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1 Introduction

Since the late 20th century, there has been a heightened awareness of environmental

issues worldwide, and the environmental protection movement has extended into the

world of sports. Today, professional sports teams get involved in various environmental

protection activities and these are reported and broadcasted in the media: MLB.com

has introduced recent environmental protection activities of clubs in Major League

Baseball.1 BBC reported that Liverpool and Tottenham Hotspurs were jointly ranked

as first place in the sustainability ranking among the Premier League clubs in 2021.2

Soon, leagues, in addition to individual clubs, may be involved in environmental

protection activities. For example, on June 28, 2021, the Ministry of the Environment

of the Japanese government announced that it will work with the teams in Japan’s

professional football league to develop initiatives to combat climate change and reduce

single-use plastics. At the announcement of this partnership agreement, Chairman

Murai said that the idea is to ban the use of single-use plastics in all clubs by 2025.3

This study aims to theoretically examine how a league’s environmental policy affects

competitive balance in a professional team sports league. In the literature, there are

several empirical works on the relationship between professional sports clubs and the

environment.4 However, there are few theoretical works about this. This study is the

first attempt to reveal theoretical evidence of the effects of a league’s environmental

policy.

As for environmental policy, this study considers the use of a relative emission stan-

dard or an emission intensity regulation.5 One reason for adopting this type of emission

standard is that it is still observed today. For example, the Japanese government is

1For details, see the webpage titled “Club Initiatives” on MLB.com. https://www.mlb.com/mlb-

community/mlb-green/club-initiatives, (accessed 5 February 2023).
2For details, see the webpage titled “How green are Premier League clubs & what are they doing

to help?” on BBC.com. https://www.bbc.com/sport/football/60196764, 2022 (accessed 5 February

2023).
3KOIZUMI Shinjiro, Minister of Environment, Japan, introduced this initiative at the G20 En-

vironment Ministers’ Meeting on July 22, 2021. For details, see the Ministry of the Environment,

Government of Japan’s webpage. https://www.env.go.jp/en/focus/statement/statement14.html, 2021

(accessed 5 February 2023).
4Locke [15] examines the impact of MLB games on local air pollution. Qin et al [18] investigate

whether air pollution affects the performances of professional football players.
5Helfand [9] states that emission standards can be classified into five categories: a fixed level of

emissions, a fixed level of emissions per unit of output, a fixed level of emissions per unit of input, a

fixed level of output, and a fixed level of input. The second standard is often called a relative emission

standard or an emission intensity regulation.
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now aiming to reduce its greenhouse gas emissions to achieve carbon neutrality by 2050,

following the Paris Agreement. In response, Keidanren—a comprehensive economic or-

ganization in Japan—announced the Keidanren Carbon Neutrality Action Plan, based

on which several industry associations adopted a CO2 emission intensity target on

March 22, 2022.6 One other reason is that research has still been done on such stan-

dards even in recent years (e.g. Ino and Matsumura [10], [11]; Lin and Pan [14]) and it

is simple to handle for analysis.

In the current study, the model with a Cobb-Douglas functional form by Madden [16]

is used. This is a strong assumption, but it allows us to obtain specific equations

and numerical values for equilibrium outcomes and social welfare, even for models

that incorporate environmental issues, which makes the characteristics of equilibrium

outcomes clearer and easier to understand compared to analysis in general functional

form.7 It would be more difficult to derive the equilibrium outcomes and social welfare

and to analyze these elements using other models. We return to this in the Conclusion.

We pick up the following two leagues: one is a league where each club’s objective is

to maximizes its profit and the other is that it is to maximize its win percentage. They

are representative leagues in the literature of sports economics.8

The remainder of this paper is organized as follows. Section 2 describes our model.

Section 3 derives the equilibrium outcomes in a professional team sports leagues with

profit maximizers’ clubs and win maximizers’ clubs. Section 4 examines the effect of

a uniform relative emission standard on the equilibrium outcome, competitive balance,

and social welfare in each league and compares them between the two types of leagues.

Section 5 presents our conclusions. Detailed calculations for the equilibrium outcome

in each case and proofs of the propositions are given in the Appendices.

2 Model

We followed the model of Madden [16] except for settings related to the environment.

Suppose an economy where there are only two towns (town i, i = 1, 2) and a professional

6For details of the Keidanren Carbon Neutrality Action Plan, see the Keidanren Japan Business Fed-

eration’s webpage. https://www.keidanren.or.jp/en/policy/2021/102 report.pdf, (accessed 5 February

2023).
7Numerous studies have theoretically analyzed professional sports teams; however, few studies have

focused on welfare analyses (e.g. Falconieri et al [6]; Dietl et al [3]; Fort and Quirk [7], [8]; Madden [16]).
8There are other leagues in the earlier literature; each club maximizes fan welfare (Madden [16])

and a weighted sum of its profits and wins (Dietl [2]). Dietl [3] considers the league that one club

maximizes its profit and the other maximizes its win percentage.
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sports club (club i) in each. These teams belong to the same professional league, and

they compete against each other. Each club plays the other twice each year, once at

home and once away.

In town i, some fans feel an affinity to club i and a representative resident who is not

interested in professional sports at all. A representative resident lives near the stadium

and fans live some distance from the stadium. Club i’s fans are assumed to be the only

potential spectators for i’s home match. They are heterogeneous in their willingness

to pay for tickets, denoted vi − x where the heterogeneity parameter is x ≥ 0 and vi is

the common valuation. It is assumed that x is uniformly distributed over [0, ci] with

density µi: µi can be regarded as the fanbase of club i. We assume µ1 > µ2: club 1 has

a larger fanbase than club 2. A fan with heterogeneity parameter x will buy a ticket if

pi ≤ vi − x where pi denotes the ticket price for club i’s home match.

Club i decides the ticket price pi and obtains all ticket revenue from its home match.

We assume that the capacity of club i’s stadium is large enough to be never binding on

match attendance and that ci is larger than vi, and therefore, club i’s ticket demand

is µi(vi − pi). Moreover, we assume that talent is in perfectly elastic supply at a wage

normalized to 1 and that stadium costs are 0. From these assumptions, profits of club i

without an environmental protection cost are Πi = piµi(vi − pi)−Qi where Qi denotes

the quantity of playing talent of club i.

