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1. Introduction 
    
First of all, the model in this paper is exactly the same as the binomial tree in my earlier 
paper, Brogi (2014). What differs now is that, while in my previous paper the tree was 
implemented by Monte Carlo simulation, i.e. simulating price trajectories along the tree, 
in this paper the whole (recombining) underlying price tree is calculated without 
resorting to Monte Carlo, just like for example the classic Cox, Ross and Rubinstein 
(1979) binomial tree (CRR tree). This means that the option price is obtained virtually 
instantly using for example Matlab on a standard PC. On the other hand, Monte Carlo 
simulation was rather lengthy and the resulting option price had a standard error. The 
main features that make the tree appealing are unchanged: excess kurtosis and negative 
skewness of price distribution of underlying security. For more details please see 
simulation in Brogi (2014). 
The paper proceeds as follows. In Section 2 the binomial tree is described. Section 3 
derives a formula for the risk-neutral measure. Section 4 shows how volatility is 
modeled. Section 5 explains how to implement the tree. Section 6 measures pricing 
performance. Finally Section 7 concludes the paper with some remarks. 
 
 
2. Binomial Tree 
 
Time-points it , ni ,,1,0  , are equidistant, and time-periods 1 ii ttt , ni ,,1 , 
and time horizon tnT  , which is fixed length of time of expiration of option in 
years. 0t  is current time-point. We also have an extra historical time-point, 1t , which 
precedes 0t , and such that ttt  10 . 
The underlying security price can either rise or fall from one-point to the next, 

ni ,,1 : 
 
 

iii ttt uSS
1

  with probability iq  or 
 

iii ttt dSS
1

  with probability iq1 ,      (1) 
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where 
it

u  stands for up, 
it

d  stands for down, and 
it

u , 
it

d  are variable. iq  is the risk-
neutral probability of underlying security price at 1it , 

1it
S , rising to 

ii tt uS
1

 at it . 
Further down we derive a formula for iq . 
The definition of continuously compounded return of underlying security from 1it  to it : 
 
 

1
loglog




iii ttt SSR , ni ,,1,0  .     (2) 
 
We call current return 

100
loglog


 ttt SSR , where 

1t
S  is a known historical price, so 

current return is known too. Rearranging (1), and taking logarithms, and using (2) we 
define, ni ,,1 , 
 
 

 iiiii ttttt RuSS log|log
1
  with probability iq  or 

 
 iiiii ttttt RdSS log|log

1
  with probability iq1 ,   (3) 

 
where 
 
 ttR

ii tt   ,        (4) 

 ttR
ii tt   ,        (5) 

 
with tt

it
   for large n, or equivalently small t . t

it
  is part of a volatility 

process,  n
it t

i 0
 , which we need to model, where 

0t
  is known current annual 

volatility. 
 
 
3. Martingale Condition 
 
Under no arbitrage, the discounted price process of the underlying security,  n

iti
S

0

~


, 

must be a martingale. We now derive a formula for risk-neutral probability iq  in (1), so 

that  n
iti

S
0

~


 is a martingale. 
Let us introduce a sample of independent Bernoulli random variables, which are 
independent of  n

iti
S

0

~


: 
 
 1iZ  with probability iq  or 
 1iZ  with probability iq1 , 
 
where iq  is the risk-neutral probability in (1). Then (4) and (5) can be written as one 
equation: 
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 itt ZttR
ii
  , ni ,,1 . 

 
The martingale condition is 
 
  

121

~,~,~|~



iiii tttt SSSS  ,   ni ,,1 , 
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)1(,~,~|


 
iii

it

i t
tri

tt
R

t
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   tr
tt
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ii

iit  

,~,~|

21

 , 
 
where r is the risk-free rate of interest, which is constant during time horizon T, and 
 
 tt

t
Ztt it

i

iit ee    |  with probability iq  or 

 tt
t

Ztt it

i

iit ee    |  with probability iq1 , 
 
so that 
 
   trtt

i
tt

i eeqeq itit    1 . 
 
Hence, 
 

 
tttt

tttr

i
itit

it

ee
eeq














. 

 
In risk-neutral pricing we set r , so that 
 

 
tt

t

i
itit

it

ee
eq












1 , ni ,,1 .     (6) 

 
For large n, or equivalently small t , substituting the exponentials in (6) by their series 
expansions ignoring terms of order   2/3t  or higher, we get 
 

 tq
iti  

4
1

2
1 ,  ni ,,1 .     (7) 

 
So, the risk-neutral probability of 

1it
S  rising is less than for 

1it
S  falling. This is true for 

any n, or equivalently any t . 
 
     tqtR

iii titt   12|       (8) 
     tqqR

iii tiitt  214|var  .      (9) 
 
Notice that if 21iq  (which it is not), then 
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   tR

ii tt  |  
   tR

iii ttt  2|var  . 
 
