and/or panel.

Table 13 shows the finite sample power performance of the test in comparison with IM approach (q = 4) for time series data (AR(1) process) with different magnitudes of serial correlation. The results are reported for T = 100, and 1000 replications are used in each case. The power of the test increases rapidly as we move father away from the null, with higher power for lower magnitude of the serial correlation as compared to the higher one, the reason being that the variance increases as the serial correlation becomes stronger. The IM approach has much lower power.

Table 14 presents results for regression parameters and a comparison is also drawn with White (1984), and Newey and West (1987).¹Table 15 presents results for 1000 data points.

5 Conclusion:

In this paper a simple technique for carrying out inference robust to serial correlation, heteroskedasticity and spatial correlation on the estimators which follow an asymptotic normal distribution has been devised. The standard error of the sample mean from a larger sample size has been expressed as a function of the standard errors of the sample means from smaller subsamples. The Monte Carlo simulation results show that the technique works pretty well in finite samples both in terms

¹Table 14 is prepared as per suggestions of anonymous referees.

of the empirical null rejection probability as well as the power of the test. The technique is extremely simple and can be programmed in any statistical software for ease of application just like an i.i.d. bootstrap. The technique works pretty well for any kind of data structure in terms of heteroskedasticity, autocorrelation and spatial correlation in a finite sample. For time series data, it does not require any kernel estimation (unlike theoretical HAC robust techniques available in the existing literature) and eliminates the need for bandwidth choice procedures. The technique outperforms the Ibragimov and Müller (2010) approach in terms of null rejection probability as well as the local asypmtotic power of the test.

References

- Alan Bester, C., Conley, T. G., Hansen, C. B. and Vogelsang, T. J.: (2009), Fixed-b asymptotics for spatially dependent robust nonparametric covariance matrix estimators, *Econometric Theory* pp. 1–33.
- Andrews, D. W. K.: (1991), Heteroskedasticity and autocorrelation consistent covariance matrix estimation, *Econometrica* **59**, 817–854.
- Andrews, D. W. K. and Monahan, J. C.: (1992), An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator, *Econometrica* 60, 953–966.
- Berkowitz, J. and Kilian, L.: (2000), Recent developments in bootstrapping time series, *Economet*ric Reviews **19**(1), 1–48.
- Bühlmann, P.: (2002), Bootstraps for time series, *Statistical Science* pp. 52–72.
- Cameron, A. C. and Miller, D. L.: (2010), Robust inference with clustered data, *Technical report*, Working Papers, University of California, Department of Economics.
- Dale, M. R. and Fortin, M.-J.: (2009), Spatial autocorrelation and statistical tests: some solutions, Journal of agricultural, biological, and environmental statistics 14(2), 188–206.
- de Jong, R. M. and Davidson, J.: (2000), Consistency of kernel estimators of heteroskedastic and autocorrelated covariance matrices, *Econometrica* **68**, 407–424.
- Driscoll, J. and Kraay, A.: (1998), Consistent covariance matrix estimation with spatially dependent panel data, *Review of Economics and Statistics* **80**(4), 549–560.
- Gallant, A.: (1987), Nonlinear Statistical Models, Wiley, New York.
- Härdle, W., Horowitz, J. and Kreiss, J.-P.: (2003), Bootstrap methods for time series, International Statistical Review 71(2), 435–459.
- Hongyi Li, G. and Maddala: (1996), Bootstrapping time series models, *Econometric reviews* **15**(2), 115–158.
- Ibragimov, R. and Müller, U.: (2010), t-statistic based correlation and heterogeneity robust inference, Journal of Business and Economic Statistics 28(4), 453–468.
- Jansson, M.: (2002), Consistent covariance estimation for linear processes, *Econometric Theory* **18**, 1449–1459.
- Kelejian, H. H. and Prucha, I. R.: (2001), On the asymptotic distribution of the moran i test statistic with applications, *Journal of Econometrics* **104**(2), 219–257.
- Kiefer, N. M. and Vogelsang, T. J.: (2005), A new asymptotic theory for heteroskedasticityautocorrelation robust tests, *Econometric Theory* 21, 1130–1164.

- Newey, W. K. and West, K. D.: (1987), A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, *Econometrica* **55**, 703–708.
- Paparoditis, E. and Politis, D. N.: (2009), Resampling and subsampling for financial time series, Handbook of financial time series, Springer, pp. 983–999.
- Robinson, P.: (1998), Inference-without smoothing in the presence of nonparametric autocorrelation, *Econometrica* **66**, 1163–1182.
- Ruiz, E. and Pascual, L.: (2002), Bootstrapping financial time series, Journal of Economic Surveys 16(3), 271–300.
- Vogelsang, T. J.: (2012), Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects, *Journal of Econometrics* **166**(2), 303–319.
- White, H.: (1984), Asymptotic Theory for Econometricians, Academic Press, New York.

$DGI \cdot y$	$t = \mu + \psi_1 g_t$	$-1 + c_t, c_t + \bullet$	$\mu(0,1), \mu =$	0:			
$\phi_1 = 0$	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.0964563	0.0947298	[-0.2351893, 0.2279247]	0.042		_
se_2	2.3328373		0.0990655	[-0.234736, 0.2274714]	0.045	2	0.054
se_3	2.4233392		0.0968687	[-0.238378, 0.2311134]	0.048		_
se_4	2.5100734		0.094756	[-0.2414769, 0.2342123]	0.053	4	0.044
se_5	2.5143351		0.0953288	[-0.2433208, 0.2360562]	0.047	5	0.041
se_6	2.4522659		0.0971599	[-0.2418941, 0.2346295]	0.042		_
se_7	2.5034686		0.0959467	[-0.2438318, 0.2365672]	0.045		_
se_8	2.5178804		0.0959016	[-0.245101, 0.2378364]	0.046		_
se_9	2.5029468		0.0964672	[-0.2450845, 0.2378199]	0.038		_
se_{10}	2.4459803		0.0979359	[-0.2431817, 0.2359171]	0.045	10	0.047
se_{avg}	2.4174228		0.098128	[-0.2408491, 0.2335845]	0.044		
$\phi_1 = 0$	CV_2	St. Dev_2	St. $Error_2$	CI_2	Rej. Pr_2	\mathbf{q}	IM_2
se_1	1.3287834	0.069950	0.0693725	[-0.1562712, 0.0374605]	0.053		_
se_2	1.3839202		0.0697918	$\left[-0.1583042, 0.0394934 ight]$	0.051	2	0.057
se_3	1.371984		0.0695271	$\left[-0.1575635, 0.0387528 ight]$	0.052		_
se_4	1.355027		0.0699338	[-0.1600374, 0.0402266]	0.050	4	0.044
se_5	1.3508825		0.0690563	$\left[-0.1549379, 0.0361271 ight]$	0.055	5	0.042
se_6	1.3681737		0.0694819	[-0.1562996, 0.0389489]	0.052		_
se_7	1.3686779		0.0698397	$\left[-0.1597813, 0.0399706\right]$	0.051		_
se_8	1.391217		0.0694178	[-0.1556333, 0.0388226]	0.053		_
se_9	1.40414		0.0693352	[-0.1553368, 0.0387261]	0.054		_
se_{10}	1.4054723		0.0697124	[-0.1582514, 0.0394406]	0.051	10	0.046
	1 207014		0.0007550		0.051		

Table 1: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $u_t = u + \phi_1 u_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$: u = 0.