On the day of a match, spectators pollute in or around the stadium in ways such

as noise pollution, the littering of single-use plastics, or gas emissions from driving

their own vehicles to the stadium. This pollution harms the representative resident.

The amount of pollution depends on the number of spectators. We assume that one

spectator produces one unit of pollution at the stadium; the gross emission of pollution

of the club i is µi(vi−pi). For the pollution, club i can reduce its pollution by investing

in abatement efforts ai.
9 We assume that one unit of abatement effort can reduce one

unit of emission of pollution; the net emission of pollution of club i is µi(vi − pi)− ai.

Each club determines the quantity of playing talent Qi, ticket prices pi, and abate-

ment effort ai to maximize their objective functions. The profit of club i, which includes

an environmental protection cost, is as follows:

πi = µipi(vi − pi)−Qi − kia
2

i , (1)

where the last term is an abatement cost of club i and ki > 0. ki is the parameter that

9The club can adjust its amount of pollution by introducing reusable cups, installing soundproof

doors for noise reduction, or issuing tickets for free public transportation to reduce the use of private

vehicles.
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determines a slope of marginal abatement cost. If ki is smaller than kj, it means that

club i has better abatement cost conditions than club j.

A uniform relative emission standard is imposed on all clubs by a league. In this

study, the standard is made of the ratio of net emissions per spectator:

µi(vi − pi)− ai
µi(vi − pi)

≤ θ, (2)

where θ ∈ [0, 1].10 θ = 1 implies no restriction of its emission and θ = 0 implies zero

emission. In this study, we focus only on the case that the standard (2) is binding, and

therefore, club i’s abatement effort ai becomes (1− θ)µi(vi − pi).

Social welfare is the sum of the spectators’ surplus and the profits of clubs and the

environmental damage:11

S =
2
∑

i=1

∫ vi−pi

0

µi(vi − pi − x)dx+
2
∑

i=1

πi −

2
∑

i=1

Di(Ei), (3)

where Di(Ei) represents the local environmental damage in hometown of club i and

Ei denotes the net emission of pollution of club i, Ei = θµi(vi − pi). We assume that

Di(Ei) = diE
2
i and di > 0. di is the parameter that determines a slope of marginal

environmental damage. These settings are related to environmental problems and are

often used in the literature on environmental economics.12

Last, we assume that vi = Qα
i Q

β
j with α, β > 0 and α+ β < 1/2 for i, j = 1, 2, i ̸= j

as Madden [16] assumes. We also assume that 1/(2µi) > di for assuring the positiveness

of social welfare in the equilibrium for this economy.

3 The equilibrium

3.1 Profit maximizers’ league

First, we consider the case that both clubs are profit maximizers. We consider the

following timing of the game. Each club decides on the quantity of playing talent, and

10Concerning a relative emission standard, the denominator is usually the output; Producing the

output, the firm emits pollution. In this study, the denominator implies the number of spectators;

Increasing the number of spectators causes an increase in gross emissions at the stadium. Therefore,

we call this constraint a relative emission standard.
11In town i, a representative resident’s surplus is −Di(Ei); It is assumed to be 0 without environ-

mental damage.
12For example, see Ulph [22], Bárcena-Ruiz [1], and Pal and Saha [17]. Although they consider pollu-

tion by production, we apply these settings because pollution is generated in and around the stadium.
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then it decides the ticket price. This two-stage setting is also used by Madden [16] and

assures a profit function within each club after monopoly pricing is strictly concave.

The maximization problem in the second stage for club i is as follows:

max
pi

µipi(vi − pi)−Qi − ki{(1− θ)µi(vi − pi)}
2, (4)

for i = 1, 2. The first-order condition of the maximization problem of club i is as

follows:

∂πi

∂pi
= µi

[

{

1 + 2kiµi(1− θ)2
}

Qα
i Q

β
j − 2

{

1 + kiµi(1− θ)2
}

pi

]

= 0, (5)

for i, j = 1, 2, i ̸= j. Solving the above equation for pi, we obtain

psbi =
{1 + 2kiµi(1− θ)2}Qα

i Q
β
j

2 {1 + kiµi(1− θ)2}
, (6)

for i, j = 1, 2, i ̸= j. psbi denotes the equilibrium price when the quantity of playing

talent of each club Qi and Qj are given in the profit maximizers’ league. Substituting

the above psbi into the profit of club i (called πsb
i ) and partially differentiating πsb

i by

Qi, we obtain the following first-order condition for club i in the first stage:

∂πsb
i

∂Qi

=
αµi

2{1 + k1µ1(1− θ)2}
Q2α−1

i Q2β
j − 1 = 0, (7)

for i, j = 1, 2, i ̸= j. Solving the above two equations for Q1 and Q2, and then, we

obtain the following equilibrium quantity of playing talent of each club.

Qp∗
1 =

[

α

2

(

µ1

1 + k1µ1(1− θ)2

)
1−2α

1−2α+2β
(

µ2

1 + k2µ2(1− θ)2

)
2β

1−2α+2β

]

1

1−2α−2β

, (8)

Qp∗
2 =

[

α

2

(

µ1

1 + k1µ1(1− θ)2

)
2β

1−2α+2β
(

µ2

1 + k2µ2(1− θ)2

)
1−2α

1−2α+2β

]

1

1−2α−2β

. (9)

The superscript p∗ indicates the equilibrium outcome in the case where both clubs are

profit maximizers.