Setting iq  as in (6) is an artificial device which forces  n

iti
S

0

~


 to be a martingale. 
 
 
4. Modeling Volatility 
 
As regards the modeling of t

it
 , Black (1976) already noticed a negative correlation 

between returns and volatility, i.e. when returns are high, volatility is low, and when 
returns are low, volatility is high. Such negative correlation can be captured by the 
following equation: 
 
  tRtt

iii ttt 



11

,  ni ,,1 ,   (10) 
 
where 10  . When 𝑅 =  𝜇∆𝑡 volatility is constant. This can be seen as an 
equilibrium. Whilst the more 𝑅  differs from  𝜇∆𝑡, the more we move away from 
equilibrium, and the more pronounced changes in volatility are. It is clear that according 
to (10) volatility of returns, t

it
 , can never be negative, because, recalling (4) and 

(5), if 



11 ii tt RR , then 

 
  ttt

iii ttt 
 11

 ,  ni ,,2 ,   (11) 
 

10  . Alternatively, if 



11 ii tt RR , then 

 
  ttt

iii ttt 
 11

 ,  ni ,,2 ,   (12) 
 

10  . 
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where, as in (6), 
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, 

 
which is known. 
From (10) we see that 
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Hence, 
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0
12,,|

021

i

j
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jiii
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At nt , dropping t , 
 

    







1

0
12,,|

021

n

j
tjtttt jnnn

q   , 

 
and, using (7) for jq , 
 

   





  




 

1

0 2
1lim,,|lim

021

n

j
ttnttttn jjnnn

t   ,  (13) 

 
because each term in the sum is of order t  (order n1 ), but extra terms are added 
to the sum at rate n. So, the expected value of 

nt
  has no finite limit. 

 
       tqqRt

iiiii tiitttt 
 

2
11

22
1111

14|var|var  .  (14) 
 
Looking at (14), we note that the greater the α, the greater the variance of volatility of 
returns, and the greater the variance of volatility of returns, the greater the kurtosis of 
the distribution of returns. 
 
 
5. Implementing the Tree 
 
Before providing commented Matlab code implementing the tree, let me first make it 
clear that the tree of underlying security prices is in fact recombining, because 
 𝑑 𝑢 = 𝑒 ∆ √∆ = 𝑢 𝑑               𝑖 = 2, … , 𝑛 
 
Furthermore, volatilities are also recombining, because from equations (11) and (12) we 
have that 
 
 𝜎 √∆𝑡 = 𝜎 √∆𝑡(1 − 𝛼)  or  𝜎 √∆𝑡 = 𝜎 √∆𝑡(1 + 𝛼)         𝑖 = 2, … , 𝑛 
 
Given the recombining property of prices and volatilities, the full price tree can be 
obtained. Then the option value at expiry is calculated, and from the expiry nodes work 
backwards down the tree to obtain option values at earlier nodes in standard fashion, as 
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in the CRR tree, with the possibility of pricing European or American options. The only 
difference in working backwards down the tree compared to the CRR tree is that, while 
in the CRR tree the probability of an ‘up’ move is fixed, here we have a different 
probability of an ‘up’ move at each node calculated according to equation (6) or (7). It 
is these different probabilities that need to be used when working backwards down the 
tree. The option price equals the value obtained at the starting node. See for example 
Haug (2007) to see how to work backwards in the CRR tree. 
 
Here follows the Matlab code (comments in green). 
 
function 
optionprice=athostree(St0,Shist,k,sigt0,r,T,n,alpha,otype,earlyexercis
e) 
%function to calculate the price of a vanilla European or American 
%Put or Call option using the binomial tree presented in paper 
%"A Binomial Tree to Price European and American Options" by Athos 
Brogi. 
%Function inputs: 
% St0 - current price of underlying 
% Shist - historical price of underlying 
% k - strike price 
% r - risk free interest rate (=mu) 
% T - time horizon in years 
% n - number of time steps 
% otype - must be 'PUT' or 'CALL' 
% earlyexercise - true for American, false for European 
  
currentreturn=log(St0)-log(Shist); 
  
%calculate the recombining volatility tree (vtree) 
vtree=nan(n,n); 
vtree(1,1)=sigt0*sqrt(T/n)-alpha*(currentreturn-r*(T/n)); 
%(note: check vtree(1,1)>0) 
for i=2:n 
    vtree(1:i-1,i)=vtree(1:i-1,i-1)*(1-alpha); 
    vtree(i,i)=vtree(i-1,i-1)*(1+alpha); 
end 
  
