Economic Situations of Lagrange Multiplier When Costs of Various Inputs Increase for Nonlinear Budget Constraint

Mohajan, Devajit and Mohajan, Haradhan
Department of Civil Engineering, Chittagong University of Engineering Technology, Chittagong, Bangladesh, Department of Mathematics, Premier University, Chittagong, Bangladesh

10 February 2023

Online at https://mpra.ub.uni-muenchen.de/116879/
MPRA Paper No. 116879, posted 01 Apr 2023 14:00 UTC

Economic Situations of Lagrange Multiplier When Costs of Various Inputs Increase for Nonlinear Budget Constraint

Devajit Mohajan
Department of Civil Engineering, Chittagong University of Engineering \& Technology, Chittagong, Bangladesh
Email: devajit1402@gmail.com
Mobile: +8801866207021
Haradhan Kumar Mohajan
Department of Mathematics, Premier University, Chittagong, Bangladesh
Email: haradhan1971@gmail.com
Mobile: +8801716397232

Abstract

An industry always expects to survive in profit maximization atmosphere. To develop profit maximization strategy it must follow scientific methods in every step of production and distribution. Only proper decisions can propel the industry smoothly in sustainable way. This study attempts to discuss economic effects of Lagrange multiplier when per unit costs of various inputs increase. In this paper the method of Lagrange multiplier is applied to represent higher dimensional unconstrained problem from the lower dimensional constrained problem. CobbDouglas production function, 6×6 bordered Hessian matrix, and 6×6 Jacobian are operated here to provide economic predictions appropriately. In the study profit maximization is considered with subject to the nonlinear budget constraint.

Keywords: Profit maximization, Lagrange multiplier, nonlinear budget constraint

1. Introduction

Modern economics cannot forward smoothly without mathematical modeling (Samuelson, 1947). Mathematics helps the industries for the development of their global, regional and national financial structure (Ferdous \& Mohajan, 2022). At present world mathematical modeling becomes a leading discipline of many fields of social sciences, such as economics, sociology, psychology, political science, etc. (Carter, 2001). In economics it is used to solve optimization problems, problems of demand and supply, etc. (Samuelson, 1947). An industry always wants its own benefits and also sees the welfare of the society (Eaton \& Lipsey, 1975).

Profit maximization practice is essential for the sustainability of an industry (Islam et al. 2010). In multivariable calculus, the method of Lagrange multiplier is a very useful and powerful technique (Baxley \& Moorhouse, 1984). In this study we have used Cobb-Douglas production function, the determinant of 6×6 bordered Hessian matrix, 6×6 Jacobian, and four input variables to provide economic predictions (Cobb \& Douglas, 1928). Throughout the study we have shown mathematical calculation in some details but in simple forms.

2. Literature Review

In any type of research, literature review is an introductory section, where works of previous researchers are included (Polit \& Hungler, 2013). Two American professors Charles W. Cobb (1875-1949) and Paul H. Douglas (1892-1976) for the first time have developed a production function, which is known as Cobb-Douglas production function (Cobb \& Douglas, 1928). Another two American professors John V. Baxley and John C. Moorhouse have worked on the optimization problem, such as profit maximization (Baxley \& Moorhouse, 1984). Since then many scholars worked on profit maximization using mathematical devices. Professor Jamal Nazrul Islam (1939-2013), a well-known mathematician of Bangladesh, and his coauthors have elaborately worked on profit maximization (Islam et al., 2009a,b, 2010, 2011, 2012a,b). On the other hand, Cambodian Professor Pahlaj Moolio and his coworkers have considered the Cobb-

Douglas production functions in their study to analyze the mathematical structure of profit maximization (Moolio et al., 2009).

Devajit Mohajan and Haradhan Kumar Mohajan have scrutinized the profit maximization, utility maximization, and cost minimization, where they have discussed sensitivity analyses (Mohajan \& Mohajan, 2022a-j, 2023a-p). Jannatul Ferdous and Haradhan Kumar Mohajan in their study have considered three inputs, such as capital, labor, and other inputs for the mathematical analysis of the production procedures of the industry (Ferdous \& Mohajan, 2022). Lia Roy and her coauthors have developed a series of theorems during cost minimization studies (Roy et al., 2021).

3. Research Methodology of the Study

Research is a creative work that needs systematic investigations. To do a good research a researcher should be a devotee in collection, interpretation and refinement of data (Pandey \& Pandey, 2015). Methodology is a guideline for the accomplishment of a good research (Kothari, 2008). Therefore, research methodology is the specific procedures that are used to identify, select, process, and analyze materials (Somekh \& Lewin, 2005).

In this study we have worked on Cobb-Douglas production function. We have also worked on the determinant of 5×5 bordered Hessian and 5×5 Jacobian matrices (Mohajan, 2017a-d, 2018ae, 2020). With the mathematical properties of calculus we have depended on the secondary data sources of profit maximization, such as journal articles, books, etc. (Mohajan, 2020a-e, 2021a-d). In the study we have shown the mathematical analyses in some details (Mohajan, 2011, 2012a-e, 2013a-g, 2014a-e, 2015a-d, 2016, 2022a-d, Rahman \& Mohajan, 2019).

4. Objective of the Study

The chief objective of this study is to discuss the economic situations of Lagrange multiplier when the costs of various inputs are increased. Other minor objectives of the study are as follows:

- to show the mathematical calculations in some details, and
- to provide the economic results properly.

5. Lagrangian Function

We consider that an industry tries to make a maximum profit from its products and it wants to establish a sustainable environment in the economic world. Let the industry uses A_{1} amount of capital, A_{2} quantity of labor, A_{3} quantity of principal raw materials, and A_{4} quantity of irregular raw material for its usual production process. Let us consider the Cobb-Douglas production function $f\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ as a profit function for our economic model (Cobb \& Douglas, 1928; Islam et al., 2010; Mohajan \& Mohajan, 2023a),

$$
\begin{equation*}
P\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=f\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=\Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}, \tag{1}
\end{equation*}
$$

where Γ is the efficiency parameter that reflects the level of technology, i.e., technical process, economic system, etc., which represents total factor productivity. Moreover, Γ reflects the skill and efficient level of the workforce. Here α, β, γ, and δ are parameters; α indicates the output of elasticity of capital, and measures the percentage change in $P\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ for 1% change in A_{1}, while A_{2}, A_{3}, and A_{4} are held constants. Similarly, β indicates the output of elasticity of labor, γ indicates the output of elasticity of principal raw materials, and δ indicates the output of elasticity of irregular raw material. Now these four parameters α, β, γ, and δ must satisfy the following four inequalities (Islam et al., 2011; Moolio et al., 2009; Mohajan, 2022; Mohajan \& Mohajan, 2022a):

$$
\begin{equation*}
0<\alpha<1,0<\beta<1,0<\gamma<1, \text { and } 0<\delta<1 . \tag{2}
\end{equation*}
$$

A strict Cobb-Douglas production function, in which $\Psi=\alpha+\beta+\gamma+\delta<1$ indicates decreasing returns to scale, $\Psi=1$ indicates constant returns to scale, and $\Psi>1$ indicates increasing returns
to scale. Now we consider that the profit function is subject to a nonlinear budget constraint as (Roy et al., 2021; Mohajan \& Mohajan, 2022b, 2023b),

$$
\begin{equation*}
B\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=k A_{1}+l A_{2}+m A_{3}+n\left(A_{4}\right) A_{4}, \tag{3}
\end{equation*}
$$

where k is rate of interest or services of per unit of capital $A_{1} ; l$ is the wage rate per unit of labor $A_{2} ; m$ is the cost per unit of principal raw material A_{3}; and n is the cost per unit of irregular raw material A_{4}. In nonlinear budget equation (3) we consider (Moolio et al., 2009; Mohajan \& Mohajan, 2023c),

$$
\begin{equation*}
n\left(A_{4}\right)=n_{0} A_{4}-n_{0}, \tag{4}
\end{equation*}
$$

where n_{0} being the discounted price of the irregular input A_{4}. Therefore, the nonlinear budget constraint (3) takes the form (Mohajan, 2021a; Mohajan \& Mohajan, 2023d);

$$
\begin{equation*}
B\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=k A_{1}+l A_{2}+m A_{3}+n_{0} A_{4}^{2}-n_{0} A_{4} . \tag{5}
\end{equation*}
$$

We now formulate the maximization problem for the profit function (1) in terms of single Lagrange multiplier λ by defining the Lagrangian function $S\left(A_{1}, A_{2}, A_{3}, A_{4}, \lambda\right)$ as (Ferdous \& Mohajan, 2022; Mohajan \& Mohajan, 2023e),
$S\left(A_{1}, A_{2}, A_{3}, A_{4}, \lambda\right)=\Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}+\lambda\left\{B\left(A_{1}, A_{2}, A_{3}, A_{4}\right)-k A_{1}-l A_{2}-m A_{3}-n_{0} A_{4}^{2}+n_{0} A_{4}\right\}$.
Relation (6) is a 5-dimensional unconstrained problem that is obtained from (1) and 4dimensional constrained problem (3), where Lagrange multiplier λ, is considered as a device in our profit maximization model.

6. Analysis on Four Inputs

For maximization, first order differentiation equals to zero; then from (6) we can write (Islam et al., 2010; Mohajan, 2021b; Mohajan \& Mohajan, 2022f),

$$
\begin{gather*}
S_{\lambda}=B-k A_{1}-l A_{2}-m A_{3}-n_{0} A_{4}^{2}+n_{0} A_{4}=0, \tag{7a}\\
S_{1}=\alpha \Gamma A_{1}^{\alpha-1} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}-\lambda k=0, \tag{7b}\\
S_{2}=\beta \Gamma A_{1}^{\alpha} A_{2}^{\beta-1} A_{3}^{\gamma} A_{4}^{\delta}-\lambda l=0, \tag{7c}\\
S_{3}=\gamma \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma-1} A_{4}^{\delta}-\lambda m=0, \tag{7d}
\end{gather*}
$$

$$
\begin{equation*}
S_{4}=\delta \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta-1}-\lambda n_{0}\left(2 A_{4}-1\right)=0, \tag{7e}
\end{equation*}
$$

where, $\frac{\partial S}{\partial \lambda}=S_{\lambda}, \quad \frac{\partial S}{\partial A_{1}}=S_{1}, \quad \frac{\partial S}{\partial A_{2}}=S_{2}$, etc. indicate first-order partial differentiations of multivariate Lagrangian function.