Other equilibrium outcomes by using the expression of vp∗1 = (Qp∗
1 )α(Qp∗

2 )β and
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vp∗2 = (Qp∗
1 )β(Qp∗

2 )α are as follows:

pp∗1 =
{1 + 2k1µ1(1− θ)2}vp∗1
2{1 + k1µ1(1− θ)2}

, pp∗2 =
{1 + 2k2µ2(1− θ)2}vp∗2
2{1 + k2µ2(1− θ)2}

. (10)

Ap∗
1 =

µ1v
p∗
1

2{1 + k1µ1(1− θ)2}
, Ap∗

2 =
µ2v

p∗
2

2{1 + k2µ2(1− θ)2}
. (11)

ap∗1 =
µ1(1− θ)vp∗1

2{1 + k1µ1(1− θ)2}
, ap∗2 =

µ2(1− θ)vp∗2
2{1 + k2µ2(1− θ)2}

, (12)

Ep∗
1 =

µ1θv
p∗
1

2{1 + k1µ1(1− θ)2}
, Ep∗

2 =
µ2θv

p∗
2

2{1 + k2µ2(1− θ)2}
, (13)

where Ap∗
i denotes the resulting attendance of club i’s home match, that is, µi(v

p∗
i −pp∗i ).

Social welfare in the profit maximizers’ league is as follows:13

Sp∗ = Qp∗
1

[

3 + 2k1µ1(1− θ)2 − 2d1µ1θ
2

4α{1 + k1µ1(1− θ)2}
− 1

+

(

µ2{1 + k1µ1(1− θ)2}

µ1{1 + k2µ2(1− θ)2}

)

1
1−2α+2β

(

3 + 2k2µ2(1− θ)2 − 2d2µ2θ
2

4α{1 + k2µ2(1− θ)2}
− 1

)

]

. (14)

3.2 Win maximizers’ league

Second, we consider the case that both clubs are win maximizers. Each club maximizes

its win percentage by choosing its quantity of playing talent subject to non-negative

profits. In a two club model, one of the simplest ways to express a win percentage of

club i is Qi/(Qi + Qj) with i, j = 1, 2, i ̸= j. This setting is used widely in the liter-

ature (e.g. El Hodiri and Quirk [5]; Szymanski [19], [20]; Szymanski and Késenne [21];

Vrooman [23]; Dietl et al. [2], [3]; Késenne [12]). The win percentage of club i is the

monotonically increasing function for Qi, and therefore, maximizing win percentage is

equal to maximizing Qi for club i. As a result, the maximization problem of club i in

the case where clubs are win maximizers is as follows.

max
pi,Qi

Qi, subject to πi = piµi(vi − pi)−Qi − kiµ
2

i (1− θ)2(vi − pi)
2 ≥ 0, (15)

for i = 1, 2. We find that the largest value of Qi can be chosen when πi = 0.14

From this fact, the following equilibrium quantity of playing talent of each club can

13For the calculation of Sp∗, see Appendix A.
14See Appendix B.
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be obtained.

Qw∗

1 =

[

1

4

(

µ1

1 + k1µ1(1− θ)2

)
1−2α

1−2α+2β
(

µ2

1 + k2µ2(1− θ)2

)
2β

1−2α+2β

]

1

1−2α−2β

, (16)

Qw∗

2 =

[

1

4

(

µ1

1 + k1µ1(1− θ)2

)
2β

1−2α+2β
(

µ2

1 + k2µ2(1− θ)2

)
1−2α

1−2α+2β

]

1

1−2α−2β

. (17)

The superscript w∗ indicates the equilibrium outcome in the case where both clubs are

win maximizers.

As is a similar manner to the profit maximizers’ league, we show other equilibrium

outcomes by using the expression of vw∗

1 = (Qw∗

1 )α(Qw∗

2 )β and vw∗

2 = (Qw∗

1 )β(Qw∗

2 )α:

pw∗

1 =
{1 + 2k1µ1(1− θ)2}vw∗

1

2{1 + k1µ1(1− θ)2}
, pw∗

2 =
{1 + 2k2µ2(1− θ)2}vw∗

2

2{1 + k2µ2(1− θ)2}
. (18)

Aw∗

1 =
µ1v

w∗

1

2{1 + k1µ1(1− θ)2}
, Aw∗

2 =
µ2v

w∗

2

2{1 + k2µ2(1− θ)2}
. (19)

aw∗

1 =
µ1(1− θ)vw∗

1

2{1 + k1µ1(1− θ)2}
, aw∗

2 =
µ2(1− θ)vw∗

2

2{1 + k2µ2(1− θ)2}
, (20)

Ew∗

1 =
µ1θv

w∗

1

2{1 + k1µ1(1− θ)2}
, Ew∗

2 =
µ2θv

w∗

2

2{1 + k2µ2(1− θ)2}
, (21)

where Aw∗

i denotes the resulting attendance of club i’s home match, that is, µi(v
w∗

i −

pw∗

i ).
Social welfare in the win maximizer’s league is as follows:15

Sw∗ =
Qw∗

1

2

[

1− 2d1µ1θ
2

1 + k1µ1(1− θ)2
+

(

µ2{1 + k1µ1(1− θ)2}

µ1{1 + k2µ2(1− θ)2}

)

1
1−2α+2β

(

1− 2d2µ2θ
2

1 + k2µ2(1− θ)2

)

]

. (22)

4 Analysis

4.1 In each league

We investigate the effect of a uniform relative emission standard on the equilibrium

outcome in each league. First, we examine the comparative statics of some equilibrium

outcomes of each club in θ. The results are as follows.

Proposition 1. For i = 1, 2, l = p, w,

∂Ql∗
i

∂θ
≥ 0,

∂Al∗
i

∂θ
≥ 0,

∂El∗
i

∂θ
> 0,

15Since the calculation of Sw∗ is the same process as that of Sp∗, we omit to indicate how to calculate

Sw∗.
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where strict inequality holds when θ ∈ [0, 1).

Proof. See Appendix C.

These results imply that the equilibrium quantity of playing talent, attendance,

and emissions of each club are smaller if the uniform emission standard tightens more

regardless of whether it is in the profit maximizers’ league or win maximizers’ league.

This is because each club must decrease its emissions more than they already do. Since

emissions are related to attendance, each club decreases its quantity of playing talent.

Similar results are obtained by Ebert [4], who shows that tightening standards leads to

a decrease in the firm’s output in several types of market competition in the framework

of industrial organization. Unfortunately, the comparative statistics of the equilibrium

ticket price and abatement effort in θ are ambiguous. This is due to the possibility that

the abatement effort might increase by relaxing the standard. If relaxing the standard

causes the gross amount of emissions to increase, it might also cause the abatement

effort to increase since only the ratio of gross and net emissions of pollution is regulated.

