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Abstract

This paper proposes maximum (quasi)likelihood estimation for high dimen-

sional factor models with regime switching in the loadings. The model para-

meters are estimated jointly by the EM (expectation maximization) algorithm,

which in the current context only requires iteratively calculating regime prob-

abilities and principal components of the weighted sample covariance matrix.

When regime dynamics are taken into account, smoothed regime probabili-

ties are calculated using a recursive algorithm. Consistency, convergence rates

and limit distributions of the estimated loadings and the estimated factors are

established under weak cross-sectional and temporal dependence as well as het-

eroscedasticity. It is worth noting that due to high dimension, regime switching

can be identified consistently after the switching point with only one observa-

tion. Simulation results show good performance of the proposed method. An

application to the FRED-MD dataset illustrates the potential of the proposed

method for detection of business cycle turning points.
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1 Introduction

A great deal of attention has focused on the loading instability issue in high dimen-

sional factor models. For empirical evidences of parameter instability in macroeco-

nomic and financial time series, see for example, Banerjee, Marcellino and Masten

(2008), Stock and Watson (2009) and Korobilis (2013). Several procedures are pro-

posed to detect and/or estimate common abrupt breaks in the loadings, including

Cheng, Liao and Shorfheide (2016), Baltagi, Kao and Wang (2017, 2021), Bai, Han

and Shi (2020), and Ma and Su (2018), to mention a few. Other models of time

varying loadings, such as i.i.d./random walk, smooth change, vector autoregression

and threshold type, are studied in Bates, Plagborg-Moller, Stock and Watson (2013),

Su and Wang (2017), Mikkelsen, Hillebrand and Urga (2019) and Massacci (2017),

respectively.

An alternative approach of modeling loading instability is common regime switch-

ing. In business cycle analysis, several unobservable factors summarize the comove-

ments of many economic variables and the loadings measure the importance of factors

for each economic variable. The importance of each factor may be different depending

on fiscal policy (expansionary, contractionary, neutral), or monetary policy (expan-

sionary, contractionary), or the stage of the business cycle (peak, trough, expansion,

contraction), hence the loadings may switch synchronously between several states un-

der different scenarios. In stock return analysis, the loadings measure the impact of

the factor return on the expected return of each individual stock, hence the loadings

may switch synchronously depending on the stock market scenarios (bull versus bear

markets, high versus low volatility), see for example Gu (2005) and Guidolin and

Timmermann (2008) for related discussions. In bond return analysis, the yields of

bonds with different maturities are well captured by the level factor, the slope factor

and the curvature factor, see for example Cochrane and Piazzesi (2005) and Diebold

and Li (2006). The importance of each factor could be different depending on the

stock market volatility, or the stage of the business cycle, or the unemployment rate,

hence the loadings may also switch synchronously according to these state variables.

In general, large factor models with regime switching in the loadings could also be
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useful for other topics, such as tracking labor productivity.

There are only a few related results on large factor models with regime switching

in the loadings. Liu and Chen (2016) proposes an iterative algorithm for estimating

the model parameters and the hidden states based on eigen-decomposition and the

Viterbi algorithm, however, the asymptotic properties of the estimated parameters

are established only when the true states are known. Considering loadings as general

functions of some recurrent states, Pelger and Xiong (2021) develops nonparametric

kernel estimator for the loadings and the factors, and establishes the relevant asymp-

totic theory. However, Pelger and Xiong (2021) requires observable state variables.

In general, state variables may be misspecified or unobservable.

This paper proposes maximum (quasi)likelihood estimation for high dimensional

factor models with regime switching in the loadings when the state variables are

unobservable. This paper also proposes new criteria to consistently determine the

number of regimes and the number of factors in each regime. The model parameters

are estimated jointly by the EM algorithm, which in the current context only requires

calculating principal components iteratively.

More specifically, in the E-step, the probabilities of each regime at each time t

are calculated based on the observed data and the parameter values at the current

iteration using a recursive algorithm modified from Hamilton (1990), and then the

joint (log)likelihood of the observed data and the unobserved states are averaged with

respect to the calculated regime probabilities. In the M-step, the estimated loadings

for each regime are the principal components of the weighted sample covariance matrix

of the observed time series, where the weight on xt (the observed time series at time

t) equals the probability of that regime at time t. Since principal components can be

easily calculated even when N (the dimension of time series) is large, our method is

very easy to implement.

For the proposed algorithm, this paper establishes the convergence rates of the

estimated loading spaces and the estimated factor spaces, the limit distributions of the

estimated loadings and the estimated factors, the consistency of the estimated regime

probabilities, and the consistency of the estimated transition probability matrix when

the true state process is Markovian. Note that asymptotic analysis under the regime
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switching setup is more difficult than under the structural break setup, because the

pattern of regimes for the latter is much simpler.

These asymptotic results are essential in many empirical contexts. First, the limit

distributions of the estimated factors allow us to construct confidence intervals for

the true factors, which represent economic indices in many applications. The re-

sult on the estimated factor spaces implies that if the estimated factors are used in

factor-augmented forecasting (or factor-augmented VAR), the forecasting equation

(or the VAR equation) would have induced regime switching in the model parame-

ters. Second, for asset management, the estimated loadings of each regime allow us

to construct portfolios according to each specific market scenario. For structural dy-

namic factor analysis, consistently estimated loadings are also crucial for recovering

the impulse responses. Third, the consistency of the estimated regime probabilities

implies that for each xt, we can consistently identify which regime xt belongs to as

N → ∞. For asset management, this allows us to consistently identify the current
market scenario. For business cycle analysis, this allows us to consistently date turn-

ing points of the business cycle and detect new recessions or expansions, especially

when high frequency (weekly, daily) data is utilized.

For cases with small N , various methods have been proposed for estimating factor

models with regime switching. Kim (1994) proposes approximate Kalman filter for

likelihood evaluation and uses nonlinear optimization for likelihood maximization.

Kim and Yoo (1995) and Chauvet (1998) apply Kim (1994)’s method to a small

number of economic series and obtain recession probabilities and turning points very

close to the official NBER dates. Kim (1994) allows for regime switching in both

the factor mean and the factor loadings, but when N is large, Kim (1994)’s method

would be very time consuming and may have convergence problems1. Other methods,

such as Diebold and Rudebusch (1996) and Kim and Nelson (1998), assume stable

loadings and only focus on regime switching in the factor mean. If the loadings are

unstable, these methods are not applicable. More importantly, if there is only regime

switching in the factor mean, we can not consistently identify each regime even when

1This is because the number of parameters grows proportionally to N and the likelihood function
is calculated numerically and maximized by nonlinear optimization algorithm.
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N is large.

In contrast with Kim (1994), our method is fast and easy to implement even

when N is very large. The crucial point behind our EM algorithm is to ignore factor

dynamics2 and integrate out the factors in the likelihood function. If factors dynamics

are taken into account or factors are treated as parameters in the likelihood function,

the estimated loadings would not be the principal components of the weighted sample

covariance matrix, and consequently both the algorithm and the asymptotic analysis

would become infeasible. On the other hand, the efficiency loss of ignoring factor

dynamics is small when N is large.

This paper may also contribute to the literature on dating turning points of the

business cycle. Currently there are two main approaches for dating business cycle

using multiple time series. The first approach, aggregating then dating, is to date

business cycle by focusing on a few highly aggregated time series such as GDP, in-

dustrial production and nonfarm employment. The second approach, dating then

aggregating, is to date turning points in each disaggregated series and then aggregate

these turning points in some appropriate way, see Burns and Mitchell (1946), Hard-

ing and Pagan (2006) and Chauvet and Piger (2008). These papers only use a small

number of time series. Stock and Watson (2010, 2014) studies this issue using many

time series. This paper shows that it is possible to consistently identify turning points

if regime switching is synchronous and N is large enough. If N is small, consistency

is not possible no matter how large T is. This paper also shows that if N is large, it

is possible to consistently detect regime switching right after the turning point with

only one observation, thus the speed of detection could be improved significantly. If

N is small, we have to wait for enough observations from the new regime.

The rest of the paper is organized as follows. Section 2 introduces the model

setup and the estimation procedures. Section 3 presents the assumptions and the

asymptotic results. Section 4 proposes criteria for determining the number of regimes

and the number of factors in each regime. Section 5 presents simulation results.

2Factor dynamics are still allowed for the data generating process.
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Section 6 presents an empirical application of the proposed method to the FRED-

MD dataset. Section 7 concludes. All proofs are relegated to the appendix.

Through out the paper, (N, T ) → ∞ denotes N and T going to infinity jointly,

δNT = min{
√
N,
√
T}. p→ and

d→ denotes convergence in probability and convergence

in distribution, respectively. For matrix A, let ‖A‖, ‖A‖F , ρmax(A) and ρmin(A)
denote its spectral norm, Frobenius norm, largest eigenvalue and smallest eigenvalue,

respectively. Let PA = A(A
′A)−1A′ denote the projection matrix and MA = I − PA.

"w.p.a.1" denotes with probability approaching one.

2 Identification and Estimation

Consider the following factor model with regime switching: for i = 1, ..., N and

t = 1, ..., T,

xit = f
0′
t λ

0
ji + eit if zt = j, (1)

where λ0ji is an r
0
j dimensional vector of loadings for regime j, f

0
t is an r

0
zt
dimensional

vector of factors, zt is the state variable indicating which regime xit belongs to, and

eit is the error term allowed to have cross-sectional and temporal dependence as well

as heteroscedasticity. xit is observable and all of the right hand side variables are

unobservable. The number of regimes J0 and the number of factors in each regime

r0j (could be different across j) are fixed as (N, T )→∞ and assumed to be known in

this section and Section 3. How to consistently determine r0j and J
0 will be studied

in Section 4.

The factor process {f 0t , t = 1, ..., T} is allowed to be dynamic, and similar to the
principal component estimator (PCE) in Bai (2003) and the maximum likelihood esti-

mator (MLE) in Bai and Li (2012, 2016), factor dynamics are ignored when estimating

the model parameters, thus there is no need to model factor dynamics.

For the state process {zt, t = 1, ..., T}, the asymptotic results in Section 3.2 and
Section 4 are valid as long as 1

T

∑T

t=1 1zt=j
p→ q0j > 0 for j = 1, ..., J

0 (q0j = Pr(zt = j)

is the unconditional probability of regime j and 1zt=j = 1 if zt = j and 0 otherwise),

and Assumptions 1-3 and 5-7 in Section 3.1 hold conditioning on {zt, t = 1, ..., T}.
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Thus {zt, t = 1, ..., T} is allowed to be correlated with f 0s and eis for all i and s, and
we do not need to know the true model of {zt, t = 1, ..., T}.
In vector form, the model can be written as:

xt = Λ
0
jf
0
t + et if zt = j, for t = 1, ..., T, (2)

where Λ0j = (λ0j1, ..., λ
0
jN)

′, xt = (x1t, ..., xNt)
′ and et = (e1t, ..., eNt)

′. Let Λ0 =

(Λ01, ...,Λ
0
J0) and let E = (e1, ..., eT )

′ be the T ×N matrix of errors. When there are

no superscripts, Λj and Λ denote parameters as variables.

2.1 Identification

Since the factors are unobservable, regimes are defined in terms of the linear spaces

spanned by the loadings. Two regimes are different if their loading spaces are different,

and vice versa. More specifically, the identification condition is: for any j and k,

min
t

1

N

∥∥∥MΛ0
k
Λ0jf

0
t

∥∥∥
2

= min
t

1

N
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ C for some C > 0. (3)

A sufficient condition for (3) is:

lim
N→∞

1

N
Λ0′kMΛ0j

Λ0k is positive definite for any j and k, (4)

and min
t
‖ft‖ is nonzero.

Condition (4) requires lim
N→∞

1
N
(Λ0j ,Λ

0
k)
′(Λ0j ,Λ

0
k) to be full rank for any j and k. Thus

Λ0j and Λ
0
k are not allowed to share some columns, and columns of Λ

0
j could not be

linear combination of Λ0k and vice versa. An alternative sufficient condition for (3) is:

lim
N→∞

1

N
Λ0′kMΛ0j

Λ0k 6= 0 for any j and k, (5)

and min
t

∣∣g′jkft
∣∣ is nonzero,

where gjk is the eigenvector of lim
N→∞

1
N
Λ0′kMΛ0j

Λ0k corresponding to nonzero eigenvalue.

Condition (5) only requires that the linear spaces spanned by Λ0j and Λ
0
k are different.

Thus Λ0k and Λ
0
j are allowed to share some columns, and some columns of Λ

0
k are
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allowed to be linear combinations of the columns of Λ0j and vice versa, but Λ
0
k is not

allowed to be a subset of Λ0j . For example, if there are two regimes with two factors in

each regime and only the loadings of f2t (the second factor) switch across the regimes,

then condition (5) requires that mint |f2t| is nonzero.
Note that condition (4) does not rule out the possibility that any regime j can be

further decomposed into multiple regimes. Suppose the true model is xt = Λ
0
jf
0
t +et if

zt = j, j = 1, 2, 3, and (Λ
0
1,Λ

0
2,Λ

0
3) satisfies condition (4). If we consider Λ

0
1 as the first

regime and (Λ02,Λ
0
3) as the second regime, the true model can be equivalently written

as xt = Λ
0
1f
0
t +et if zt = 1, and xt = (Λ

0
2,Λ

0
3)f

∗
t +et if zt = 2 or 3, where f

∗
t = (f

0′
t , 0

′)
′

if zt = 2 and f ∗t = (0′, f0′t )
′
if zt = 3. The equivalent model also satisfies condition

(4). However, while plim 1
T

∑
zt=2 or 3

f ∗t f
∗′
t is positive definite, plim

1
T

∑
zt=2

f ∗t f
∗′
t and

plim 1
T

∑
zt=3

f ∗t f
∗′
t are not positive definite. To rule out the possibility that any regime

j can be further decomposed, we assume that

plim
1

|Aj|
∑

t∈Aj
f 0t f

0′
t is positive definite, (6)

where Aj denotes any subset of {t : zt = j} with cardinality |Aj| and lim |Aj |
T
> 0.

If 1
|Aj |

∑
t∈Aj f

0
t f

0′
t is not positive definite as T → ∞ for some Aj, then Aj and

{t : zt = j, t /∈ Aj} are considered as two separate regimes.

2.2 First Order Conditions

Consider the following log-likelihood function for Gaussian mixture in covariance:

l(Λ, σ2) = log[
∑J0

zT=1
...
∑J0

z1=1

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1, ..., zT )], (7)

where
∏T

t=1 L(xt |zt; Λ, σ2 ) is the density of (x1, ..., xT ) conditioning on (z1, ..., zT ),
Pr(z1, ..., zT ) is the joint probability of (z1, ..., zT ),

L(xt
∣∣zt = j; Λj, σ2 ) = (2π)−

N
2 |Σj|−

1
2 e−

1
2
x′tΣj

−1xt, (8)
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Σj is the covariance matrix of xt for regime j, and

Σj = ΛjΛ
′
j + σ

2IN . (9)

The above log-likelihood function avoids estimating the factors. If the factors

are estimated jointly with the loadings, we would not have the analytical first or-

der conditions presented below, and consequently the EM algorithm would become

infeasible.