Using equations (2) to (7) we can decide the values of A_{1}, A_{2}, A_{3}, and A_{4} as follows (Ferdous \& Mohajan, 2022; Mohajan, 2022; Mohajan \& Mohajan, 2022b):

$$
\begin{align*}
& A_{1}=\frac{\alpha B}{k \Psi} \tag{8a}\\
& A_{2}=\frac{\beta B}{l \Psi} \tag{8b}\\
& A_{3}=\frac{\gamma B}{m \Psi}, \tag{8c}\\
& A_{4}=\frac{\delta B}{n \Psi} \tag{8d}
\end{align*}
$$

7. Bordered Hessian Matrix Analysis

Let us consider the determinant of the 5×5 bordered Hessian matrix as (Islam et al. 2010; Mohajan \& Mohajan, 2023g),

$$
|H|=\left|\begin{array}{ccccc}
0 & -B_{1} & -B_{2} & -B_{3} & -B_{4} \tag{9}\\
-B_{1} & S_{11} & S_{12} & S_{13} & S_{14} \\
-B_{2} & S_{21} & S_{22} & S_{23} & S_{24} \\
-B_{3} & S_{31} & S_{32} & S_{33} & S_{34} \\
-B_{4} & S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right| .
$$

Taking first-order partial differentiations of (5) we get,

$$
\begin{equation*}
B_{1}=k, B_{2}=l, B_{3}=m, \text { and } B_{4}=2 n_{0} A_{4}-n_{0} . \tag{10}
\end{equation*}
$$

Taking second-order and cross-partial derivatives of (6) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023f),

$$
\begin{aligned}
& S_{11}=\alpha(\alpha-1) \Gamma A_{1}^{\alpha-2} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}, \\
& S_{22}=\beta(\beta-1) \Gamma A_{1}^{\alpha} A_{2}^{\beta-2} A_{3}^{\gamma} A_{4}^{\delta},
\end{aligned}
$$

$$
\begin{align*}
& S_{33}=\gamma(\gamma-1) \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma-2} A_{4}^{\delta}, \\
& S_{44}=\delta(\delta-1) \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta-2}, \\
& S_{12}=S_{21}=\alpha \beta \Gamma A_{1}^{\alpha-1} A_{2}^{\beta-1} A_{3}^{\gamma} A_{4}^{\delta}, \\
& S_{13}=S_{31}=\alpha \gamma \Gamma A_{1}^{\alpha-1} A_{2}^{\beta} A_{3}^{\gamma-1} A_{4}^{\delta}, \\
& S_{14}=S_{41}=\alpha \delta \Gamma A_{1}^{\alpha-1} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta-1}, \tag{11}\\
& S_{23}=S_{32}=\beta \gamma \Gamma A_{1}^{\alpha} A_{2}^{\beta-1} A_{3}^{\gamma-1} A_{4}^{\delta}, \\
& S_{24}=S_{42}=\beta \delta \Gamma A_{1}^{\alpha} A_{2}^{\beta-1} A_{3}^{\gamma} A_{4}^{\delta-1}, \\
& S_{34}=S_{43}=\gamma \delta \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma-1} A_{4}^{\delta-1} .
\end{align*}
$$

where $\frac{\partial^{2} S}{\partial A_{1} \partial A_{2}}=S_{12}=S_{21}, \frac{\partial^{2} S}{\partial A_{2}^{2}}=S_{22}$, etc. indicate cross-partial, second order differentiations of multivariate Lagrangian function, respectively, etc.

Now we expand the Hessian (9) as $|H|>0$ (Moolio et al., 2009; Mohajan et al., 2013; Mohajan \& Mohajan, 2023f),

$$
\begin{equation*}
|H|=\frac{\Gamma^{3} \alpha \beta \gamma \delta A_{1}^{3 \alpha} A_{2}^{3 \beta} A_{3}^{3 \gamma} A_{4}^{3 \delta} B^{2}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2} \Psi^{2}}(\alpha+\beta+\gamma+\delta)(\delta+3)>0, \tag{12}
\end{equation*}
$$

where efficiency parameter, $\Gamma>0$, and budget of the firm, $B>0 ; A_{1}, A_{2}, A_{3}$, and A_{4} are four different types of inputs; and consequently, $A_{1}, A_{2}, A_{3}, A_{4}>0$. Parameters, $\alpha, \beta, \gamma, \delta>0$; also in the model either $0<\Psi=\alpha+\beta+\gamma+\delta<1, \Psi=1$ or $\Psi>1$. Hence, equation (12) gives; $|H|>0$ (Islam et al., 2010; Mohajan \& Mohajan, 2022g, 2023d).

8. Determination of Lagrange Multiplier λ

Now using the necessary values from (8) in (7a) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023f),

$$
B=\frac{\alpha \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}}{\lambda}+\frac{\beta \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}}{\lambda}+\frac{\gamma \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}}{\lambda}+\frac{\delta \Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta}}{\lambda}
$$

$$
\begin{equation*}
\lambda=\frac{\Gamma A_{1}^{\alpha} A_{2}^{\beta} A_{3}^{\gamma} A_{4}^{\delta} \Psi}{B} . \tag{13}
\end{equation*}
$$

9. Jacobian Matrix Analysis

We have observed that the second-order condition is satisfied, so that the determinant of (5) survives at the optimum, i.e., $|J|=|H|$; and hence, we can apply the implicit function theorem. Now we compute twenty-five partial derivatives, such as $\frac{\partial \lambda}{\partial k}, \frac{\partial A_{1}}{\partial k}, \frac{\partial A_{3}}{\partial l}, \frac{\partial A_{4}}{\partial B}$, etc. that are referred to as the comparative statics of the model (Chiang, 1984; Mohajan \& Mohajan, 2022a).

Let \mathbf{G} be the vector-valued function of ten variables $\lambda^{*}, A_{1}^{*}, A_{2}^{*}, A_{3}^{*}, A_{4}^{*}, k, l, m, n$, and B, and we define the function \mathbf{G} for the point $\left(\lambda^{*}, A_{1}^{*}, A_{2}^{*}, A_{3}^{*}, A_{4}^{*}, k, l, m, n, B\right) \in R^{10}$, and take the values in R^{5}. By the Implicit Function Theorem of multivariable calculus, the equation (Mohajan, 2021b; Mohajan \& Mohajan, 2022a, 2023c),

$$
\begin{equation*}
F\left(\lambda^{*}, A_{1}^{*}, A_{2}^{*}, A_{3}^{*}, A_{4}^{*}, k, l, m, n, B\right)=0 \tag{14}
\end{equation*}
$$

may be solved in the form of

$$
\left[\begin{array}{c}
\lambda \tag{15}\\
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right]=\mathbf{G}(k, l, m, n, B)
$$

Now the 5×5 Jacobian matrix for $\mathbf{G}(k, l, m, n, B)$; regarded as $J_{G}=\frac{\partial\left(\lambda, A_{1}, A_{2}, A_{3}, A_{4}\right)}{\partial\left(k, l, m, n_{0}, B\right)}$, and is represented by;

$$
\begin{align*}
& J_{G}=\left[\begin{array}{ccccc}
\frac{\partial \lambda}{\partial k} & \frac{\partial \lambda}{\partial l} & \frac{\partial \lambda}{\partial m} & \frac{\partial \lambda}{\partial n_{0}} & \frac{\partial \lambda}{\partial B} \\
\frac{\partial A_{1}}{\partial k} & \frac{\partial A_{1}}{\partial l} & \frac{\partial A_{1}}{\partial m} & \frac{\partial A_{1}}{\partial n_{0}} & \frac{\partial A_{1}}{\partial B} \\
\frac{\partial A_{2}}{\partial k} & \frac{\partial A_{2}}{\partial l} & \frac{\partial A_{2}}{\partial m} & \frac{\partial A_{2}}{\partial n_{0}} & \frac{\partial A_{2}}{\partial B} \\
\frac{\partial A_{3}}{\partial k} & \frac{\partial A_{3}}{\partial l} & \frac{\partial A_{3}}{\partial m} & \frac{\partial A_{3}}{\partial n_{0}} & \frac{\partial A_{3}}{\partial B} \\
\frac{\partial A_{4}}{\partial k} & \frac{\partial A_{4}}{\partial l} & \frac{\partial A_{4}}{\partial m} & \frac{\partial A_{4}}{\partial n_{0}} & \frac{\partial A_{4}}{\partial B}
\end{array}\right] \tag{16}\\
& =-J^{-1}\left[\begin{array}{ccccc}
-A_{1} & -A_{2} & -A_{3} & -A_{4}^{2}+A_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -2 \lambda A_{4}+\lambda & 0
\end{array}\right] . \tag{17}
\end{align*}
$$

The inverse of Jacobian matrix is, $J^{-1}=\frac{1}{|J|} C^{T}$, where $C=\left(C_{i j}\right)$, the matrix of cofactors of J, where T for transpose, then (17) becomes (Moolio et al., 2009; Roy et al., 2021; Mohajan, 2021c),

$$
=-\frac{1}{|J|}\left[\begin{array}{ccccc}
C_{11} & C_{21} & C_{31} & C_{41} & C_{51} \tag{18}\\
C_{12} & C_{22} & C_{32} & C_{42} & C_{52} \\
C_{13} & C_{23} & C_{33} & C_{43} & C_{53} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{54} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55}
\end{array}\right]\left[\begin{array}{ccccc}
-A_{1} & -A_{2} & -A_{3} & -A_{4}^{2}+A_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -2 \lambda A_{4}+\lambda & 0
\end{array}\right] .
$$

$$
J_{G}=-\frac{1}{|J|}\left[\begin{array}{lllll}
-A_{1} C_{11}-\lambda C_{21} & -A_{2} C_{11}-\lambda C_{31} & -A_{3} C_{11}-\lambda C_{41} & -A_{4}^{2} C_{11}+A_{4} C_{11}-2 \lambda A_{4} C_{51}+\lambda C_{51} & C_{11} \tag{19}\\
-A_{1} C_{12}-\lambda C_{22} & -A_{2} C_{12}-\lambda C_{32} & -A_{3} C_{12}-\lambda C_{42} & -A_{4}^{2} C_{12}+A_{4} C_{12}-2 \lambda A_{4} C_{52}+\lambda C_{52} & C_{12} \\
-A_{1} C_{13}-\lambda C_{23} & -A_{2} C_{13}-\lambda C_{33} & -A_{3} C_{13}-\lambda C_{43} & -A_{4}^{2} C_{13}+A_{4} C_{13}-2 \lambda A_{4} C_{53}+\lambda C_{53} & C_{13} \\
-A_{1} C_{14}-\lambda C_{24}-A_{2} C_{14}-\lambda C_{34} & -A_{3} C_{14}-\lambda C_{44} & -A_{4}^{2} C_{14}+A_{4} C_{14}-2 \lambda A_{4} C_{54}+\lambda C_{54} & C_{14} \\
-A_{1} C_{15}-\lambda C_{25} & -A_{2} C_{15}-\lambda C_{35} & -A_{3} C_{15}-\lambda C_{45} & -A_{4}^{2} C_{15}+A_{4} C_{15}-2 \lambda A_{4} C_{55}+\lambda C_{55} & C_{15}
\end{array}\right] .
$$

In (19) there are total 25 comparative statics, and in this study we shall deal only with five of them. We shall study the economic analysis of Lagrange multiplier when per unit costs of various inputs are increased. Now we consider that the firm always attempts for the profit maximization production (Baxley \& Moorhouse, 1984; Islam et al., 2010).