Further, the equilibrium ticket price depends on the magnitude of marginal abatement

costs, and therefore, the sign of the comparative statics in θ is ambiguous.

[Incert Figures 1, 2, and 3]

Figures 1, 2, and 3 show the relationship between the equilibirum abatement effort

and ticket price of each club and θ for some cases of parameter; α = 1/8, β = 1/16,

µ1 = 3/4, µ2 = 1/2. In Figure 1, where both clubs has the symmetric abatement cost

function (k1 = k2 = 1), the equilibrium ticket price decreases in θ. However, in Figure

2 and 3, where the difference of ki between the two clubs are large (|k1 − k2| = 3),

the equilibrium ticket price of the club with a larger ki does not always monotonically

decreases in θ; it may increase in the range of θ that the equilibrium abatement effort

increases.

Second, we derive the ratio of the equilibrium outcome between the two clubs. In

particular, we use the ratio of the quantity of playing talent between two clubs Q1/Q2 as

a measure of competitive balance and call it a win ratio because it is derived by the ratio

of the win percentage between two clubs, {Q1/(Q1+Q2)}/{Q2/(Q1+Q2)}. This is one

common way of measuring competitive balance (e.g. Szymanski [19]; Szymanski and

Késenne [21]; Vrooman [23]; Dietl et al. [2]; Késenne [12]); the league is fully balanced

when the win ratio is equal to 1 and less balanced when it is lower or higher than

1. We show the results in Proposition 2. We note that we exclude the following two
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cases, θ = 1 concerning al∗1 /a
l∗
2 and θ = 0 concerning El∗

1 /E
l∗
2 , in Proposition 2 because

al∗1 = al∗2 = 0 when θ = 1 and El∗
1 = El∗

2 = 0 when θ = 0 for l = p, w.

Proposition 2. The ratio between the equilibrium quantity of playing talent, atten-

dance, abatement efforts, and the emissions levels of the clubs in each league are as

follows. Suppose θ = 1. Then, for l = p, w, Ql∗
1 /Q

l∗
2 , Al∗

1 /A
l∗
2 , and El∗

1 /E
l∗
2 > 1.

Suppose θ ∈ [0, 1). Then, for l = p, w,

Ql∗
1

Ql∗
2

,
Al∗

1

Al∗
2

,
al∗1
al∗2

,
El∗

1

El∗
2

> 1 if and only if 0 < k1 < k2 +
µ1 − µ2

µ1µ2(1− θ)2
.

Proof. See Appendix D.

As is shown by Madden [16], club 1, which has a larger fanbase, hires a larger

quantity of playing talent than club 2 when there is no emission restriction. The win

ratio is always larger than 1; therefore, club 1 will have a better chance of winning the

league. However, under a uniform relative emission standard, club 1 does not always

hire more playing talent than club 2 because each club must abate its emissions and its

cost can be different between the two clubs: club 2 will have a better chance of winning

the league despite µ1 > µ2 if its abatement cost condition is much better than that of

club 1. The club with the advantage in terms of environmental measures will win the

league. Concerning pl∗1 /p
l∗
2 , it is too difficult to show the condition of its magnitude

relation.

Below, we focus on the effects of the uniform relative emission standard on compet-

itive balance and social welfare. The following proposition shows whether the shift of

θ improves the competitive balance in each league or not.16

Proposition 3. Suppose θ = 1. Then, ∂(Ql∗
1 /Q

l∗
2 )/∂θ = 0, for l = p, w. Suppose

θ ∈ [0, 1). Then, for l = p, w,

Ql∗
1

Ql∗
2

≤ 1,
∂(Ql∗

1 /Q
l∗
2 )

∂θ
> 0, when k1 ≥ k2 +

µ1 − µ2

µ1µ2(1− θ)2
,

Ql∗
1

Ql∗
2

> 1,
∂(Ql∗

1 /Q
l∗
2 )

∂θ
≥ 0, when

µ2

µ1

k2 ≤ k1 < k2 +
µ1 − µ2

µ1µ2(1− θ)2
,

Ql∗
1

Ql∗
2

> 1,
∂(Ql∗

1 /Q
l∗
2 )

∂θ
< 0, when 0 < k1 <

µ2

µ1

k2.

Proof. See the appendix E.

16We use the word “improve” which means that the strength of the two teams is moving toward

equalization.
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The second case of Proposition 3 implies that the competitive balance improves

when there is a tightened uniform relative emission standard if the abatement cost

conditions of both clubs, k1 and k2, are almost the same. This is because the quantity

of playing talent and emissions of club 1 are larger than those of club 2; therefore,

tightening the standard leads club 1 to reduce emissions more. The first and third

cases of Proposition 3 imply that the competitive balance improves when the standard

is relaxed if there is a sufficiently large difference between k1 and k2. Relaxing the

standard enables the club with inferior abatement cost conditions, that is, a larger ki,

to increase the quantity of playing talent more than the club with better abatement

conditions: this reduces the influence of the marginal abatement cost on the decision

of the quantity of playing talent in the club with a larger ki more. If both clubs have

the same magnitude of their fanbases µ1 = µ2, (µ1 − µ2)/{µ1µ2(1− θ)2} becomes zero,

and then, whether k1 is larger than k2 only matters.

Now, we examine the effect of the uniform relative emission standard on social

welfare. Unfortunately, it is too difficult to derive the behavior of Sl∗ on θ ∈ [0, 1].

[Incert Figure 4]

Figure 4 shows the relationship between social welfare and θ for some cases of

parameter; α = 1/8, β = 1/16, µ1 = 3/4, µ2 = 1/2. In Figure 4 (a), where both clubs

has the symmetric abatement cost function (k1 = k2 = 1), social welfare seems to be

concave in θ. However, in Figures 4 (b) and 4 (c), where the difference of ki between

the two clubs are large (|k1 − k2| = 3), social welfare is not concave in θ.