Equation (7) is a misspecified log-likelihood function. First, the state process

{zt, t = 1, ..., T} is not specified yet, and the probability Pr(z1, ..., zT ) depends on how
we model the state process. Second, similar to the principal component estimator in

Stock and Watson (2002) and Bai (2003), equation (9) ignores the cross-sectional and

serial dependence and heteroscedasticity of the error term. We may also take into

account the heteroscedasticity as Doz, Giannone and Reichlin (2012) and Bai and

Li (2012, 2016). With regime switching, the algorithm and the asymptotic analysis

would be much more complicated, but the results should be conceptually similar.

Third, the factor dynamics are ignored. As shown in Bai (2003) for PCE and in

Bai and Li (2012, 2016) for MLE, when there is no regime switching, the asymptotic

properties of the estimated factors and the estimated loadings are robust to the pres-

ence of the factor dynamics if both N and T are large. We shall show in Section 3 that

when there is regime switching, the asymptotic results are also robust to the pres-

ence of the factor dynamics. More importantly, ignoring the factor dynamics greatly

simplifies the computation algorithm for regime switching factor models. As shown

below, with factor dynamics ignored, we just need to calculate principal components

iteratively. If the factor dynamics are not ignored, Kim (1994)’s method would be

very time consuming and may have convergence problems if N is large3.

Fourth, equation (7) implicitly assumes that E(f 0t ) = 0 and E(f 0t f
0′
t ) is stable

within each regime, and E(f 0t f
0′
t ) is absorbed into ΛjΛ

′
j in equation (9). This does

3When there is no regime switching, as suggested by Doz et al. (2012), large N factor model
with factor dynamics can be calculated by the EM algorithm. However, when there are both regime
switching and factor dynamics, the EM algorithm also fails. This is because in the E-step we need
to calculate the likelihood for each possible state chain z1, ...., zT and there are (J

0)T possibilities,
and in the M-step numerical optimization is still needed.
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not matter, since all results of this paper still hold when E(f 0t ) 6= 0 and E(f 0t f 0′t ) is
unstable within regime, as long as Assumption 1 is satisfied.

First order conditions for Λ and σ2

The parameters Λ and σ2 are estimated by maximizing l(Λ, σ2). Define x1:t ≡
(x1, ..., xt) and z1:t ≡ (z1, ..., zt), and let ptj|T ≡ Pr(zt = j |x1:T ; Λ, σ2 ) denote the
probability of zt = j conditional on x1:T . Based on equation (7), it can be easily

verified that

∂l(Λ, σ2)

∂Λj
=

∑T

t=1

∂ logL(xt |zt = j; Λj, σ2 )
∂Λj

ptj|T

=
∑T

t=1
ptj|T (−Σ−1j Λj + Σ−1j xtx′tΣ−1j Λj), (10)

∂l(Λ, σ2)

∂σ2
=

∑T

t=1

∑J0

j=1

∂ logL(xt |zt = j; Λj, σ2 )
∂σ2

ptj|T , (11)

where equation (10) follows from

∂ log |Σj|
∂Λj

= 2Σ−1j Λj, (12)

∂x′tΣ
−1
j xt

∂Λj
= −2Σ−1j xtx′tΣ−1j Λj, (13)

see Chapter 14.3 in Andersen (2003) for the details on calculating these derivatives.

Set ∂l(Λ,σ
2)

∂Λj
to 0, we have

Σ−1j Λj = Σ−1j SjΣ
−1
j Λj, (14)

and Sj =
∑T

t=1
ptj|T xtx

′
t/
∑T

t=1
ptj|T .

Sj can be considered as sample covariance matrix for Σj based on importance sam-

pling. The weights ptj|T /
∑T

t=1 ptj|T depend on the importance of the sample xt for

regime j, the larger ptj|T is, the more important xt is for regime j.

From equation (9), we have ΣjΛj = Λj(Λ
′
jΛj + σ

2Ir0j ). Left multiply SjΣ
−1
j on

both sides, we have SjΛj = SjΣ
−1
j Λj(Λ

′
jΛj + σ

2Ir0j ). From equation (14), we have

Λj = SjΣ
−1
j Λj, thus

SjΛj = Λj(Λ
′
jΛj + σ

2Ir0j ). (15)
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If Λj is a solution for equation (15) and Λ
∗
j equals post-multiplying Λj by the eigenvec-

tor matrix of Λ′jΛj, then Λ
∗
j is also a solution for equation (15) and Λ

∗′
j Λ

∗
j is diagonal.

Thus we can directly choose the solution Λj with Λ
′
jΛj being diagonal. It follows

that the solution Λj is the eigenvectors of Sj and Λ
′
jΛj + σ

2Ir0j is the corresponding

eigenvalues. We show in Appendix G that σ2 satisfies the following condition:

σ2 =
1

N
tr(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1

1

T

∑T

t=1
ptj|T ΛjΛ

′
j). (16)

Note that we do not need to specify the state process {z1, ..., zT} when deriving the
first order conditions (15) and (16), and different models of {z1, ..., zT} correspond to
different ways of calculating ptj|T . In the EM algorithm presented below, we consider

{z1, ..., zT} as a Markov process regardless of what the true process of {z1, ..., zT} is.

2.3 EM Algorithm

Let q0 = (q01, ..., q
0
J0)

′ denote the unconditional regime probabilities, φ0 = (φ01, ..., φ
0
J0)

′

denote the initial probabilities of z1, Q
0 denote the (J0 × J0) matrix of transition

probabilities and Q0jk denote the probability of switching from state k to state j. If

there are no superscripts, q, Q and φ denote parameters as variables.

For any givenQ and φ, at the h-th iteration, let Λ̃(h) denote the estimated loadings,

σ̃2(h) denote the estimated variance, and Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
) denote the probabil-

ity of z1:T conditioning on x1:T and evaluated at θ̃
(h)
= (Λ̃(h), σ̃2(h), Q, φ). The EM

algorithm maximizes the expectation of the log-likelihood of (x1:T , z1:T ) with respect

to Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
), i.e.,

l(h)(Λ, σ2, Q, φ) ≡
∑J0

zT=1
...
∑J0

z1=1
log[

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1, ..., zT |Q, φ)]

×Pr(z1, ..., zT
∣∣∣x1:T ; θ̃

(h)
).

Considering zt as aMarkov process, Pr(z1, ..., zT |Q, φ) = Pr(z1 |φ)
∏T

t=2 Pr(zt |zt−1;Q).
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Thus

l(h)(Λ, σ2, Q, φ) =
∑J0

zT=1
...
∑J0

z1=1
[
∑T

t=1
logL(xt

∣∣zt; Λ, σ2 )

+
∑T

t=2
log Pr(zt |zt−1;Q) + log Pr(z1 |φ)] Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
)

=
∑T

t=1

∑J0

j=1
logL(xt

∣∣zt = j; Λj, σ2 )p̃
(h)
tj|T

+
∑T

t=2

∑J0

j=1

∑J0

k=1
logQjkp̃

(h)
tjk|T +

∑J0

k=1
log φkp̃

(h)
1k|T , (17)

where p̃
(h)
tjk|T = Pr(zt = j, zt−1 = k

∣∣∣x1:T ; θ̃
(h)
) and p̃

(h)
tj|T = Pr(zt = j

∣∣∣x1:T ; θ̃
(h)
) =

∑J0

k=1 p̃
(h)
tjk|T are the smoothed probabilities based on x1:T and θ̃

(h)
. Appendix H

presents a recursive algorithm for calculating p̃
(h)
tjk|T . From equations (12) and (13),

we have
∂ logL(xt|zt=j;Λj ,σ2 )

∂Λj
= −Σ−1j Λj + Σ−1j xtx′tΣ−1j Λj. Thus

∂
∑T

t=1 logL(xt |zt = j; Λj, σ2 )p̃
(h)
tj|T

∂Λj
=
∑T

t=1
(−Σ−1j Λj + Σ−1j xtx′tΣ−1j Λj)p̃(h)tj|T = 0,

and it follows that

Σ−1j Λj = Σ−1j S̃
(h)
j Σ

−1
j Λj, (18)

where S̃
(h)
j =

∑T

t=1
p̃
(h)
tj|T xtx

′
t/
∑T

t=1
p̃
(h)
tj|T .

Similar to equation (15), equation (18) implies that

S̃
(h)
j Λ̃

(h+1)
j = Λ̃

(h+1)
j (Λ̃

(h+1)′
j Λ̃

(h+1)
j + σ̃2(h+1)Ir0j ), (19)

thus the columns of Λ̃
(h+1)
j are the eigenvectors of S̃

(h)
j and the diagonal elements of

Λ̃
(h+1)′
j Λ̃

(h+1)
j + σ̃2(h+1)Ir0j are the corresponding eigenvalues. To save space, we show

in Appendix G that

σ̃2(h+1) =
1

N
tr(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1

1

T

∑T

t=1
p̃
(h)
tj|T Λ̃

(h+1)
j Λ̃

(h+1)′
j ). (20)

Remark 1 The second equality of equation (17) is crucial. Since factor dynamics

are ignored, L(x1:T |z1:T ; Λ, σ2 ) =
∏T

t=1 L(xt |zt; Λ, σ2 ), thus we only need to calculate

11



p̃
(h)
tj|T rather than the probability of the whole chain Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
). The latter

requires (J0)T calculations, which is hopeless when T is large. If factor dynamics are

not ignored, then L(x1:T |z1:T ; Λ, σ2 ) = L(x1 |z1:T ; Λ, σ2 )
∏T

t=2 L(xt |x1:t−1, z1:T ; Λ, σ2 ).
L(xt |x1:t−1, z1:T ; Λ, σ2 ) depends on the chain (z1, ..., zT ) through z1:t, thus we need to
calculate Pr(z1:t

∣∣∣x1:T ; θ̃
(h)
). This requires (J0)t calculations, which is hopeless when t

is large.

EM algorithm for Λ and σ2

Choose any Q and φ such that Qjk > 0 for any j and k and φk > 0 for all k.

Start from randomly generated initial values of Λ̃(0) and σ̃2(0) = 1. For h = 0, 1, ...,

(E-step): calculate p̃
(h)
tjk|T using the algorithm in Appendix H, and calculate S̃

(h)
j =

∑T

t=1 p̃
(h)
tj|T xtx

′
t/
∑T

t=1 p̃
(h)
tj|T with p̃

(h)
tj|T =

∑J0

k=1 p̃
(h)
tjk|T ;

(M-step): given p̃
(h)
tjk|T and S̃

(h)
j , calculate Λ̃

(h+1)
j as the eigenvectors of S̃

(h)
j

corresponding to the r0j largest eigenvalues, and then normalize Λ̃
(h+1)
j such that

∥∥∥Λ̃(h+1)jl

∥∥∥
2

+ σ̃2(h+1) equals the l-th largest eigenvalue of S̃
(h)
j for l = 1, ..., r0j and

equation (20) is also satisfied, where Λ̃
(h+1)
jl is the l-th column of Λ̃

(h+1)
j . Note that

the computation of
∥∥∥Λ̃(h+1)jl

∥∥∥
2

and σ̃2(h+1) requires iteration between equations (19)

and (20).

Iterate the E-step and the M-step until converge. Let Λ̃j = (λ̃j1, ..., λ̃jN)
′, Λ̃ =

(Λ̃1, ..., Λ̃J0) and σ̃
2 denote the estimated parameters, and let p̃tj|T and p̃tjk|T denote

the smoothed probabilities based on x1:T and (Λ̃, σ̃
2, Q, φ).

A special case of the above EM algorithm is when we choose φ = q and Q = q1′J0

(1J0 denotes the J
0×1 vector of ones), i.e., we consider {z1, ..., zT} as an independent

process. For this case, the computation of p̃
(h)
tj|T is simplified because the unsmoothed

regime probabilities can be calculated directly by

p̃
(h)
tj|T = qjL(xt

∣∣∣zt = j; Λ̃
(h)
j , σ̃

2(h) )/
∑J0

k=1
qkL(xt

∣∣∣zt = k; Λ̃
(h)
k , σ̃

2(h) ).

This case is preferable if we knew the true process of {z1, ..., zT} is independent. In
practice, since the state process of the business cycle/stock market is highly per-

sistent, smoothed regime probabilities that capture the persistence should perform

12



significantly better, especially when mixed frequency data or ragged edge data (data

released at non-synchronized dates) are used. The asymptotic results in Section 3.2

and Section 4 hold for any Q and φ as long as φj > 0 for any j and Qjk > 0 for

any j and k, i.e., they hold for both the smoothed algorithm and the unsmoothed

algorithm.

If the true process of {z1, ..., zT} is Markovian, Q0jk and φ0k can be estimated by

Q̃jk =
∑T

t=2
p̃tjk|T /

∑J0

j=1

∑T

t=2
p̃tjk|T , (21)

φ̃k = p̃1k|T =
∑J0

j=1
p̃2jk|T . (22)

We can also plug Q̃jk and φ̃k back in the above EM algorithm and iterate between

(Λ̃, σ̃2) and (Q̃, φ̃) until convergence. This is the maximum likelihood estimator when

(Q, φ) is estimated jointly with (Λ, σ2), see Appendix G for details.

The asymptotic results in Section 3.2 and Section 4 also hold as long as σ̃2 is

bounded and bounded away from zero in probability. Consistency of σ̃2 is not needed.

We could restrict σ̃2 in [ 1
C2
, C2] for some large C or simply fix down σ̃2 = 1 to avoid

the iteration between Λ̃
(h+1)
j and σ̃2(h+1). This only affects the Euclidean norm of the

columns of Λ̃
(h+1)
j .

Remark 2 Pelger and Xiong (2021) also considers the model4 xt = Λ(zt)f
0
t +et. The

state variable zt is discrete and unobservable in this paper, while in Pelger and Xiong

(2021) zt is continuous and observable. Also, in this paper Λ̃j are eigenvectors of

S̃j =
1∑T

t=1 p̃tj|T

∑T

t=1 p̃tj|T xtx
′
t, while in Pelger and Xiong (2021) Λ̂(s) are eigenvectors

of 1∑T
t=1Ks(zt)

∑T

t=1Ks(zt)xtx
′
t, where Ks(zt) =

1
h
K( zt−s

h
) is the kernel function. The

key difference is that the weight Ks(zt) is observable because zt is observable in Pelger

and Xiong (2021), but in this paper the weight p̃tj|T is unobservable and need to be

estimated jointly with Λj.

Remark 3 We can take into account cross-sectional heteroscedasticity as Bai and

Li (2012, 2016) by replacing equation (9) by Σj = ΛjΛ
′
j + Σe, where Σe is a N ×N

4We changed Pelger and Xiong (2021)’s notation to our notation for better comparison.
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diagonal matrix. We show in Appendix G that the first order conditions are

Σ
− 1
2

e SjΣ
−1
e Λj = Σ

− 1
2

e Λj(Λ
′
jΣ

−1
e Λj + Ir0j ), (23)

Σe = diag(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1

1

T

∑T

t=1
ptj|T ΛjΛ

′
j), (24)

i.e., columns of Σ
− 1
2

e Λj are the eigenvectors of Σ
− 1
2

e SjΣ
− 1
2

e and diagonal elements of

Λ′jΣ
−1
e Λj + Ir0j are the corresponding eigenvalues. Accordingly, in the M-step of the

EM algorithm, we iterate

Σ̃
− 1
2
(h)

e S̃
(h)
j Σ̃

−1(h)
e Λ̃

(h+1)
j = Σ̃

− 1
2
(h)

e Λ̃
(h+1)
j (Λ̃

(h+1)′
j Σ̃−1(h)e Λ̃

(h+1)
j + Ir0j ),

and Σ̃(h+1)e = diag(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1

1

T

∑T

t=1
p̃
(h)
tj|T Λ̃

(h+1)
j Λ̃

(h+1)′
j ).