10. Sensitivity Analysis

Now we analyze the economic effects on Lagrange multiplier λ when budget of the industry increases. Taking T_{15} (i.e., term of $1^{\text {st }}$ row and $5^{\text {th }}$ column) from both sides of (19) we get (Moolio et al., 2009; Islam et al., 2011; Roy et al., 2021),

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial B}=-\frac{1}{J}\left[C_{11}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{11}
\end{aligned}
$$

$$
=-\frac{1}{|J|}\left|\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|
$$

$$
=-\frac{1}{|J|}\left\{S_{11}\left|\begin{array}{lll}
S_{22} & S_{23} & S_{24} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|-S_{12}\left|\begin{array}{ccc}
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|+S_{13}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|-S_{14}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\}
$$

$$
=\frac{A_{1}}{|J|}\left[-S_{11}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right.
$$

$$
-S_{12}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\}
$$

$$
+S_{13}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}
$$

$$
\left.-S_{14}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right]
$$

$$
=\frac{1}{|J|}\left\{-S_{11} S_{22} S_{33} S_{44}+S_{11} S_{24} S_{42} S_{33}-S_{11} S_{24} S_{32} S_{43}+S_{11} S_{23} S_{32} S_{44}-S_{11} S_{23} S_{42} S_{34}+S_{11} S_{22} S_{43} S_{34}\right.
$$

$$
+S_{12} S_{21} S_{33} S_{44}-S_{12} S_{21} S_{43} S_{34}+S_{12} S_{23} S_{41} S_{34}-S_{12} S_{23} S_{31} S_{44}+S_{12} S_{24} S_{31} S_{43}-S_{12} S_{24} S_{41} S_{33}-S_{13} S_{21} S_{32} S_{44}
$$

$$
\begin{align*}
& +S_{13} S_{21} S_{42} S_{34}-S_{13} S_{22} S_{41} S_{34}+S_{13} S_{22} S_{31} S_{44}-S_{13} S_{24} S_{31} S_{42}+S_{13} S_{24} S_{41} S_{32}+S_{14} S_{21} S_{32} S_{43}-S_{14} S_{21} S_{42} S_{33} \\
& \left.+S_{14} S_{22} S_{41} S_{33}-S_{14} S_{22} S_{31} S_{43}+S_{14} S_{23} S_{31} S_{42}-S_{14} S_{23} S_{41} S_{32}\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\left\{-\alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+\alpha(\alpha-1) \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}\right. \\
& +\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta(\delta-1)-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta(\delta-1) \\
& -\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1) \\
& +\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta(\beta-1) \gamma^{2} \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \\
& \left.-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\{-(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)+(\alpha-1) \beta \gamma(\delta-1)+\alpha \beta(\gamma-1)(\delta-1) \\
& -2 \alpha \beta \gamma(\delta-1)+\alpha(\beta-1) \gamma(\delta-1)-2 \alpha \beta(\gamma-1) \delta+3 \alpha \beta \gamma \delta-2(\alpha-1) \beta \gamma \delta+(\alpha-1)(\beta-1) \gamma \delta \\
& +(\alpha-1) \beta(\gamma-1) \delta-3 \alpha(\beta-1) \gamma \delta\} \\
& \frac{\partial \lambda}{\partial B}=\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}(-2 \alpha \beta \gamma \delta+2 \alpha \gamma \delta+\alpha \beta \delta+\beta \delta+\alpha+\beta+\gamma-1) . \tag{20}
\end{align*}
$$

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\Psi=2$, i.e., for increasing returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=\frac{\Gamma^{4}}{2^{4}|J|}>0 \tag{21}
\end{equation*}
$$

From the relation (21) we see that when budget of the industry increases, the level of Lagrange multiplier, i.e., marginal profit also increases, which is reasonable. Hence, increasing returns to scale is suitable for the industry. In this circumstance profit maximization attempts may be successful, and industry may be sustainable.

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\Psi=1$, i.e., for constant returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=-\frac{19 \Gamma^{4}}{2^{13} A_{1} A_{2} A_{3} A_{4}|J|}<0 \tag{22}
\end{equation*}
$$

From the relation (22) we see that when budget of the industry increases, the level of Lagrange multiplier, i.e., marginal profit decreases. Consequently, the industry faces unsustainable atmosphere. Hence, in this situation constant return to scale is not suitable for the industry.

Now we consider $\alpha=\beta=\gamma=\frac{1}{8}$ and $\delta=\frac{1}{2}$ then we get, $\Psi=\frac{7}{8}$, i.e., for decreasing returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=-\frac{277 \Gamma^{4}}{2^{7}|J|}<0 \tag{23}
\end{equation*}
$$

From the relation (23) we see that it provides same property as in (22). Hence, both constant and decreasing returns to scale are not suitable for the sustainable environment of the industry when budget of the industry increases.

Now we analyze the economic effects on Lagrange multiplier λ when interest rate of capital increases. Taking T_{11} (i.e., term of $1^{\text {st }}$ row and $1^{\text {st }}$ column) from both sides of (19) we get (Islam et al., 2011; Roy et al., 2021),

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial k}=\frac{A_{1}}{J}\left[C_{11}\right]+\frac{\lambda}{J}\left[C_{21}\right] \\
& =\frac{A_{1}}{|J|} \text { Cofactor of } C_{11}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{21}
\end{aligned}
$$

$$
=\frac{A_{1}}{|J|}\left|\begin{array}{cccc}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|-\frac{\lambda}{|J|}\left|\begin{array}{cccc}
-B_{1} & -B_{2} & -B_{3} & -B_{4} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|
$$

$$
=\frac{A_{1}}{|J|}\left\{S_{11}\left|\begin{array}{ccc}
S_{22} & S_{23} & S_{24} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|-S_{12}\left|\begin{array}{ccc}
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|+S_{13}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|-S_{14}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\}
$$

$$
-\frac{\lambda}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
S_{22} & S_{23} & S_{24} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|+B_{2}\left|\begin{array}{ccc}
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\}
$$

$$
=\frac{A_{1}}{|J|}\left[-S_{11}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right.
$$

$$
-S_{12}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\}
$$

$$
+S_{13}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}
$$

$$
\begin{aligned}
& \left.-S_{14}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right] \\
& -\frac{\lambda}{|J|}\left[-B_{1}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right. \\
& +B_{2}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\} \\
& -B_{3}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\} \\
& \left.+B_{4}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right] \\
& =\frac{A_{1}}{|J|}\left\{-S_{11} S_{22} S_{33} S_{44}+S_{11} S_{24} S_{42} S_{33}-S_{11} S_{24} S_{32} S_{43}+S_{11} S_{23} S_{32} S_{44}-S_{11} S_{23} S_{42} S_{34}+S_{11} S_{22} S_{43} S_{34}\right. \\
& +S_{12} S_{21} S_{33} S_{44}-S_{12} S_{21} S_{43} S_{34}+S_{12} S_{23} S_{41} S_{34}-S_{12} S_{23} S_{31} S_{44}+S_{12} S_{24} S_{31} S_{43}-S_{12} S_{24} S_{41} S_{33}-S_{13} S_{21} S_{32} S_{44} \\
& +S_{13} S_{21} S_{42} S_{34}-S_{13} S_{22} S_{41} S_{34}+S_{13} S_{22} S_{31} S_{44}-S_{13} S_{24} S_{31} S_{42}+S_{13} S_{24} S_{41} S_{32}+S_{14} S_{21} S_{32} S_{43}-S_{14} S_{21} S_{42} S_{33} \\
& \left.+S_{14} S_{22} S_{41} S_{33}-S_{14} S_{22} S_{31} S_{43}+S_{14} S_{23} S_{31} S_{42}-S_{14} S_{23} S_{41} S_{32}\right\}-\frac{\lambda}{|J|}\left\{-B_{1} S_{22} S_{33} S_{44}+B_{1} S_{22} S_{43} S_{34}\right. \\
& -B_{1} S_{23} S_{42} S_{34}+B_{1} S_{23} S_{32} S_{44}-B_{1} S_{24} S_{32} S_{43}+B_{1} S_{24} S_{42} S_{33}-B_{2} S_{21} S_{33} S_{44}+B_{2} S_{21} S_{43} S_{34}-B_{2} S_{23} S_{41} S_{34} \\
& +B_{2} S_{23} S_{31} S_{44}-B_{2} S_{24} S_{31} S_{43}+B_{2} S_{24} S_{41} S_{33}+B_{3} S_{21} S_{32} S_{44}-B_{3} S_{21} S_{42} S_{34}+B_{3} S_{22} S_{41} S_{34}-B_{3} S_{22} S_{31} S_{44} \\
& +B_{3} S_{24} S_{31} S_{42}-B_{3} S_{24} S_{41} S_{32}-B_{4} S_{21} S_{32} S_{43}+B_{4} S_{21} S_{42} S_{33}-B_{4} S_{22} S_{41} S_{33}+B_{4} S_{22} S_{31} S_{43}-B_{4} S_{23} S_{31} S_{42} \\
& \left.+B_{4} S_{23} S_{41} S_{32}\right\} \\
& =\frac{A_{1}}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\left\{-\alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+\alpha(\alpha-1) \beta^{2} \gamma(\gamma-1) \delta^{2}\right. \\
& -\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta(\delta-1)-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta(\beta-1) \gamma^{2} \delta^{2} \\
& +\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2} \\
& -\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta(\beta-1) \gamma^{2} \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \\
& \left.+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right\} \\
& -\frac{\Gamma^{3} A_{1}^{3 \alpha} A_{2}^{3 \beta} A_{3}^{3 \gamma} A_{4}^{3 \delta}}{|J| A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}} \frac{\Gamma A_{1}^{\alpha} A_{1}^{\beta} A_{1}^{\gamma} A_{1}^{\delta} \Psi}{B}\left\{-k A_{1}^{2} \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+k A_{1}^{2} \beta(\beta-1) \gamma^{2} \delta^{2}-k A_{1}^{2} \beta^{2} \gamma^{2} \delta^{2}\right. \\
& +k A_{1}^{2} \beta^{2} \gamma^{2} \delta(\delta-1)-k A_{1}^{2} \beta^{2} \gamma^{2} \delta^{2}+k A_{1}^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-l A_{1} A_{2} \alpha \beta \gamma(\gamma-1) \delta(\delta-1)+l A_{1} A_{2} \alpha \beta \gamma^{2} \delta^{2} \\
& -l A_{1} A_{2} \alpha \beta \gamma^{2} \delta^{2}+l A_{1} A_{2} \alpha \beta \gamma^{2} \delta(\delta-1)-l A_{1} A_{2} \alpha \beta \gamma^{2} \delta^{2}+l A_{2} A_{4} \alpha \beta \gamma(\gamma-1) \delta^{2}+m A_{1} A_{3} \alpha \beta^{2} \gamma \delta(\delta-1) \\
& -m A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}+m A_{1} A_{3} \alpha \beta(\beta-1) \gamma \delta^{2}-m A_{1} A_{3} \alpha \beta(\beta-1) \gamma \delta(\delta-1)+m A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}-m A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2} \\
& -n A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta+n A_{1} A_{4} \alpha \beta^{2} \gamma(\gamma-1) \delta-n A_{1} A_{4} \alpha \beta(\beta-1) \gamma(\gamma-1) \delta+n A_{1} A_{4} \alpha \beta(\beta-1) \gamma^{2} \delta \\
& \left.-n A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta+n A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\{-(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)+(\alpha-1) \beta \gamma(\delta-1)+\alpha \beta(\gamma-1)(\delta-1) \\
& -2 \alpha \beta \gamma(\delta-1)+\alpha(\beta-1) \gamma(\delta-1)-2 \alpha \beta(\gamma-1) \delta+3 \alpha \beta \gamma \delta-2(\alpha-1) \beta \gamma \delta+(\alpha-1)(\beta-1) \gamma \delta
\end{aligned}
$$

$$
\begin{align*}
& +(\alpha-1) \beta(\gamma-1) \delta-3 \alpha(\beta-1) \gamma \delta\}-\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\{-(\beta-1)(\gamma-1)(\delta-1)+3 \beta \gamma(\delta-1) \\
& -\beta(\gamma-1)(\delta-1)-(\beta-1) \gamma(\delta-1)+2(\beta-1) \gamma \delta-4 \beta \gamma \delta+2 \beta(\gamma-1) \delta-\left(2 A_{4}-1\right) \beta \gamma \delta \\
& \left.+\left(2 A_{4}-1\right)(\beta-1) \gamma \delta+\left(2 A_{4}-1\right) \beta(\gamma-1) \delta-\left(2 A_{4}-1\right)(\beta-1)(\gamma-1) \delta\right\} \\
& \frac{\partial \lambda}{\partial k}=\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\left(2 A_{4} \delta-3 \alpha \beta \gamma \delta+2 \alpha \gamma \delta+2 \alpha \beta \delta+\beta \delta-\alpha \delta+\alpha+3 \beta+3 \gamma+\delta-2\right) \tag{24}
\end{align*}
$$

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\Psi=2$, i.e., for increasing returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}=\frac{\Gamma^{4} A_{1}}{2^{8}|J|}\left(16 A_{4}+37\right)>0 . \tag{25}
\end{equation*}
$$

From the relation (25) we see that when interest rate of capital increases, the level of Lagrange multiplier, i.e., marginal profit also increases. We believe that for increasing returns to scale profit maximization is possible for this industry. Therefore, in this situation we think that the industry is in sustainable position, even when interest rate of capital increases.
Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\Psi=1$, i.e., for constant returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}=\frac{\Gamma^{4}}{2^{16} A_{2} A_{3} A_{4}|J|}\left(128 A_{4}+13\right)>0 \tag{26}
\end{equation*}
$$

From the relation (26) we face the same case as in (25). Therefore, both increasing and constant returns to scale are suitable for the industry, and it can achieve profit maximization environment.