	1 100 1		(· ·) · ·				
$\phi_1 = 0.1$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	\mathbf{q}	IM_1
se_1	2.4443936	0.1070215	0.1087097	[-0.2699164, 0.2615422]	0.046		_
se_2	2.3328373		0.1120459	$\left[-0.2655721, 0.2571979 ight]$	0.041	2	0.034
se_3	2.4233392		0.1091766	$\left[-0.2687591, 0.2603849 ight]$	0.046		_
se_4	2.5100734		0.106531	[-0.2715876, 0.2632134]	0.048	4	0.046
se_5	2.5143351		0.1069318	[-0.2730494, 0.2646752]	0.043	5	0.031
se_6	2.4522659		0.1086605	[-0.2706515, 0.2622773]	0.047		_
se_7	2.5034686		0.1072284	[-0.2726301, 0.2642559]	0.033		_
se_8	2.5178804		0.1070881	[-0.2738221, 0.265448]	0.031		_
se_9	2.5029468		0.1076556	[-0.2736433, 0.2652692]	0.037		_
se_{10}	2.4459803		0.1090902	[-0.2710196, 0.2626454]	0.042	10	0.057
se_{avg}	2.4174228		0.1092987	[-0.2684082, 0.260034]	0.045		
$\phi_1 = 0.1$	CV_2	St. Dev_2	St. $Error_2$	CI_2	Rej. Pr_2	q	IM_2
$\frac{\phi_1 = 0.1}{se_1}$	CV_2 1.3287834	St. Dev_2 0.081369	St. Error ₂ 0.0821973	$\begin{array}{c} \text{CI}_2 \\ \hline [-0.1759334, 0.0349085] \end{array}$	Rej. Pr ₂ 0.049	q	IM ₂
$\frac{\phi_1 = 0.1}{se_1}$	$\begin{array}{c} {\rm CV}_2 \\ \hline 1.3287834 \\ 1.3839202 \end{array}$	St. Dev_2 0.081369	$\begin{array}{c} \text{St. Error}_2 \\ 0.0821973 \\ 0.0815916 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \end{array}$	Rej. Pr ₂ 0.049 0.051	q 2	IM_2 - 0.037
$\phi_1 = 0.1$ se_1 se_2 se_3	$\begin{array}{c} {\rm CV}_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \end{array}$	St. Dev ₂ 0.081369	St. Error2 0.0821973 0.0815916 0.0819877	$\begin{array}{c} \text{CI}_2\\ \hline [-0.1759334, 0.0349085]\\ [-0.1740895, 0.0340646]\\ \hline [-0.1757784, 0.0347535] \end{array}$	Rej. Pr ₂ 0.049 0.051 0.052	q 2	IM ₂ - 0.037 -
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \end{array}$	CV ₂ 1.3287834 1.3839202 1.371984 1.355027	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline [-0.1759334, 0.0349085]\\ [-0.1740895, 0.0340646]\\ [-0.1757784, 0.0347535]\\ [-0.1759073, 0.0348824] \end{array}$	Rej. Pr2 0.049 0.051 0.052 0.049	q 2 4	IM ₂ - 0.037 - 0.040
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825 \end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ \end{array}$	$\begin{array}{c} {\rm CI}_2 \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \\ [-0.1757784, 0.0347535] \\ [-0.1759073, 0.0348824] \\ [-0.175831, 0.03488061] \end{array}$	Rej. Pr2 0.049 0.051 0.052 0.049 0.049	q 2 4 5	$\begin{array}{c} \mathrm{IM}_2 \\ - \\ 0.037 \\ - \\ 0.040 \\ 0.032 \end{array}$
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ 0.0812884 \end{array}$	$\begin{array}{c} {\rm CI}_2 \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \\ [-0.1757784, 0.0347535] \\ [-0.1759073, 0.0348824] \\ [-0.175831, 0.03488061] \\ [-0.1738474, 0.0338225] \end{array}$	Rej. Pr ₂ 0.049 0.051 0.052 0.049 0.049 0.051	q 2 4 5	IM_2 - 0.037 - 0.040 0.032
$\phi_1 = 0.1$ se_1 se_2 se_3 se_4 se_5 se_6 se_7	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ 0.0812884\\ 0.0815873\\ \end{array}$	$\begin{array}{c} {\rm CI}_2 \\ \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \\ [-0.1757784, 0.0347535] \\ [-0.1759073, 0.0348824] \\ [-0.175831, 0.03488061] \\ [-0.1738474, 0.0338225] \\ [-0.1739925, 0.0339675] \end{array}$	Rej. Pr2 0.049 0.051 0.052 0.049 0.049 0.049 0.051 0.051 0.048	q 2 4 5	IM ₂ - 0.037 - 0.040 0.032 - -
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217 \end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ 0.0812884\\ 0.0815873\\ 0.0810504 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.1759334, 0.0349085] \\ & [-0.1740895, 0.0340646] \\ & [-0.1757784, 0.0347535] \\ & [-0.1759073, 0.0348824] \\ & [-0.175831, 0.03488061] \\ & [-0.1738474, 0.0338225] \\ & [-0.1739925, 0.0339675] \\ & [-0.1735589, 0.033434] \end{array}$	$\begin{array}{c} {\rm Rej. \ Pr_2} \\ 0.049 \\ 0.051 \\ 0.052 \\ 0.049 \\ 0.049 \\ 0.051 \\ 0.048 \\ 0.052 \end{array}$	q 2 4 5	IM ₂ - 0.037 - 0.040 0.032 - - -
$\phi_1 = 0.1$ se_1 se_2 se_3 se_4 se_5 se_6 se_7 se_8 se_9	$\begin{array}{c} {\rm CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ 1.40414 \end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ 0.0812884\\ 0.0815873\\ 0.0810504\\ 0.0809073\\ \end{array}$	$\begin{array}{c} {\rm CI}_2 \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \\ [-0.1757784, 0.0347535] \\ [-0.1759073, 0.0348824] \\ [-0.175831, 0.03488061] \\ [-0.1738474, 0.0338225] \\ [-0.1739925, 0.0339675] \\ [-0.1735589, 0.033434] \\ [-0.1725762, 0.033513] \end{array}$	$\begin{array}{c} {\rm Rej. \ Pr_2} \\ 0.049 \\ 0.051 \\ 0.052 \\ 0.049 \\ 0.049 \\ 0.051 \\ 0.048 \\ 0.052 \\ 0.053 \end{array}$	q 2 4 5	IM ₂ - 0.037 - 0.040 0.032 - - - - -
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ 1.40414\\ 1.4054723\\ \end{array}$	St. Dev ₂ 0.081369	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.0821973\\ 0.0815916\\ 0.0819877\\ 0.0820981\\ 0.0820407\\ 0.0812884\\ 0.0815873\\ 0.0810504\\ 0.0809073\\ 0.0812735\\ \end{array}$	$\begin{array}{c} {\rm CI}_2 \\ [-0.1759334, 0.0349085] \\ [-0.1740895, 0.0340646] \\ [-0.1757784, 0.0347535] \\ [-0.1759073, 0.0348824] \\ [-0.175831, 0.03488061] \\ [-0.1738474, 0.0338225] \\ [-0.1739925, 0.0339675] \\ [-0.1735589, 0.033434] \\ [-0.1725762, 0.0333513] \\ [-0.173824, 0.0337605] \end{array}$	$\begin{array}{c} {\rm Rej.} \ {\rm Pr}_2 \\ 0.049 \\ 0.051 \\ 0.052 \\ 0.049 \\ 0.049 \\ 0.051 \\ 0.048 \\ 0.052 \\ 0.053 \\ 0.052 \end{array}$	q 2 4 5	IM ₂ - 0.037 - 0.040 0.032 - - - 0.056

Table 2: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $u_t = u + \phi_1 u_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$: u = 0.

$DOI \cdot g_t$	$P^{*} + \varphi 19i = 1$		()))]				
$\phi_1 = 0.2$	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.1202334	0.1264811	$\left[-0.3140503, 0.3042888 ight]$	0.042		-
se_2	2.3328373		0.1285461	$\left[-0.3047578, 0.2949963 ight]$	0.039	2	0.054
se_3	2.4233392		0.1247986	[-0.30731, 0.2975486]	0.040		_
se_4	2.5100734		0.1214474	$\left[-0.3097226, 0.2999611 ight]$	0.029	4	0.046
se_5	2.5143351		0.1216001	[-0.3106241, 0.3008626]	0.031	5	0.051
se_6	2.4522659		0.1231606	[-0.3069034, 0.2971419]	0.030		_
se_7	2.5034686		0.1214372	[-0.3088949, 0.2991334]	0.034		_
se_8	2.5178804		0.1211618	[-0.3099517, 0.3001902]	0.031		_
se_9	2.5029468		0.1217103	[-0.3095152, 0.2997537]	0.037		_
se_{10}	2.4459803		0.1230789	[-0.3059293, 0.2961679]	0.041	10	0.047
80	2 1171228		0.1233528	[-0.3030766, 0.2933151]	0.043		
oc_{avg}	2.4114220		0.1200020	[0.0000100, 0.2000101]	0.010		
$\frac{\delta c_{avg}}{\phi_1 = 0.2}$	CV ₂	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr_2	q	IM ₂
$\frac{\phi_1 = 0.2}{se_1}$	$\frac{\text{CV}_2}{1.3287834}$	St. Dev_2 0.087232	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.0877668 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$		q	IM ₂
$ \frac{bc_{avg}}{\phi_1 = 0.2} $ $ \frac{se_1}{se_2} $	$\begin{array}{r} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202 \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.1908837, 0.0423623] \\ \hline & [-0.1889536, 0.0404323] \end{array}$	$\begin{array}{c} \text{Rej. } \text{Pr}_2 \\ \hline 0.042 \\ 0.055 \end{array}$	q 2	IM_2 - 0.057
$ \begin{array}{c} $	$\begin{array}{c} 2.3114220\\ \hline CV_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984 \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077	$\begin{array}{c} \text{CI}_2 \\ \hline & \text{[-0.1908837, 0.0423623]} \\ \hline & \text{[-0.1889536, 0.0404323]} \\ \hline & \text{[-0.1878716, 0.0393502]} \end{array}$	Rej. Pr2 0.042 0.055 0.056	q 2	IM ₂ - 0.057 -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.2\\ \hline se_1\\ se_2\\ se_3\\ se_4\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.1908837, 0.0423623] \\ \hline [-0.1889536, 0.0404323] \\ \hline [-0.1878716, 0.0393502] \\ \hline [-0.1860627, 0.0375413] \end{array}$	$\begin{array}{c} \text{Rej. Pr}_2 \\ \hline 0.042 \\ 0.055 \\ 0.056 \\ 0.057 \end{array}$	q 2 4	IM ₂ - 0.057 - 0.040
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.2\\ \hline se_1\\ se_2\\ se_3\\ se_4\\ se_5 \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825 \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ [-0.1908837, 0.0423623] \\ [-0.1889536, 0.0404323] \\ [-0.1878716, 0.0393502] \\ [-0.1860627, 0.0375413] \\ [-0.1853018, 0.0367804] \end{array}$	Rej. Pr2 0.042 0.055 0.056 0.057 0.059	q 2 4 5	IM ₂ - 0.057 - 0.040 0.052
$\begin{array}{c} se_{avg}\\ \hline \phi_1=0.2\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989 0.0812049	$\begin{array}{c} \text{CI}_2\\ \hline \\ \text{CI}_2\\ \hline \\ [-0.1908837, 0.0423623]\\ \hline \\ [-0.1889536, 0.0404323]\\ \hline \\ [-0.1878716, 0.0393502]\\ \hline \\ [-0.1850627, 0.0375413]\\ \hline \\ [-0.1853018, 0.0367804]\\ \hline \\ [-0.1853631, 0.0368417] \end{array}$	Rej. Pr2 0.042 0.055 0.056 0.057 0.059 0.065	q 2 4 5	IM ₂ - 0.057 - 0.040 0.052 -
bc_{avg} $\phi_1 = 0.2$ se_1 se_2 se_3 se_4 se_5 se_6 se_7	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779 \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989 0.0812049 0.081414	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.1908837, 0.0423623] \\ \hline [-0.1889536, 0.0404323] \\ \hline [-0.1878716, 0.0393502] \\ \hline [-0.1860627, 0.0375413] \\ \hline [-0.1853018, 0.0367804] \\ \hline [-0.1853631, 0.0368417] \\ \hline [-0.1856902, 0.0371688] \end{array}$	Rej. Pr2 0.042 0.055 0.056 0.057 0.059 0.065 0.063	q 2 4 5	IM ₂ 0.057 0.040 0.052
$\begin{array}{c} se_{avg}\\ \hline \phi_1=0.2\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_7\\ se_8\\ \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217 \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989 0.081414 0.0807199	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ $	Rej. Pr2 0.042 0.055 0.056 0.057 0.059 0.065 0.063	q 2 4 5	IM ₂ - 0.057 - 0.040 0.052 - - -
$\begin{array}{c} se_{avg}\\ \hline \phi_1=0.2\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_7\\ se_8\\ se_9\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989 0.0812049 0.081414 0.0807199 0.0804914	$\begin{array}{c} \text{CI}_2\\ \hline \\ \text{CI}_2\\ \hline \\ \hline$	Rej. Pr2 0.042 0.055 0.056 0.057 0.059 0.065 0.066 0.067	q 2 4 5	IM ₂ - 0.057 - 0.040 0.052 - - - - - - -
$\begin{array}{c} se_{avg} \\ \hline \phi_1 = 0.2 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \hline 1.4054723\\ \end{array}$	St. Dev ₂ 0.087232	St. Error2 0.0877668 0.0828754 0.0828077 0.0825091 0.0821989 0.0812049 0.081414 0.0807199 0.0804914 0.0808347	$\begin{array}{c} \text{CI}_2\\ \hline \text{CI}_2\\ \hline [-0.1908837, 0.0423623]\\ \hline [-0.1889536, 0.0404323]\\ \hline [-0.1878716, 0.0393502]\\ \hline [-0.1860627, 0.0375413]\\ \hline [-0.1853018, 0.0367804]\\ \hline [-0.1853631, 0.0368417]\\ \hline [-0.1856902, 0.0371688]\\ \hline [-0.1865595, 0.0380382]\\ \hline [-0.1872819, 0.0387605]\\ \hline [-0.1878717, 0.0393503]\\ \end{array}$	Rej. Pr2 0.042 0.055 0.056 0.057 0.059 0.065 0.063 0.066 0.067 0.066	q 2 4 5	IM ₂ - 0.057 - 0.040 0.052 - - - 0.046