The other steps of the EM algorithm remain unchanged. If we further take into

account cross-sectional dependence, then Σj = ΛjΛ
′
j + Σe and Σe is non-diagonal.

It can be verified that for this case equation (23) is still valid, but equation (24) is

not. Since Σe is of dimension N × N and N → ∞ jointly with T , certain sparsity

condition has to be imposed on Σe to consistently estimate Σe. Results on this topic

are very rare (if any) even for factor model with single regime.

2.4 Estimate the Factors

If the factor dynamics are taken into account, the expectation of ft conditioning on

x1:t is ∑J0

z1=1
...
∑J0

zt=1
E(ft

∣∣∣x1:t, z1:t; Λ̃, σ̃2 ) Pr(z1:t
∣∣∣x1:t; Λ̃, σ̃2, Q, φ),

which is formidable since we need to calculate Pr(z1:t

∣∣∣x1:t; Λ̃, σ̃2, Q, φ) for each pos-

sible z1:t, i.e., we need to calculate (J
0)t probabilities. For large N , the benefit of

considering factor dynamics is marginal and outweighed by the computational sim-

plicity of ignoring factor dynamics. If the factor dynamics are ignored, the expectation
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of ft conditioning on x1:T is

f̃t =
∑J0

j=1
E(ft

∣∣∣x1:T , zt = j; Λ̃j, σ̃2 )p̃tj|T =
∑J0

j=1
E(ft

∣∣∣xt, zt = j; Λ̃j, σ̃2 )p̃tj|T

=
∑J0

j=1
Λ̃′j(Λ̃jΛ̃

′
j + σ̃

2IN)
−1xtp̃tj|T . (25)

Note that the dimension of Λ̃′j(Λ̃jΛ̃
′
j + σ̃

2IN)
−1xt is different across j if r

0
j is different

across j. Here and also in the proof of Theorem 5, when we add two vectors of different

dimensions, we implicitly augment the vector of smaller dimension with zeros to make

the dimensions of these two vectors equal. Thus f̃t is a max r
0
j dimensional vector.

3 Asymptotic Results

3.1 Assumptions

We assume the following conditions hold as (N, T )→∞. These conditions are mainly
Assumptions A-G in Bai (2003) adapted to the current regime switching setup.

Assumption 1 (1) For j = 1, ..., J0, 1
Tq0j

∑T

t=1 f
0
t f

0′
t 1zt=j

p→ ΣFj for some positive

definite ΣFj , and plim
1
|Aj |

∑
t∈Aj f

0
t f

0′
t is also positive definite, where Aj is defined in

section 2.1.

(2) For some α > 16, there exists M > 0 such that E(‖f 0t ‖
α
) ≤M for all t.

Assumption 1 corresponds to Assumption A in Bai (2003). Assumption 1(1) rules

out the possibility that for regime j, the subsample {t : zt = j} can be further
decomposed into multiple regimes, see the discussion in Section 2.1. The factor

process is allowed to be dynamic such that C(L)ft = εt. Assumption 1(2) assumes

that the factors have bounded moments.

Assumption 2 (1) For j = 1, ..., J0, 1
N
Λ0′j Λ

0
j → ΣΛj for some positive definite ΣΛj

and
∥∥λ0ji

∥∥ ≤M for any i = 1, ..., N .

(2) For any j = 1, ..., J0 and k = 1, ..., J0, mint
1
N
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ C for some

C > 0.

15



Assumption 2(1) corresponds to Assumption B in Bai (2003). Assumption 2(1)

ensures that each factor has a nontrivial contribution within each regime, and
∥∥λ0ji

∥∥

is assumed to be uniformly bounded over i. Assumption 2(2) is the identification

condition for determining which regime each xt belongs to, see Section 2.1 for details

on the implication of this condition.

Assumption 3 (1) E(eit) = 0, E(e
α
it) ≤M for some α > 16.

(2)
∑N

k=1 τ ik ≤ M for any i, where E(eitekt) = τ ik,t with |τ ik,t| ≤ τ ik for some

τ ik > 0 and for all t.

(3)
∑T

s=1 γts ≤ M for all t, where E(eiteis) = γi,ts with
∣∣γi,ts

∣∣ ≤ γts for some

γts > 0 and for all i.

(4) E(
∥∥∥ 1√

T

∑T

t=1(eitekt − E(eitekt))1zt=j
∥∥∥
2

) ≤ M for all i = 1, ..., N , k = 1, ..., N

and j = 1, ..., J0.

Assumption 3 is modified slightly from Assumption C in Bai (2003). The er-

ror term is allowed to have limited cross-sectional and serial dependence as well as

heteroscedasticity.

Assumption 4 For j = 1, ..., J0, 1
T

∑T

t=1 1zt=j
p→ q0j and 0 < q

0
j < 1.

The asymptotic results in Section 3.2 and Section 4 are valid as long as As-

sumption 4 holds and the other assumptions in this section hold conditioning on

{zt, t = 1, ..., T}. Thus the state process {zt, t = 1, ..., T} is allowed to be non-
Markovian and correlated with f 0s and eis for all i and s. Knowledge of the true state

process is not needed.

Assumption 5 (1)For some β ≥ 2, E(
∥∥∥ 1√

N

∑N

i=1 λ
0
jieit

∥∥∥
β

) ≤ M for all j = 1, ..., J0

and all t.

(2) E(
∥∥∥ 1√

T

∑T

t=1 f
0
t eit1zt=j

∥∥∥
2

) ≤M for all j = 1, ..., J0 and all i.

Assumption 5 is modified slightly from Assumption D in Bai (2003). Assumption

5(1) assumes that the errors are weakly correlated across i for each t. When β = 2,

Assumption 5(1) is implied by Assumptions 2(1), 3(1) and 3(2). Assumption 5(2)
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assumes that the errors are weakly correlated across t for each i. Assumption 5(2)

is implied by Assumptions 1(2), 3(1) and 3(4) if we further assume the factors are

nonrandom or independent with the errors.

Assumption 6 For each j = 1, ..., J0, the eigenvalues of Σ
1
2
Λj
ΣFjΣ

1
2
Λj
are different.

Assumption 6 corresponds to Assumption G in Bai (2003). With Assumption 6,

the loadings and the factors are identifiable up to a rotation. For identification of the

loading space and the factor space, Assumption 6 is not needed.

Assumption 7 (1) E(
∥∥∥ 1√

NT

∑N

k=1

∑T

t=1 λ
0
i (eitekt − E(eitekt))1zt=j

∥∥∥
2

) ≤ M for all

i = 1, ..., N and j = 1, ..., J0; and E(
∥∥∥ 1√

NT

∑N

i=1

∑T

t=1(eiteis − E(eiteis))f 0t 1zt=j
∥∥∥
2

) ≤
M for all s = 1, ..., T and j = 1, ..., J0.

(2) E(
∥∥∥ 1√

NT

∑N

k=1

∑T

t=1 λ
0
kf

0′
t ekt1zt=j

∥∥∥
2

) ≤M for j = 1, ..., J0.

(3) Define Φji = plim 1
T

∑T

s=1

∑T

t=1 E(f
0
t f

0′
s eiseit1zs=j1zt=j). For j = 1, ..., J0,

1√
Tq0j

∑T

t=1 f
0
t eit1zt=j

d→ N (0,Φji).

(4) Define Γjt = lim
1
N

∑N

i=1

∑N

k=1 λ
0
jiλ

0
jkE(eitekt). For j = 1, ..., J

0, 1√
N

∑N

i=1 λ
0
jieit

d→
N (0,Γjt).

Assumption 7 corresponds to Assumption F in Bai (2003). Part (3) and part (4)

are just central limit theorems and will be used for deriving the limit distributions of

the estimated factors and loadings.

3.2 Asymptotic Results

Consistency of the estimated loading space

Theorem 1 Under Assumptions 1, 2(1), 3 and 4, 1
N

∥∥∥MΛ̃j
Λ0j

∥∥∥
2

F
= Op(

1√
δNT
) for each

j as (N, T )→∞.

Theorem 1 shows that the estimated loading space is consistent without observing

the state variable zt. Note that the estimated loadings Λ̃j and the estimated regime

probabilities p̃tj|T depend on each other, but the standard technique in Bai (2003)
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for analyzing Λ̃j is applicable only when p̃tj|T = 1zt=j. This is the first technical

difficulty we encounter in going from one regime to multiple regimes. The crucial

point for Theorem 1 is that if the linear spaces spanned by Λ̃j and Λ
0
j differ too much,

as long as minφj > 0 and minQjk > 0, the likelihood of Λ̃ would be smaller than the

likelihood of Λ0 uniformly over all possible {z1, ..., zT}, i.e.,

el(Λ̃,σ̃
2) ≤ sup

{z1,...,zT }

∏T

t=1
L(xt

∣∣∣zt; Λ̃, σ̃2 )

<
∑J0

zT=1
...
∑J0

z1=1

∏T

t=1
L(xt

∣∣zt; Λ0, σ̃2 ) Pr(z1, ..., zT ) = el(Λ
0
j ,σ̃

2).

This crucial point is due to large N , see the Appendix for the formal proof. Based

on Theorem 1, we show that the estimated regime probabilities are consistent.

Consistency of the estimated regime probabilities

Theorem 2 Under Assumptions 1-4 and 5(1), as (N, T ) → ∞, for each j and for
any fixed η > 0,

(1) supt
∣∣p̃tj|T − 1zt=j

∣∣ = op( 1Nη ) if T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

(2)
∣∣p̃tj|T − 1zt=j

∣∣ = op( 1Nη ).

Note that η could be large but it is fixed as (N, T ) → ∞. α and β could also
be large as long as Assumptions 1(2), 3(1) and 5(1) are satisfied. Theorem 2 shows

that p̃tj|T is consistent as N →∞ and is uniformly consistent if T is relatively small

compared to N . The proof utilizes the exponential likelihood ratio.

Theorem 2 implies that we can consistently identify which regime xt belongs to

for all t, if there is common regime switching in the loadings and the dimension of

xt tends to infinity. Theorem 2 also implies that we can consistently detect regime

switching right after the turning point with only one observation, so that we do not

need to wait for many observations of the time series from the new regime. This could

improve the speed of detection of new turning points, especially when high frequency

data is used.

An interesting special case is when the proposed algorithm is applied to factor

models with common breaks in the loadings. Various methods are proposed recently
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for estimating the break points, Theorem 2 implies that we can also consistently

estimate the break points using the proposed EM algorithm.

Convergence rate of the estimated loading space

If the true states zt were known, asymptotic properties of the estimated loadings

and factors are straightforward. Based on Theorem 2, we shall show that using

estimated regime probabilities does not affect the asymptotic results. Define WjNT =

1
N
(Λ̃′jΛ̃j + σ̃

2Ir0j )(
1
T

∑T

t=1 p̃tj|T ) and Hj =
∑T
t=1 f

0
t f

0′
t 1zt=j

T

Λ0′j Λ̃j

N
W−1
jNT , then we have:

Proposition 1 Let Vj be a r
0
j × r0j diagonal matrix consisting of eigenvalues of

Σ
1
2
Λj
ΣFjΣ

1
2
Λj
in descending order and Υj be the corresponding eigenvectors. Under

Assumptions 1-6, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0, as (N, T )→∞,

(1) WjNT
p→ q0jVj for each j,

(2) Hj
p→ Σ

− 1
2

Λj
ΥjV

1
2
j for each j.5

Proposition 1 is an important auxiliary result, and part (1) and part (2) corre-

sponds to Lemma A.3 and Proposition 1 in Bai (2003), respectively. Lemma A.3 in

Bai (2003) is based on the fact that the estimated factors are
√
T times the eigen-

vectors corresponding to the r largest eigenvalues6 of XX ′ and consequently Λ̃′Λ̃ is a

diagonal matrix consisting of the r largest eigenvalues of 1
T

∑T

t=1 xtx
′
t. However, here

the first order condition (15) only tells us the columns of Λ̃j are the eigenvectors of

Sj and Λ̃
′
jΛ̃j + σ̃

2Ir0j are the corresponding eigenvalues. Condition (15) does not tells

us whether these eigenvalues are the r0j largest eigenvalues of Sj or not. This is the

second technical difficulty we encounter in going from one regime to multiple regimes.

Our proof strategy of Proposition 1 utilizes Theorem 1 and is totally different from

Bai (2003)’s proof for his Proposition 1.

Theorem 3 Under Assumptions 1-6, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

as (N, T )→∞, 1
N

∥∥∥Λ̃j − Λ0jHj
∥∥∥
2

F
= Op(

1
δ2NT
) for each j.

5Hj corresponds to (H
−1)′ for the rotation matrix H in Bai (2003).

6r denotes the number of factors in Bai (2003).
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Theorem 3 establishes the convergence rate of the estimated loading space for each

regime. This could help us study the effect of using estimated loadings on subsequent

applications. For example, if the estimated loadings are used to construct portfolios,

Theorem 3 could help us calculate how the estimation error contained in Λ̃j would

affect the performance of these portfolios.

Limit distributions of the estimated loadings

Theorem 4 Under Assumptions 1-7, and assume
√
T/N → 0, T

16
α /N → 0 and

T
2
α
+ 2
β /N → 0, as (N, T )→∞,

√
Tq0j (λ̃ji−H ′

jλ
0
ji)

d→ N (0, V −
1
2

j Υ′jΣ
1
2
Λj
ΦjiΣ

1
2
Λj
ΥjV

− 1
2

j )

for each j.

Theorem 4 shows that for each j and i, λ̃ji has a limiting normal distribution.

This allows us to construct confidence interval for the estimated loadings. Also note

that the rotation matrix Hj is different for different regime.

Remark 4 We can also prove the consistency and limit distribution of σ̃2 (the prob-

ability limit of σ̃2 is lim
N→∞

1
N

∑N

i=1 σ
2
i ), we omit it since this is not our focus.

Asymptotic properties of the estimated factors

Theorem 5 Under Assumptions 1-7, and assume
√
N/T → 0, T

16
α /N → 0 and

T
2
α
+ 2
β /N → 0, as (N, T )→∞,
(1) 1

T

∑T

t=1

∥∥∥f̃t − [(H−1
zt
f 0t )

′, 0′
max r0j−r0zt

]′
∥∥∥
2

= Op(
1

δ2NT
),

(2)
√
N(f̃t − [(H−1

zt
f 0t )

′, 0′
max r0j−r0zt

]′)

d→ N (0,
[
V
− 1
2

zt Υ
′
zt
Σ
− 1
2

Λzt
ΓzttΣ

− 1
2

Λzt
ΥztV

− 1
2

zt 0r0zt×(max r
0
j−r0zt )

0(max r0j−r0zt )×r0zt
0(max r0j−r0zt )×(max r

0
j−r0zt )

]

).

Theorem 5(2) shows that the limit distribution of f̃t is mixed normal, since the

rotation matrix H−1
zt
and the asymptotic variance depend on the state variable zt.

Theorem 5(1) establishes the convergence rate of the estimated factor space. Note

that if {f̃t, t = 1, ...T} is used as proxies for the true factors in factor-augmented fore-
casting (or factor-augmented VAR), the forecasting equation (or the VAR equation)

would have induced regime switching in the model parameters, because H−1
zt
depends
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on zt. For illustration, consider the following h-period ahead forecasting model using

factors and some other observable variables Wt: yt+h = a
′f 0t + b

′Wt + ut+h. If f̃t is

used as proxies for f 0t , the model can be written as

yt+h = −a′Hzt(f̃t −H−1
zt
f 0t ) + a

′Hzt f̃t + b
′Wt + ut+h.