Now we consider $\alpha=\beta=\gamma=\frac{1}{8}$ and $\delta=\frac{1}{2}$ then we get, $\Psi=\frac{7}{8}$, i.e., for decreasing returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}=\frac{\Gamma^{4}}{2^{20} A_{1}^{\frac{1}{2}} A_{2}^{\frac{3}{2}} A_{3}^{\frac{3}{2}}|J|}\left(1024 A_{4}-611\right) \tag{27}
\end{equation*}
$$

In (27) if $A_{4}>\frac{611}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}>0 \tag{28}
\end{equation*}
$$

From the inequality (28) we see that when interest rate of capital increases, the level of Lagrange multiplier, i.e., marginal profit also increases. In this situation the industry can move to profit maximization production procedure.
In (27) if $A_{4}<\frac{611}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}<0 . \tag{29}
\end{equation*}
$$

From the inequality (29) we see that when interest rate of capital increases, the level of Lagrange multiplier, i.e., marginal profit decreases. In this situation the industry may face unsustainable atmosphere.

In (27) if $A_{4}=\frac{611}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial k}=0 . \tag{30}
\end{equation*}
$$

From the inequality (30) we see that when interest rate of capital increases, there is no change of the level of Lagrange multiplier. It seems that in this circumstance there is no effect on Lagrange multiplier when interest rate of capital is increased or decreased.

Now we analyze the economic effects on Lagrange multiplier λ when wage rate of the workers increases. Taking T_{12} (i.e., term of $1^{\text {st }}$ row and $2^{\text {nd }}$ column) from both sides of (19) we get (Moolio et al., 2009; Roy et al., 2021, Mohajan, 2022),

$$
\frac{\partial \lambda}{\partial l}=\frac{A_{2}}{J}\left[C_{11}\right]+\frac{\lambda}{J}\left[C_{31}\right]
$$

$=\frac{A_{2}}{|J|}$ Cofactor of $C_{11}+\frac{\lambda}{|J|}$ Cofactor of C_{31}
$=\frac{A_{2}}{|J|}\left|\begin{array}{llll}S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44}\end{array}\right|+\frac{\lambda}{|J|}\left|\begin{array}{cccc}-B_{1} & -B_{2} & -B_{3} & -B_{4} \\ S_{11} & S_{12} & S_{13} & S_{14} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44}\end{array}\right|$

$$
\begin{aligned}
& =\frac{A_{2}}{|J|}\left\{\left|\begin{array}{lll}
S_{22} & S_{23} & S_{24} \\
S_{11} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|-S_{12}\left|\begin{array}{ccc}
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|+S_{13}\left|\begin{array}{ccc}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|-S_{14}\left|\begin{array}{ccc}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\} \\
& +\frac{\lambda}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
S_{12} & S_{13} & S_{14} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|+B_{2}\left|\begin{array}{lll}
S_{11} & S_{13} & S_{14} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
S_{11} & S_{12} & S_{14} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\} \\
& =\frac{A_{2}}{|J|}\left[-S_{11}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right. \\
& -S_{12}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\} \\
& +S_{13}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\} \\
& \left.-S_{14}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right] \\
& +\frac{\lambda}{|J|}\left[-B_{1}\left\{S_{12}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{13}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{14}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right. \\
& +B_{2}\left\{-S_{11}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{13}\left(S_{41} S_{34}-S_{31} S_{44}\right)+S_{14}\left(S_{31} S_{43}-S_{41} S_{33}\right)\right\} \\
& -B_{3}\left\{S_{11}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{12}\left(S_{41} S_{34}-S_{31} S_{44}\right)+S_{13}\left(S_{31} S_{42}-S_{41} S_{32}\right)\right\} \\
& \left.+B_{4}\left\{S_{11}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{12}\left(S_{41} S_{33}-S_{31} S_{43}\right)+S_{13}\left(S_{31} S_{42}-S_{41} S_{32}\right)\right\}\right] \\
& =\frac{A_{2}}{|J|}\left\{-S_{11} S_{22} S_{33} S_{44}+S_{11} S_{24} S_{42} S_{33}-S_{11} S_{24} S_{32} S_{43}+S_{11} S_{23} S_{32} S_{44}-S_{11} S_{23} S_{42} S_{34}+S_{11} S_{22} S_{43} S_{34}\right. \\
& +S_{12} S_{21} S_{33} S_{44}-S_{12} S_{21} S_{43} S_{34}+S_{12} S_{23} S_{41} S_{34}-S_{12} S_{23} S_{31} S_{44}+S_{12} S_{24} S_{31} S_{43}-S_{12} S_{24} S_{41} S_{33}-S_{13} S_{21} S_{32} S_{44} \\
& +S_{13} S_{21} S_{42} S_{34}-S_{13} S_{22} S_{41} S_{34}+S_{13} S_{22} S_{31} S_{44}-S_{13} S_{24} S_{31} S_{42}+S_{13} S_{24} S_{41} S_{32}+S_{14} S_{21} S_{32} S_{43}-S_{14} S_{21} S_{42} S_{33} \\
& \left.+S_{14} S_{22} S_{41} S_{33}-S_{14} S_{22} S_{31} S_{43}+S_{14} S_{23} S_{31} S_{42}-S_{14} S_{23} S_{41} S_{32}\right\}+\frac{\lambda}{|J|}\left\{-B_{1} S_{12} S_{33} S_{44}+B_{1} S_{12} S_{43} S_{34}\right. \\
& -B_{1} S_{13} S_{42} S_{34}+B_{1} S_{13} S_{32} S_{44}-B_{1} S_{14} S_{32} S_{43}+B_{1} S_{14} S_{42} S_{33}-B_{2} S_{11} S_{33} S_{44}+B_{2} S_{11} S_{43} S_{34}+B_{2} S_{13} S_{41} S_{34} \\
& -B_{2} S_{13} S_{31} S_{44}+B_{2} S_{14} S_{31} S_{43}-B_{2} S_{14} S_{41} S_{33}-B_{3} S_{11} S_{32} S_{44}+B_{3} S_{11} S_{42} S_{34}-B_{3} S_{12} S_{41} S_{34}+B_{3} S_{12} S_{31} S_{44} \\
& -B_{3} S_{13} S_{31} S_{42}+B_{3} S_{13} S_{41} S_{32}+B_{4} S_{11} S_{32} S_{43}-B_{4} S_{11} S_{42} S_{33}+B_{4} S_{12} S_{41} S_{33}-B_{4} S_{12} S_{31} S_{43}+B_{4} S_{13} S_{31} S_{42} \\
& \left.-B_{4} S_{13} S_{41} S_{32}\right\} \\
& =\frac{A_{2}}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\left\{-\alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+\alpha(\alpha-1) \beta^{2} \gamma(\gamma-1) \delta^{2}\right. \\
& -\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta(\delta-1)-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta(\beta-1) \gamma^{2} \delta^{2} \\
& +\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}
\end{aligned}
$$

$$
\begin{align*}
& -\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta(\beta-1) \gamma^{2} \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \\
& \left.+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right\} \\
& +\frac{1}{|J|} \frac{\Gamma^{3} A_{1}^{3 \alpha} A_{2}^{3 \beta} A_{3}^{3 \gamma} A_{4}^{3 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}} \frac{\Gamma A_{1}^{\alpha} A_{1}^{\beta} A_{1}^{\gamma} A_{1}^{\delta} \Psi}{B}\left\{-k A_{1} A_{2} \alpha \beta \gamma(\gamma-1) \delta(\delta-1)+k A_{1} A_{2} \alpha \beta \gamma(\gamma-1) \delta(\delta-1)\right. \\
& -k A_{1} A_{2} \alpha \beta \gamma^{2} \delta^{2}+k A_{1} A_{2} \alpha \beta \gamma^{2} \delta(\delta-1)-k A_{1} A_{2} \alpha \beta \gamma^{2} \delta^{2}+k A_{1} A_{2} \alpha \beta \gamma(\gamma-1) \delta^{2} \\
& -l A_{1} A_{2} \alpha(\alpha-1) \gamma(\gamma-1) \delta(\delta-1) \\
& +l A_{2}^{2} \alpha(\alpha-1) \gamma^{2} \delta^{2}+l A_{2}^{2} \alpha^{2} \gamma^{2} \delta^{2}-l A_{2}^{2} \alpha^{2} \gamma^{2} \delta(\delta-1)+l A_{2}^{2} \alpha^{2} \gamma^{2} \delta^{2}-l A_{2}^{2} \alpha^{2} \gamma(\gamma-1) \delta^{2} \\
& -m A_{2} A_{3} \alpha(\alpha-1) \beta \gamma \delta(\delta-1)+m A_{2} A_{3} \alpha(\alpha-1) \beta \gamma \delta^{2}-m A_{2} A_{3} \alpha^{2} \beta \gamma \delta^{2}+m A_{2} A_{3} \alpha^{2} \beta \gamma \delta(\delta-1) \\
& -m A_{2} A_{3} \alpha^{2} \beta \gamma^{2} \delta+m A_{2} A_{3} \alpha^{2} \beta \gamma^{2} \delta+n A_{2} A_{4} \alpha(\alpha-1) \beta \gamma^{2} \delta-n A_{2} A_{4} \alpha(\alpha-1) \beta \gamma(\gamma-1) \delta \\
& \left.+n A_{2} A_{4} \alpha^{2} \beta \gamma(\gamma-1) \delta-n A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta+n A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta-n A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2} A_{3}^{2} A_{4}^{2}}\{-(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)+(\alpha-1) \beta \gamma(\delta-1)+\alpha \beta(\gamma-1)(\delta-1) \\
& -2 \alpha \beta \gamma(\delta-1)+\alpha(\beta-1) \gamma(\delta-1)+(\alpha-1) \beta(\gamma-1) \delta-2 \alpha \beta(\gamma-1) \delta+3 \alpha \beta \gamma \delta-2(\alpha-1) \beta \gamma \delta \\
& +(\alpha-1)(\beta-1) \gamma \delta-3 \alpha(\beta-1) \gamma \delta\}+\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2} A_{3}^{2} A_{4}^{2}}\{-(\alpha-1)(\gamma-1)(\delta-1) \\
& -(\alpha-1) \gamma(\delta-1)+\alpha \gamma(\delta-1)+2(\alpha-1) \gamma \delta-\alpha \gamma \delta+\left(2 A_{4}-1\right)(\alpha-1) \gamma \delta-\left(2 A_{4}-1\right)(\alpha-1)(\gamma-1) \delta \\
& \left.+\left(2 A_{4}-1\right) \alpha(\gamma-1) \delta-\left(2 A_{4}-1\right) \alpha \gamma \delta\right\} \\
& \frac{\partial \lambda}{\partial l}=\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2} A_{3}^{2} A_{4}^{2}}\left(-2 A_{4} \delta+\alpha \beta \gamma \delta+\alpha \gamma \delta+\alpha \beta \delta-2 \gamma \delta-\beta \delta-\alpha \gamma+\beta+\gamma\right) . \tag{31}
\end{align*}
$$

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\Psi=2$, i.e., for increasing returns to scale, in (31) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=\frac{1}{|J|} \frac{\Gamma^{4} A_{2}\left(3-16 A_{4}\right)}{2^{8}} . \tag{32}
\end{equation*}
$$

In (32) if $A_{4}<\frac{3}{16}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}>0 . \tag{33}
\end{equation*}
$$

From (33) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit also increases. Hence, as the wage rate increases, laborers work for more working hours to earn more money. Consequently, due to substitution effects the laborers can
earn more earnings spending more working hours. As a result, the industry can move to the profit maximization strategies.