Table 3: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

$DOI \cdot g_t$	$-\mu + \psi_1 g_{t-1}$	$1 \circ l, \circ l \rightarrow 1$	(0, 1), p. 0	•			
$\phi_1 = 0.3$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.1372048	0.1496581	$\left[-0.3716065, 0.3600403 ight]$	0.040		-
se_2	2.3328373		0.1500708	$\left[-0.3558739, 0.3443077 ight]$	0.038	2	0.044
se_3	2.4233392		0.145173	$\left[-0.3575865, 0.3460203 ight]$	0.039		_
se_4	2.5100734		0.1408789	$\left[-0.3593995, 0.3478333 ight]$	0.018	4	0.066
se_5	2.5143351		0.1406734	[-0.3594831, 0.3479169]	0.029	5	0.057
se_6	2.4522659		0.141958	[-0.3539017, 0.3423356]	0.031		_
se_7	2.5034686		0.139837	[-0.3558606, 0.3442944]	0.034		_
se_8	2.5178804		0.1393662	[-0.3566906, 0.3451245]	0.033		_
se_9	2.5029468		0.1398613	[-0.3558485, 0.3442824]	0.032		_
se_{10}	2.4459803		0.1411056	[-0.3509246, 0.3393584]	0.042	10	0.067
80	2 /17/228		0.1415067	[-0.3478645, 0.3362984]	0.044		
sc_{avg}	2.4114220		0.1110001	$\begin{bmatrix} 0.0110010, 0.0002001 \end{bmatrix}$	0.011		
$\frac{\delta c_{avg}}{\phi_1 = 0.3}$	CV ₂	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr ₂	q	IM ₂
$\frac{\phi_1 = 0.3}{se_1}$	$\frac{\text{CV}_2}{1.3287834}$	St. Dev_2 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1043189 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$		q	IM ₂
$\frac{bc_{avg}}{\phi_1 = 0.3}$ $\frac{se_1}{se_2}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202 \end{array}$	St. Dev ₂ 0.104423	St. Error2 0.1043189 0.0977657	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.2234573, 0.0537771] \\ \hline & [-0.2201401, 0.0504599] \end{array}$	Rej. Pr2 0.050 0.052	q 2	IM_2 - 0.047
$ \begin{array}{c} $	$\begin{array}{c} 2.3114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984 \end{array}$	St. Dev ₂ 0.104423	St. Error2 0.1043189 0.0977657 0.0970598	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ \hline \\ \hline$	Rej. Pr2 0.050 0.052 0.053	q 2	IM ₂ - 0.047 -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.3\\ se_1\\ se_2\\ se_3\\ se_4\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027 \end{array}$	St. Dev ₂ 0.104423	St. Error2 0.1043189 0.0977657 0.0970598 0.0961848	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.2234573, 0.0537771] \\ [-0.2201401, 0.0504599] \\ [-0.2180046, 0.0483244] \\ [-0.215173, 0.0454928] \end{array}$	Rej. Pr2 0.050 0.052 0.053 0.054	q 2 4	IM ₂ - 0.047 - 0.060
se_{avg} $\phi_1 = 0.3$ se_1 se_2 se_3 se_4 se_5	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825 \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1043189 \\ 0.0977657 \\ \hline 0.0970598 \\ \hline 0.0961848 \\ \hline 0.0955149 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.2234573, 0.0537771] \\ [-0.2201401, 0.0504599] \\ [-0.2180046, 0.0483244] \\ [-0.215173, 0.0454928] \\ [-0.2138695, 0.0441893] \end{array}$	Rej. Pr2 0.050 0.052 0.053 0.054	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.3 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1043189 \\ 0.0977657 \\ \hline 0.0970598 \\ 0.0961848 \\ 0.0955149 \\ \hline 0.0941856 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.2234573, 0.0537771] \\ [-0.2201401, 0.0504599] \\ [-0.2180046, 0.0483244] \\ [-0.215173, 0.0454928] \\ [-0.2138695, 0.0441893] \\ [-0.2137024, 0.0440222] \end{array}$	Rej. Pr2 0.050 0.052 0.053 0.054 0.055	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053 -
$ \frac{se_{avg}}{\phi_1 = 0.3} \\ \frac{se_1}{se_2} \\ \frac{se_3}{se_4} \\ \frac{se_5}{se_6} \\ \frac{se_6}{se_7} $	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779 \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.1043189} \\ 0.0977657 \\ 0.0970598 \\ 0.0961848 \\ 0.0955149 \\ 0.0941856 \\ 0.0942575 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.2234573, 0.0537771] \\ \hline [-0.2201401, 0.0504599] \\ \hline [-0.2180046, 0.0483244] \\ \hline [-0.215173, 0.0454928] \\ \hline [-0.2138695, 0.0441893] \\ \hline [-0.2137024, 0.0440222] \\ \hline [-0.2138483, 0.0441681] \end{array}$	Rej. Pr2 0.050 0.052 0.053 0.054 0.055 0.054	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053 - -
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.3 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.1043189} \\ 0.0977657 \\ \hline \text{O.0970598} \\ 0.0961848 \\ \hline \text{O.0955149} \\ 0.0941856 \\ \hline \text{O.0942575} \\ \hline \text{O.0933438} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ $	Rej. Pr2 0.050 0.052 0.053 0.054 0.055 0.054 0.055 0.054	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053 - - -
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.3 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1043189 \\ 0.0977657 \\ 0.0970598 \\ 0.0961848 \\ 0.0955149 \\ 0.0941856 \\ 0.0942575 \\ 0.0933438 \\ 0.0929922 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.2234573, 0.0537771] \\ \hline [-0.2201401, 0.0504599] \\ \hline [-0.2180046, 0.0483244] \\ \hline [-0.215173, 0.0454928] \\ \hline [-0.2138695, 0.0441893] \\ \hline [-0.2137024, 0.0440222] \\ \hline [-0.2138483, 0.0441681] \\ \hline [-0.2147015, 0.0450213] \\ \hline [-0.2154141, 0.0457339] \end{array}$	Rej. Pr ₂ 0.050 0.052 0.053 0.054 0.054 0.055 0.054 0.056 0.057	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053 - - - - - -
$\begin{array}{c} se_{avg} \\ \hline \phi_1 = 0.3 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \hline 1.4054723\\ \end{array}$	St. Dev ₂ 0.104423	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.1043189} \\ 0.0977657 \\ 0.0970598 \\ 0.0961848 \\ 0.0955149 \\ 0.0941856 \\ 0.0942575 \\ 0.0933438 \\ 0.0929922 \\ 0.0932936 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.2234573, 0.0537771] \\ \hline [-0.2201401, 0.0504599] \\ \hline [-0.2180046, 0.0483244] \\ \hline [-0.215173, 0.0454928] \\ \hline [-0.2138695, 0.0441893] \\ \hline [-0.2137024, 0.0440222] \\ \hline [-0.2138483, 0.0441681] \\ \hline [-0.2147015, 0.0450213] \\ \hline [-0.2154141, 0.0457339] \\ \hline [-0.2159617, 0.0462814] \end{array}$	$\begin{array}{c} \text{Rej. } \operatorname{Pr}_2 \\ 0.050 \\ 0.052 \\ 0.053 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \\ 0.056 \\ 0.057 \\ 0.056 \end{array}$	q 2 4 5	IM ₂ - 0.047 - 0.060 0.053 - - - 0.067

Table 4: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $u_t = u + \phi_1 u_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$: u = 0.