The first term on the right hand side is asymptotically negligible. It is easy to see

that the coefficient a′Hzt depends on zt and this need to be taken into account when

we estimate the forecasting equation. Finally, we show that the estimated transition

probability matrix is also consistent when {z1, ..., zT} is a Markov process.

Theorem 6 Assume that {z1, ..., zT} is a Markov process, under Assumptions 1-4
and 5(1), Q̃jk

p→ Q0jk for each j and k as (N, T )→∞ if T
16
α /N → 0 and T

2
α
+ 2
β /N →

0.

4 Determine the Number of Factors and the Num-

ber of Regimes

Given the number of factors (r1, ..., rJ) and the number of regimes J , let (Λ̃1,r1 , ..., Λ̃J,rJ )

be the solution for maximizing the log-likelihood l(Λ1,r1 , ...,ΛJ,rJ , σ
2, Q, φ). Here we

use Λj,rj to emphasize that Λj,rj is of dimension N × rj. The criterion we propose for
model selection is:

PC(r1, ..., rJ) =
1

NT
l(Λ̃1,r1 , ..., Λ̃J,rJ , σ

2, Q, φ)−
∑J

j=1
(g(N, T ))b(rj), (26)

where g(N, T ) is a penalty function depending on both N and T , and b(·) is a positive
and decreasing function with b(1) = 1, e.g., b(rj) =

1
rj
. For each J , the numbers of

factors are estimated by

(r̃1, ..., r̃J) = argmaxrj≤r̄,j=1,...,J PC(r1, ..., rJ), (27)
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and then the number of regimes is estimated by

J̃ = argmaxJ≤J̄ PC(r̃1, ..., r̃J), (28)

where r̄ is the maximal number of factors in each regime and J̄ is the maximal number

of regimes. In the following theorem we show that (r̃1, ..., r̃J) and J̃ are consistent.

Theorem 7 Under Assumptions 1, 2(1), 3, 4 and assume lim
N→∞

1
N
Λ0′kMΛ0j

Λ0k 6= 0 for
any j and k, we have Pr(J̃ = J0 and r̃j = r0j for all j) → 1 as (N, T ) → ∞ if

(i) g(N, T ) → 0, (ii) δNTg(N, T ) → ∞, and (iii) b(·) is a positive and decreasing
function with b(1) = 1.

Note that the condition lim
N→∞

1
N
Λ0′kMΛ0j

Λ0k 6= 0 allows Λ0k and Λ
0
j to share some

columns, i.e., Theorem 7 holds for the case where the loadings of some (but not all)

factors remain the same across different regimes.

The basic idea behind Theorem 7 is similar to Theorem 2 of Bai and Ng (2002),

i.e., add a penalty term that converges to zero but slowly enough so that under-

parameterized models and overparameterized models will not be chosen. Here the

penalty (g(N, T ))b(rj) converges to zero because g(N, T )→ 0 and b(rj) is positive, and

δNT (g(N, T ))
b(rj) → ∞ because δNTg(N, T ) → ∞ and b(rj) is a decreasing function

of rj with b(1) = 1. Compared to Bai and Ng (2002), the difference and difficulty here

is that the number of regimes is unknown and the number of factors in each regime

may be different. For example, suppose the true model is (r1 = 2, r2 = 1, J = 2)

and the two columns in Λ01 are linearly independent with Λ
0
2. This model can be

equivalently written as

xt = (Λ
0
1,Λ

0
2)





f 01t

f 02t

0




+ et if zt = 1, and xt = (Λ01,Λ

0
2)






0

0

f 01t




+ et if zt = 2,

i.e., there is only one regime and there are three factors in this regime. The difference

between the log-likelihood of the true model (r1 = 2, r2 = 1, J = 2) and the log-

likelihood of the equivalent model (r1 = 3, J = 1) is negligible and clearly Bai and

Ng (2002) is not applicable to this example.

22



Our solution is to add a penalty term for each regime and let the penalty term of

different regime have different asymptotic order, so that overestimating the number

of factors in one regime can not be compensated by underestimating the number

of factors in another regime. For example, the penalty for the equivalent model

is (g(N, T ))b(3) while the penalty for the true model is (g(N, T ))b(2) + (g(N, T ))b(1).

Since (g(N,T ))b(3)

(g(N,T ))b(2)+(g(N,T ))b(1)
→ ∞ as (N, T ) → ∞, the true model would be chosen

with probability approaching one as (N, T )→∞. The formal proof of Theorem 7 is

provided in the Appendix.

Our method can also be used to consistently determine the number of factors and

the number of breaks for factor models with multiple common breaks in the loadings.

If we replace l(Λ̃1,r1 , ..., Λ̃J,rJ , σ
2, Q, φ) in expression (26) by minus the minimum of the

least squares over all possible break points and calculate (r̃1, ..., r̃J , J̃) as expressions

(27)-(28), then it is not difficult to prove that we still have Pr(J̃ = J0 and r̃j = r
0
j

for all j) → 1 as (N, T ) → ∞. As we discussed in the Introduction, recently the
literature on the factor loading instability issues developed quite a lot, but as far as

we know, there are very few (if any) consistent model selection procedures that allow

rj to be different across j and allow Λ
0
k and Λ

0
j to share some columns.

5 Simulations

In this section, we perform simulations to confirm the theoretical results and exam-

ine the finite sample performance of our methods under various empirically relevant

scenarios.

5.1 Simulation Design

The data is generated as follows:

xit =

{
f 0′t λ

0
1i + eit if zt = 1,

f 0′t λ
0
2i + eit if zt = 2,

for i = 1, ..., N and t = 1, ..., T,

i.e., we consider two regimes. For the factors and the loadings, we consider four data

generating processes (DGP) as listed below:
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DGP 1: There are two factors in both regimes and the loadings of both factors

have regime switching.

DGP 2: There are two factors in both regimes and only the loadings of the second

factor have regime switching.

DGP 3: There is one factor in both regimes and its loadings have regime switching.

For DGP1 - DGP3, the factors are generated as follows:

f 0t,p = ρf
0
t−1,p + εt,p for t = 2, ..., T and p = 1, ..., r

0.

εt,p is i.i.d. N(0, 1), and f
0
1,p is i.i.d. N(0,

1
1−ρ2 ) so that the distributions of the factors

are stationary. Serial correlation of the factors is controlled by the scalar ρ.

DGP 4: The loadings are generated in the same way as DGP2. f 0t,1 is generated

as i.i.d. N(0, 1) and f 0t,2 is generated as uniform (0.5, 1.5).

The errors are generated as follows:

eit = ζei,t−1 + vit for i = 1, ..., N and t = 2, ..., T ,

where vt = (v1,t, ..., vN,t)
′ is i.i.d. N(0,Ω) for t = 2, ..., T and (e1,1, ..., eN,1)

′ is

N(0, 1
1−ζ2Ω) so that the distributions of the errors are stationary. Serial correla-

tion of the errors is controlled by the scalar ζ. For Ω, we set Ωij = ξ
|i−j| for some ξ

between 0 and 1, thus cross-sectional dependence of the errors is controlled by ξ. In

addition, the processes {εt,p} and {vit} are mutually independent for all p and i.
The loadings are generated as follows: For DGP1, both λ01i and λ

0
2i are generated as

i.i.d. N(0, 1−ρ
2

1−ζ2
2R2

1−R2 I2) across i, and λ
0
1i and λ

0
2i are also independent with each other.

For DGP2, λ01i and the second element of λ
0
2i are generated as i.i.d. N(0,

1−ρ2
1−ζ2

2R2

1−R2 I3)

across i. For DGP3, both λ01i and λ
0
2i are generated as i.i.d. N(0,

1−ρ2
1−ζ2

R2

1−R2 ) across i,

and λ01i and λ
0
2i are also independent with each other. All loadings are independent

of the factors and the errors. The variance 1−ρ2
1−ζ2

2R2

1−R2 guarantees that the regression

R-square of each series i is equal to R2, this controls the signal-noise ratio. Following

the literature, we set R2 = 0.5.

For the state process {zt, t = 1, ..., T}, we consider four cases as listed below:
Regime Pattern 1: US business cycle 1945Q2-2020Q1
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Regime Pattern 2: single common break at t = T/2

Regime Pattern 3: two common breaks at t = T/3 and t = 2T/3, and the loadings

switch back after the second break

Regime Pattern 4: a randomly generated Markov process

Regime pattern 1 is based on the US business cycle from 1945 Quarter 2 to 2020

Quarter 1, as determined by the NBER business cycle dating committee. There are

75 years (300 quarters) in total, thus we have T = 300. For t = 1, ..., 300, zt = 1

if the US economy at time t is in expansion and zt = 2 if the US economy at time

t is in recession. The transition probabilities of the state process calibrated to the

US business cycle is Q011 = 0.95 and Q022 = 0.72 (average duration of expansion is

1/(1−Q011) = 20 and average duration of recession is 1/(1−Q022) ≈ 3.5).
Regime patterns 2 and 3 correspond to the case where loadings have single common

break and multiple common breaks, respectively. Regime patterns 3 is especially

interesting since the case where there are multiple breaks and the loadings switch

back to their original values after the second break is rarely studied in the literature.

Various methods are proposed in the literature recently for estimating the break

points, here we perform simulations for regime patterns 2 and 3 to evaluate the finite

sample performance of our method when it is applied to these interesting cases.

Regime pattern 4 is a Markov process randomly generated with transition prob-

abilities Q011 = 0.95 and Q022 = 0.72, and {zt, t = 1, ..., T} is independent with f 0s
and eis for all i and s. Regime patterns 1-3 are prespecified and are not necessarily

Markov processes, thus here we consider regime pattern 4 to evaluate the performance

of our method when applied to a Markov state process.

We study both the unsmoothed algorithm and the smoothed algorithm. The key

difference is that in the E-step, the former uses unsmoothed regime probabilities while

the latter uses smoothed regime probabilities. Both algorithms start from randomly

generated initial values of the loadings and iterate between the E-step and the M-step

until convergence. To search for the global maximum of the likelihood function, we

generate initial values randomly for many times and take the one with the largest

likelihood. For other parameters, we set σ2 = 1, qj = 0.5 for j = 1, 2, φk = 0.5 for

k = 1, 2, Q11 = 0.95 and Q22 = 0.72. Q11 and Q22 are calibrated to regime pattern 1.
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Once we get the estimated regime probabilities and the estimated loadings, Q̃11 and

Q̃22 are estimated by equation (21), and the factors are estimated by equation (25).

5.2 Simulation Results

Figure 1 displays the smoothed probabilities of regime 2 for DGP 1 with (N, T ) =

(100, 300) and (ρ, ζ, ξ) = (0, 0, 0). Subfigures 1-4 of Figure 1 correspond to regime

patterns 1-4, respectively. It is easy to see that in all subfigures when the true regime is

regime 1, the smoothed probabilities stay at zero with only a few short and mild spikes.

At the beginning of each shaded region, the smoothed probabilities increase to one

instantly, and at the end of each shaded region, the smoothed probabilities instantly

decrease to zero. Figure 2 displays the unsmoothed probabilities of regime 2 for DGP1

under the four regime patterns with (N, T ) = (100, 300) and (ρ, ζ, ξ) = (0, 0, 0). The

estimated probabilities still stay at zero when it’s regime 1 and instantly increase

to one (decrease to zero) when there is regime switching, but compared to Figure

1, Figure 2 shows more and sharper spikes (upward or downward). These spikes

are false positives in detecting regime switching. Figure 3 and Figure 4 display the

smoothed and the unsmoothed probabilities of regime 2 for DGP2, respectively. The

performance of the estimated probabilities deteriorates since for DGP2 only one factor

has regime switching in its loadings. Overall, Figures 1-4 confirm the theoretical

results that turning points (break points) can be identified consistently if N is large.

Comparing Figure 2 to Figure 1 and Figure 4 to Figure 3, it is obvious that

the smoothed probabilities performs much better than the unsmoothed probabilities.

Many false positives in Figure 3 and Figure 4 are eliminated by the smoother. This

is because for each t, regimes at t− 1 and t+1 contains information for detecting the
regime at period t. Comparing subfigures 2-3 to subfigures 1 and 4 in Figures 1-4, we

can see that the performance of the estimated probabilities under regime patterns 2-3

is better than the performance under patterns 1 and 4. This is also because regimes

at the neighborhood periods provide information for the current regime. Roughly

speaking, the performance is better when the regime pattern is relatively simple. In

addition, we can also see that the performance under regime pattern 1 is slightly
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better than the performance under regime pattern 4. This is because the subsample

size of regime 2 under pattern 4 is larger than the subsample size under pattern 1 (72

vs 45). In general, we find that to guarantee good performance, the subsample size

for each regime should be not less than 40.

Figure 5 focuses on regime pattern 1 and displays the estimated probabilities

of regime 2 for DGP1 and DGP2 with N = 200. Comparing the subfigure 3 and

subfigure 4 of Figure 5 to subfigure 1 of Figure 3 and subfigure 1 of Figure 4, it is

easy to see that N = 200 improves the performance of the estimated probabilities.

Figure 6 also focuses on regime pattern 1 and displays the smoothed probabilities of

regime 2 for DGP1 and DGP2 with (ρ, ζ, ξ) = (0.5, 0, 0) or (0, 0.5, 0.5). Comparing to

subfigure 1 of Figure 1 and subfigure 1 of Figure 3, it seems that the value of (ρ, ζ, ξ)

does not affect the performance too much if they were far away from 1.

Figure 7 displays the smoothed and unsmoothed probabilities for regime pattern

4 (a randomly generated Markov process) under DGP1 with (N, T ) = (50, 500) or

(N, T ) = (500, 50). The smoothed probabilities still perform well even under such

extreme case, especially when T = 50, the subsample size of regime 2 is just 13.

However, the unsmoothed probabilities in subfigures 3-4 deteriorate obviously, com-

pared to subfigure 4 of Figure 2.

Figure 8 displays the smoothed and unsmoothed probabilities under DGP4 for

regime patterns 1 and 2 with (N, T ) = (100, 300). DGP4 modifies DGP2 so that

the second factor stays away from zero. Comparing subfigures 1-2 to subfigures 1-2

of Figure 3 and subfigures 3-4 to subfigures 1-2 of Figure 4, we can see that the

performance improvement is quite significant. This is because under DGP2, the

second factor f 0t,2 is likely to be close to zero and it is difficult to identify the regime

of xt when f
0
t,2 is close to zero. Thus Figures 3-4 reflect more of the identification

problem when the factors equal zeros.

Finally, to access the adequacy of the asymptotic distributions of the estimated

loadings and factors in approximating their finite sample counterparts, we display

in Figures 9-12 the histograms of the standardized estimated factors for t = T/2

and the standardized estimated loadings for i = N/2 under DGP3. The number of

simulations is 1000. The histograms are normalized to be a density function and the
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standard normal density curve is overlaid on them for comparison. It is easy to see

that in all subfigures of Figures 9-12, the standard normal density curve provides

good approximation to the normalized histograms. The histograms of the estimated

factors in Figure 9 are slightly fat-tailed because of bad initial values. Comparing the

four rows in each of Figures 9-12, we can see that the estimated loadings and factors

using the smoothed algorithm perform better than using the unsmoothed algorithm,

(ρ, ζ, ξ) = (0.5, 0.5, 0.5) does not matter too much, andN = 200 significantly improves

the performance.