Therefore, we focus on the following two representative cases. One is that the

standard is made slightly tougher than in the absence of the standard, θ = 1. The other

is that the standard is slightly relaxed to a zero-emission standard, θ = 0. Regarding

the former case, we obtain the following proposition.

Proposition 4. For l = p, w,
∂Sl∗

∂θ

∣

∣

∣

∣

θ=1

< 0.

Proof. See Appendix F.

Proposition 4 implies that social welfare improves by tightening the standard marginally

when the standard is set to an unrestricted emissions level, θ = 1. The intuition behind

Proposition 4 is as follows. Suppose θ = 1. When the league decides to decrease θ from

1, it directly causes the marginal abatement costs of each club to increase, whereas it

also directly causes marginal environmental damage in each town to decrease. In this

10



case, the latter effect is larger than the former. The increase of the marginal abate-

ment costs of each club is 0 as the abatement cost function of club i is kia
2
i and ai

is (1 − θ)µi(vi − pi). However, a decrease of marginal environmental damage in each

town is positive since the environmental damage function in town i is diE
2
i and Ei is

θµi(vi − pi).

Regarding the latter case, we obtain the following proposition.

Proposition 5. For l = p, w,
∂Sl∗

∂θ

∣

∣

∣

∣

θ=0

> 0.

Proof. See Appendix G.

Proposition 5 implies that social welfare improves when the standard is marginally

relaxed in the case that a zero-emission standard is imposed, θ = 0: a zero-emission

standard is not good in terms of social welfare. The intuition behind the proposition

is as follows. Suppose θ = 0. When the league decides to increase θ from 0, a decrease

in marginal abatement costs of each club is larger than an increase in marginal envi-

ronmental damages in each town. We find that the latter is zero, whereas the former

is positive. This is due to the functional forms of abatement cost and environmental

damage as is a similar explanation of Proposition 4.

We summarize propositions 3, 4, and 5. A few regulations could improve social

welfare without changing the competitive balance compared to no regulations since

∂(Q∗

1/Q
∗

2)/∂θ = 0 and ∂Sl∗/∂θ < 0 when θ = 1 from Propositions 3 and 4. However, the

standard set to a zero-emission level is not desirable for social welfare since ∂Sl∗/∂θ > 0

when θ = 0 from Porposition 5. The competitive balance can vary with θ; therefore, it

can also be improved if the league can choose θ well, paying attention to the magnitude

relations of k1 and k2.

4.2 Between the two leagues

We compare the equilibrium quantity of playing talent, attendance, abatement effort,

emission, and ticket price of each club between the two leagues. We note that ap∗i =

aw∗

i = 0 when θ = 1 and Ep∗
i = Ew∗

i = 0 when θ = 0 (i = 1, 2). Concerning the results

of other comparisons for θ ∈ [0, 1], the following proposition shows the results.

Proposition 6. For i = 1, 2,

Qp∗
i

Qw∗

i

,
Ap∗

i

Aw∗

i

,
ap∗i
aw∗

i

,
Ep∗

i

Ew∗

i

,
pp∗i
pw∗

i

< 1.

11



Proof. See Appendix H.

The equilibrium quantity of playing talent, attendance, abatement effort, emission,

and ticket price are larger in a win maximizers’ league than in a profit maximizers’

league. These results are consistent with those of Madden [16] when there is no restric-

tion of emissions, θ = 1.

When we compare social welfare between the two leagues, we do not obtain a clear

result due to the formulas being disorganized. We focus on a very specific case: k1µ1 =

k2µ2 and d1µ1 = d2µ2 holds. As is seen in Appendix D, the differences in the equilibrium

outcome between the two clubs depend only on the difference between µ1 and µ2 under

the condition k1µ1 = k2µ2; These results are identical to those of Madden [16] in a

case that does not deal with environmental problems. This is because the condition

k1µ1 = k2µ2 creates an influence of marginal abatement costs of club i on its decision

of quantity of playing talent to be identical to that of club j. Under the condition

k1µ1 = k2µ2 and d1µ1 = d2µ2, the differences of environmental damages between towns

i and j depends only on the difference between µ1 and µ2.
17 Under this specific case, the

result of welfare comparison between the two leagues are summed up in the following

proposition.

Proposition 7. Suppose that k1µ1 = k2µ2 and d1µ1 = d2µ2. Then, the condition that

social welfare is larger in the win maximizers’ league than that in the profit maximizers’

league is narrower in the model of this study than the model that does not include any

environmental problem.

Proof. See Appendix I.

The intuition behind Proposition 7 is as follows. In the model of this study, an

increase in the quantity of playing talent increases the common value of the match for

spectators, thereby increasing attendance, which in turn causes an increase in gross

emissions as well as environmental damage. Under a restriction of emissions, each

club must abate its emissions and its costs for each club. It costs more in a win

maximizers’ league than in a profit maximizers’ league since the gross emission is larger

in a win maximizers’ league than in a profit maximizers’ league. Therefore, the condition

Sw∗ > Sp∗ is narrower in this study’s model than in a model that does not address

environmental problems.

17Under the conditions, Ql∗
1 /Ql∗

2 = D1(E
l∗
1 )/D2(E

l∗
2 ) = (µ1/µ2)

1/(1−2α+2β).
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5 Concluding remarks

This study theoretically examines the effects of a uniform relative emission standard on

the equilibrium outcome of a professional sports league. We also investigate whether it

improves the competitive balance and social welfare in the league.

Our main findings are as follows. Under a uniform relative emission standard, a

club with even a smaller fanbase will have a better chance of winning the league if its

abatement cost condition is much better than that of a club with larger fanbase. A

few regulations could improve social welfare without changing the competitive balance

compared to no regulations. However, a standard set to a zero-emission level is not

desirable for social welfare. The competitive balance can vary with the degree of the

regulation; therefore, it could also be improved if the league chooses the right degree,

paying attention to the abatement cost conditions of both clubs.