= = : 31	1 . 1100 1		()))]				
$\phi_1 = 0.4$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	\mathbf{q}	IM_1
se_1	2.4443936	0.1597824	0.1808641	$\left[-0.4491099, 0.4350964 ight]$	0.040		-
se_2	2.3328373		0.1790882	[-0.4247903, 0.4107768]	0.045	2	0.044
se_3	2.4233392		0.1726673	[-0.4254383, 0.4114248]	0.031		-
se_4	2.5100734		0.167095	[-0.4264274, 0.412414]	0.025	4	0.068
se_5	2.5143351		0.16637	[-0.4253167, 0.4113032]	0.036	5	0.057
se_6	2.4522659		0.1672044	[-0.4170363, 0.4030229]	0.030		_
se_7	2.5034686		0.1645263	[-0.4188931, 0.4048797]	0.031		_
se_8	2.5178804		0.1637664	$\left[-0.4193509, 0.4053375 ight]$	0.032		_
se_9	2.5029468		0.1641486	$\left[-0.4178618, 0.4038484 ight]$	0.035		_
se_{10}	2.4459803		0.1651659	$\left[-0.4109992, 0.3969857 ight]$	0.042	10	0.047
se_{ava}	2.4174228		0.1657708	[-0.4077448, 0.3937313]	0.041		
uvy							
$\phi_1 = 0.4$	CV_2	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr ₂	q	IM_2
$\frac{\phi_1 = 0.4}{se_1}$	CV_2 1.3287834	St. Dev_2 0.115998	St. Error ₂ 0.1269269	$\begin{array}{c} CI_2 \\ \hline [-0.2675621, 0.0697547] \end{array}$	Rej. Pr ₂ 0.032	q	IM ₂
$\frac{\hline \phi_1 = 0.4}{se_1}$	CV ₂ 1.3287834 1.3839202	St. Dev ₂ 0.115998	$\begin{array}{c} \text{St. Error}_2 \\ 0.1269269 \\ 0.1181525 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \end{array}$	Rej. Pr ₂ 0.032 0.045	q 2	IM_2 - 0.043
	$\begin{array}{c} {\rm CV}_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} \text{St. } \text{Error}_2 \\ 0.1269269 \\ 0.1181525 \\ 0.1165477 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \end{array}$	Rej. Pr ₂ 0.032 0.045 0.047	q 2	IM ₂ - 0.043 -
$ \begin{array}{r} \hline \phi_1 = 0.4 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ \end{array} $	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027 \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.1269269\\ 0.1181525\\ 0.1165477\\ 0.1148399 \end{array}$	$\begin{array}{c} CI_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \\ [-0.2545148, 0.0567074] \end{array}$	Rej. Pr ₂ 0.032 0.045 0.047 0.052	q 2 4	IM ₂ - 0.043 - 0.069
$ \begin{array}{r} \hline \phi_1 = 0.4 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ \end{array} $	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825 \end{array}$	St. Dev ₂ 0.115998	St. Error ₂ 0.1269269 0.1181525 0.1165477 0.1148399 0.1136483	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \\ [-0.2545148, 0.0567074] \\ [-0.2524292, 0.0546218] \end{array}$	Rej. Pr ₂ 0.032 0.045 0.047 0.052 0.053	q 2 4 5	IM ₂ - 0.043 - 0.069 0.059
$\begin{array}{c} \hline & \\ \hline \phi_1 = 0.4 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.1269269\\ 0.1181525\\ 0.1165477\\ 0.1148399\\ 0.1136483\\ 0.111842 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \\ [-0.2545148, 0.0567074] \\ [-0.2524292, 0.0546218] \\ [-0.251923, 0.0541156] \end{array}$	Rej. Pr2 0.032 0.045 0.047 0.052 0.053 0.054	q 2 4 5	IM ₂ - 0.043 - 0.069 0.059 -
$ \begin{array}{r} \hline & \\ \hline \phi_1 = 0.4 \\ \hline \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ \hline \end{array} $	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779 \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.1269269\\ 0.1181525\\ 0.1165477\\ 0.1148399\\ 0.1136483\\ 0.111842\\ 0.111702 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \\ [-0.2545148, 0.0567074] \\ [-0.2524292, 0.0546218] \\ [-0.251923, 0.0541156] \\ [-0.2517878, 0.0539804] \end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2} \\ 0.032 \\ 0.045 \\ 0.047 \\ 0.052 \\ 0.053 \\ 0.054 \\ 0.055 \end{array}$	q 2 4 5	IM ₂ 0.043 0.069 0.059
$ \begin{array}{r} \hline \phi_1 = 0.4 \\ \hline \phi_1 = 0.4 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ \end{array} $	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217 \end{array}$	St. Dev ₂ 0.115998	St. Error ₂ 0.1269269 0.1181525 0.1165477 0.1148399 0.1136483 0.111842 0.111702 0.1104717	$\begin{array}{c} \text{CI}_2\\ \hline \\ [-0.2675621, 0.0697547]\\ [-0.2624173, 0.0646099]\\ [-0.2588053, 0.0609979]\\ [-0.2545148, 0.0567074]\\ [-0.2524292, 0.0546218]\\ [-0.251923, 0.0541156]\\ [-0.2517878, 0.0539804]\\ [-0.2525938, 0.0547864]\end{array}$	Rej. Pr ₂ 0.032 0.045 0.047 0.052 0.053 0.054 0.055 0.056	q 2 4 5	IM ₂ - 0.043 - 0.069 0.059 - - -
$\begin{array}{c} \hline & \\ \hline \phi_1 = 0.4 \\ \hline \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ \hline \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ 1.40414 \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.1269269\\ 0.1181525\\ 0.1165477\\ 0.1148399\\ 0.1136483\\ 0.111842\\ 0.111702\\ 0.1104717\\ 0.1099374 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.2675621, 0.0697547] \\ [-0.2624173, 0.0646099] \\ [-0.2588053, 0.0609979] \\ [-0.2545148, 0.0567074] \\ [-0.2524292, 0.0546218] \\ [-0.251923, 0.0541156] \\ [-0.2517878, 0.0539804] \\ [-0.2525938, 0.0547864] \\ [-0.2532712, 0.0554638] \end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2} \\ 0.032 \\ 0.045 \\ 0.047 \\ 0.052 \\ 0.053 \\ 0.054 \\ 0.055 \\ 0.056 \\ 0.061 \end{array}$	q 2 4 5	IM ₂ - 0.043 - 0.069 0.059 - - - - - -
$\begin{array}{c} uvg \\ \hline \phi_1 = 0.4 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} {\rm CV}_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ 1.40414\\ 1.4054723\\ \end{array}$	St. Dev ₂ 0.115998	$\begin{array}{c} {\rm St.\ Error_2}\\ 0.1269269\\ 0.1181525\\ 0.1165477\\ 0.1148399\\ 0.1136483\\ 0.111842\\ 0.111702\\ 0.1104717\\ 0.1099374\\ 0.110165\\ \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline \\ [-0.2675621, 0.0697547]\\ [-0.2624173, 0.0646099]\\ [-0.2588053, 0.0609979]\\ [-0.2545148, 0.0567074]\\ [-0.2524292, 0.0546218]\\ [-0.251923, 0.0541156]\\ [-0.2517878, 0.0539804]\\ [-0.2525938, 0.0547864]\\ [-0.2532712, 0.0554638]\\ [-0.2537376, 0.0559302] \end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2} \\ 0.032 \\ 0.045 \\ 0.047 \\ 0.052 \\ 0.053 \\ 0.054 \\ 0.055 \\ 0.056 \\ 0.061 \\ 0.056 \end{array}$	q 2 4 5	IM ₂ - 0.043 - 0.069 0.059 - - - - 0.049

Table 5: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

$DOI \cdot y_t$	$\mu + \psi_{19t-1}$	$1 \circ \iota, \circ \iota = 1$	(°, -), F- °	-			
$\phi_1 = 0.5$	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.1912783	0.2245867	[-0.5577294, 0.5402274]	0.010		_
se_2	2.3328373		0.2198794	$\left[-0.5216938, 0.5041917 ight]$	0.037	2	0.044
se_3	2.4233392		0.2114198	$\left[-0.5210929, 0.5035908 ight]$	0.020		_
se_4	2.5100734		0.204084	$\left[-0.5210169, 0.5035149 ight]$	0.021	4	0.048
se_5	2.5143351		0.2026002	$\left[-0.5181558, 0.5006537 ight]$	0.026	5	0.047
se_6	2.4522659		0.2027028	[-0.5058322, 0.4883302]	0.030		_
se_7	2.5034686		0.1992212	[-0.5074952, 0.4899931]	0.031		_
se_8	2.5178804		0.1980233	$\left[-0.5073501, 0.4898481 ight]$	0.032		_
se_9	2.5029468		0.1981863	[-0.5048007, 0.4872986]	0.043		_
se_{10}	2.4459803		0.1987971	[-0.4950048, 0.4775027]	0.046	10	0.057
8 <i>P</i>	2 /17/228		0 100680	$[-0.4914838 \ 0.4739817]$	0.042		
sc_{avg}	2.4114220		0.155005	[0.1011000, 0.1100011]	0.012		
$\frac{\delta c_{avg}}{\phi_1 = 0.5}$	CV ₂	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr ₂	q	IM ₂
$\frac{\phi_1 = 0.5}{se_1}$	$\frac{\text{CV}_2}{1.3287834}$	St. Dev_2 0.145693	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1504033 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$		q	IM ₂
$\frac{bc_{avg}}{\phi_1 = 0.5}$ $\frac{se_1}{se_2}$	$\begin{array}{r} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202 \end{array}$	St. Dev ₂ 0.145693	St. Error2 0.1504033 0.1487447	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.3302164, 0.0931427] \\ \hline & [-0.3225917, 0.0855181] \end{array}$	Rej. Pr2 0.027 0.039	q 2	IM ₂ - 0.043
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.5\\ se_1\\ se_2\\ se_3 \end{array}$	$\begin{array}{c} 2.3114220\\ \hline CV_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984 \end{array}$	St. Dev ₂ 0.145693	St. Error2 0.1504033 0.1487447 0.1485322	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.3302164, 0.0931427] \\ \hline & [-0.3225917, 0.0855181] \\ \hline & [-0.3168327, 0.079759] \end{array}$	Rej. Pr2 0.027 0.039 0.041	q 2	IM ₂ - 0.043 -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.5\\ se_1\\ se_2\\ se_3\\ se_4\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \end{array}$	St. Dev ₂ 0.145693	0.155003 St. Error2 0.1504033 0.1487447 0.1485322 0.1478271	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043	q 2 4	IM ₂ - 0.043 - 0.049
se_{avg} $\phi_1 = 0.5$ se_1 se_2 se_3 se_4 se_5	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825 \end{array}$	St. Dev ₂ 0.145693	St. Error2 0.1504033 0.1487447 0.1485322 0.1478271 0.1476117	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \\ [-0.3071359, 0.0700622] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.044	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.5 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ \end{array}$	St. Dev ₂ 0.145693	$\begin{array}{c} \text{St. Error}_2\\ \text{O.1504033}\\ \text{O.1487447}\\ \text{O.1485322}\\ \text{O.1478271}\\ \text{O.1476117}\\ \text{O.1471052} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \\ [-0.3071359, 0.0700622] \\ [-0.3061203, 0.0690467] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.044	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049 -
$ \frac{se_{avg}}{\phi_1 = 0.5} \\ \frac{se_1}{se_2} \\ \frac{se_3}{se_4} \\ \frac{se_5}{se_6} \\ \frac{se_6}{se_7} $	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779 \end{array}$	St. Dev ₂ 0.145693	$\begin{array}{c} \text{St. Error}_2\\ \hline \text{St. Error}_2\\ \hline 0.1504033\\ \hline 0.1487447\\ \hline 0.1485322\\ \hline 0.1478271\\ \hline 0.1476117\\ \hline 0.1476117\\ \hline 0.1471052\\ \hline 0.1466314\\ \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \\ [-0.3071359, 0.0700622] \\ [-0.3061203, 0.0690467] \\ [-0.3055412, 0.0684675] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.045	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049 - - -
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.5 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ \end{array}$	St. Dev ₂ 0.145693	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.1504033} \\ \text{O.1487447} \\ \hline \text{O.1485322} \\ \hline \text{O.1478271} \\ \hline \text{O.1476117} \\ \hline \text{O.1471052} \\ \hline \text{O.1466314} \\ \hline \text{O.1449278} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ $	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.044 0.046 0.047 0.049 0.049	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049 - - -
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.5 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \end{array}$	St. Dev ₂ 0.145693	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{St. Error}_2 \\ \hline 0.1504033 \\ \hline 0.1487447 \\ \hline 0.1485322 \\ \hline 0.1478271 \\ \hline 0.1476117 \\ \hline 0.1471052 \\ \hline 0.1466314 \\ \hline 0.1449278 \\ \hline 0.1441125 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \\ [-0.3071359, 0.0700622] \\ [-0.3061203, 0.0690467] \\ [-0.3055412, 0.0684675] \\ [-0.3062507, 0.069177] \\ [-0.3068496, 0.069776] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.044 0.046 0.047 0.049 0.050	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049 - - - - - -
$\begin{array}{c} se_{avg} \\ \phi_1 = 0.5 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ \hline 1.3508825\\ 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ 1.40414\\ 1.4054723\\ \end{array}$	St. Dev ₂ 0.145693	$\begin{array}{c} \text{St. Error}_2\\ \hline \text{St. Error}_2\\ \hline 0.1504033\\ \hline 0.1487447\\ \hline 0.1485322\\ \hline 0.1478271\\ \hline 0.1476117\\ \hline 0.1476117\\ \hline 0.1471052\\ \hline 0.1466314\\ \hline 0.1449278\\ \hline 0.1449278\\ \hline 0.1441125\\ \hline 0.1442104 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.3302164, 0.0931427] \\ [-0.3225917, 0.0855181] \\ [-0.3168327, 0.079759] \\ [-0.3103852, 0.0733115] \\ [-0.3071359, 0.0700622] \\ [-0.3061203, 0.0690467] \\ [-0.3055412, 0.0684675] \\ [-0.3062507, 0.069177] \\ [-0.3068496, 0.069776] \\ [-0.3071659, 0.0700922] \end{array}$	Rej. Pr2 0.027 0.039 0.041 0.043 0.044 0.045 0.047 0.049 0.050 0.051	q 2 4 5	IM ₂ - 0.043 - 0.049 0.049 - - - - 0.059