%calculate the recombining price of underlying tree (ptree) 
ptree=nan(n+1,n+1); 
ptree(1,1)=St0; 
for i=2:n+1 
    ptree(1:i-1,i)=ptree(1:i-1,i-1).*exp(r*(T/n)+vtree(1:i-1,i-1)); 
    ptree(i,i)=ptree(i-1,i-1).*exp(r*(T/n)-vtree(i-1,i-1)); 
end 
  
%calculate the probability tree (probtree), where each node shows 
probability 
%of an 'up' move. The probability of a 'down' move equals 1 minus 
%probability of an 'up' move 
probtree=nan(n,n); 
probtree=1/2-1/4*vtree; 
  
%calculate value at expiry 
valuetree=nan(size(ptree)); 
switch otype 
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    case 'PUT' 
        valuetree(:,end)=max(k-ptree(:,end),0); 
    case 'CALL' 
        valuetree(:,end)=max(ptree(:,end)-k,0); 
end 
  
%work backwards down the valuetree to get values at earlier nodes 
for i=n:-1:1 
    valuetree(1:i,i)=... 
        exp(-r*T/n)*(probtree(1:i,i).*valuetree(1:i,i+1)... 
        +(1-probtree(1:i,i)).*valuetree(2:i+1,i+1)); 
    if earlyexercise 
        switch otype 
            case 'PUT' 
                valuetree(1:i,i)=... 
                    max(k-ptree(1:i,i),valuetree(1:i,i)); 
            case 'CALL' 
                valuetree(1:i,i)=... 
                    max(ptree(1:i,i)-k,valuetree(1:i,i)); 
        end 
    end 
end 
  
%option price 
optionprice=valuetree(1); 
end 
 
Here are 4 examples of calculated prices. 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT',false) 
 
optionprice = 10.1273 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',false) 
 
optionprice = 13.0822 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT',true) 
 
optionprice = 10.3303 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',true) 
 
optionprice = 13.0822 
 
 
6. Performance 
 
Pricing performance has been measured by comparing model mean squared error 
(MSE) with MSE of Black-Scholes (BS) model. 
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Sample: Trades of S&P500 calls of Tuesday 15/1/2019 (a randomly chosen day, 
because it is provided by iVolatility.com free of charge as a data example) for a total of 
5498 trades after having applied 2 filters, i.e. 0.9 <= St0/K <= 1.1 and expiration < 6 
months (18/1, 15/2, 15/3, 18/4, 21/6). 
 
Limitations: Dividend yield not included and r = 0.01 for all expiration dates for 
greater ease. 
 
Calibration: I calibrated my model, which has (only!) 2 parameters to be calibrated, i.e. 
sigmat0 and alpha. I also calibrated BS model, which has unique parameter sigma to be 
calibrated. 
 
The calibration for each model was done by searching the values of above parameters 
that minimize the MSE between the market price and the model price by means of the 
fminsearch Matlab function, which uses the Nelder-Mead method. 
 
The number of steps of my model (tree) was set to 100. 
 
Results: 
BS: sigma = 0.1513, MSE = 13.85, running time = few seconds. 
My tree: sigmat0 = 0.1558, alpha = 0.0423, MSE = 4.15, running time = about 9 
minutes. 
 
The sample mean market price is 34.37. 
 
Matlab R2009b was used on my (few years old) PC with Intel Core i5 processor. 
 
I also calibrated BS and my model to S&P500 calls trades of 2 other days: 
 
16/1/2019 
BS: sigma = 0.1471, MSE = 9.39. 
My tree: sigmat0 = 0.1514, alpha = 0.0408, MSE = 1.9107. 
The sample mean market price is 30.19. 
 
23/1/2019 (expiration < 9 months) 
BS: sigma = 0.1626, MSE = 22.28. 
My tree: sigmat0 = 0.1694, alpha = 0.0446, MSE = 3.3646. 
The sample mean market price is 47.40. 
 
 
7. Final Remarks 
 
The greatest challenge is not implementing the tree, but to choose appropriate values of 
α and n for pricing. As we have seen above, equation (13), as n tends to infinity so does 
volatility, and therefore the tree explodes. We have also seen, equation (14), that the 
greater α, the greater the kurtosis of the distribution of returns. So, the tree explodes also 
if α is too large. Therefore, appropriate values of α and n need to be input to avoid the 
tree calculating meaningless prices. 
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However, on the positive side, the tree has a relatively small number of parameters, and 
to me it can also be viewed as a sound application of martingale pricing. It also 
calculates American and European option prices virtually instantly on a standard PC. 
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