We finally discuss three points. First, in this study, we assume that talent is in per-

fectly elastic supply. If we analyze the case that talent is in perfectly inelastic supply,

we can use other theoretical models, a closed case in the model of Vrooman [23], for

example. Unfortunately, simply applying a uniform emissions standard to the model in

Vrooman [23] does not enable us to derive the equilibrium outcome explicitly because

the best response function becomes more dimensional. To solve this problem, the inge-

nuity of the analysis or model is needed. Second, we can consider other environmental

policies: emission tax, quotas, and tradable emission permits. A welfare superiority

among environmental policies is also a major interest in environmental economics.18 It

is important to note that the equilibrium results in this study are explicitly derived

successfully because a uniform relative emission standard is treated in Madden [16]’s

model, and could not be derived successfully for other environmental policies. Finally,

we assume the case that pollution relates to the number of spectators. However, we

can consider the case wherein pollution does not relate to the number of spectators:

the light pollution of the stadium. These are issues for future research.

18Lahiri and Ono [13] compares a relative emission standard and an emission tax in terms of social

welfare by focusing on the effects of equivalent changes between the two regulations.
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Appendix A

How to derive social welfare in profit maximizers’ league

Social welfare is defined in (3). We divide social welfare into two categories S1 and S2.

S1 represents social welfare in club 1’s hometown and S2 does that in club 2’s. First,

we derive S1 by using (6).

S1 =

∫ v1−psb
1

0

µ1(v1 − psb1 − x)dx+ π1 −D1(E1),

=
µ1Q

2α
1 Q2β

2

8{1 + k1µ1(1− θ)2}2
+

{1 + 2k1µ1(1− θ)2}µ1Q
2α
1 Q2β

2

4{1 + k1µ1(1− θ)2}2
−Q1 −

{k1(1− θ)2 + d1θ
2}µ2

1Q
2α
1 Q2β

2

4{1 + k1µ1(1− θ)2}2
,

The first term represents club 1’s spectators’ surplus, the second term the revenue of

club 1, the third the expenditure on playing talent of club 1, and the last term the sum

of the abatement cost of club 1 and the environmental damage in club 1’s hometown.

Summing up the above expression in the equilibrium and then, we find

Sp∗
1 = Qp∗

1

[

µ1(Q
p∗
1 )2α−1(Qp∗

2 )2β

8{1 + k1µ1(1− θ)2}2
{3 + 2k1µ1(1− θ)2 − 2d1µ1θ

2} − 1

]

. (23)

By using the result of Appendix D, Qp∗
2 becomes

Qp∗
2 =

[

µ1{1 + k2µ2(1− θ)2}

µ2{1 + k1µ1(1− θ)2}

]
−1

1−2α+2β

Qp∗
1 . (24)

Substituting Qp∗
2 in (24) for Qp∗

2 in (23) and summing up the expression in square

brackets by using (8), we obtain the former parts in (14). The same process for S2 as

for S1 yields the latter parts in (14).

Appendix B

How to derive the equilibrium quantity of playing talent of each

club in the case that clubs are win maximizers

Given Qj > 0, we derive such prices that the budget constraint of club i is the following

case: πi ≥ π̄ where π̄ is non-negative constant (π̄ ≥ 0). Solving πi − π̄ = 0 for pi, we

14



obtain the following prices:

pLi =
{1 + 2kiµi(1− θ)2}µiQ

α
i Q

β
j −

√

µ2
iQ

2α
i Q2β

j − 4µi(Qi + π̄){1 + kiµi(1− θ)2}

2{1 + kiµi(1− θ)2}µi

,

pHi =
{1 + 2kiµi(1− θ)2}µiQ

α
i Q

β
j +

√

µ2
iQ

2α
i Q2β

j − 4µi(Qi + π̄){1 + kiµi(1− θ)2}

2{1 + kiµi(1− θ)2}µi

,

where µ2
iQ

2α
i Q2β

j − 4µi(Qi + π̄){1 + kiµi(1 − θ)2} ≥ 0.19 Subsequently, we derive the

range of Qi where µ2
iQ

2α
i Q2β

j − 4µi(Qi + π̄){1 + kiµi(1 − θ)2} ≥ 0 and show that the

upper limit of Qi in the range is maximized at the case that π̄ = 0. The previous

equation is transformed into the following expression:

µ2

iQ
2β
j Q2α

i − 4µi{1 + kiµi(1− θ)2}Qi ≥ 4µi{1 + kiµi(1− θ)2}π̄. (25)

The first term of the left-hand side of (25) is the monotonically increasing function in

Qi that satisfies the Inada condition and the second term of that is the linear function

in Qi that passes through the origin. Therefore, we find that the left-hand side of (25)

is non-negative in the range that Qi ∈
[

0, Q̄
]

, where

Q̄ =

(

µiQ
2β
j

4{1 + kiµi(1− θ)2}

)
1

1−2α

. (26)

The right-hand side of (25) is a non-negative constant, and therefore, the range of Qi

that satisfies (25) is included in the range that Qi ∈
[

0, Q̄
]

if the right-hand side is not

so large. A decrease of π̄ makes the range wider. Qi is the largest when π̄ = 0, that is,

Qi = Q̄. This is the best response function for club i. We note that pLi = pHi in this

case. By solving the two best response functions of both clubs concerning Q1 and Q2,

we obtain the equilibrium quantity of playing talent for each club.

Appendix C

Proof of Proposition 1

Proof. Partially differentiating Ql∗
1 and Ql∗

2 by θ, we obtain

∂Ql∗
1

∂θ
=

2(1− θ)Ql∗
1 {(1− 2α)k1µ1 + 2βk2µ2 + (1− 2α + 2β)(1− θ)2k1k2µ1µ2}

(1− 2α + 2β)(1− 2α− 2β){1 + k1µ1(1− θ)2}{1 + k2µ2(1− θ)2}
≥ 0,

∂Ql∗
2

∂θ
=

2(1− θ)Ql∗
2 {2βk1µ1 + (1− 2α)k2µ2 + (1− 2α + 2β)(1− θ)2k1k2µ1µ2}

(1− 2α + 2β)(1− 2α− 2β){1 + k1µ1(1− θ)2}{1 + k2µ2(1− θ)2}
≥ 0,

19When µ2
iQ

2α
i Q2β

j − 4µi(Qi + π̄){1+ kiµi(1− θ)2} < 0, there are no positive prices that satisfy the

budget constraint.
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for l = p, w. The strict inequality holds when θ ̸= 1.