Table 6: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $u_t = \mu + \phi_1 u_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

<u></u>	$P^{*} + \varphi 19i = 1$		(°, -), F- °	-			
$\phi_1 = 0.6$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	\mathbf{q}	IM_1
se_1	2.4443936	0.2382851	0.2890184	$\left[-0.7178931, 0.6950561 ight]$	0.010		_
se_2	2.3328373		0.2804254	$\left[-0.6656053, 0.6427683 ight]$	0.017	2	0.044
se_3	2.4233392		0.269239	$\left[-0.663876, 0.6410389 ight]$	0.018		_
se_4	2.5100734		0.2594337	$\left[-0.6626163, 0.6397792 ight]$	0.028	4	0.048
se_5	2.5143351		0.2568362	$\left[-0.6571908, 0.6343538 ight]$	0.026	5	0.057
se_6	2.4522659		0.2557502	$\left[-0.638586, 0.615749 ight]$	0.025		_
se_7	2.5034686		0.2510788	$\left[-0.6399863, 0.6171493 ight]$	0.027		_
se_8	2.5178804		0.2492048	$\left[-0.6388863, 0.6160493 ight]$	0.028		_
se_9	2.5029468		0.2489527	$\left[-0.634534, 0.611697 ight]$	0.040		_
se_{10}	2.4459803		0.2488425	$\left[-0.6200825, 0.5972454 ight]$	0.041	10	0.067
80	2 1171228		0.2500641	[-0.6159291, 0.593092]	0.041		
sc_{avg}	2.1111220		0.2000011	[0.0100201, 0.000002]	0.011		
$\frac{sc_{avg}}{\phi_1 = 0.6}$	CV ₂	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr ₂	q	IM ₂
$\frac{\phi_1 = 0.6}{se_1}$	CV ₂ 1.3287834	St. Dev_2 0.181605	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.2086768 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.425236, 0.1293365] \end{array}$	Rej. Pr_2 0.032	q	IM ₂
$\frac{bc_{avg}}{\phi_1 = 0.6}$ $\frac{se_1}{se_2}$	$\begin{array}{r} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202 \end{array}$	St. Dev ₂ 0.181605	St. Error2 0.2086768 0.1923892	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.425236, 0.1293365] \\ \hline & [-0.414201, 0.1183015] \end{array}$	Rej. Pr2 0.032 0.038	q 2	IM ₂ - 0.043
$ \frac{be_{avg}}{\phi_1 = 0.6} $ $ \frac{se_1}{se_2} $ $ se_3 $	$\begin{array}{c} 2.3114220\\ \hline CV_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984 \end{array}$	St. Dev ₂ 0.181605	St. Error2 0.2086768 0.1923892 0.1874853	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \end{array}$	Rej. Pr2 0.032 0.038 0.043	q 2	IM ₂ - 0.043 -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.6\\ \hline se_1\\ se_2\\ se_3\\ se_4\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027 \end{array}$	St. Dev ₂ 0.181605	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.2086768 \\ 0.1923892 \\ 0.1874853 \\ 0.1826155 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \\ [-0.3953987, 0.0994992] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047	q 2 4	IM ₂ - 0.043 - 0.049
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.6\\ \hline se_1\\ se_2\\ se_3\\ se_4\\ se_5 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825 \end{array}$	St. Dev ₂ 0.181605	St. Error2 0.2086768 0.1923892 0.1874853 0.1826155 0.1794332	$\begin{array}{c} \text{CI}_2 \\ \hline \\ [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \\ [-0.3953987, 0.0994992] \\ [-0.3903429, 0.0944434] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.051	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059
$\begin{array}{c} sc_{avg}\\ \hline \phi_1 = 0.6\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737 \end{array}$	St. Dev ₂ 0.181605	0.2000011 St. Error2 0.2086768 0.1923892 0.1874853 0.1826155 0.1794332 0.17586	$\begin{array}{c} \text{CI}_2 \\ \hline \\ \text{CI}_2 \\ \hline \\ [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ \hline \\ [-0.4051765, 0.109277] \\ \hline \\ [-0.3953987, 0.0994992] \\ \hline \\ [-0.3903429, 0.0944434] \\ \hline \\ [-0.3885567, 0.0926573] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.052	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059 -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.6\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_6\\ se_7 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779 \end{array}$	St. Dev ₂ 0.181605	St. Error2 0.2086768 0.1923892 0.1874853 0.1826155 0.1794332 0.17586 0.1748458	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.425236, 0.1293365] \\ \hline [-0.414201, 0.1183015] \\ \hline [-0.4051765, 0.109277] \\ \hline [-0.3953987, 0.0994992] \\ \hline [-0.3903429, 0.0944434] \\ \hline [-0.3885567, 0.0926573] \\ \hline [-0.3872573, 0.0913578] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.052 0.057	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059 - -
$\begin{array}{c} se_{avg}\\ \hline \phi_1=0.6\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_7\\ se_8\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \end{array}$	St. Dev ₂ 0.181605	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.2086768} \\ \text{O.1923892} \\ \hline \text{O.1874853} \\ \hline \text{O.1826155} \\ \hline \text{O.1794332} \\ \hline \text{O.17586} \\ \hline \text{O.1748458} \\ \hline \text{O.1724024} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \\ [-0.3953987, 0.0994992] \\ [-0.3903429, 0.0944434] \\ [-0.3885567, 0.0926573] \\ [-0.3872573, 0.0913578] \\ [-0.3877989, 0.0918994] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.052 0.057 0.058	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059 - - -
$\begin{array}{c} sc_{avg} \\ \hline \phi_1 = 0.6 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \end{array}$	St. Dev ₂ 0.181605	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.2086768} \\ \text{O.1923892} \\ \hline \text{O.1874853} \\ \hline \text{O.1874853} \\ \hline \text{O.1826155} \\ \hline \text{O.1794332} \\ \hline \text{O.17586} \\ \hline \text{O.1748458} \\ \hline \text{O.1724024} \\ \hline \text{O.1711371} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \\ [-0.3953987, 0.0994992] \\ [-0.3903429, 0.0944434] \\ [-0.3885567, 0.0926573] \\ [-0.3872573, 0.0913578] \\ [-0.3877989, 0.0918994] \\ [-0.3882501, 0.0923507] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.052 0.057 0.058 0.062 0.062	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059 - - - - - -
$\begin{array}{c} se_{avg} \\ \hline \phi_1 = 0.6 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \hline 1.4054723\\ \end{array}$	St. Dev ₂ 0.181605	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{St. Error}_2 \\ \hline 0.2086768 \\ 0.1923892 \\ 0.1874853 \\ 0.1826155 \\ 0.1794332 \\ 0.17586 \\ 0.1748458 \\ 0.1724024 \\ 0.1711371 \\ 0.1710024 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \text{CI}_2 \\ \hline [-0.425236, 0.1293365] \\ [-0.414201, 0.1183015] \\ [-0.4051765, 0.109277] \\ [-0.3953987, 0.0994992] \\ [-0.3903429, 0.0944434] \\ [-0.3885567, 0.0926573] \\ [-0.3872573, 0.0913578] \\ [-0.3877989, 0.0918994] \\ [-0.3882501, 0.0923507] \\ [-0.3882889, 0.0923894] \end{array}$	Rej. Pr2 0.032 0.038 0.043 0.047 0.051 0.052 0.057 0.058 0.062 0.065	q 2 4 5	IM ₂ - 0.043 - 0.049 0.059 - - - - 0.069

Table 7: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

DGP: y_t	$= \mu + \phi_1 y_{t-1}$	$\epsilon_{t} + \epsilon_{t}, \epsilon_{t} \sim 1$	$N(0,1); \mu =$	0.			
$\phi_1 = 0.7$	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.316008	0.3905051	[-0.9705136, 0.9385828]	0.012		_
se_2	2.3328373		0.377099	$\left[-0.895676, 0.8637452 ight]$	0.018	2	0.054
se_3	2.4233392		0.3624281	[-0.8942516, 0.8623208]	0.017		_
se_4	2.5100734		0.3491941	$\left[-0.8924683, 0.8605375 ight]$	0.027	4	0.058
se_5	2.5143351		0.3449971	[-0.8834036, 0.8514728]	0.025	5	0.067
se_6	2.4522659		0.3419981	[-0.8546356, 0.8227048]	0.021		_
se_7	2.5034686		0.3355449	[-0.8559914, 0.8240606]	0.026		_
se_8	2.5178804		0.332624	[-0.8534727, 0.8215419]	0.029		_
se_9	2.5029468		0.3315947	[-0.8459292, 0.8139984]	0.040		_
se_{10}	2.4459803		0.3302009	[-0.8236304, 0.7916996]	0.046	10	0.077
se_{avg}	2.4174228		0.3315832	$\left[-0.8175423, 0.7856115 ight]$	0.043		
$\phi_1 = 0.7$	CV_2	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr_2	q	IM_2
se_1	1.3287834	0.241153	0.2707476	[-0.5834842, 0.189197]	0.022		_
se_2	1.3839202		0.267998	$\left[-0.5680315, 0.1737443 ight]$	0.028	2	0.053
se_3	1.371984		0.2599864	$\left[-0.5538408, 0.1595535 ight]$	0.027		_
se_4	1.355027		0.2520536	$\left[-0.5386831, 0.1443959 ight]$	0.037	4	0.059
se_5	1.3508825		0.246914	$\left[-0.5306953, 0.1364081 ight]$	0.035	5	0.069
se_6	1.3681737		0.2416625	$\left[-0.5277799, 0.1334927 ight]$	0.038		—
se_7	1.3686779		0.2397455	$\left[-0.525278, 0.1309908 ight]$	0.037		_
se_8	1.391217		0.2360891	$\left[-0.5255948, 0.1313076 ight]$	0.039		_
se_9	1.40414		0.2340723	$\left[-0.5258139, 0.1315267 ight]$	0.049		_
se_{10}	1.4054723		0.2335112	$\left[-0.5253371, 0.1310499 ight]$	0.051	10	0.077
se_{ava}	1.397614		0.2355784	[-0.5163913, 0.1299041]	0.048		