In (32) if $A_{4}>\frac{3}{16}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}<0 . \tag{34}
\end{equation*}
$$

From (34) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit decreases. It seems that due to income effects as the laborers can earns more money by the less working hours, they remain absent in the industry frequently. As a result, the industry faces unsustainable environment due to shortage of workers.

In (32) if $A_{4}=\frac{3}{16}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=0 \tag{35}
\end{equation*}
$$

From (35) we see that when wage rate of the laborers increases, there is no change of value of Lagrange multiplier. It seems that there is no effect on Lagrange multiplier at any change of workers levels for increasing returns to scale.

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\Psi=1$, i.e., for constant returns to scale, in (31) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=\frac{\Gamma^{4}\left(73-256 A_{4}\right)}{2^{16} A_{2} A_{2} A_{2}|J|} \tag{36}
\end{equation*}
$$

In (36) if $A_{4}<\frac{73}{256}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}>0 . \tag{37}
\end{equation*}
$$

From (37) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit also increases. Hence, we face the same situation as in (33), and we have observed that increased wage rate becomes boon for the industry.
In (36) if $A_{4}>\frac{73}{256}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}<0 . \tag{38}
\end{equation*}
$$

From (38) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit decreases, which is same situation as in (34). In this situation the industry may face unsustainable environment, and through this strategy profit maximization policy may fail.

In (36) if $A_{4}=\frac{73}{256}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=0 \tag{39}
\end{equation*}
$$

From (39) we see that when wage rate of the laborers increases, there is no change of the level of Lagrange multiplier. It seems that there is no effect when the wage rate of the laborers increases or decreases.

Now we consider $\alpha=\beta=\gamma=\frac{1}{8}$ and $\delta=\frac{1}{2}$ then we get, $\Psi=\frac{7}{8}$, i.e., for decreasing returns to scale, in (31) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=\frac{\Gamma^{4}}{2^{20} A_{1}^{\frac{3}{2}} A_{2}^{\frac{1}{2}} A_{3}^{\frac{3}{2}} A_{4}^{\frac{3}{2}}|J|}\left(65-1024 A_{4}\right) . \tag{40}
\end{equation*}
$$

In (40) if $A_{4}<\frac{65}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}>0 \tag{41}
\end{equation*}
$$

From (41) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit also increases. Hence, we face the same situation as in (33). Therefore, the industry is in the highest esteem of profit maximization atmosphere.
In (40) if $A_{4}>\frac{65}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}<0 . \tag{42}
\end{equation*}
$$

From (42) we see that when wage rate of the laborers increases, the value of Lagrange multiplier i.e., marginal profit decreases, which is the same situation as in (34). In this situation the industry may face unsustainable environment, and through this strategy profit maximization policy may fail.

In (40) if $A_{4}=\frac{65}{1024}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial l}=0 . \tag{43}
\end{equation*}
$$

From (43) we see that when wage rate of the laborers increases, there is no change of value of Lagrange multiplier. Hence, we face the same situation as in (35), i.e., we observe that there is no relation between wage rate and Lagrange multiplier.

Now we analyze the economic effects on Lagrange multiplier λ when per unit cost of principal raw material increases. Taking T_{13} (i.e., term of $1^{\text {st }}$ row and $3^{\text {rd }}$ column) from both sides of (19) we get (Islam et al., 2011; Roy et al., 2021; Mohajan \& Mohajan, 2022c),

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial m}=\frac{A_{3}}{J}\left[C_{11}\right]+\frac{\lambda}{J}\left[C_{41}\right] \\
& =\frac{A_{3}}{|J|} \text { Cofactor of } C_{11}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{41}
\end{aligned}
$$

$$
=\frac{A_{3}}{|J|}\left|\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|-\frac{\lambda}{J}\left|\begin{array}{cccc}
-B_{1} & -B_{2} & -B_{3} & -B_{4} \\
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|
$$

$$
=\frac{A_{3}}{|J|}\left\{\left.\left|\begin{array}{lll}
S_{22} & S_{23} & S_{24} \\
S_{11} & S_{32} & S_{33}
\end{array} S_{34}\right|-S_{12}\left|\begin{array}{ccc}
S_{21} & S_{23} & S_{24} \\
S_{32} & S_{43} & S_{44}
\end{array}\right| \begin{array}{lll}
33 & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\left|+S_{13}\right| \begin{array}{ccc}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\left|-S_{14}\right| \begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array} \right\rvert\,\right\}
$$

$$
-\frac{\lambda}{J}\left\{\left.-B_{1}\left|\begin{array}{lll}
S_{12} & S_{13} & S_{14} \\
S_{22} & S_{23} & S_{24} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|+B_{2}\left|\begin{array}{lll}
S_{11} & S_{13} & S_{14} \\
S_{21} & S_{23} & S_{24} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|-B_{3}\left|\begin{array}{ccc}
S_{11} & S_{12} & S_{14} \\
S_{21} & S_{22} & S_{24} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|+B_{4} \right\rvert\, \begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{41} & S_{42} & S_{43}
\end{array}\right\}
$$

$$
\begin{aligned}
& =\frac{A_{3}}{|J|}\left[-S_{11}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right. \\
& -S_{12}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\} \\
& +S_{13}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\} \\
& \left.-S_{14}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right] \\
& -\frac{\lambda}{|J|}\left[-B_{1}\left\{S_{12}\left(S_{23} S_{44}-S_{43} S_{24}\right)+S_{13}\left(S_{42} S_{24}-S_{22} S_{44}\right)+S_{14}\left(S_{22} S_{43}-S_{42} S_{23}\right)\right\}\right. \\
& +B_{2}\left\{S_{11}\left(S_{23} S_{44}-S_{43} S_{24}\right)+S_{13}\left(S_{41} S_{24}-S_{21} S_{44}\right)+S_{14}\left(-S_{21} S_{43}+S_{41} S_{23}\right)\right\} \\
& -B_{3}\left\{S_{11}\left(S_{22} S_{44}-S_{42} S_{24}\right)+S_{12}\left(S_{41} S_{24}-S_{21} S_{44}\right)+S_{14}\left(S_{21} S_{42}-S_{41} S_{22}\right)\right\} \\
& \left.+B_{4}\left\{S_{11}\left(S_{22} S_{43}-S_{42} S_{23}\right)+S_{12}\left(S_{41} S_{23}-S_{21} S_{43}\right)+S_{13}\left(S_{21} S_{42}-S_{41} S_{22}\right)\right\}\right] \\
& =\frac{A_{3}}{|J|}\left\{-S_{11} S_{22} S_{33} S_{44}+S_{11} S_{24} S_{42} S_{33}-S_{11} S_{24} S_{32} S_{43}+S_{11} S_{23} S_{32} S_{44}-S_{11} S_{23} S_{42} S_{34}+S_{11} S_{22} S_{43} S_{34}\right. \\
& +S_{12} S_{21} S_{33} S_{44}-S_{12} S_{21} S_{43} S_{34}+S_{12} S_{23} S_{41} S_{34}-S_{12} S_{23} S_{31} S_{44}+S_{12} S_{24} S_{31} S_{43}-S_{12} S_{24} S_{41} S_{33}-S_{13} S_{21} S_{32} S_{44} \\
& +S_{13} S_{21} S_{42} S_{34}-S_{13} S_{22} S_{41} S_{34}+S_{13} S_{22} S_{31} S_{44}-S_{13} S_{24} S_{31} S_{42}+S_{13} S_{24} S_{41} S_{32}+S_{14} S_{21} S_{32} S_{43}-S_{14} S_{21} S_{42} S_{33} \\
& \left.+S_{14} S_{22} S_{41} S_{33}-S_{14} S_{22} S_{31} S_{43}+S_{14} S_{23} S_{31} S_{42}-S_{14} S_{23} S_{41} S_{32}\right\}-\frac{\lambda}{|J|}\left\{-B_{1} S_{12} S_{23} S_{44}+B_{1} S_{12} S_{43} S_{24}\right. \\
& -B_{1} S_{13} S_{42} S_{24}+B_{1} S_{13} S_{22} S_{44}-B_{1} S_{14} S_{22} S_{43}+B_{1} S_{14} S_{42} S_{23}+B_{2} S_{11} S_{23} S_{44}-B_{2} S_{11} S_{43} S_{24}+B_{2} S_{13} S_{41} S_{24} \\
& -B_{2} S_{13} S_{21} S_{44}+B_{2} S_{14} S_{21} S_{43}-B_{2} S_{14} S_{41} S_{23}-B_{3} S_{11} S_{22} S_{44}+B_{3} S_{11} S_{42} S_{24}-B_{3} S_{12} S_{41} S_{24}+B_{3} S_{12} S_{21} S_{44} \\
& -B_{3} S_{14} S_{21} S_{42}+B_{3} S_{14} S_{41} S_{22}+B_{4} S_{11} S_{22} S_{43}-B_{4} S_{11} S_{42} S_{23}+B_{4} S_{12} S_{41} S_{23}-B_{4} S_{12} S_{21} S_{43}+B_{4} S_{13} S_{21} S_{42} \\
& \left.-B_{4} S_{13} S_{41} S_{22}\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3} A_{4}^{2}}\left\{-\alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+\alpha(\alpha-1) \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}\right. \\
& +\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta(\delta-1)-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta(\delta-1) \\
& -\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1) \\
& +\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta(\beta-1) \gamma^{2} \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \\
& \left.-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right\}-\frac{\lambda}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}} \\
& \left\{-k A_{1} A_{3} \alpha \beta^{2} \gamma \delta(\delta-1)+k A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}-k A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}+k A_{1} A_{3} \alpha \beta(\beta-1) \gamma \delta(\delta-1)-k A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}\right. \\
& +k A_{1} A_{3} \alpha \beta^{2} \gamma \delta^{2}+l A_{2} A_{3} \alpha(\alpha-1) \beta \gamma \delta(\delta-1)-l A_{2} A_{3} \alpha(\alpha-1) \beta \gamma \delta^{2}+l A_{2} A_{3} \alpha^{2} \beta \gamma \delta^{2}-l A_{2} A_{3} \alpha^{2} \beta \gamma \delta(\delta-1) \\
& +l A_{2} A_{3} \alpha^{2} \beta \gamma \delta^{2}-l A_{2} A_{3} \alpha^{2} \beta \gamma \delta^{2}-m A_{3}^{2} \alpha(\alpha-1) \beta(\beta-1) \delta(\delta-1)+m A_{3}^{2} \alpha(\alpha-1) \beta^{2} \delta^{2}-m A_{3}^{2} \alpha^{2} \beta^{2} \delta^{2}
\end{aligned}
$$

$$
\begin{align*}
& +m A_{3}^{2} \alpha^{2} \beta^{2} \delta(\delta-1)-m A_{3}^{2} \alpha^{2} \beta^{2} \delta^{2}+m A_{3}^{2} \alpha^{2} \beta(\beta-1) \delta^{2}+n A_{3} A_{4} \alpha(\alpha-1) \beta(\beta-1) \gamma \delta \\
& \left.-n A_{3} A_{4} \alpha(\alpha-1) \beta^{2} \gamma \delta+n A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta-n A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta+n A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta-n A_{3} A_{4} \alpha^{2} \beta(\beta-1) \gamma \delta\right\} \\
& =\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3} A_{4}^{2}}\{-(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)+(\alpha-1) \beta \gamma(\delta-1)+\alpha \beta(\gamma-1)(\delta-1) \\
& -2 \alpha \beta \gamma(\delta-1)+\alpha(\beta-1) \gamma(\delta-1)-2 \alpha \beta(\gamma-1) \delta+3 \alpha \beta \gamma \delta-2(\alpha-1) \beta \gamma \delta+(\alpha-1)(\beta-1) \gamma \delta \\
& +(\alpha-1) \beta(\gamma-1) \delta-3 \alpha(\beta-1) \gamma \delta\}-\frac{1}{|J|} \frac{\Gamma^{3} \alpha \beta \gamma \delta A_{1}^{3 \alpha} A_{2}^{3 \beta} A_{3}^{3 \gamma} A_{4}^{3 \delta}}{A_{1}^{2} A_{2}^{2} A_{3} A_{4}^{2}} \frac{\Gamma A_{1}^{\alpha} A_{1}^{\beta} A_{1}^{\gamma} A_{1}^{\delta} \Psi}{B}\{-\alpha \beta(\delta-1) \\
& +\alpha(\beta-1)(\delta-1)+(\alpha-1) \beta(\delta-1)-(\alpha-1)(\beta-1)(\delta-1)-\alpha \beta \delta+\alpha(\beta-1) \delta \\
& \left.+\left(2 A_{4}-1\right)(\alpha-1)(\beta-1) \delta-\left(2 A_{4}-1\right)(\alpha-1) \beta \delta+\left(2 A_{4}-1\right) \alpha \beta \delta-\left(2 A_{4}-1\right) \alpha(\beta-1) \delta\right\} \\
& \frac{\partial \lambda}{\partial m}=\frac{1}{|J|} \frac{\Gamma^{4} \alpha \beta \gamma \delta A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3} A_{4}^{2}}\left(2 A_{4} \delta-2 \alpha \beta \gamma \delta+2 \alpha \gamma \delta+\alpha \beta \delta+\delta+\alpha+\beta+\gamma-1\right) \tag{44}
\end{align*}
$$