The number of initial value trials also significantly affect the performance. We

find that for regime pattern 1, normally 5 trials are enough, but to guarantee good

performance in all of 1000 replications, 30 trials are needed. For regime pattern 4,

normally 2 trials are enough and 15 trials are needed to guarantee good performance

in all replications. For regime patterns 2-3, 5 trials are enough for all replications. In

general, more trials are needed when the regime pattern is complex and the subsample

size is small.

In addition, we also present in Table 1 the average R2 of the estimated loadings of

regime 1 and regime 2 projecting on the true loadings, the average R2 of the estimated

factors, and the average absolute error of the estimated transition probabilities. It

is easy to see that in Table 1, R2l1 and R
2
l2 are always close to one. R

2
Hf is always

close to one but R2f is much smaller than R
2
Hf . This is because R

2
Hf considers the

regime specific rotation matrix, as shown in Theorem 5(1). In summary, results in

Figures 1-12 and Table 1 lend strong support to the theoretical results and illustrate

the usefulness of the proposed EM algorithms.

6 Empirical Application

In this section we apply the proposed method to detect turning points of US business

cycle from 02/1980 to 01/2023 in real-time using the FRED-MD (Federal Reserve

Economic Data - Monthly Data) data set. The FRED database is maintained by the

Research division of the Federal Reserve Bank of St. Louis, and is publicly accessible

and updated in real-time. The 02/2023 vintage of the FRED-MD data set contains
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128 unbalanced monthly time series from 01/1959 to 01/2023, including eight groups

(output and income, labor market, housing, consumption and inventories, money and

credit, prices, stock market). After removing those series with missing values and

data transformation7, we have 106 balanced monthly series ranging from 03/1959 to

01/2023. Finally, the data is demeaned and standardized.

For each month from 02/1980 to 01/2023 (516 months in total), we use the data

from 03/1959 to that month for calculating the probability of recession of that month,

i.e., we behave as if we were standing at that month8. More specifically, we apply

the EM algorithm in Section 2.3 to the data from 03/1959 to the previous month to

estimate the model parameters9, and then use the estimated parameters and the data

from 03/1959 to that month to calculate the filtered probability of recession for that

month. Since the data of that month is available at the end of that month or the

beginning of the next month, new recession or expansion starting from the beginning

of that month could only be detected with at least one month delay.

To convert the recession probability of each month into a binary variable that

indicates the state of the economy in that month, we compare the estimated recession

probability to a prespecified threshold. More specifically, if the previous turning point

is a trough and the recession probability of month t exceeds 0.8 for the first time after

the previous turning point, month t would be considered as a new turning point from

expansion to recession. Similarly, if the previous turning point is a peak and the

recession probability of month t falls below 0.2 for the first time after the previous

turning point, month t would be considered as a new turning point from recession

to expansion. For robustness check, we also consider (0.9, 0.1) as the threshold, the

results are quite similar.

We consider the turning points determined by the NBER BCDC (business cycle

7See the Appendix of McCracken and Ng (2016) for the details of data description and transfor-
mation.

8For simplicity, we do not use the vintage data of that month. Compared to the vintage data,
the data we use contains revision in some series if more accurate observations were available after
that month, but previous studies on business cycle dating show that data revisions have little effects
on the results.

9US business cycle from 03/1959 to the previous month as determined by NBER is used as the
initial values for probabilities.
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dating committee) as the benchmark for comparison and we mainly focus on the

accuracy and speed of the proposed method in detecting turning points. The proposed

method is applied to both the whole panel and a subset of the whole panel which

consists of only the first 50 series among all 106 series. The results of using only

the first 50 series are better. We conjecture that this is mainly because not all 106

series had regime switching in the factor loadings at each turning point determined

by the NBER BCDC10, or some series had regime switching in their loadings at time

periods that are different from the NBER BCDC turning points. Thus we may further

improve the performance of the proposed method by selecting series that are most

relevant to and synchronous with the business cycle. A careful selection is out of the

scope of this paper.

Table 2 presents the real-time results of 02/1980-02/2020 using the first 50 series.

The number of factors in each regime is set to be six. mm/yyyy in the second and the

seventh row indicate the starting month of each recession and expansion. The row

corresponds to "NBER BCDC", "Chauvet Piger" and "This paper" shows the number

of months it takes the NBER BCDC, Chauvet and Piger (2008) and this paper to

detect each recession and expansion, respectively. For example, the recession starting

from the beginning of February 1980 would be detected by the NBER BCDC at the

beginning of June 1980, by Chauvet and Piger (2008) at the beginning of August

1980, and by this paper at the beginning of May 1980, respectively. Overall, it is

easy to see that this paper detects turning points much faster than NBER BCDC

and slightly faster than Chauvet and Piger (2008). On average, this paper detects

recessions with 6.25 months delay and expansions with 5.4 months delay, NBER

BCDC detects recessions with 7.4 months delay and expansions with 14.8 months

delay, and Chauvet and Piger (2008) detects recessions with 8.6 months delay and

expansions with 6.2 months delay.

We also detect two recessions after the Covid-19 pandemic, one from 03/2020 to

08/2020 and the second from 02/2021 to 05/2021, so we would have detected the

10The NBER BCDC mainly focuses on four series, (1) non-farm payroll employment, (2) industrial
production, (3) real manufacturing and trade sales, and (4) real personal income excluding transfer
payments.

30



03/2020-08/2020 recession in 04/2020 because the data for 03/2020 is available with

one month delay. This is quite interesting, given that our method detects recessions

with 6.25 months delay on average during the period 02/1980-02/2020.

Table 2 shows that using more series could improve the speed of turning points

detection. However, using more series could also bring in false positives (turning

points detected by the proposed method using many series but not detected by

NBER BCDC), because the extra series may not be synchronous with the NBER

business cycle. Here we detect eight false recessions: 09/1983-11/1983, 10/1986-

02/1987, 07/1989-10/1989, 01/1993-02/1993, 01/1995-03/1995, 08/1998, 05/2000-

08/2000, 06/2010-10/2010, and one false expansion: 02/1982. While these false posi-

tives should not be ignored, most of them only last for a very short periods and would

have little effect on macroeconomic policy. Overall, our results illustrate the potential

of using a large number of series and factor models with common loading switching

for real-time detection of the business cycle turning points.

To get rid of those false recessions, one possible solution is to select time series that

are synchronous with the NBER business cycle, and another promising solution is to

extend our results to the case where regime switching in the loadings is approximately

synchronous rather than exactly synchronous. In fact, Stock and Watson (2014)

mainly focuses on how to combine different turning points of many individual series

(determined by the Bry-Boschan algorithm) into a single point.

7 Conclusions

The exposure of economic time series to common factors may switch depending on

state variables such as fiscal policy, monetary policy, business cycle stage, stock mar-

ket volatility, technology and so on. For consistent estimation of the factor structure,

it is crucial to take into account such regime switching phenomena. This paper con-

siders maximum likelihood estimation for large factor models with common regime

switching in the loadings and proposes EM algorithm for computation, which is easy

to implement and runs fast even when N is large. Convergence rates and limit dis-

tributions of the estimated loadings and the estimated factors are established under
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the approximate factor model setup. This paper also shows that when N is large,

regime switching can be identified consistently and only one observation after the

switching point is needed. This allows us to detect regime switching at very early

times. Monte Carlo simulations confirm the theoretical results and good performance

of our method. An application to the FRED-MD dataset demonstrates the potential

of using many time series with our method for detection of the business cycle turning

points.

Some related topics are worth further study. First, it would be interesting to see

the performance of the portfolio constructed using regime specific loadings, and how

the identified regime is related to exogenous variables such as market volatility and

money growth. Second, our results imply that the forecasting equation would have

induced regime switching if the estimated factors are used for forecasting, so we want

to know whether it indeed matters. Finally, a selection of time series that are most

synchronous with or related to business cycle could improve the speed and accuracy

of our method for turning points detection, so we would like to see how much we can

achieve after careful selection.
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Figure 1: Smoothed Probabilities of Regime 2 for DGP 1

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ,ζ,ξ) = (0, 0, 0).
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Figure 2: Unsmoothed Probabilities of Regime 2 for DGP 1

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ,ζ,ξ) = (0, 0, 0).
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Figure 3: Smoothed Probabilities of Regime 2 for DGP 2

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ,ζ,ξ) = (0, 0, 0).
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Figure 4: Unsmoothed Probabilities of Regime 2 for DGP 2

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ,ζ,ξ) = (0, 0, 0).
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Figure 5: Smoothed and Unsmoothed Probabilities of Regime 2 for Regime Pattern
1, (N, T ) = (200, 300) and (ρ, α, β) = (0, 0, 0)

Notes: Subfigures 1-4 correspond to smoothed probabilities for DGP1, unsmoothed probabilities for

DGP1, smoothed probabilities for DGP2 and unsmoothed probabilities for DGP2, respectively. The

x-axis is time and the y-axis is the probability. The shaded regions correspond to regime 2.
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Figure 6: Smoothed Probabilities of Regime 2 for Regime Pattern 1, (N, T ) =
(100, 300) and (ρ, α, β) = (0.5, 0, 0) or (ρ, α, β) = (0, 0.5, 0.5)

Notes: Subfigures 1-4 correspond to smoothed probabilities for DGP1 with (ρ,ζ,ξ) = (0.5, 0, 0),
DGP1 with (ρ,ζ,ξ) = (0, 0.5, 0.5), DGP2 with (ρ,ζ,ξ) = (0.5, 0, 0) and DGP2 with

(ρ,ζ,ξ) = (0, 0.5, 0.5), respectively. The x-axis is time and the y-axis is the probability. The
shaded regions correspond to regime 2.
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Figure 7: Smoothed and Unsmoothed Probabilities of Regime 2 for Regime Pattern
1, (N, T ) = (50, 500) and (N, T ) = (500, 50)

Notes: Subfigures 1-2 correspond to smoothed probabilities under regime pattern 4 and DGP1 with

(N, T ) = (50, 500) or (500, 50), respectively. Subfigures 3-4 correspond to unsmoothed prob-
abilities under regime pattern 4 and DGP1 with (N, T ) = (500, 50) or (500, 50), respectively.
The x-axis is time and the y-axis is the probability. The shaded regions correspond to regime 2.
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Figure 8: Smoothed and Unsmoothed Probabilities of Regime 2 for DGP 4

Notes: Subfigures 1-2 correspond to smoothed probabilities for DGP4 under regime patterns 1 and

2, respectively. Subfigures 3-4 correspond to unsmoothed probabilities for DGP4 under regime

patterns 1 and 2, respectively. The x-axis is time and the y-axis is the probability. The shaded

regions correspond to regime 2.
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Figure 9: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 1

Notes: Subfigures in the first to the fourth row correspond to the smoothed algorithm with

ρ =ζ=ξ= 0 and (N, T ) = (100, 300), the unsmoothed algorithm with ρ =ζ=ξ= 0 and

(N, T ) = (100, 300), the smoothed algorithm with ρ =ζ=ξ= 0.5 and (N, T ) = (100, 300),
and the smoothed algorithm with ρ =ζ=ξ= 0 and (N, T ) = (200, 300), respectively. Subfigures
in the first to the third column correspond to the estimated loadings for regime 1, the estimated

loadings for regime 2 and the estimated factors, respectively. The curve overlaid on the histograms

is the standard normal density function.
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Figure 10: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 2

Notes: Subfigures in the first to the fourth row correspond to the smoothed algorithm with

ρ =ζ=ξ= 0 and (N, T ) = (100, 300), the unsmoothed algorithm with ρ =ζ=ξ= 0 and

(N, T ) = (100, 300), the smoothed algorithm with ρ =ζ=ξ= 0.5 and (N, T ) = (100, 300),
and the smoothed algorithm with ρ =ζ=ξ= 0 and (N, T ) = (200, 300), respectively. Subfigures
in the first to the third column correspond to the estimated loadings for regime 1, the estimated

loadings for regime 2 and the estimated factors, respectively. The curve overlaid on the histograms

is the standard normal density function.
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Figure 11: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 3

Notes: Subfigures in the first to the fourth row correspond to the smoothed algorithm with

ρ =ζ=ξ= 0 and (N, T ) = (100, 300), the unsmoothed algorithm with ρ =ζ=ξ= 0 and

(N, T ) = (100, 300), the smoothed algorithm with ρ =ζ=ξ= 0.5 and (N, T ) = (100, 300),
and the smoothed algorithm with ρ =ζ=ξ= 0 and (N, T ) = (200, 300), respectively. Subfigures
in the first to the third column correspond to the estimated loadings for regime 1, the estimated

loadings for regime 2 and the estimated factors, respectively. The curve overlaid on the histograms

is the standard normal density function.
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Figure 12: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 4

Notes: Subfigures in the first to the fourth row correspond to the smoothed algorithm with

ρ =ζ=ξ= 0 and (N, T ) = (100, 300), the unsmoothed algorithm with ρ =ζ=ξ= 0 and

(N, T ) = (100, 300), the smoothed algorithm with ρ =ζ=ξ= 0.5 and (N, T ) = (100, 300),
and the smoothed algorithm with ρ =ζ=ξ= 0 and (N, T ) = (200, 300), respectively. Subfigures
in the first to the third column correspond to the estimated loadings for regime 1, the estimated

loadings for regime 2 and the estimated factors, respectively. The curve overlaid on the histograms

is the standard normal density function.
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Table 1: Average R2 of the Estimated Loading Space, Average R2 of the Estimated
Factor Space, and Average Absolute Error of the Estimated Transition Probabilities

R2l1 R2l2 R2f R2Hf Q̃11 Q̃22
Smoothed with (ρ, ζ, ξ) = (0, 0, 0) and (N, T ) = (100, 300)

Pattern 1 0.996 0.9762 0.7337 0.9889 0.0028 0.013
Pattern 2 0.9931 0.9932 0.5155 0.9896 N.A. N.A.
Pattern 3 0.9949 0.9895 0.541 0.9894 N.A. N.A.
Pattern 4 0.9955 0.9854 0.6256 0.9892 0.0216 0.0378
Unsmoothed with (ρ, ζ, ξ) = (0, 0, 0) and (N, T ) = (100, 300)
Pattern 1 0.9959 0.9678 0.6786 0.9782 N.A. N.A.
Pattern 2 0.9931 0.9932 0.4855 0.9885 N.A. N.A.
Pattern 3 0.9949 0.9892 0.5157 0.988 N.A. N.A.
Pattern 4 0.9955 0.9853 0.6127 0.9875 N.A. N.A.
Smoothed with (ρ, ζ, ξ) = (0.5, 0.5, 0.5) and (N, T ) = (100, 300)
Pattern 1 0.9933 0.9631 0.7255 0.9849 0.0053 0.0137
Pattern 2 0.9928 0.9929 0.4797 0.9891 N.A. N.A.
Pattern 3 0.9915 0.9827 0.5458 0.9889 N.A. N.A.
Pattern 4 0.9927 0.9782 0.6285 0.9886 0.0239 0.0328
Smoothed with (ρ, ζ, ξ) = (0, 0, 0) and (N, T ) = (200, 300)

Pattern 1 0.996 0.9756 0.7408 0.9936 0.0017 0.0151
Pattern 2 0.9933 0.9933 0.5183 0.9949 N.A. N.A.
Pattern 3 0.995 0.9898 0.5611 0.9949 N.A. N.A.
Pattern 4 0.9956 0.9856 0.6227 0.9947 0.019 0.024

Notes: The column under R2l1 shows the average R
2 of the estimated loadings of regime 1 projecting

on the true loadings of regime 1. The column under R2l2 shows the average R
2 of the estimated

loadings of regime 2 projecting on the true loadings of regime 2. The column under R2f shows the
average R2 of the estimated factors projecting on the true factors. The column under R2Hf shows
the average R2 of the estimated factors projecting on the factors rotated by the regime dependent
rotation matrix Hzt . "N.A." means not available.
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Table 2: Out of Sample Turning Points Detection

Recession Expansion Recession Expansion Recession
02/1980 08/1980 08/1981 12/1982 08/1990

NBER BCDC 4 11 5 7 9
Chauvet Piger 6 5 7 6 7
This paper 3 2 3 7 N.A.