Table 8: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $u_{\pm} = u \pm \phi_1 u_{\pm,\pm} \pm \epsilon_{\pm} \epsilon_{\pm} \sim N(0, 1)$: $u_{\pm} = 0$

$DOI \cdot g_t$	r^{-} + $\tau 13t = 1$		()))]				
$\phi_1 = 0.8$	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.4686303	0.5664212	$\left[-1.409759, 1.359353 ight]$	0.012		-
se_2	2.3328373		0.5485023	[-1.30477, 1.254363]	0.018	2	0.044
se_3	2.4233392		0.5302791	$\left[-1.310249, 1.259843\right]$	0.029		_
se_4	2.5100734		0.5127817	$\left[-1.312323, 1.261916 ight]$	0.027	4	0.068
se_5	2.5143351		0.5066161	[-1.299006, 1.248599]	0.025	5	0.077
se_6	2.4522659		0.5007495	[-1.253174, 1.202768]	0.028		_
se_7	2.5034686		0.4917829	[-1.256366, 1.20596]	0.032		_
se_8	2.5178804		0.4873622	[-1.252323, 1.201917]	0.045		_
se_9	2.5029468		0.4849576	[-1.239026, 1.18862]	0.047		_
se_{10}	2.4459803		0.4813079	[-1.202473, 1.152066]	0.046	10	0.097
80	2 /17/228		0 4818551	$[-1 \ 190051 \ 1 \ 139644]$	0.049		
sc_{avg}	2.4114220		0.4010001	[1.150051, 1.155044]	0.015		
$\frac{se_{avg}}{\phi_1 = 0.8}$	CV ₂	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr_2	q	IM ₂
$\frac{\phi_1 = 0.8}{se_1}$	$\frac{\text{CV}_2}{1.3287834}$	St. Dev_2 0.359234	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.4689628 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline & \\ \hline \\ \hline$		q	IM ₂
$\frac{be_{avg}}{\phi_1 = 0.8}$ $\frac{se_1}{se_2}$	$\begin{array}{r} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202 \end{array}$	St. Dev ₂ 0.359234	St. Error2 0.4689628 0.4370496	$\begin{array}{c} \text{CI}_2\\ \hline [-0.7353108, 0.5109891]\\ \hline [-0.7170026, 0.492681] \end{array}$	Rej. Pr2 0.022 0.028	q 2	IM ₂ - 0.043
$ \frac{be_{avg}}{\phi_1 = 0.8} $ $ \frac{se_1}{se_2} $ $ \frac{se_3}{se_3} $	$\begin{array}{c} 2.3114220\\ \hline CV_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984 \end{array}$	St. Dev ₂ 0.359234	St. Error2 0.4689628 0.4370496 0.4237301	$\begin{array}{c} \text{CI}_2\\ \hline & \\ \hline \\ \hline$	Rej. Pr2 0.022 0.028 0.039	q 2	IM ₂ - 0.043 -
$ \frac{be_{avg}}{\phi_1 = 0.8} $ $ \frac{se_1}{se_2} $ $ \frac{se_3}{se_4} $	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \end{array}$	St. Dev ₂ 0.359234	0.4010591 St. Error2 0.4689628 0.4370496 0.4237301 0.4109784	$\begin{array}{c} \text{CI}_2 \\ \hline & \\ \hline \hline & \\ \hline \\ \hline$	Rej. Pr2 0.022 0.028 0.039 0.037	q 2 4	IM ₂ - 0.043 - 0.061
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.8\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5 \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825 \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{O.4689628} \\ \text{O.4370496} \\ \hline \text{O.4237301} \\ \hline \text{O.4109784} \\ \hline \text{O.4017554} \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline & [-0.7353108, 0.5109891] \\ [-0.7170026, 0.492681] \\ [-0.6935117, 0.4691901] \\ [-0.6690476, 0.444726] \\ [-0.6548852, 04305636] \end{array}$	Rej. Pr2 0.022 0.028 0.037 0.035	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.8\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2\\ \hline \text{O.4689628}\\ \text{O.4370496}\\ \hline \text{O.4237301}\\ \hline \text{O.4109784}\\ \hline \text{O.4017554}\\ \hline \text{O.392662} \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline \\ [-0.7353108, 0.5109891]\\ [-0.7170026, 0.492681]\\ [-0.6935117, 0.4691901]\\ [-0.6690476, 0.444726]\\ [-0.6548852, 04305636]\\ [-0.6493906, 0.425069] \end{array}$	Rej. Pr2 0.022 0.028 0.039 0.035 0.038	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076 -
se_{avg} $\phi_1 = 0.8$ se_1 se_2 se_3 se_4 se_5 se_6 se_7	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779 \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2\\ \hline \text{St. Error}_2\\ \hline 0.4689628\\ 0.4370496\\ \hline 0.4237301\\ \hline 0.4109784\\ \hline 0.4017554\\ \hline 0.392662\\ \hline 0.3876784\\ \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline \\ [-0.7353108, 0.5109891]\\ [-0.7170026, 0.492681]\\ [-0.6935117, 0.4691901]\\ [-0.6690476, 0.444726]\\ [-0.6548852, 04305636]\\ [-0.6493906, 0.425069]\\ [-0.6427676, 0.418446] \end{array}$	Rej. Pr2 0.022 0.028 0.039 0.037 0.035 0.038 0.040	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076 - -
$\begin{array}{c} se_{avg}\\ \hline \phi_1 = 0.8\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_7\\ se_8\\ \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{St. Error}_2 \\ \hline 0.4689628 \\ \hline 0.4370496 \\ \hline 0.4237301 \\ \hline 0.4109784 \\ \hline 0.4017554 \\ \hline 0.392662 \\ \hline 0.3876784 \\ \hline 0.3799619 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline \\ $	Rej. Pr2 0.022 0.028 0.039 0.035 0.038 0.040 0.046	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076 - - -
$\begin{array}{c} se_{avg}\\ \hline \phi_1=0.8\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ se_7\\ se_8\\ se_9\\ \end{array}$	$\begin{array}{c} 2.4114220\\ \hline CV_2\\ \hline 1.3287834\\ 1.3839202\\ \hline 1.371984\\ \hline 1.355027\\ \hline 1.3508825\\ \hline 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ \hline 1.40414\\ \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{St. Error}_2 \\ \hline 0.4689628 \\ \hline 0.4370496 \\ \hline 0.4237301 \\ \hline 0.4109784 \\ \hline 0.4017554 \\ \hline 0.392662 \\ \hline 0.3876784 \\ \hline 0.3799619 \\ \hline 0.3753938 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline \\ \text{CI}_2\\ \hline \\ \hline$	Rej. Pr2 0.022 0.028 0.039 0.035 0.038 0.040 0.046 0.049	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076 - - - - - -
$\begin{array}{c} se_{avg} \\ \hline \phi_1 = 0.8 \\ se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} \text{CV}_2\\ \hline \text{CV}_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ \hline 1.3508825\\ 1.3681737\\ \hline 1.3686779\\ \hline 1.391217\\ 1.40414\\ 1.4054723\\ \end{array}$	St. Dev ₂ 0.359234	$\begin{array}{c} \text{St. Error}_2 \\ \hline \text{St. Error}_2 \\ \hline 0.4689628 \\ \hline 0.4370496 \\ \hline 0.4237301 \\ \hline 0.4109784 \\ \hline 0.4017554 \\ \hline 0.392662 \\ \hline 0.3876784 \\ \hline 0.3799619 \\ \hline 0.3753938 \\ \hline 0.3734275 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline \\ \text{CI}_2\\ \hline \\ \hline$	Rej. Pr2 0.022 0.028 0.039 0.037 0.035 0.038 0.040 0.046 0.049 0.047	q 2 4 5	IM ₂ - 0.043 - 0.061 0.076 - - - 0.095

Table 9: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

$DOI \cdot g_t$	$\mu + \psi_{19t-1}$	$1 c_t, c_t = 1$	$(0, 1), \mu = 0$	•			
$\phi_1 = 0.9$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.8974888	0.9254669	[-2.314443, 2.209967]	0.029		_
se_2	2.3328373		0.9093736	$\left[-2.173659, 2.069182 ight]$	0.033	2	0.064
se_3	2.4233392		0.8918764	$\left[-2.213557, 2.109081 ight]$	0.034		_
se_4	2.5100734		0.8723568	$\left[-2.241918, 2.137441 ight]$	0.038	4	0.088
se_5	2.5143351		0.8659517	$\left[-2.229531, 2.125055 ight]$	0.045	5	0.109
se_6	2.4522659		0.8574554	[-2.154947, 2.050471]	0.042		_
se_7	2.5034686		0.8464618	$\left[-2.171329, 2.066852\right]$	0.045		_
se_8	2.5178804		0.841077	$\left[-2.169969, 2.065493 ight]$	0.046		_
se_9	2.5029468		0.8371613	[-2.147608, 2.043132]	0.043		_
se_{10}	2.4459803		0.8302671	$\left[-2.083055, 1.978579 ight]$	0.066	10	0.201
se_{avg}	2.4174228		0.8264156	$\left[-2.050034, 1.945558 ight]$	0.062		_
$\phi_1 = 0.9$	CV_2	St. Dev_2	St. $Error_2$	CI_2	Rej. Pr_2	q	IM_2
se_1	1.3287834	0.702983	0.7116937	[-1.374395, 0.8797364]	0.032		-
se_2	1.3839202		0.7113736	[-1.370206, 0.8755471]	0.045	2	0.063
se_3	1.371984		0.710876	[-1.336845, 0.842187]	0.043		_
se_4	1.355027		0.709357	$\left[-1.299252, 0.8045939 ight]$	0.044	4	0.081
se_5	1.3508825		0.708952	[-1.277994, 0.7833356]	0.054	5	0.106
se_6	1.3681737		0.707455	[-1.274098, 0.7794393]	0.058		—
se_7	1.3686779		0.706462	$\left[-1.26102, 0.7694433\right]$	0.047		_
se_8	1.391217		0.705077	[-1.264573, 0.7699148]	0.047		_
se_9	1.40414		0.704161	[-1.264262, 0.7696036]	0.045		_
se_{10}	1.4054723		0.703267	[-1.260107, 0.7654488]	0.062	10	0.205
se_{ava}	1.397614		0.7024424	[-1.229073, 0.734414]	0.052		_

Table 10: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is for T = 100 and 2 for T = 200. DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t$, $\epsilon_t \sim N(0, 1)$; $\mu = 0$.