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\Psi=2$, i.e., for increasing returns to scale, in (44) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial m}=\frac{1}{|J|} \frac{\Gamma^{4} A_{3}}{2^{6}}\left(4 A_{4}+5\right)>0 \tag{45}
\end{equation*}
$$

From the relation (45) we see that when per unit cost of principal raw material increases, the level of Lagrange multiplier, i.e., marginal profit also increases. It seems that the industry is in profit maximization, and its products are also increasing despite increase of cost of principal raw material.

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\Psi=1$, i.e., for constant returns to scale, in (44) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial m}=\frac{1}{|J|} \frac{\Gamma^{4}}{2^{6} A_{1} A_{2} A_{4}}\left(64 A_{4}+5\right)>0 \tag{46}
\end{equation*}
$$

From the relation (46) we see that when per unit cost of principal raw material increases, the level of Lagrange multiplier, i.e., marginal profit also increases. It seems that this case is same as (45), i.e., both increasing and constant returns to scale may present the industry sustainable environment.

Now we consider $\alpha=\beta=\gamma=\frac{1}{8}$ and $\delta=\frac{1}{2}$, then we get, $\Psi=\frac{7}{8}<1$, i.e., for decreasing returns to scale, in (44) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial m}=\frac{1}{|J|} \frac{\Gamma^{4}}{2^{19} A_{1}^{\frac{3}{2}} A_{2}^{\frac{3}{2}} A_{3}^{\frac{1}{2}} A_{4}^{\frac{3}{2}}}\left(512 A_{4}+153\right)>0 . \tag{47}
\end{equation*}
$$

From the relation (47) we see have obtained the same result as there in (45) and (46). Hence, the industry is in sustainable profit maximization stage at any situation.

Now we analyze the economic effects on Lagrange multiplier when the discounted price of the irregular raw material, n_{0} increases. Taking T_{14} (i.e., term of $1^{\text {st }}$ row and $4^{\text {th }}$ column) from both sides of (19) we get (Moolio et al., 2009; Wiese, 2021; Mohajan \& Mohajan, 2023c),

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial n_{0}}=\frac{A_{4}^{2}}{|J|}\left[C_{11}\right]-\frac{A_{4}}{|J|}\left[C_{11}\right]+2 \lambda \frac{A_{4}}{|J|}\left[C_{51}\right]-\frac{\lambda}{|J|}\left[C_{51}\right] \\
& =\frac{A_{4}^{2}}{|J|} \text { Cofactor of } C_{11}-\frac{A_{4}}{|J|} \text { Cofactor of } C_{11}+2 \lambda \frac{A_{4}}{|J|} \text { Cofactor of } \mathrm{C}_{51}-\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{51} \\
& =\frac{A_{4}^{2}-A_{4}}{|J|}\left|\begin{array}{cccc}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right|-\frac{\lambda\left(1-2 A_{4}\right)}{|J|}\left|\begin{array}{cccc}
-B_{1} & -B_{2} & -B_{3} & -B_{4} \\
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34}
\end{array}\right| \\
& =\frac{A_{4}^{2}-A_{4}}{|J|}\left\{S_{11}\left|\begin{array}{lll}
S_{22} & S_{23} & S_{24} \\
S_{32} & S_{33} & S_{34} \\
S_{42} & S_{43} & S_{44}
\end{array}\right|-S_{12}\left|\begin{array}{lll}
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34} \\
S_{41} & S_{43} & S_{44}
\end{array}\right|+S_{13}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34} \\
S_{41} & S_{42} & S_{44}
\end{array}\right|-S_{14}\left|\begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33} \\
S_{41} & S_{42} & S_{43}
\end{array}\right|\right\} \\
& -\frac{\lambda\left(1-2 A_{4}\right)}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
S_{12} & S_{13} & S_{14} \\
S_{22} & S_{23} & S_{24} \\
S_{32} & S_{33} & S_{34}
\end{array}\right|+B_{2}\left|\begin{array}{lll}
S_{11} & S_{13} & S_{14} \\
S_{21} & S_{23} & S_{24} \\
S_{31} & S_{33} & S_{34}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
S_{11} & S_{12} & S_{14} \\
S_{21} & S_{22} & S_{24} \\
S_{31} & S_{32} & S_{34}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right|\right\} \\
& =\frac{A_{4}^{2}-A_{4}}{|J|}\left[S_{11}\left\{S_{22}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(S_{42} S_{34}-S_{32} S_{44}\right)+S_{24}\left(S_{32} S_{43}-S_{42} S_{33}\right)\right\}\right. \\
& -S_{12}\left\{-S_{21}\left(S_{33} S_{44}-S_{43} S_{34}\right)+S_{23}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{43}+S_{41} S_{33}\right)\right\} \\
& +S_{13}\left\{-S_{21}\left(S_{32} S_{44}-S_{42} S_{34}\right)+S_{22}\left(-S_{41} S_{34}+S_{31} S_{44}\right)+S_{24}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-S_{14}\left\{-S_{21}\left(S_{32} S_{43}-S_{42} S_{33}\right)+S_{22}\left(-S_{41} S_{33}+S_{31} S_{43}\right)+S_{23}\left(-S_{31} S_{42}+S_{41} S_{32}\right)\right\}\right] \\
& -\frac{\lambda\left(1-2 A_{4}\right)}{|J|}\left[-B_{1}\left\{-S_{12}\left(S_{23} S_{34}-S_{33} S_{24}\right)+S_{13}\left(-S_{32} S_{24}+S_{22} S_{34}\right)+S_{14}\left(-S_{22} S_{33}+S_{32} S_{23}\right)\right\}\right. \\
& +B_{2}\left\{-S_{11}\left(S_{23} S_{34}-S_{33} S_{24}\right)+S_{13}\left(-S_{31} S_{24}+S_{21} S_{34}\right)+S_{14}\left(-S_{21} S_{33}+S_{31} S_{23}\right)\right\} \\
& -B_{3}\left\{-S_{11}\left(S_{22} S_{34}-S_{32} S_{24}\right)+S_{12}\left(-S_{31} S_{24}+S_{21} S_{34}\right)+S_{14}\left(-S_{21} S_{32}+S_{31} S_{22}\right)\right\} \\
& \left.+B_{4}\left\{-S_{11}\left(S_{22} S_{33}-S_{32} S_{23}\right)+S_{12}\left(-S_{31} S_{23}+S_{21} S_{33}\right)+S_{13}\left(-S_{21} S_{32}+S_{31} S_{22}\right)\right\}\right] \\
& =\frac{A_{4}^{2}-A_{4}}{J}\left\{-S_{11} S_{22} S_{33} S_{44}+S_{11} S_{24} S_{42} S_{33}-S_{11} S_{24} S_{32} S_{43}+S_{11} S_{23} S_{32} S_{44}-S_{11} S_{23} S_{42} S_{34}+S_{11} S_{22} S_{43} S_{34}\right. \\
& +S_{12} S_{21} S_{33} S_{44}-S_{12} S_{21} S_{43} S_{34}+S_{12} S_{23} S_{41} S_{34}-S_{12} S_{23} S_{31} S_{44}+S_{12} S_{24} S_{31} S_{43}-S_{12} S_{24} S_{41} S_{33}-S_{13} S_{21} S_{32} S_{44} \\
& +S_{13} S_{21} S_{42} S_{34}-S_{13} S_{22} S_{41} S_{34}+S_{13} S_{22} S_{31} S_{44}-S_{13} S_{24} S_{31} S_{42}+S_{13} S_{24} S_{41} S_{32}+S_{14} S_{21} S_{32} S_{43}-S_{14} S_{21} S_{42} S_{33} \\
& \left.+S_{14} S_{22} S_{41} S_{33}-S_{14} S_{22} S_{31} S_{43}+S_{14} S_{23} S_{31} S_{42}-S_{14} S_{23} S_{41} S_{32}\right\}+\frac{\lambda\left(1-2 A_{4}\right)}{|J|}\left\{B_{1} S_{12} S_{23} S_{34}-B_{1} S_{12} S_{33} S_{24}\right. \\
& +B_{1} S_{13} S_{32} S_{24}-B_{1} S_{13} S_{22} S_{34}+B_{1} S_{14} S_{22} S_{33}-B_{1} S_{14} S_{32} S_{23}-B_{2} S_{11} S_{23} S_{34}+B_{2} S_{11} S_{33} S_{24}-B_{2} S_{13} S_{31} S_{24} \\
& +B_{2} S_{13} S_{21} S_{34}-B_{2} S_{14} S_{21} S_{33}+B_{2} S_{14} S_{31} S_{23}+B_{3} S_{11} S_{22} S_{34}-B_{3} S_{11} S_{32} S_{24}+B_{3} S_{12} S_{31} S_{24}-B_{3} S_{12} S_{21} S_{34} \\
& +B_{3} S_{14} S_{21} S_{32}-B_{3} S_{14} S_{31} S_{22}-B_{4} S_{11} S_{22} S_{33}+B_{4} S_{11} S_{32} S_{23}-B_{4} S_{12} S_{31} S_{23}+B_{4} S_{12} S_{21} S_{33}-B_{4} S_{13} S_{21} S_{32} \\
& \left.+B_{4} S_{13} S_{31} S_{22}\right\} \\
& =-\frac{A_{4}^{2}-A_{4}}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\left\{-\alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+\alpha(\alpha-1) \beta^{2} \gamma(\gamma-1) \delta^{2}\right. \\
& -\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta(\delta-1)-\alpha(\alpha-1) \beta^{2} \gamma^{2} \delta^{2}+\alpha(\alpha-1) \beta(\beta-1) \gamma^{2} \delta^{2} \\
& +\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2} \\
& -\alpha^{2} \beta^{2} \gamma^{2} \delta(\delta-1)+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta(\beta-1) \gamma^{2} \delta(\delta-1)-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \\
& \left.+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}-\alpha^{2} \beta(\beta-1) \gamma^{2} \delta^{2}+\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}-\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right\} \\
& +\frac{\left(1-2 A_{4}\right)}{|J|} \frac{\Gamma^{34} A_{1}^{3 \alpha} A_{2}^{3 \beta} A_{3}^{3 \gamma} A_{4}^{3 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}} \frac{\Gamma A_{1}^{\alpha} A_{1}^{\beta} A_{1}^{\gamma} A_{1}^{\delta} \Psi}{B}\left\{k A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta-k A_{1} A_{4} \alpha \beta^{2} \gamma(\gamma-1) \delta+k A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta\right. \\
& -k A_{1} A_{4} \alpha \beta(\beta-1) \gamma^{2} \delta+k A_{1} A_{4} \alpha \beta(\beta-1) \gamma(\gamma-1) \delta-k A_{1} A_{4} \alpha \beta^{2} \gamma^{2} \delta-l A_{2} A_{4} \alpha(\alpha-1) \beta^{2} \gamma^{2} \delta \\
& +l A_{2} A_{4} \alpha(\alpha-1) \beta \gamma(\gamma-1) \delta-l A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta+l A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta-l A_{2} A_{4} \alpha^{2} \beta \gamma(\gamma-1) \delta+l A_{2} A_{4} \alpha^{2} \beta \gamma^{2} \delta \\
& +m A_{3} A_{4} \alpha(\alpha-1) \beta(\beta-1) \gamma \delta-m A_{3} A_{4} \alpha(\alpha-1) \beta^{2} \gamma \delta+m A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta-m A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta \\
& +m A_{3} A_{4} \alpha^{2} \beta^{2} \gamma \delta-m A_{3} A_{4} \alpha^{2} \beta(\beta-1) \gamma \delta-n A_{4}^{2} \alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1)+n A_{4}^{2} \alpha(\alpha-1) \beta^{2} \gamma^{2} \\
& \left.-n A_{4}^{2} \alpha^{2} \beta^{2} \gamma^{2}+n A_{4}^{2} \alpha^{2} \beta^{2} \gamma(\gamma-1)-n A_{4}^{2} \alpha^{2} \beta^{2} \gamma^{2}+n A_{4}^{2} \alpha^{2} \beta(\beta-1) \gamma^{2}\right\} \\
& =-\frac{A_{4}^{2}-A_{4}}{|J|} \frac{\alpha \beta \gamma \delta \Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\{-(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)+(\alpha-1) \beta \gamma(\delta-1) \\
& +\alpha \beta(\gamma-1)(\delta-1)-2 \alpha \beta \gamma(\delta-1)+\alpha(\beta-1) \gamma(\delta-1)-2 \alpha \beta(\gamma-1) \delta+3 \alpha \beta \gamma \delta-2(\alpha-1) \beta \gamma \delta
\end{aligned}
$$