Expansion Recession Expansion Recession Expansion
04/1991 04/2001 12/2001 01/2008 07/2009

NBER BCDC 21 8 20 11 15
Chauvet Piger 6 10 7 13 7
This paper 1 8 7 11 10

Notes: mm/yyyy in the second and the seventh row indicate the starting month of each recession

and expansion. The row corresponds to "NBER BCDC", "Chauvet Piger" and "This paper" shows

the number of months it takes the NBER BCDC, Chauvet and Piger (2008) and this paper to detect

each recession and expansion, respectively. "N.A." means not available.
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APPENDIX

A Details for Theorem 1

Lemma 1 Under Assumption 3(2) and 3(4), ‖E‖ = Op(N
1
4T

1
2 +N

1
2T

1
4 ).

Proof. We shall show E ‖E‖4 = O(NT 2 +N2T ). First note that

‖E‖4 = ‖E ′E‖2 ≤ ‖E ′E‖2F =
∑N

i=1

∑N

k=1
(
∑T

t=1
eitekt)

2.

E(
∑T

t=1 eitekt)
2 is not larger than the sum of 2E(

∑T

t=1 eitekt −
∑T

t=1 E(eitekt))
2 and

2(
∑T

t=1 E(eitekt))
2. The sum of the former over i and k is not larger than N2TM

since by Assumption 3(4), E(
∥∥∥ 1√

T

∑T

t=1(eitekt − E(eitekt))
∥∥∥
2

) ≤ M . The sum of the

latter over i and k is not larger than NT 2M under Assumption 3(2).

Proof of Theorem 1

Proof. Step (1): Since zt follows a Markov process,

l(Λ, σ2, Q, φ) = log[
∑J0

zT=1
...
∑J0

z1=1

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1 |φ)
∏T

t=2
Pr(zt |zt−1;Q)].

For (Λ̃, σ̃2, Q, φ), let mt = argmaxj{(2π)−
N
2

∣∣∣Λ̃jΛ̃′j + σ̃
2IN

∣∣∣
− 1
2
e−

1
2
x′t(Λ̃jΛ̃

′
j+σ̃

2IN )
−1xt},

i.e, L(xt

∣∣∣zt = j; Λ̃, σ̃2 ) takes maximum when j = mt. Since
∑J0

zt=1
Pr(zt |zt−1;Q) = 1

for any zt−1,
∑J0

zt=1
L(xt

∣∣∣zt; Λ̃, σ̃2 ) Pr(zt |zt−1;Q) ≤ L(xt
∣∣∣zt = mt; Λ̃, σ̃

2 ), thus

l(Λ̃, σ̃2, Q, φ)
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It follows that
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Consider the last term on the right hand side of equation (30). By Woodbury identity,
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Step (2): Now consider l(Λ0, σ̃2, Q, φ). Since Pr(zt |zt−1;Q) ≥ minj,kQjk,
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Note that zt denotes the true state on the right hand side. The left hand side has J
0

terms in the summation, and the inequality follows from throwing away all the other

J0 − 1 terms. Thus similar to inequality (29),
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and similar to equation (31),
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(3.1) The first term on the right hand side is O(T ) since minj,kQjk > 0.

(3.2) The second term on the right hand side equals−1
2

∑T

t=1 log
∣∣∣ 1
σ̃2
Λ̃′mt

Λ̃mt
+ Ir0mt

∣∣∣+
1
2

∑T

t=1 log
∣∣∣ 1
σ̃2
Λ0′ztΛ

0
zt
+ Ir0zt

∣∣∣ since

∣∣Λ0ztΛ
0′
zt
+ σ̃2IN

∣∣ = σ̃2N
∣∣∣∣
1

σ̃2
Λ0ztΛ

0′
zt
+ IN

∣∣∣∣ = σ̃
2N

∣∣∣∣
1

σ̃2
Λ0′ztΛ

0
zt
+ Ir0zt

∣∣∣∣ , (35)

and
∣∣∣Λ̃mt

Λ̃′mt
+ σ̃2IN

∣∣∣ = σ̃2N
∣∣∣∣
1

σ̃2
Λ̃′mt

Λ̃mt
+ Ir0mt

∣∣∣∣ . (36)

−1
2

∑T

t=1 log
∣∣∣ 1
σ̃2
Λ̃′mt

Λ̃mt
+ Ir0mt

∣∣∣ is negative, thus inequality (34) still holds when this

term is thrown away. By Assumption 2(1),
∣∣∣ 1
σ̃2
Λ0′ztΛ

0
zt
+ Ir0zt

∣∣∣ ≤ c( N
σ̃2
)r
0
zt for some c > 0,

thus 1
2

∑T

t=1 log
∣∣∣ 1
σ̃2
Λ0′ztΛ

0
zt
+ Ir0zt

∣∣∣ is Op(T logN).
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By Assumptions 1(2), 2(1) and 3(1),
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For the fourth term of expression (37), we have
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The last equality follows from Lemma 1. Similarly, the third term of expression (37)

is Op(N
1
2T + NT

1
2 ). The second term of expression (37) equals 2

∑T

t=1 e
′
tΛ
0
zt
f 0t −

2
∑T

t=1 e
′
tPΛ̃mtΛ

0
zt
f 0t . Since E(

∥∥∥ 1√
N

∑N

i=1 λ
0
jieit

∥∥∥
2

) ≤M for all j and t by Assumptions

2(1), 3(1) and 3(2), and
∑T

t=1 ‖f 0t ‖
2
= Op(T ) by Assumption 1(2), we have

∥∥∥
∑T

t=1
e′tΛ

0
zt
f 0t

∥∥∥ ≤ (
∑T

t=1

∥∥e′tΛ
0
zt

∥∥2)
1
2 (
∑T

t=1

∥∥f 0t
∥∥2)

1
2 = Op(N

1
2T ).

By expression (38), Assumption 1(2) and Assumption 2(1), we have

∥∥∥
∑T

t=1
e′tPΛ̃mtΛ

0
zt
f 0t

∥∥∥ ≤ (
∑T

t=1

∥∥∥PΛ̃mtet
∥∥∥
2∑T

t=1

∥∥f 0t
∥∥2)

1
2 sup

j

∥∥Λ0j
∥∥ = Op(N

3
4T+NT

3
4 ).

Thus the second term of expression (37) is Op(N
3
4T +NT

3
4 ).

(3.6) Move the second to the fourth term of expression (37) to the right hand side

of equation (34), and take the results (3.1)-(3.5) together, we have

0 ≤ 1

2
σ̃−2

∑T

t=1

∥∥∥MΛ̃mt
Λ0ztf

0
t

∥∥∥
2

≤ O(T ) +Op(T logN)

+O(T ) +Op(N
1
2T +NT

1
2 ) +Op(N

3
4T +NT

3
4 ).
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Thus
∑T

t=1

∥∥∥MΛ̃mt
Λ0ztf

0
t

∥∥∥
2

is Op(N
3
4T + NT

3
4 ). In the summation, there are q01T

terms11 with Λ0zt = Λ
0
1, since q

0
1 is the unconditional probability of zt = 1. For each

t with zt = 1, Λ01f
0
t are projected on one of Λ̃j, j = 1, ..., J0, thus there exists one

certain Λ̃j such that Λ
0
1f
0
t is projected on Λ̃j at least

q01T

J0
times. Define this Λ̃j as Λ̃1,

then
∑T

t=1 1mt=11zt=1 ≥ q01T

J0
. Thus by Assumption 1(1),

ρmin(
1

∑T

t=1 1mt=11zt=1

∑T

t=1
f 0t f

0′
t 1mt=11zt=1) ≥ c

for some c > 0 w.p.a.1. Since
∥∥∥MΛ̃mt

Λ0ztf
0
t

∥∥∥ is positive for any zt and mt, we have

Op(N
3
4T +NT

3
4 ) =

∑T

t=1

∥∥∥MΛ̃mt
Λ0ztf

0
t

∥∥∥
2

≥
∑T

t=1

∥∥MΛ̃1
Λ01f

0
t

∥∥2 1mt=11zt=1

= tr(Λ0′1MΛ̃1
Λ01
∑T

t=1
f 0t f

0′
t 1mt=11zt=1)

≥ tr(Λ0′1MΛ̃1
Λ01)ρmin(

∑T

t=1
f 0t f

0′
t 1mt=11zt=1)

≥ tr(Λ0′1MΛ̃1
Λ01)

Tq01
J0
c w.p.a.1,

thus 1
N

∥∥MΛ̃1
Λ01
∥∥2
F
= 1

N
tr(Λ0′1MΛ̃1

Λ01) = Op(
1√
δNT
). Similarly, for j = 2, ..., J0, we also

have 1
N

∥∥∥MΛ̃j
Λ0j

∥∥∥
2

F
= Op(

1√
δNT
).

B Details for Theorem 2

Lemma 2 Under the assumptions of Theorem 1, 1
σ̃2+Λ̃′

jl
Λ̃jl
= Op(

1√
δNT
) for each j =

1, ..., J0 and each l = 1, ..., r0j , where Λ̃jl denotes the l-th column of Λ̃j.

Proof. (1) Consider expression (34). In step (3.1), (3.2) and (3.4) of proof of Theorem

1, we have shown that the first, the second, and the fourth term on the right hand

side of expression (34) is Op(T ), Op(T logN) and Op(T ) respectively. In step (3.5) we

have shown that the left hand side of expression (34) equals expression (37), and the

last three terms of expression (37) together is Op(N
3
4T +NT

3
4 ). Move the last three

terms of expression (37) to the right hand side of expression (34), and move the third

11Rigorously speaking, there are
∑T

t=1 1zt=1 terms, but
1

T

∑T

t=1 1zt=1
p→ q0

1
as T →∞.
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term on the right hand side of expression (34) to the left hand side, then we have

1

2

1

σ̃2
[
∑T

t=1

∥∥∥MΛ̃mt
Λ0ztf

0
t

∥∥∥
2

+
1

2

∑T

t=1
x′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
xt

= Op(N
3
4T +NT

3
4 ). (39)

The two terms on the left hand side of (39) are nonnegative, thus
∑T

t=1 x
′
tΛ̃mt

(σ̃2Ir0mt+

Λ̃′mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
xt = Op(N

3
4T +NT

3
4 ).

(2)

∥∥∥
∑T

t=1
e′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
Λ0ztf

0
t

∥∥∥

≤ (
∑T

t=1
e′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−2(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
et)

1
2 (
∑T

t=1

∥∥Λ0ztf
0
t

∥∥2)
1
2

≤ 1

σ̃4
(
∑T

t=1
e′tPΛ̃mtet)

1
2 (
∑T

t=1

∥∥f 0t
∥∥2)

1
2 sup

j

∥∥Λ0j
∥∥ = Op(N

3
4T +NT

3
4 ),

where the first inequality follows from Cauchy-Schwarz inequality, the second in-

equality follows from the fact that Λ̃′mt
Λ̃mt

is diagonal and all diagonal elements of

σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

are larger than σ̃2, and the equality follows from Assumption 1(2),

Assumption 2(1) and expression (38) in step (3.5) of proof of Theorem 1.

(3) It follows from (1) and (2) that

∑T

t=1
f 0′t Λ

0′
zt
Λ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
Λ0ztf

0
t

+
∑T

t=1
e′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
et

=
∑T

t=1
x′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
xt

−2
∑T

t=1
e′tΛ̃mt

(σ̃2Ir0mt + Λ̃
′
mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
Λ0ztf

0
t

= Op(N
3
4T +NT

3
4 ). (40)

The two terms on the left hand side of (40) are nonnegative, thus
∑T

t=1 f
0′
t Λ

0′
zt
Λ̃mt

(σ̃2Ir0mt+

Λ̃′mt
Λ̃mt

)−1(Λ̃′mt
Λ̃mt

)−1Λ̃′mt
Λ0ztf

0
t = Op(N

3
4T +NT

3
4 ). Since each term in the summa-

tion is nonnegative, we have
∑T

t=1 f
0′
t Λ

0′
j Λ̃j(σ̃

2Ir0j+Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
jf
0
t 1zt=j1mt=j =

Op(N
3
4T +NT

3
4 ) for each j.

As explained in step (3.6) of proof of Theorem 1,
∑T

t=1 1mt=j1zt=j ≥
q0jT

J0
, and
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by Assumption 1(1), ρmin(
1∑T

t=1 1mt=j1zt=j

∑T

t=1 f
0
t f

0′
t 1mt=j1zt=j) ≥ c for some c > 0

w.p.a.1. Thus we have

Op(N
3
4T +NT

3
4 ) =

∑T

t=1
f 0′t Λ

0′
j Λ̃j(σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
jf
0
t 1zt=j1mt=j

= tr(Λ0′j Λ̃j(σ̃
2Ir0j + Λ̃

′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
j

∑T

t=1
f 0t f

0′
t 1zt=j1mt=j)

≥ tr(Λ0′j Λ̃j(σ̃
2Ir0j + Λ̃

′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
j)ρmin(

∑T

t=1
f 0t f

0′
t 1mt=j1zt=j)

≥ tr(Λ0′j Λ̃j(σ̃
2Ir0j + Λ̃

′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
j)
Tq0j
J0
c w.p.a.1.

Thus tr(Λ0′j Λ̃j(σ̃
2Ir0j + Λ̃

′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
j) = Op(

N√
δNT
) for each j.