Table 11: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (14) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 1 is used for T = 100. DGP: $y_i = \mu + \exp(\beta x_i) \cdot \epsilon_i$, $\epsilon_i \sim N(0, 1)$, $x_i \sim N(0, 1)$; $\mu = 0$, $\beta = 0.4$.

	CV_1	St. Dev_1	St. $Error_1$	CI ₁	Rej. Pr ₁	q	IM ₁
se_1	2.4443936	0.1162029	0.116314	[-0.2908727, 0.2777617]	0.042		_
se_2	2.3328373		0.1213187	[-0.2895723, 0.2764613]	0.043	2	0.000
se_3	2.4233392		0.1190771	[-0.2951196, 0.2820086]	0.041		_
se_4	2.5100734		0.1169148	$\left[-0.3000202, 0.2869092 ight]$	0.046	4	0.000
se_5	2.5143351		0.1178461	[-0.3028601, 0.2897491]	0.048	5	0.000
se_6	2.4522659		0.1199574	[-0.3007229, 0.2876119]	0.040		_
se_7	2.5034686		0.1185563	$\left[-0.3033575, 0.2902465 ight]$	0.049		_
se_8	2.5178804		0.1185558	$\left[-0.3050649, 0.2919539 ight]$	0.046		_
se_9	2.5029468		0.1193456	[-0.3052711, 0.2921601]	0.044		_
se_{10}	2.4459803		0.1210026	[-0.3025255, 0.2894145]	0.056	10	0.000
se_{avg}	2.4174228		0.1214158	[-0.3000689, 0.2869579]	0.051		
DGP: y_{it}	$= \mu + \phi_1 y_{it-}$	$-1 + w_i + \exp(-1) = \frac{1}{2} + \frac{1}{$	$\rho(\beta x_{it}).\epsilon_{it}, \epsilon_{it}$	$x \sim N(0,1), x_{it} \sim N(0,1);$	$\mu = 0, \phi_1 =$	= 0.2,	
$\beta = 0.2; v$	$v_i = \lambda w_{i-1} +$	$-v_i, \lambda = 0.3.$					
$\phi_1 = 0.1$	CV_1	St. Dev_1	St. $Error_1$	CI_1	Rej. Pr_1	q	IM_1
se_1	2.4443936	0.2059888	0.200824	[-0.4655353, 0.5162506]	0.041		_
se_2	2.3328373		0.2086386	[-0.4613621, 0.5120775]	0.051	2	0.000
se_3	2.4233392		0.2066676	$\left[-0.475468, 0.5261834 ight]$	0.055		_
se_4	2.5100734		0.2041653	[-0.4871121, 0.5378275]	0.057	4	0.000
se_5	2.5143351		0.2061785	[-0.4930443, 0.5437596]	0.056	5	0.000
se_6	2.4522659		0.2086671	$\left[-0.4863496, 0.537065 ight]$	0.059		_
se_7	2.5034686		0.2066445	$\left[-0.4919702, 0.5426856\right]$	0.061		_
se_8	2.5178804		0.2065773	$\left[-0.4947793, 0.5454947\right]$	0.063		_
se_9	2.5029468		0.2073685	[-0.4936746, 0.54439]	0.066		_
se_{10}	2.4459803		0.2087266	[-0.4851834, 0.5358988]	0.062	10	0.000
se_{avg}	2.4174228		0.2071774	$\left[-0.4754777, 0.5261931 ight]$	0.064		

Table 12: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (14) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. Subscript 2 is used for T = 200. DGP: $y_i = \mu + \exp(\beta x_i) \cdot \epsilon_i$, $\epsilon_i \sim N(0, 1)$, $x_i \sim N(0, 1)$; $\mu = 0$, $\beta = 0.4$.

	CV_2	St. Dev_2	St. $Error_2$	CI ₂	Rej. Pr ₂	q	IM ₂
se_1	1.3287834	0.069950	0.0647191	[-0.1122103, 0.098671]	0.057	-	_
se_2	1.3839202		0.0673187	[-0.1146352, 0.099981]	0.054	2	0.000
se_3	1.371984		0.0680771	[-0.1156292, 0.104721]	0.053		_
se_4	1.355027		0.0691489	[-0.1172963, 0.105392]	0.052	4	0.000
se_5	1.3508825		0.0678461	[-0.1155983, 0.104692]	0.053	5	0.000
se_6	1.3681737		0.0699574	[-0.1181392, 0.106389]	0.049		_
se_7	1.3686779		0.0685563	[-0.1170479, 0.105274]	0.052		_
se_8	1.391217		0.0685958	[-0.1171392, 0.105296]	0.052		_
se_9	1.40414		0.0693456	[-0.1173128, 0.105429]	0.051		_
se_{10}	1.4054723		0.0680026	[-0.1156191, 0.104542]	0.053	10	0.000
se_{avg}	1.397614		0.0689158	$\left[-0.1102902, 0.096361 ight]$	0.052		
DGP: y_{it}	$= \mu + \phi_1 y_{it-}$	$-1 + w_i + e_X$	$\exp(\beta x_{it}).\epsilon_{it}, \epsilon$	$_{it} \sim N(0,1), x_{it} \sim N(0,1);$; $\mu = 0, \phi_1$	= 0.2	2,
$\beta = 0.2; u$	$v_i = \lambda w_{i-1} + $	$-v_i, \lambda = 0.3$	3.				
$\phi_{1} = 0.1$	CT I	a . b		07			
$\psi_1 = 0.1$	CV_2	St. Dev_2	St. $Error_2$	Cl_2	Rej. Pr_2	q	IM_2
$\frac{\phi_1 = 0.1}{se_1}$	$\frac{CV_2}{1.3287834}$	St. Dev_2 0.144922	St. $Error_2$ 0.1533778	$Cl_2 \\ [-0.2240488, 0.1835629]$	Rej. Pr ₂ 0.041	q	IM ₂
$\frac{\varphi_1 = 0.1}{se_1}$	$ \begin{array}{r} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ \end{array} $	St. Dev_2 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline [-0.2240488, 0.1835629] \\ [-0.2219537, 0.1814678] \end{array}$	Rej. Pr ₂ 0.041 0.048	q 2	IM_2 - 0.000
$\frac{\varphi_1 = 0.1}{se_1}$ $\frac{se_2}{se_3}$	$ \begin{array}{r} \hline 0.000\\ \hline 1.3287834\\ \hline 1.3839202\\ \hline 1.371984 \end{array} $	St. Dev ₂ 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \\ 0.1458801 \end{array}$	$\begin{array}{c} \text{CI}_2 \\ \hline [-0.2240488, 0.1835629] \\ [-0.2219537, 0.1814678] \\ [-0.2203881, 0.1799023] \end{array}$	Rej. Pr2 0.041 0.048 0.047	q 2	IM ₂ - 0.000 -
$\frac{\varphi_1 = 0.1}{se_1}$ $\frac{se_2}{se_3}$ $\frac{se_4}{se_4}$	$ \begin{array}{r} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \\ 1.355027 \\ \end{array} $	St. Dev ₂ 0.144922	St. Error2 0.1533778 0.1457532 0.1458801 0.1460175	$\begin{array}{c} \text{CI}_2 \\ \hline [-0.2240488, 0.1835629] \\ [-0.2219537, 0.1814678] \\ [-0.2203881, 0.1799023] \\ [-0.2181006, 0.1776147] \end{array}$	Rej. Pr2 0.041 0.048 0.047	q 2 4	IM ₂ - 0.000 - 0.000
$\begin{array}{c} \varphi_1 = 0.1\\ \hline se_1\\ se_2\\ se_3\\ se_4\\ se_5 \end{array}$	$\begin{array}{c} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \\ 1.355027 \\ 1.3508825 \end{array}$	St. Dev ₂ 0.144922	St. Error2 0.1533778 0.1457532 0.1458801 0.1460175 0.1461213	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ [-0.2219537, 0.1814678]\\ [-0.2203881, 0.1799023]\\ [-0.2181006, 0.1776147]\\ [-0.2176357, 0.1771498] \end{array}$	$\begin{array}{c} {\rm Rej. \ Pr_2} \\ 0.041 \\ 0.048 \\ 0.047 \\ 0.046 \\ 0.045 \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000
$\begin{array}{c} \varphi_1 = 0.1\\ se_1\\ se_2\\ se_3\\ se_4\\ se_5\\ se_6\\ \end{array}$	$\begin{array}{c} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \\ 1.355027 \\ 1.3508825 \\ 1.3681737 \end{array}$	St. Dev ₂ 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \\ 0.1458801 \\ 0.1460175 \\ 0.1461213 \\ 0.1444437 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ [-0.2219537, 0.1814678]\\ [-0.2203881, 0.1799023]\\ [-0.2181006, 0.1776147]\\ [-0.2176357, 0.1771498]\\ [-0.217867, 0.1773811] \end{array}$	$\begin{array}{c} {\rm Rej. \ Pr_2} \\ 0.041 \\ 0.048 \\ 0.047 \\ 0.046 \\ 0.045 \\ 0.052 \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000 -
$\phi_1 = 0.1$ se_1 se_2 se_3 se_4 se_5 se_6 se_7	$\begin{array}{c} CV_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\end{array}$	St. Dev ₂ 0.144922	St. Error2 0.1533778 0.1457532 0.1458801 0.1460175 0.1461213 0.1444437 0.1443676	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ [-0.2219537, 0.1814678]\\ \hline [-0.2203881, 0.1799023]\\ \hline [-0.2181006, 0.1776147]\\ \hline [-0.2176357, 0.1771498]\\ \hline [-0.217867, 0.1773811]\\ \hline [-0.2178357, 0.1773498]\end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2}\\ \hline 0.041\\ 0.048\\ 0.047\\ 0.046\\ 0.045\\ 0.052\\ 0.055\\ \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000 - -
$\phi_1 = 0.1$ se_1 se_2 se_3 se_4 se_5 se_6 se_7 se_8	$\begin{array}{c} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \\ 1.355027 \\ 1.3508825 \\ 1.3681737 \\ 1.3686779 \\ 1.391217 \end{array}$	St. Dev ₂ 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \\ 0.1458801 \\ 0.1460175 \\ 0.1461213 \\ 0.1441213 \\ 0.1443676 \\ 0.1426047 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ [-0.2219537, 0.1814678]\\ [-0.2203881, 0.1799023]\\ [-0.2181006, 0.1776147]\\ [-0.2176357, 0.1771498]\\ [-0.217867, 0.1773811]\\ [-0.2178357, 0.1773498]\\ [-0.2186369, 0.1781511]\end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2}\\ \hline 0.041\\ 0.048\\ 0.047\\ 0.046\\ 0.045\\ 0.052\\ 0.055\\ 0.057\\ \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000 - - -
$\phi_1 = 0.1$ se_1 se_2 se_3 se_4 se_5 se_6 se_7 se_8 se_9	$\begin{array}{c} CV_2\\ \hline 1.3287834\\ 1.3839202\\ 1.371984\\ 1.355027\\ 1.3508825\\ 1.3681737\\ 1.3686779\\ 1.391217\\ 1.40414 \end{array}$	St. Dev ₂ 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \\ 0.1458801 \\ 0.1460175 \\ 0.1461213 \\ 0.1441213 \\ 0.1444437 \\ 0.1443676 \\ 0.1426047 \\ 0.1418511 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ [-0.2219537, 0.1814678]\\ [-0.2203881, 0.1799023]\\ [-0.2181006, 0.1776147]\\ [-0.2176357, 0.1771498]\\ [-0.217867, 0.1773811]\\ [-0.2178357, 0.1773498]\\ [-0.2186369, 0.1781511]\\ [-0.2194218, 0.1789359] \end{array}$	$\begin{array}{c} {\rm Rej. \ Pr_2} \\ \hline 0.041 \\ 0.048 \\ 0.047 \\ 0.046 \\ 0.045 \\ 0.052 \\ 0.055 \\ 0.057 \\ 0.058 \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000 - - - - -
$\begin{array}{c} \phi_1 = 0.1 \\ \hline se_1 \\ se_2 \\ se_3 \\ se_4 \\ se_5 \\ se_6 \\ se_7 \\ se_8 \\ se_9 \\ se_{10} \end{array}$	$\begin{array}{c} CV_2 \\ \hline 1.3287834 \\ 1.3839202 \\ 1.371984 \\ 1.355027 \\ 1.3508825 \\ 1.3681737 \\ 1.3686779 \\ 1.391217 \\ 1.40414 \\ 1.4054723 \end{array}$	St. Dev ₂ 0.144922	$\begin{array}{c} \text{St. Error}_2 \\ \hline 0.1533778 \\ 0.1457532 \\ 0.1457532 \\ 0.1458801 \\ 0.1460175 \\ 0.1460175 \\ 0.1461213 \\ 0.144437 \\ 0.1443676 \\ 0.1426047 \\ 0.1418511 \\ 0.1420772 \end{array}$	$\begin{array}{c} \text{CI}_2\\ \hline [-0.2240488, 0.1835629]\\ \hline [-0.2219537, 0.1814678]\\ \hline [-0.2203881, 0.1799023]\\ \hline [-0.2181006, 0.1776147]\\ \hline [-0.2176357, 0.1771498]\\ \hline [-0.217867, 0.1773811]\\ \hline [-0.2178357, 0.1773498]\\ \hline [-0.2186369, 0.1781511]\\ \hline [-0.2194218, 0.1789359]\\ \hline [-0.2199285, 0.1794426]\end{array}$	$\begin{array}{c} {\rm Rej.\ Pr_2}\\ \hline 0.041\\ 0.048\\ 0.047\\ 0.046\\ 0.045\\ 0.052\\ 0.055\\ 0.057\\ 0.058\\ 0.057\\ \end{array}$	q 2 4 5	IM ₂ - 0.000 - 0.000 0.000 - - - 0.000