$$
\begin{align*}
& +(\alpha-1)(\beta-1) \gamma \delta+(\alpha-1) \beta(\gamma-1) \delta-3 \alpha(\beta-1) \gamma \delta+\frac{\alpha \beta \gamma \delta\left(A_{4}-2 A_{4}^{2}\right)}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}\{3 \alpha \beta \gamma \\
& -2(\alpha-1) \beta \gamma+(\alpha-1)(\beta-1) \gamma-2 \alpha(\beta-1) \gamma-2 \alpha \beta(\gamma-1)+\alpha(\beta-1)(\gamma-1)+(\alpha-1) \beta(\gamma-1) \\
& -\left(2 A_{4}-1\right)(\alpha-1)(\beta-1)(\gamma-1)+\left(2 A_{4}-1\right)(\alpha-1) \beta \gamma+\left(2 A_{4}-1\right) \alpha \beta(\gamma-1)-2\left(2 A_{4}-1\right) \alpha \beta \gamma \\
& \left.+\left(2 A_{4}-1\right) \alpha(\beta-1) \gamma\right\} \\
& \frac{\partial \lambda}{\partial n_{0}}=-\frac{A_{4}-1}{|J|} \frac{\alpha \beta \gamma \delta \Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}}\{2 \alpha \beta \delta+2 \alpha \gamma \delta-\alpha \delta-\alpha \beta-\alpha \gamma+\alpha+\beta+\gamma+\delta-1\} \\
& +\frac{\alpha \beta \gamma \delta\left(1-2 A_{4}\right)}{|J|} \frac{\Gamma^{4} A_{1}^{4 \alpha} A_{2}^{4 \beta} A_{3}^{4 \gamma} A_{4}^{4 \delta}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}}\left\{(2 \alpha+2 \beta+2 \gamma-1)-A_{4}(2 \alpha+2 \beta+2 \gamma-2)\right\} \tag{48}
\end{align*}
$$

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\Psi=2$, i.e., for increasing returns to scale, in (48) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}=\frac{\Gamma^{4}}{2^{11} A_{1} A_{2} A_{3}}\left\{\left(A_{4}-1\right)\left(8 A_{4}-3\right)\right\} . \tag{49}
\end{equation*}
$$

In equation (49) if $A_{4}>1$ or $A_{4}<\frac{3}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}>0 . \tag{50}
\end{equation*}
$$

From the inequality (50) we see that when discounted price of the irregular raw material increases, the level of Lagrange multiplier also increases. It seems that although cost of irregular raw material increases, the demand of the products of the industry is also increased in the society, and the industry increases its production level. We believe that for increasing returns to scale the industry is in sustainable environment and profit maximization is possible for this industry.

In equation (49) if $A_{4}<1$ and $A_{4}>\frac{3}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}<0 . \tag{51}
\end{equation*}
$$

From the inequality (51) we see that when discounted price of the irregular raw material, the Lagrange multiplier, i.e., the marginal profit is decreased. It seems that irregular raw material is
essential for the firm and more capital is used for purchasing the irregular raw material. Consequently, in this situation profit maximization atmosphere will be difficult for this industry. In equation (49) if $A_{4}=1$ or $A_{4}=\frac{3}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}=0 . \tag{52}
\end{equation*}
$$

From the equation (52) we see that when discounted price of the irregular raw material increases, there is no change of Lagrange multiplier. In this situation, it seems that increase or decrease price of the irregular raw material will not affect the level of Lagrange multiplier.

Now we consider $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\Psi=1$, i.e., for constant returns to scale, in (48) we get,

$$
\begin{gather*}
\frac{\partial \lambda}{\partial n_{0}}=\frac{\Gamma^{4} 3\left(A_{4}^{2}-A_{4}\right)}{2^{6}|J|}+\frac{\Gamma^{4}\left(A_{4}-2 A_{4}^{2}\right)}{2^{4}|J|}\left(2-A_{4}\right) \\
\frac{\partial \lambda}{\partial n_{0}}=\frac{\Gamma^{4}}{2^{6}|J|}\left(A_{4}^{2}-\frac{1}{2}\right) . \tag{53}
\end{gather*}
$$

In equation (53) if $A_{4}> \pm \frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}>0 \tag{54}
\end{equation*}
$$

The inequality (54) provides the same result as in (50) for constant returns to scale. Hence, we see that the industry is in sustainable condition for constant returns to scale.

In equation (53) if $0<A_{4}<\frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}<0 . \tag{55}
\end{equation*}
$$

The inequality (55) provides the same result as in (51) for constant returns to scale. Hence, it is observed that the industry is in difficulties to reach in sustainable condition.

In equation (53) if $A_{4}=\frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}=0 . \tag{56}
\end{equation*}
$$

The equation (56) provides the same result as in (52) for constant returns to scale. That is, in brief, the industry is indifferent about Lagrange multiplier about the case of irregular raw material.

Now we consider $\alpha=\beta=\gamma=\frac{1}{8}$ and $\delta=\frac{1}{2}$, then we get, $\Psi=\frac{7}{8}<1$, i.e., for decreasing returns to scale, in (48) we get,

$$
\begin{align*}
& \frac{\partial \lambda}{\partial n_{0}}=\frac{\Gamma^{4}}{2^{14} A_{1}^{\frac{3}{2}} A_{2}^{\frac{3}{2}} A_{3}^{\frac{3}{2}} A_{4}^{\frac{1}{2}}|J|}\left\{3\left(A_{4}-1\right)+4\left(5 A_{4}+1\right)\left(2 A_{4}-1\right)\right\} \\
& \frac{\partial \lambda}{\partial n_{0}}=\frac{\Gamma^{4}}{2^{15} \times 5 A_{1}^{\frac{3}{2}} A_{2}^{\frac{3}{2}} A_{3}^{\frac{3}{2}} A_{4}^{\frac{1}{2}}|J|}\left\{\left(2 A_{4}-\frac{9}{40}\right)^{2}-\frac{280}{81}\right\} . \tag{57}
\end{align*}
$$

In equation (57) if $A_{4}>(81 \pm \sqrt{70}) / 720$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}>0 . \tag{58}
\end{equation*}
$$

The inequality (58) provides the same result as in (50) for decreasing returns to scale. Hence, in this situation it seems that the industry is in better position in the economic sustainability.
In equation (57) if $A_{4}<(81 \pm \sqrt{70}) / 720$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}<0 . \tag{59}
\end{equation*}
$$

The inequality (59) provides the same result as in (51) for decreasing returns to scale. It seems that the industry may face various complications during profit maximization attempts.

In equation (57) if $A_{4}=(81 \pm \sqrt{70}) / 720$ we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial n_{0}}=0 . \tag{60}
\end{equation*}
$$

The equation (60) provides the same result as in (52) for decreasing returns to scale. In this stage we see that the industry can increase or decrease purchasing irregular raw material, as it does not affect the level of Lagrange multiplier.

11. Conclusions

In this study we have discussed the economic effects of Lagrange multiplier if costs of various inputs of an industry increase. We have considered here nonlinear budget constraint to provide economic predictions when we have searched a sustainable environment for an industry. The article is started with Cobb-Douglas productions function as profit function. We have also used 5×5 bordered Hessian matrix and 5×5 Jacobian to operate the mathematical formulations efficiently.

References

Baxley, J. V., \& Moorhouse, J. C. (1984). Lagrange Multiplier Problems in Economics. The American Mathematical Monthly, 91(7), 404-412.

Carter, M. (2001). Foundations of Mathematical Economics. MIT Press, Cambridge, London.

Chiang, A. C. (1984). Fundamental Methods of Mathematical Economics ($3^{\text {rd }}$ Ed.). Singapore: McGraw-Hill.

Cobb, C. W., \& Douglass, P. H. (1928). A Theory of Production. American Economics Review, 18(1), 139-165.

Eaton, B., \& Lipsey, R. (1975). The Principle of Minimum Differentiation Reconsidered: Some New Developments in the Theory of Spatial Competition. Review of Economic Studies, 42(1), 27-49.

Ferdous, J., \& Mohajan, H. K. (2022). Maximum Profit Ensured for Industry Sustainability. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009a). Preference of Social Choice in Mathematical Economics. Indus Journal of Management \& Social Sciences, 3(1), 17-38.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009b). Political Economy and Social Welfare with Voting Procedure. KASBIT Business Journal, 2(1), 42-66.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2010). Utility Maximization Subject to Multiple Constraints. Indus Journal of Management \& Social Sciences, 4(1), 15-29.

Islam, J.N.; Mohajan, H. K., \& Moolio, P. (2011), Output Maximization Subject to a Nonlinear Constraint, KASBIT Business Journal, 4(2), 104-120.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012a). Aspects of Microfinance System of Grameen Bank of Bangladesh. International Journal of Economics and Research, 3(4), 76-96.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012b). Stress Management Policy Analysis: A Preventative Approach. International Journal of Economics and Research, 3(6), 1-17.

Mohajan, D., \& Mohajan, H. K. (2022a). Mathematical Analysis of SEIR Model to Prevent COVID-19 Pandemic. Journal of Economic Development, Environment and People, 11(4), 5-30.

Mohajan, D., \& Mohajan, H. K. (2022b). Utility Maximization Analysis of an Emerging Firm: A Bordered Hessian Approach. Annals of Spiru Haret University. Economic Series, 22(4), 292-308.

Mohajan, D., \& Mohajan, H. K. (2022c). Sensitivity Analysis among Commodities and Coupons during Utility Maximization. Frontiers in Management Science, 1(3), 13-28.