(4) Noting that Λ̃jl is orthogonal to Λ̃jl′ for l 6= l′, we have

∑r0j

l=1

∥∥∥PΛ̃jlΛ
0
j

∥∥∥
2

F
=

∥∥∥PΛ̃jΛ
0
j

∥∥∥
2

F
=
∥∥Λ0j

∥∥2
F
−
∥∥∥MΛ̃j

Λ0j

∥∥∥
2

F
, (41)

∑r0j

l=1

1

σ̃2 + Λ̃′jlΛ̃jl

∥∥∥PΛ̃jlΛ
0
j

∥∥∥
2

F
= tr(Λ0′j Λ̃j(σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jΛ

0
j). (42)

Each term in the summation on the left hand side of equation (42) is nonnegative,

thus
1

σ̃2 + Λ̃′jlΛ̃jl

∥∥∥PΛ̃jlΛ
0
j

∥∥∥
2

F
= Op(

N√
δNT

) for each j and l. (43)

Now consider
∥∥∥PΛ̃j1Λ

0
j

∥∥∥
2

F
. Let Λ̃j,−1 = (Λ̃j2, ..., Λ̃jr0j ), we have

∑
l 6=1

∥∥∥PΛ̃jlΛ
0
j

∥∥∥
2

F
=

∥∥∥PΛ̃j,−1Λ
0
j

∥∥∥
2

F
= tr(Λ0′j PΛ̃j,−1Λ

0
j)

= tr[(Λ̃′j,−1Λ̃j,−1)
− 1
2 Λ̃′j,−1Λ

0
jΛ

0′
j Λ̃j,−1(Λ̃

′
j,−1Λ̃j,−1)

− 1
2 ]

≤
∥∥Λ0j

∥∥2
F
− ρmin(Λ0jΛ0′j ). (44)

The inequality in expression (44) becomes equality when Λ̃j,−1(Λ̃
′
j,−1Λ̃j,−1)

− 1
2 are

eigenvectors of Λ0jΛ
0′
j corresponding to the largest r

0
j − 1 eigenvalues. Expressions

(41) and (44) together implies that
∥∥∥PΛ̃j1Λ

0
j

∥∥∥
2

F
≥ ρmin(Λ0jΛ0′j ) −

∥∥∥MΛ̃j
Λ0j

∥∥∥
2

F
, thus by

Assumption 2(1) and Theorem 1, 1
N

∥∥∥PΛ̃j1Λ
0
j

∥∥∥
2

F
is bounded away from zero in probabil-

ity. This together with expression (43) implies that 1
σ̃2+Λ̃′j1Λ̃j1

= Op(
1√
δNT
). Similarly,
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1
σ̃2+Λ̃′

jl
Λ̃jl
= Op(

1√
δNT
) for l = 2, ..., r0j .

Proof of Theorem 2

Proof. Part (1):

Step (1): We first show
∣∣p̃tj|t − 1zt=j

∣∣ = op( 1Nη ).

When zt = j, since p̃tj|t =
p̃tj|t−1L(xt|zt=j;Λ̃j ,σ̃2 )

∑J0

k=1 p̃tk|t−1L(xt|zt=k;Λ̃k,σ̃2 )
, we have

∣∣p̃tj|t − 1zt=j
∣∣ =

∑
k 6=j p̃tk|t−1L(xt

∣∣∣zt = k; Λ̃k, σ̃2 )
∑J0

k=1 p̃tk|t−1L(xt

∣∣∣zt = k; Λ̃k, σ̃2 )

≤
∑

k 6=j

p̃tk|t−1
p̃tj|t−1

elogL(xt|zt=k;Λ̃k,σ̃2 )−logL(xt|zt=j;Λ̃j ,σ̃2 ).

When zt = h 6= j, since
∑J0

k=1 p̃tk|t = 1, we have p̃tj|t − 1zt=j = p̃tj|t ≤ 1 −
p̃th|t , thus it suffices to show

∣∣p̃tj|t − 1zt=j
∣∣ = op(

1
Nη ) when zt = j. Since p̃tj|t−1 =

Qj·p̃t−1|t−1 ≥ minkQjk > 0 for all j (Qj· denotes the j-th row of Q), it suffices to

show supt e
logL(xt|zt=k;Λ̃k,σ̃2 )−logL(xt|zt=j;Λ̃j ,σ̃2 ) = op(

1
Nη ) for any k 6= j, i.e., it suffices

to show for any fixed M > 0,

Pr(sup
t

[logL(xt

∣∣∣zt = k; Λ̃k, σ̃2 )− logL(xt
∣∣∣zt = j; Λ̃j, σ̃2 )] ≥ log

M

Nη
)→ 0, or

Pr(min
t
[logL(xt

∣∣∣zt = j; Λ̃j, σ̃2 )− logL(xt
∣∣∣zt = k; Λ̃k, σ̃2 )] ≤ η logN − logM)→ 0.(45)

Similar to equation (33),

logL(xt

∣∣∣zt = j; Λ̃j, σ̃2 ) = −N
2
log 2π − 1

2
log
∣∣∣Λ̃jΛ̃′j + σ̃

2IN

∣∣∣− 1
2
σ̃−2

∥∥∥MΛ̃j
xt

∥∥∥
2

−1
2
x′tΛ̃j(σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jxt,

logL(xt

∣∣∣zt = k; Λ̃k, σ̃2 ) = −N
2
log 2π − 1

2
log
∣∣∣Λ̃kΛ̃′k + σ̃

2IN

∣∣∣− 1
2
σ̃−2

∥∥MΛ̃k
xt
∥∥2

−1
2
x′tΛ̃k(σ̃

2Ir0
k
+ Λ̃′kΛ̃k)

−1(Λ̃
′

kΛ̃k)
−1Λ̃′kxt,
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and similar to equations (35) and (36),
|Λ̃jΛ̃′j+σ̃2IN |
|Λ̃kΛ̃′k+σ̃2IN | =

∣∣∣∣
1
σ̃2
Λ̃′jΛ̃j+Ir0

j

∣∣∣∣
∣∣∣∣
1
σ̃2
Λ̃′
k
Λ̃k+Ir0

k

∣∣∣∣
. Thus

logL(xt

∣∣∣zt = j; Λ̃j, σ̃2 )− logL(xt
∣∣∣zt = k; Λ̃k, σ̃2 )

= −1
2
log

∣∣∣∣
1

σ̃2
Λ̃′jΛ̃j + Ir0j

∣∣∣∣+
1

2
log

∣∣∣∣
1

σ̃2
Λ̃′kΛ̃k + Ir0k

∣∣∣∣

+
1

2
σ̃−2(

∥∥MΛ̃k
xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2

+
∥∥∥MΛ0j

xt

∥∥∥
2

−
∥∥∥MΛ̃j

xt

∥∥∥
2

+
∥∥∥MΛ0

k
xt

∥∥∥
2

−
∥∥∥MΛ0j

xt

∥∥∥
2

)

−1
2
x′tΛ̃j(σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jxt +

1

2
x′tΛ̃k(σ̃

2Ir0
k
+ Λ̃′kΛ̃k)

−1(Λ̃
′

kΛ̃k)
−1Λ̃′kxt

≥ −1
2
log

∣∣∣∣
1

σ̃2
Λ̃′jΛ̃j + Ir0j

∣∣∣∣−
1

2
x′tΛ̃j(σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jxt

+
1

2
σ̃−2(

∥∥MΛ̃k
xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2

) +
1

2
σ̃−2(

∥∥∥MΛ0j
xt

∥∥∥
2

−
∥∥∥MΛ̃j

xt

∥∥∥
2

)

−1
2
σ̃−2e′tPΛ0ket + σ̃

−2e′tMΛ0
k
Λ0jf

0
t +

1

2
σ̃−2f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t , (46)

where the inequality follows from throwing away 1
2
log
∣∣∣ 1
σ̃2
Λ̃′kΛ̃k + Ir0k

∣∣∣, 12x
′
tΛ̃k(σ̃

2Ir0
k
+

Λ̃′kΛ̃k)
−1(Λ̃

′

kΛ̃k)
−1Λ̃′kxt and e

′
tPΛ0jet. It follows that

min
t
[logL(xt

∣∣∣zt = j; Λ̃j, σ̃2 )− logL(xt
∣∣∣zt = k; Λ̃k, σ̃2 )]

≥ −1
2
log

∣∣∣∣
1

σ̃2
Λ̃′jΛ̃j + Ir0j

∣∣∣∣−
1

2
sup
t

x′tΛ̃j(σ̃
2Ir0j + Λ̃

′
jΛ̃j)

−1(Λ̃′jΛ̃j)
−1Λ̃′jxt

−1
2
σ̃−2 sup

t

∣∣∣∣
∥∥MΛ̃k

xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2
∣∣∣∣−

1

2
σ̃−2 sup

t

∣∣∣∣
∥∥∥MΛ0j

xt

∥∥∥
2

−
∥∥∥MΛ̃j

xt

∥∥∥
2
∣∣∣∣

−1
2
σ̃−2 sup

t

e′tPΛ0ket − σ̃
−2 sup

t

∣∣∣e′tMΛ0
k
Λ0jf

0
t

∣∣∣+
1

2
σ̃−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t

≡ −(A1 + A2 + A3 + A4 + A5 + A6) +
1

2
σ̃−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t . (47)

Thus for expression (45), it suffices to show

Pr(
1

2
σ̃−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≤ A1 + A2 + A3 + A4 + A5 + A6 + η logN)→ 0. (48)

By Assumption 2(2), mint f
0′
t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ NC for some C > 0. Thus it suffices

to show that A1, ..., A6 are all op(N) when T
16
α /N → 0 and T

2
α
+ 2
β /N → 0.

Term A1: As shown in equation (15), Λ̃
′
jlΛ̃jl + σ̃

2 is an eigenvalue of S̃j =

9



∑T

t=1 p̃tj|T xtx
′
t/
∑T

t=1 p̃tj|T , which is bounded by supt ‖xt‖
2. We next show that supt ‖xt‖ =

Op(N
1
2T

1
α ). By Assumption 2(1) and 1(2), supt

∥∥Λ0ztf
0
t

∥∥α ≤ supj
∥∥Λ0j

∥∥α∑T

t=1 ‖f 0t ‖
α
=

N
α
2 T . By Holder inequality, ‖et‖2 =

∑N

i=1 e
2
it ≤ (

∑N

i=1 e
α
it)

2
αN1− 2

α , thus supt ‖et‖α ≤
N

α
2
−1 supt(

∑N

i=1 e
α
it) ≤ N

α
2
−1∑T

t=1

∑N

i=1 e
α
it = Op(N

α
2 T ) by Assumption 3(1). It fol-

lows that supt ‖xt‖ ≤ supt
∥∥Λ0ztf

0
t

∥∥+ supt ‖et‖ = Op(N
1
2T

1
α ). Thus

A1 =
1

2
log

∣∣∣∣
1

σ̃2
Λ̃′jΛ̃j + Ir0j

∣∣∣∣ =
1

2

∑r0j

l=1
log

Λ̃′jlΛ̃jl + σ̃
2

σ̃2

≤ 1

2
r0j log

supt ‖xt‖2
σ̃2

= Op(logNT
2
α ) = op(N) when

log T

N
→ 0.

Term A2: By Lemma 2,
1

σ̃2+Λ̃′
jl
Λ̃jl

= Op(
1√
δNT
) for each j and each l. We have

shown for term A1 that supt ‖xt‖ = Op(N
1
2T

1
α ). Thus

A2 ≤ 1

2
sup
t

(x′tPΛ̃jxt sup
l

1

σ̃2 + Λ̃′jlΛ̃jl
) ≤ 1

2
sup
t

‖xt‖2 sup
l

1

σ̃2 + Λ̃′jlΛ̃jl

= Op(NT
2
α )Op(

1√
δNT

) = op(N) when T
8
α/N → 0 and α > 8.

Term A3:

∥∥∥PΛ0
k
− PΛ̃k

∥∥∥
2

≤
∥∥∥PΛ0

k
− PΛ̃k

∥∥∥
2

F
= tr[(PΛ0

k
− PΛ̃k)

2]

= 2tr(Ir0
k
− PΛ0

k
PΛ̃k) = 2

∥∥∥MΛ̃k
Λ0k(Λ

0′
k Λ

0
k)
− 1
2

∥∥∥
2

F

≤ 2
1

N

∥∥MΛ̃k
Λ0k
∥∥2
F

∥∥∥∥(
1

N
Λ0′k Λ

0
k)
− 1
2

∥∥∥∥
2

F

= Op(
1√
δNT

), (49)

where the last equality follows from Theorem 1 and Assumption 2(1). We have shown

for term A1 that supt ‖xt‖ = Op(N
1
2T

1
α ). Thus

A3 =
1

2
σ̃−2 sup

t

∣∣∣x′t(PΛ0k − PΛ̃k)xt
∣∣∣ ≤ 1

2
σ̃−2

∥∥∥PΛ0
k
− PΛ̃k

∥∥∥ sup
t

‖xt‖2

= Op(δ
− 1
4

NT )NT
2
α = op(N) when T

16
α /N → 0 and α > 16.

Similar to term A3, Term A4 is also op(N) when T
16
α /N → 0 and α > 16.

10



Term A5: By Assumption 5(1), supt

∥∥∥Λ
0′
k
et√
N

∥∥∥
β

≤∑T

t=1

∥∥∥Λ
0′
k
et√
N

∥∥∥
β

= Op(T ). Thus

A5 ≤
1

2
σ̃−2

∥∥∥∥(
1

N
Λ0′k Λ

0
k)
−1
∥∥∥∥ sup

t

∥∥∥∥
Λ0′k et√
N

∥∥∥∥
2

= Op(T
2
β ) = op(N) when T

2
β /N → 0.

TermA6: By Assumption 1(2), supt ‖f 0t ‖
α ≤∑T

t=1 ‖f 0t ‖
α
= Op(T ), thus supt ‖f 0t ‖ =

Op(T
1
α ). We have shown for term A5 that supt

∥∥∥
Λ0′j et√
N

∥∥∥ = Op(T
1
β ). Thus

A6 ≤ σ̃−2 sup
t

∣∣e′tΛ
0
jf
0
t

∣∣+ σ̃−2 sup
t

∣∣∣∣e
′
tΛ
0
k(
Λ0′k Λ

0
k

N
)−1
Λ0′k Λ

0
j

N
f 0t

∣∣∣∣

≤ σ̃−2 sup
t

∥∥e′tΛ
0
j

∥∥ sup
t

∥∥f 0t
∥∥ (1 +

∥∥∥∥(
Λ0′k Λ

0
k

N
)−1
∥∥∥∥

∥∥∥∥
Λ0′k Λ

0
j

N

∥∥∥∥)

= Op(N
1
2T

1
α
+ 1
β ) = op(N) when T

2
α
+ 2
β /N → 0.

Step (2): We next prove p̃tk|T = op(
1
Nη ) for k 6= j when the true state is zt = j.

Let Q·k denote the k-th column of Q and "÷" denotes element-wise division for two
vectors.

p̃tk|T = p̃tk|t ×Q′·k(p̃t+1|T ÷ p̃t+1|t ) = p̃tk|t × p̃′t+1|T (Q·k ÷ p̃t+1|t )

≤ p̃tk|t max
l

Qlk
Qlj

1

p̃tj|t
= op(

1

Nη
),

where the inequality is due to the fact that each element of p̃t+1|t = Qp̃t|t is not

smaller than Q·j p̃tj|t and the last equality follows from step (1) and minlQlj > 0.

Part (2):

Similar to expression (48), it suffices to show

Pr(
1

2
σ̃−2f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≤ A′1 + A′2 + A′3 + A′4 + A′5 + A′6 + η logN)→ 0, (50)

where A′1, ..., A
′
6 equals A1, ..., A6 without taking supremum with respect to t. Given

the calculation of terms A1, ..., A6, it is not difficult to see that without taking supre-

mum, A′1, ..., A
′
6 becomes Op(logN), Op(

N√
δNT
), Op(

N

δ
1
4
NT

), Op(
N

δ
1
4
NT

), Op(1) and Op(N
1
2 )

respectively. Since f 0′t Λ
0′
j MΛ0

k
Λ0jf

0
t ≥ NC for some C > 0, A′1, ..., A′6 are all dominated

by this term.
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C Details for Theorem 3 and Theorem 4

Proof of Proposition 1

Proof. (1) Let VjNT be an r
0
j × r0j diagonal matrix consisting of eigenvalues of

(Λ0′j Λ
0
j )
1
2 (
∑T
t=1 f

0
t f

0′
t 1zt=j)(Λ

0′
j Λ

0
j )
1
2

NTq0j
in descending order andΥjNT be the corresponding eigen-

vectors. Let Λ̄0j = Λ
0
j(Λ

0′
j Λ

0
j)
− 1
2ΥjNT be the normalized version of Λ

0
j , then Λ̄

0′
j Λ̄

0
j =

Ir0j . Let Λ̌j = Λ̃j(Λ̃
′
jΛ̃j)

− 1
2 be the normalized version of Λ̃j, then Λ̌

′
jΛ̌j = Ir0j .