Partially differentiating Al∗
i by θ, we obtain the following result.

∂Al∗
i

∂θ
=
(µi

2

)





(

∂vl∗i
∂θ

)

{1 + kiµi(1− θ)2}+ 2vl∗i kiµi(1− θ)

{1 + kiµi(1− θ)2}2



 ≥ 0, (27)

where ∂vl∗i /∂θ = α(Ql∗
i )

α−1(Ql∗
j )

β(∂Ql∗
i /∂θ)+β(Ql∗

i )
α(Ql∗

j )
β−1(∂Ql∗

j /∂θ) ≥ 0 from ∂Ql∗
i /∂θ ≥

0 for i, j = 1, 2, i ̸= j, l = p, w. The strict inequality holds when θ ̸= 1.

We easily find ∂El∗
i /∂θ > 0 since ∂El∗

i /∂θ = Al∗
i + θ∂Al∗

i /∂θ with (11), (19), and

(27).

Appendix D

Proof of Proposition 2

Proof. Calculating the ratio of the equilibrium outcomes between the two clubs, we

obtain the following results: for l = p, w,

Ql∗
1

Ql∗
2

=

[

µ1{1 + k2µ2(1− θ)2}

µ2{1 + k1µ1(1− θ)2}

]
1

1−2α+2β

,
Al∗

1

Al∗
2

,
al∗1
al∗2

,
El∗

1

El∗
2

=

[

µ1{1 + k2µ2(1− θ)2}

µ2{1 + k1µ1(1− θ)2}

]

1−α+β

1−2α+2β

,

pl∗1
pl∗2

=

[

{

1 + 2k1µ1(1− θ)2

1 + 2k2µ2(1− θ)2

}1−2α+2β {
1 + k2µ2(1− θ)2

1 + k1µ1(1− θ)2

}1−α+β (
µ1

µ2

)α−β
]

1

1−2α+2β

.

For Ql∗
1 /Q

l∗
2 , we find the following relation.

Ql∗
1

Ql∗
2

> 1 if and only if
µ1{1 + k2µ2(1− θ)2}

µ2{1 + k1µ1(1− θ)2}
> 1,

for l = p, w. Solving the necessary and sufficient condition for k1, we obtain the

magnitude relation of Ql∗
1 /Q

l∗
2 in Proposition 2. With respect to other ratio Al∗

1 /A
l∗
2 ,

al∗1 /a
l∗
2 , and El∗

1 /E
l∗
2 , the same proof can be applied. Summarizing the above results

yields Proposition 2.

Appendix E

Proof of Proposition 3

Proof. Partially differentiating Ql∗
1 /Q

l∗
2 by θ, we obtain

∂(Ql∗
1 /Q

l∗
2 )

∂θ
=

2(1− θ)(k1µ1 − k2µ2)

(1− 2α + 2β){1 + k1µ1(1− θ)2}{1 + k2µ2(1− θ)2}

(

Ql∗
1

Ql∗
2

)

, (28)
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for l = p, w. When θ = 1, (28) becomes 0. When θ ∈ [0, 1), its sign coincides with the

sign of k1µ1 − k2µ2, that is,

∂(Ql∗
1 /Q

l∗
2 )

∂θ
> 0, if and only if k1 >

µ2

µ1

k2, (29)

for l = p, w. Summing up Proposition 2 and (29), we obtain proposition 3.

Appendix F

Proof of proposition 4

Proof. Partially differentiating Sp∗ and Sw∗ by θ and substituting 1 for θ, we find

∂Sp∗

∂θ

∣

∣

∣

∣

θ=1

= −
1

α
Qp∗

1

{

d1µ1 + d2µ2

(

µ2

µ1

)
1

1−2α+2β

}

< 0,

∂Sw∗

∂θ

∣

∣

∣

∣

θ=1

= −2Qw∗

1

{

d1µ1 + d2µ2

(

µ2

µ1

)
1

1−2α+2β

}

< 0.

Appendix G

Proof of proposition 5

Proof. Partially differentiating Sp∗ and Sw∗ by θ and substituting 0 for θ, and then, we

obtain the following calculation results:

∂Sp∗

∂θ

∣

∣

∣

∣

θ=0

=
Qp∗

1 (F p +Gp)

α(1− 2α + 2β)(1− 2α− 2β)(1 + k1µ1)2(1 + k2µ2)2
, (30)

∂Sw∗

∂θ

∣

∣

∣

∣

θ=0

=
2Qw∗

1 (Fw +Gw)

(1− 2α + 2β)(1− 2α− 2β)(1 + k1µ1)2(1 + k2µ2)2
, (31)

where

F p = (1 + k2µ2)
{

(2− 7α+ 6α2 − 2β2)k1µ1 + (1− 2α)2k21µ
2
1 + (3− 4α)βk2µ2

+(2− 7α+ 6α2 + 5β − 8αβ − 2β2)k1k2µ1µ2 + (1− 2α)(1− 2α+ 2β)k21k2µ
2
1µ2

}

,

Gp = (1 + k1µ1)

{

µ2(1 + k1µ1)

µ1(1 + k2µ2)

}
1

1−2α+2β
{

(3− 4α)βk1µ1 + (2− 7α+ 6α2 − 2β2)k2µ2

+(2− 7α+ 6α2 + 5β − 8αβ − 2β2)k1k2µ1µ2 + (1− 2α)2k22µ
2
2 + (1− 2α)(1− 2α+ 2β)k1k

2
2µ1µ

2
2

}

,

17



Fw = (1 + k2µ2)
{

(1− 3α+ 2α2 − 2β2)k1µ1 + βk2µ2 + (1− 2α+ 2β)(1− α− β)k1k2µ1µ2

}

,

Gw = (1 + k1µ1)

{

µ2(1 + k1µ1)

µ1(1 + k2µ2)

}
1

1−2α+2β
{

βk1µ1 + (1− 3α+ 2α2 − 2β2)k2µ2

+(1− 2α+ 2β)(1− α− β)k1k2µ1µ2} .