Mohajan, D., \& Mohajan, H. K. (2022d). Importance of Total Coupon in Utility Maximization: A Sensitivity Analysis. Law and Economy, 1(5), 65-67.

Mohajan, D., \& Mohajan, H. K. (2022e). Development of Grounded Theory in Social Sciences: A Qualitative Approach. Studies in Social Science \& Humanities, 1(5), 13-24.

Mohajan, D., \& Mohajan, H. K. (2022f). Exploration of Coding in Qualitative Data Analysis: Grounded Theory Perspective. Research and Advances in Education, 1(6), 50-60.

Mohajan, D., \& Mohajan, H. K. (2022g). Memo Writing Procedures in Grounded Theory Research Methodology. Studies in Social Science \& Humanities, 1(4), 10-18.

Mohajan, D., \& Mohajan, H. K. (2022h). Constructivist Grounded Theory: A New Research Approach in Social Science. Research and Advances in Education, 1(4), 8-16.

Mohajan, D., \& Mohajan, H. K. (2022i). Feminism and Feminist Grounded Theory: A Comprehensive Research Analysis. Journal of Economic Development, Environment and People, 11(3), 49-61.

Mohajan, D., \& Mohajan, H. K. (2022j). Profit Maximization Strategy in an Industry: A Sustainable Procedure. Law and Economy, 1(3), 17-43.

Mohajan, D., \& Mohajan, H. K. (2023a). Sensitivity Analysis among Commodities and Prices: Utility Maximization Perceptions. Law and Economy, 2(2), 1-16.

Mohajan, D., \& Mohajan, H. K. (2023b). Straussian Grounded Theory: An Evolved Variant in Qualitative Research. Studies in Social Science \& Humanities, 2(2), 33-40.

Mohajan, D., \& Mohajan, H. K. (2023c). Sensitivity Analysis between Lagrange Multipliers and Consumer Coupon: Utility Maximization Perspective. Frontiers in Management Science, 2(1), 14-25.

Mohajan, D., \& Mohajan, H. K. (2023d). Utility Maximization Analysis of an Organization: A Mathematical Economic Procedure. Law and Economy, 2(1), 1-15.

Mohajan, D., \& Mohajan, H. K. (2023e). Classic Grounded Theory: A Qualitative Research on Human Behavior. Studies in Social Science \& Humanities, 2(1), 1-7.

Mohajan, D., \& Mohajan, H. K. (2023f). Sensitivity Analysis between Commodity and Budget: Utility Maximization Case. Law and Economy, 2(3), 10-21.

Mohajan, D., \& Mohajan, H. K. (2023g). Sensitivity Analysis for Profit Maximization with Respect to Per Unit Cost of Subsidiary Raw Materials. Frontiers in Management Science, 2(2), 13-27.

Mohajan, D., \& Mohajan, H. K. (2023h). Families of Grounded Theory: A Theoretical Structure for Novel Researchers. Studies in Social Science \& Humanities, 2(1), 56-65.

Mohajan, D., \& Mohajan, H. K. (2023i). Broca Index: A Simple Tool to Measure Ideal Body Weight. Innovation in Science and Technology, 2(2), 21-24.

Mohajan, D., \& Mohajan, H. K. (2023j). Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. Journal of Innovations in Medical Research, 2(3), 12-23.

Mohajan, D., \& Mohajan, H. K. (2023k). Body Mass Index (BMI) is a Popular Anthropometric Tool to Measure Obesity among Adults. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023l). A Study on Body Fat Percentage for Physical Fitness and Prevention of Obesity: A Two Compartment Model. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023m). Ponderal Index: An Important Anthropometric Indicator for Physical Growth. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023n). Long-Term Regular Exercise Increases \dot{V}_{2} max for Cardiorespiratory Fitness. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023p). Sensitivity Analysis between Lagrange Multipliers and Consumer Budget: Utility Maximization Case. Annals of Spiru Haret University. Economic Series, 23(1), 167-185.

Mohajan, H. K. (2011). Greenhouse Gas Emissions Increase Global Warming. International Journal of Economic and Political Integration, 1(2), 21-34.

Mohajan, H. K. (2012a). Green Marketing is a Sustainable Marketing System in the Twenty First Century. International Journal of Management and Transformation, 6(2), 23-39.

Mohajan, H. K. (2012b). Aspects of Green Marketing: A Prospect for Bangladesh. International Journal of Economics and Research, 3(3), 1-11.

Mohajan, H. K. (2012c). Importance of Green Marketing at Present and Future. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2012d). Greenhouse Gas Emissions of the USA. Indus Journal of Management \& Social Sciences, 6(2), 132-148.

Mohajan, H. K. (2012e). Relation between Lease Finance and Purchase. International Journal of Economics and Research, 3(3), 146-158.

Mohajan, H. K. (2013a). Economic Development of Bangladesh. Journal of Business Management and Administration, 1(4), 41-48.

Mohajan, H. K. (2013b). Ethiopia: A Socio-economic Study. Journal of Business Management and Administration, 1(5), 59-74.

Mohajan, H. K. (2013c). Friedmann, Robertson-Walker (FRW) Models in Cosmology. Journal of Environmental Treatment Techniques, 1(3), 158-164.

Mohajan, H. K. (2013d). Global Greenhouse Gas Emissions and Climate Change. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013e). Poverty and Economic Development of Kenya. International Journal of Information Technology and Business Management, 18(1), 72-82.

Mohajan, H. K. (2013f). Global Food Price Hike is a Burden to the Poor. International Journal of Information Technology and Business Management, 19(1), 1-15.

Mohajan, H. K. (2013g). Food, Agriculture and Economic Situation of Bangladesh. MPRA Paper No. 54240. https://mpra.ub.uni-muenchen.de/54240/

Mohajan, H. K. (2014a). Greenhouse Gas Emissions of China. Journal of Environmental Treatment Techniques, 1(4), 190-202.

Mohajan, H. K. (2014b). Chinese Sulphur Dioxide Emissions and Local Environment Pollution. International Journal of Scientific Research in Knowledge, 2(6), 265-276.

Mohajan, H. K. (2014c). The Most Fatal 2014 Outbreak of Ebolavirus Disease in Western Africa. American Journal of Epidemiology and Infectious Disease, 2(4), 101-108.

Mohajan, H. K. (2014d). Improvement of Health Sector in Kenya. American Journal of Public Health Research, 2(4), 159-169.

Mohajan, H. K. (2014e). Food and Nutrition of Bangladesh. Peak Journal of Food Science and Technology, 2(1), 1-17.

Mohajan, H. K. (2015a). Sustainable Development Policy of Global Economy. American Journal of Environmental Protection, 3(1), 12-29.

Mohajan, H. K. (2015b). Present and Future of Nestlé Bangladesh Limited. American Journal of Food and Nutrition, 3(2), 34-43.

Mohajan, H. K. (2015c). Basic Concepts of Differential Geometry and Fibre Bundles. ABC Journal of Advanced Research, 4(1), 57-73.

Mohajan, H. K. (2015d). Tuberculosis is a Fatal Disease among Some Developing Countries of the World. American Journal of Infectious Diseases and Microbiology, 3(1), 18-31.

Mohajan, H. K. (2016). An Analysis of Knowledge Management for the Development of Global Health. American Journal of Social Sciences, 4(4), 38-57.

Mohajan, H. K. (2017a). Roles of Communities of Practice for the Development of the Society. Journal of Economic Development, Environment and People, 6(3), 27-46.

Mohajan, H. K. (2017b). Two Criteria for Good Measurements in Research: Validity and Reliability. Annals of Spiru Haret University Economic Series, 17(3), 58-82.

Mohajan, H. K. (2017c). Optimization Models in Mathematical Economics. Journal of Scientific Achievements, 2(5), 30-42.

Mohajan, H. K. (2017d). A Brief Analysis of de Sitter Universe in Relativistic Cosmology. Journal of Scientific Achievements, 2(11), 1-17.

Mohajan, H. K. (2018a). Qualitative Research Methodology in Social Sciences and Related Subjects. Journal of Economic Development, Environment and People, 2(1), 19-46.

Mohajan, H. K. (2018b). Aspects of Mathematical Economics, Social Choice and Game Theory. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K. (2018c). The Rohingya Muslims in Myanmar are Victim of Genocide! ABC Journal of Advanced Research, 7(1), 59-72.

Mohajan, H. K. (2018d). Medical Errors Must be Reduced for the Welfare of the Global Health Sector. International Journal of Public Health and Health Systems, 3(5), 91-101.

Mohajan, H. K. (2018e). Analysis of Food Production and Poverty Reduction of Bangladesh. Annals of Spiru Haret University Economic Series, 18(1), 191-205.

Mohajan, H. K. (2020a). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development, Environment and People, 9(4), 50-79.

Mohajan, H. K. (2020b). COVID-19-The Most Fatal Pandemic Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020c). The COVID-19 in Italy: Remedies to Reduce the Infections and Deaths. Malaysian Journal of Medical and Biological Research, 7(2), 59-66.

Mohajan, H. K. (2020d). Most Fatal Pandemic COVID-19 Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020e). Circular Economy can Provide a Sustainable Global Society. Journal of Economic Development, Environment and People, 9(3), 38-62.

Mohajan, H. K. (2021a). Aspects of Global COVID-19 Pandemic. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2021b). Global COVID-19 Pandemic: Prevention and Protection Techniques. Journal of Economic Development, Environment and People, 10(1), 51-72.

Mohajan, H. K. (2021c). Estimation of Cost Minimization of Garments Sector by CobbDouglass Production Function: Bangladesh Perspective. Annals of Spiru Haret University. Economic Series, 21(2), 267-299.

Mohajan, H. K. (2021d). Product Maximization Techniques of a Factory of Bangladesh: A Sustainable Procedure. American Journal of Economics, Finance and Management, 5(2), 23-44.

Mohajan, H. K. (2022a). Four Waves of Feminism: A Blessing for Global Humanity. Studies in Social Science \& Humanities, 1(2), 1-8.

Mohajan, H. K. (2022b). An Overview on the Feminism and Its Categories. Research and Advances in Education, 1(3), 11-26.

Mohajan, H. K. (2022c). Cost Minimization Analysis of a Running Firm with Economic Policy. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Mohajan, H. K. (2022d). Mathematical Analysis of SIR Model for COVID-19 Transmission. Journal of Innovations in Medical Research, 1(2), 1-18.

Mohajan, H. K., Islam, J. N., \& Moolio, P. (2013). Optimization and Social Welfare in Economics. Lambert Academic Publishing, Germany.

Moolio, P., Islam, J. N., \& Mohajan, H. K. (2009). Output Maximization of an Agency. Indus Journal of Management and Social Sciences, 3(1), 39-51.

Pandey, P., \& Pandey, M. M. (2015). Research Methodology: Tools and Techniques. Bridge Center, Romania, European Union.

Polit, D. F., \& Hungler, B. P. (2013). Essentials of Nursing Research: Methods, Appraisal, and Utilization ($8^{\text {th }}$ Ed.). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.

Rahman, M. M., \& Mohajan, H. K. (2019). Rohingya-The Stateless Community Becoming the Lost Generation. Journal of Economic Development, Environment and People, 8(2), 24-36.

Roy, L., Molla, R., \& Mohajan, H. K. (2021). Cost Minimization is Essential for the Sustainability of an Industry: A Mathematical Economic Model Approach. Annals of Spiru Haret University Economic Series, 21(1), 37-69.

Samuelson, P. A. (1947). Foundations of Economic Analysis. Harvard University Press, Cambridge, MA.

Somekh, B., \& Lewin, C. (2005). Research Methods in the Social Sciences. Sage Publications Ltd.

Wiese, H. (2021). Cost Minimization and Profit Maximization. In Advanced Microeconomics. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34959-2_9