<u>DGP</u> : $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, 1); \ \mu = 0, \ T = 100, \ CV = 2.4174228.$								
$\phi_1 = 0$	Rej. Pr	IM	$\phi_1 = 0.1$	Rej. Pr	IM	$\phi_1 = 0.2$	Rej. Pr	IM
$\mu = 0.00$	0.046	0.048	$\mu = 0.00$	0.047	0.044	$\mu = 0.00$	0.057	0.051
$\mu = 0.05$	0.088	0.060	$\mu = 0.05$	0.086	0.063	$\mu = 0.05$	0.085	0.075
$\mu = 0.10$	0.128	0.102	$\mu = 0.10$	0.127	0.101	$\mu = 0.10$	0.125	0.101
$\mu = 0.15$	0.230	0.199	$\mu = 0.15$	0.228	0.179	$\mu = 0.15$	0.227	0.180
$\mu = 0.20$	0.369	0.276	$\mu = 0.20$	0.368	0.297	$\mu = 0.20$	0.366	0.278
$\mu = 0.25$	0.589	0.412	$\mu = 0.25$	0.587	0.429	$\mu = 0.25$	0.567	0.431
$\mu = 0.30$	0.658	0.555	$\mu = 0.30$	0.651	0.592	$\mu = 0.30$	0.647	0.529
$\mu = 0.35$	0.887	0.706	$\mu = 0.35$	0.819	0.641	$\mu = 0.35$	0.817	0.677
$\mu = 0.40$	0.928	0.734	$\mu = 0.40$	0.926	0.763	$\mu = 0.40$	0.922	0.744
$\mu=0.45$	0.992	0.851	$\mu=0.45$	0.987	0.843	$\mu=0.45$	0.985	0.837
$\phi_1 = 0.3$	Rej. Pr	IM	$\phi_1 = 0.4$	Rej. Pr	IM	$\phi_1 = 0.5$	Rej. Pr	IM
$\mu = 0.00$	0.055	0.048	$\mu = 0.00$	0.062	0.050	$\mu = 0.00$	0.050	0.051
$\mu = 0.05$	0.087	0.061	$\mu=0.05$	0.088	0.063	$\mu = 0.05$	0.081	0.093
$\mu = 0.10$	0.125	0.118	$\mu = 0.10$	0.126	0.136	$\mu = 0.10$	0.124	0.119
$\mu = 0.15$	0.226	0.184	$\mu=0.15$	0.225	0.201	$\mu=0.15$	0.224	0.202
$\mu = 0.20$	0.365	0.273	$\mu = 0.20$	0.346	0.288	$\mu = 0.20$	0.339	0.298
$\mu = 0.25$	0.508	0.412	$\mu=0.25$	0.499	0.425	$\mu=0.25$	0.492	0.442
$\mu = 0.30$	0.639	0.563	$\mu = 0.30$	0.627	0.551	$\mu = 0.30$	0.619	0.551
$\mu = 0.35$	0.815	0.665	$\mu=0.35$	0.796	0.657	$\mu=0.35$	0.788	0.643
$\mu = 0.40$	0.919	0.767	$\mu = 0.40$	0.917	0.782	$\mu = 0.40$	0.915	0.785
$\mu=0.45$	0.982	0.824	$\mu=0.45$	0.975	0.857	$\mu=0.45$	0.967	0.835

Table 13: Finite sample power performance of the test statistic for se_{avg} and IM approach for q = 4 for 1000 reps. 5% Nominal Level, Two-sided Tests. $H_0: \mu = \mu_0 = 0, H_1: \mu = \mu_1$.

Table 14: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (14) and eq. (13) respectively through 1000 replications, and empirical null rejection probabilities for the test statistic, White (1984) and Newey and West (1987) approach. T = 100. DGP: $y_i = x_i\beta + \epsilon_i$, $\epsilon_i \sim N(0, \sigma_i^2)$, $x_i \sim N(0, 1)$; σ_i^2 takes values from 0.01 to 1, $\beta = 0$.

	CV	St. Dev	St. Error	CI	Rej. Pr	White (1984)
se_2	1.4376333	0.0752358	0.1561381	[-0.2247313, 0.2242074]	0.040	0.081
se_3	1.9541209		0.1006337	$\left[-0.1969123, 0.1963885 ight]$	0.043	
se_4	2.2493941		0.0831105	$\left[-0.1872101, 0.1866863 ight]$	0.041	
se_5	2.3671093		0.0769950	$\left[-0.1825175, 0.1819937 ight]$	0.046	
se_6	2.2528766		0.0769994	[-0.1737321, 0.1732083]	0.042	
se_7	2.3821085		0.0728513	[-0.1738015, 0.1732777]	0.035	
se_8	2.4516591		0.0710890	$\left[-0.1745479, 0.1740241 ight]$	0.038	
se_9	2.4504642		0.0708547	$\left[-0.1738889, 0.1733651 ight]$	0.040	
se_{10}	2.2882882		0.0735069	[-0.1684669, 0.1679431]	0.044	
se_{avg}	2.1288568		0.0800460	[-0.1703876, 0.1713001]	0.043	
DGP: $y_t = \phi y_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, 1), \ \phi = 0.5.$						
For Newey and West (1987), $Kernel = Bartlett, Bandwidth = 10.$						
	CV	St. Dev	St. Error	CI	Rej. Pr	Newey&West (1987)
se_3	3.7796679	0.0880726	0.0692434	$\left[-0.0654307, 0.4580036 ight]$	0.057	0.105
se_4	3.7065494		0.0761618	$\left[-0.0860111, 0.478584 ight]$	0.056	
se_5	3.4024051		0.0846737	$\left[-0.0918078, 0.4843806 ight]$	0.051	
se_6	2.8266524		0.0948328	$\left[-0.0717728, 0.4643457 ight]$	0.054	
se_8	2.864615		0.0969039	$\left[-0.081306, 0.4738788 ight]$	0.049	
se_9	2.7945549		0.0998083	[-0.0826334, 0.4752062]	0.059	
se_{10}	2.4958118		0.1054803	$\left[-0.0669724, 04595453 ight]$	0.055	
se_{avg}	2.7289522		0.1003769	$\left[-0.0656373, 0.4602101 ight]$	0.052	

Table 15: A Comparison of the standard deviation of the sample mean with the mean value of the standard error calculated by eq. (13) through 1000 replications, and empirical null rejection probabilities for the test statistic and IM approach. T = 1000.

DGP: $y_t = \mu + \phi_1 y_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, 1); \ \mu = 0.$

$\phi_1 = 0.5$	CV	St. Dev	St. Error	CI	Rej. Pr	q	IM
se_1	2.138258	0.0654725	0.084693	[-0.1808599, 0.1813311]	0.014		_
se_2	2.1455735		0.0802065	$\left[-0.1718532, 0.1723245\right]$	0.026	2	0.045
se_3	2.1502745		0.0777197	$\left[-0.1668832, 0.1673544 ight]$	0.030		_
se_4	2.1553015		0.0754233	$\left[-0.1623243, 0.1627955 ight]$	0.032	4	0.047
se_5	2.1652035		0.074209	$\left[-0.160442, 0.1609133 ight]$	0.033	5	0.048
se_6	2.172101		0.0728887	$\left[-0.1580859, 0.1585572\right]$	0.035		_
se_7	2.163528		0.0718671	$\left[-0.1552509, 0.1557221 ight]$	0.036		_
se_8	2.1648155		0.0715329	$\left[-0.1546199, 0.1550912 ight]$	0.038		_
se_9	2.1893815		0.0709835	$\left[-0.1551743, 0.1556456\right]$	0.040		_
se_{10}	2.19799		0.0703676	$\left[-0.1544316, 0.1549029 ight]$	0.041	10	0.056
se_{avg}	2.12701		0.0711599	$\left[-0.1545033, 0.1549745 ight]$	0.043		