The denominators of (30) and (31), Qp∗
1 , and Qw∗

1 are positive, and therefore, we

check the signs of F p, Gp, Fw, and Gw. First, we check the signs of F p and Gp. From

the assumption that 1/2 > α + β, we easily find that 3 − 4α > 0 and 1 − 2α > 0.

Rearranging this assumption, we obtain 1 > 2α + 2β and 2 > 4α + 4β. Using this

inequality, we find the following relation.

2− 7α + 6α2 − 2β2 = (2− 3α)(1− 2α)− 2β2,

> (4α + 4β − 3α)(2α + 2β − 2α)− 2β2,

= 2αβ + 6β2 > 0.

Concerning 2−7α+6α2+5β−8αβ−2β2, 2−7α+6α2−2β2 is positive from the above

calculation. With respect to 5β− 8αβ, this is also positive because β+4β(1− 2α) > 0.

The signs of F p and Gp are positive respectively, and therefore, the sign of (30) is

positive.

Second, we check the signs of Fw and Gw. Concerning 1− 3α+2α2 − 2β2, we show

that its sign is positive by using the condition that 1 > 2α + 2β:

1− 3α + 2α2 − 2β2 = (1− α)(1− 2α)− 2β2,

> (2α + 2β − α)(2α + 2β − 2α)− 2β2,

= 2αβ + 2β2 > 0.

From the above results, we find that signs of Fw and Gw are positive respectively, and

therefore, the sign of (31) is positive.

Appendix H

Proof of Proposition 6

Proof. First, we compare the equilibrium quantity of playing talent of each club between

the two leagues. From (8) and (16), (9) and (17), we find

Qp∗
i

Qw∗

i

= (2α)
1

1−2α−2β , (32)
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for i = 1, 2. Since 2α < 1, Qp∗
i < Qw∗

i .

Second, we compare the equilibrium emissions of club i. By using (13), (21), and

(32), we find

Ep∗
i

Ew∗

i

=
vp∗i
vw∗

i

,

=

(

Qp∗
i

Qw∗

i

)α(Qp∗
j

Qw∗

j

)β

,

= (2α)
α+β

1−2α−2β < 1,

for i, j = 1, 2, i ̸= j. Concerning other ratios Ap∗
i /Aw∗

i , ap∗i /aw∗

i , and pp∗i /pw∗

i , the same

calculation results as the above can be obtained. Summarizing the above results yields

Proposition 6.

Appendix I

Proof of Proposition 7

Proof. Suppose that k1µ1 = k2µ2 and d1µ1 = d2µ2. Then, S
p and Sw is

Sp∗ = Qp∗
1

{

1 +

(

µ2

µ1

)
1

1−2α+2β

}

[

3− 4α + 2(1− 2α)k1µ1(1− θ)2 − 2d1µ1θ
2

4α{1 + k1µ1(1− θ)2}

]

,

Sw∗ = Qw∗

1

{

1 +

(

µ2

µ1

)
1

1−2α+2β

}

[

1− 2d1µ1θ
2

2{1 + k1µ1(1− θ)2}

]

.

The ratio of them is as follows.

Sp∗

Sw∗

= (2α)
2α+2β

1−2α−2β

[

3− 4α + 2(1− 2α)k1µ1(1− θ)2 − 2d1µ1θ
2

1− 2d1µ1θ2

]

,

If there are no environmental problems, that is, ki = di = 0, the above equation becomes

Sp∗

Sw∗

= (2α)
2α+2β

1−2α−2β (3− 4α) .

This condition is identical to the condition obtained by Madden [16]: Sp∗ < Sw∗ if and

only if

(2α)2α+2β (3− 4α)1−2α−2β < 1. (33)
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If there are environmental problems and each firm must abate its emissions costly, that

is, di > 0 and ki > 0, we obtain Sp∗ < Sw∗ if and only if

(2α)2α+2β

[

3− 4α + 2(1− 2α)k1µ1(1− θ)2 − 2d1µ1θ
2

1− 2d1µ1θ2

]1−2α−2β

< 1. (34)

When we compare the contents of the second factor on the left-hand side of (33) and

(34), we obtain

3− 4α−
3− 4α + 2(1− 2α)k1µ1(1− θ)2 − 2d1µ1θ

2

1− 2d1µ1θ2
= −

2(1− 2α){2d1µ1θ
2 + k1µ1(1− θ)2}

1− 2d1µ1θ2
,

< 0.

From the above result, we find

(2α)2α+2β (3− 4α)1−2α−2β < (2α)2α+2β

[

3− 4α + 2(1− 2α)k1µ1(1− θ)2 − 2d1µ1θ
2

1− 2d1µ1θ2

]1−2α−2β

.

The result implies that the condition that social welfare is larger in the win maximizers’

league than in the profit maximizers’ league when there are environmental problems and

the emissions that are restricted are narrower than that when there are no environmental

problems.
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Figure 1: The relationships among ap∗i , pp∗i , and θ in the case that k1=1, k2=1; α = 1/8,

β = 1/16, µ1 = 3/4, µ2 = 1/2
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Figure 2: The relationships among ap∗i , pp∗i , and θ in the case that k1=4, k2=1; α = 1/8,

β = 1/16, µ1 = 3/4, µ2 = 1/2
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Figure 3: The relationships among ap∗i , pp∗i , and θ in the case that k1=1, k2=4; α = 1/8,

β = 1/16, µ1 = 3/4, µ2 = 1/2

25



0.2 0.4 0.6 0.8 1.0
θ

0.025

0.030

0.035

0.040

0.045

Sp

(a) k1=1, k2=1

0.2 0.4 0.6 0.8 1.0
θ

0.015

0.020

0.025

0.030

0.035

0.040

Sp

(b) k1=4, k2=1

0.2 0.4 0.6 0.8 1.0
θ

0.015

0.020

0.025

0.030

0.035

0.040

Sp

(c) k1=1, k2=4

Figure 4: The relationships between Sp∗ and θ in the case that α = 1/8, β = 1/16, µ1 = 3/4,

µ2 = 1/2
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