From equation (15), we have Λ̌jWjNT = (
1
NT

∑T

t=1 p̃tj|T xtx
′
t)Λ̌j. The left hand side

equals PΛ̄0j Λ̌jWjNT +MΛ̄0j
Λ̌jWjNT = Λ̄0j Λ̄

0′
j Λ̌jWjNT +MΛ̄0j

Λ̌jWjNT . The right hand

side equals

Λ0j
(
∑T

t=1 f
0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
+

∑T

t=1 E(ete
′
t)1zt=jΛ̌j

NT
+

∑T

t=1(ete
′
t − E(ete′t))1zt=jΛ̌j
NT

+

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j Λ̌j

NT
+
Λ0j
∑T

t=1 f
0
t e
′
t1zt=jΛ̌j

NT
+

∑T

t=1(p̃tj|T − 1zt=j)xtx′t
NT

Λ̌j

≡ Λ0j
(
∑T

t=1 f
0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
+ I + II + III + IV +D. (51)

Note that Λ0j
(
∑T
t=1 f

0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
= Λ̄0jq

0
jVjNT Λ̄

0′
j Λ̌j, thus we have

Λ̄0j(Λ̄
0′
j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j) +MΛ̄0j

Λ̌jWjNT = I + II + III + IV +D (52)

Terms I, ..., IV correspond to the right hand of equation (A.1) in Bai (2003). By

Assumption 3(2), ‖I‖2F = Op(
1
N
). By Assumption 3(4), ‖II‖2F = Op(

1
T
). By

Assumptions 5(2) and 2(1), ‖III‖2F and ‖IV ‖2F are Op(
1
T
). The detailed calcu-

lation is similar to the proof of Theorem 1 in Bai and Ng (2002), hence omitted

here. Now consider term D. Since
∥∥∥
∑T
t=1(p̃tj|T −1zt=j)xtx′t

NT

∥∥∥ ≤
∑T
t=1|p̃tj|T −1zt=j|‖xt‖2

NT
≤

supt
∣∣p̃tj|T − 1zt=j

∣∣
∑T
t=1‖xt‖

2

NT
,

‖D‖F ≤
∥∥∥∥∥

∑T

t=1(p̃tj|T − 1zt=j)xtx′t
NT

∥∥∥∥∥
∥∥Λ̌j

∥∥
F

≤
√
r0j sup

t

∣∣p̃tj|T − 1zt=j
∣∣
∑T

t=1 ‖xt‖
2

NT
= op(

1

Nη
). (53)
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The last equality follows from Theorem 2 and
∑T
t=1‖xt‖

2

NT
= Op(1), which can be easily

shown using Assumptions 1(2), 2(1) and 3(1). In summary, the right hand side of

equation (52) is Op(
1

δNT
). The two terms on the left hand side12 are orthogonal to

each other, thus both
∥∥∥MΛ̄0j

Λ̌jWjNT

∥∥∥
F
and

∥∥Λ̄0j(Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j)
∥∥
F
are

Op(
1

δNT
). Since ‖A‖2F = tr(A′A) for any matrix A and Λ̄0j is orthonormal,

∥∥Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j
∥∥
F
=
∥∥Λ̄0j(Λ̄

0′
j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j)

∥∥
F
= op(1). (54)

We next show that equation (54) implies that Λ̄0′j Λ̌j
p→ Ir0j and WjNT

p→ q0jVj.

First, the Euclidean norm of each column of Λ̄0′j Λ̌j converges in probability to 1

and the inner product of different columns converges in probability to 0, because

∥∥∥Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j

∥∥∥
F
≤

√
r0j

∥∥∥Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j

∥∥∥ ≤
√
r0j tr(Ir0j − Λ̌

′
jΛ̄

0
j Λ̄

0′
j Λ̌j)

=
√
r0j

∥∥∥MΛ̄0j
Λ̌j

∥∥∥
2

F
=
√
r0j

∥∥∥MΛ̌j
Λ̄0j

∥∥∥
2

F
= op(1). (55)

The second inequality follows from the fact that Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j is positive semi-

definite. The second to last equality follows from the fact that both Λ̄0j and Λ̌j are

orthonormal. The last equality follows from Theorem 1.

Let VjNT,i, WjNT,1 and (Λ̄
0′
j Λ̌j)i1 denote the i-th diagonal element of VjNT , the 1st

diagonal element of WjNT and the (i, 1)-th element of Λ̄
0′
j Λ̌j, then the first column

of Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j is (WjNT,1 − q0jVjNT,i)(Λ̄0′j Λ̌j)i1, i = 1, ..., r0j . Equation
(54) implies that for all i = 1, ..., r0j , (WjNT,1 − q0jVjNT,i)(Λ̄0′j Λ̌j)i1 is op(1). We have
shown through expression (55) that

∑r0j
i=1(Λ̄

0′
j Λ̌j)

2
i1

p→ 1, thus there exists at least

one certain i such that (Λ̄0′j Λ̌j)i1 is bounded away from zero in probability. Without

loss of generality, suppose (Λ̄0′j Λ̌j)11 is bounded away from zero in probability. Since

(WjNT,1 − q0jVjNT,1)(Λ̄0′j Λ̌j)11 is op(1), we must have WjNT,1 − q0jVjNT,1 = op(1). This
implies that WjNT,1 − q0jVjNT,i is bounded away from zero in probability for i 6= 1

because by Assumption 6, VjNT,i 6= VjNT,1 w.p.a.1. Since (WjNT,1− q0jVjNT,i)(Λ̄0′j Λ̌j)i1
is op(1) for all i, we must have (Λ̄

0′
j Λ̌j)i1 = op(1) for i 6= 1. This together with

12The left hand side of equation (52) corresponds to a further decomposition of the left hand side
of equation (A.1) in Bai (2003).
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∑r0j
i=1(Λ̄

0′
j Λ̌j)

2
i1

p→ 1 implies that (Λ̄0′j Λ̌j)11
p→ 1. In summary, we have shown that the

first column of Λ̄0′j Λ̌j converges in probability to (1, 0, ..., 0).

Similarly, for the second column of Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j, we can also show
that one element converges in probability to 1 and the other elements are op(1).

Since the inner product of the first column and the second column of Λ̄0′j Λ̌j is op(1),

(Λ̄0′j Λ̌j)12 must be op(1). Thus (Λ̄
0′
j Λ̌j)i2

p→ 1 for certain i 6= 1 and (Λ̄0′j Λ̌j)i2 = op(1)
for all the other i. Without loss of generality, suppose (Λ̄0′j Λ̌j)22

p→ 1 and (Λ̄0′j Λ̌j)i2 =

op(1) for i 6= 2. Since (WjNT,2 − q0jVjNT,i)(Λ̄0′j Λ̌j)i2 is op(1) for all i, we must have
WjNT,2 − q0jVjNT,2 = op(1).
Similarly, the third column of Λ̄0′j Λ̌j converges in probability to (0, 0, 1, ..., 0) and

WjNT,3 − q0jVjNT,3 = op(1). Repeat the argument for all columns of Λ̄
0′
j Λ̌j, we have

Λ̄0′j Λ̌j
p→ Ir0j and WjNT − q0jVjNT = op(1). Since VjNT

p→ Vj, we have WjNT
p→ q0jVj.

(2) By Theorem 2(1),
∣∣∣ 1T
∑T

t=1(p̃tj|T − 1zt=j)
∣∣∣ ≤ supt

∣∣p̃tj|T − 1zt=j
∣∣ = op( 1Nη ). By

Assumption 4, 1
T

∑T

t=1 1zt=j
p→ q0j . Thus

1
T

∑T

t=1 p̃tj|T
p→ q0j . We have shown that

WjNT
p→ q0jVj, thus

Λ̃′jΛ̃j

N
= WjNT/

1
T

∑T

t=1 p̃tj|T − σ̃2

N
Ir0j

p→ Vj. It follows that

Hj =

∑T

t=1 f
0
t f

0′
t 1zt=j

T

Λ0′j Λ̃j

N
W−1
jNT

= (Λ0′j Λ
0
j)
− 1
2
(Λ0′j Λ

0
j)

1
2 (
∑T

t=1 f
0
t f

0′
t 1zt=j)(Λ

0′
j Λ

0
j)

1
2

NT
(Λ0′j Λ

0
j)
− 1
2Λ0′j Λ̌j(Λ̃

′
jΛ̃j)

1
2W−1

jNT

= (
Λ0′j Λ

0
j

N
)−

1
2ΥjNTVjNT (Λ̄

0′
j Λ̌j)(

Λ̃′jΛ̃j

N
)
1
2W−1

jNT q
0
j

p→ Σ
− 1
2

Λj
ΥjV

1
2
j . (56)

Proof of Theorem 3

Proof. From equation (51), we have Λ̃jWjNT = Λ0j
(
∑T
t=1 f

0
t f

0′
t 1zt=j)Λ

0′
j Λ̃j

NT
+ (I + II +

III + IV +D)(Λ̃′jΛ̃j)
1
2 , i.e.,

Λ̃j − Λ0jHj = (I + II + III + IV +D)(Λ̃′jΛ̃j)
1
2W−1

jNT . (57)

We have shown in Proposition 1 that ‖I + II + III + IV +D‖2F = Op( 1
δ2NT
),WjNT

p→

q0jVj and
Λ̃′jΛ̃j

N

p→ Vj. Thus
1
N

∥∥∥Λ̃j − Λ0jHj
∥∥∥
2

F
= Op(

1
δ2NT
).

14



Proof of Theorem 4

Proof. Let Ii, IIi, IIIi, IVi and Di denote the i-th row of I, II, III, IV and D

respectively. From equation (57), we have

λ̃
′
ji − λ0′jiHj = (Ii + IIi + IIIi + IVi +Di)(Λ̃

′
jΛ̃j)

1
2W−1

jNT .

By Assumptions 2(1) and 3(2) and Theorem 3, Ii(Λ̃
′
jΛ̃j)

1
2 = Op(

1√
NδNT

). By Assump-

tions 3(4) and 7(1) and Theorem 3, IIi(Λ̃
′
jΛ̃j)

1
2 = Op(

1√
TδNT

). By Assumption 3(2)

and Theorem 3, IIIi(Λ̃
′
jΛ̃j)

1
2 =

∑T
t=1 eitf

0′
t 1zt=jΛ

0′
j Λ

0
jHj

NT
+ Op(

1√
TδNT

). By Assumptions

3(2) and 7(2) and Theorem 3, IVi(Λ̃
′
jΛ̃j)

1
2 = Op(

1√
TδNT

). The detailed calculation of

these four terms is similar to the proof of Lemma A.2 in Bai (2003), hence omitted

here. For the term Di(Λ̃
′
jΛ̃j)

1
2 , we have

∥∥∥Di(Λ̃
′
jΛ̃j)

1
2

∥∥∥
2

=

∥∥∥∥
1

NT

∑T

t=1
(p̃tj|T − 1zt=j)xitx′tΛ̃j

∥∥∥∥
2

≤ 1

N2T 2

∑T

t=1
(p̃tj|T − 1zt=j)2x2it

∑T

t=1
‖xt‖2

∥∥∥Λ̃j
∥∥∥
2

F

≤ sup
t

∣∣p̃tj|T − 1zt=j
∣∣2
∑T

t=1 x
2
it

T

∑T

t=1 ‖xt‖
2

NT

∥∥∥Λ̃j
∥∥∥
2

F

N
= op(

1

N2η
),

where the last equality follows from Theorem 2. We have shown in Proposition 1 that

WjNT
p→ q0jVj, thus W

−1
jNT = Op(1). It follows that

√
Tq0j (λ̃ji −H ′

jλ
0
ji) = q

0
jW

−1
jNTH

′
j

Λ0′j Λ
0
j

N

∑T

t=1 f
0
t eit1zt=j√
Tq0j

+Op(

√
T

N
) + op(1).

Thus by Proposition 1 and Assumption 7(3),

√
Tq0j (λ̃ji −H ′

jλ
0
ji)

d→ N (0, V −
1
2

j Υ′jΣ
1
2
Λj
ΦjiΣ

1
2
Λj
ΥjV

− 1
2

j ) when
√
T/N → 0.
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D Details for Theorem 5

Lemma 3 Under Assumptions 1-7, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

(1) 1
N
e′t(Λ̃j − Λ0jHj) = Op( 1

δ2NT
) for each j and t,

(2) 1
N
Λ0′j (Λ̃j − Λ0jHj) = Op( 1

δ2NT
) for each j.

Proof. Part (1): From equation (57), we have 1
N
e′t(Λ̃j−Λ0jHj) = 1

N
e′t(I + II + III +

IV +D)(Λ̃′jΛ̃j)
1
2W−1

jNT . Consider each term one by one.

e′tI(Λ̃
′
jΛ̃j)

1
2

N
= e′t

∑T

t=1 E(ete
′
t)1zt=j

N2T
Λ0jHj + e

′
t

∑T

t=1 E(ete
′
t)1zt=j

N2T
(Λ̃j − Λ0jHj).

By Assumption 3(1) and 3(2), the first term is Op(
1
N
). By Assumption 3(2) and

Theorem 3, the second term is Op(
1√

NδNT
).

e′tII(Λ̃
′
jΛ̃j)

1
2

N
= e′t

∑T

t=1(ete
′
t − E(ete′t))1zt=j
N2T

Λ0jHj+e
′
t

∑T

t=1(ete
′
t − E(ete′t))1zt=j
N2T

(Λ̃j−Λ0jHj).

By Assumption 7(1), the first term is Op(
1√
NT
). By Assumption 3(4) and Theorem

3, the second term is Op(
1√
TδNT

).

e′tIII(Λ̃
′
jΛ̃j)

1
2

N
= e′t

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j

N2T
Λ0jHj + e

′
t

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j

N2T
(Λ̃j − Λ0jHj).

The first term is Op(
1√
NT
) + Op(

1
T
) since 1

NT
e′t
∑T

t=1 etf
0′
t 1zt=j = Op(

1√
NT
) + Op(

1
T
),

which follows from Assumptions 3(3), 7(1) and eiteis = γi,ts + (eiteis − γi,ts). By
Theorem 3, the second term is Op(

1√
TδNT

).

e′tIV (Λ̃
′
jΛ̃j)

1
2

N
= e′t

Λ0j
∑T

t=1 f
0
t e
′
t1zt=j

N2T
Λ0jHj + e

′
t

Λ0j
∑T

t=1 f
0
t e
′
t1zt=j

N2T
(Λ̃j − Λ0jHj).

The first term isOp(
1√
NT
) since by Assumption 7(2), 1

NT

∑T

t=1 f
0
t e
′
t1zt=jΛ

0
j = Op(

1√
NT
).

By Theorem 3, the second term is Op(
1√
TδNT

).

∥∥∥∥∥
e′tD(Λ̃

′
jΛ̃j)

1
2

N

∥∥∥∥∥
≤
∥∥∥∥
e′t√
N

∥∥∥∥ ‖D‖F

∥∥∥∥∥
(
Λ̃′jΛ̃j

N
)
1
2

∥∥∥∥∥
.
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Thus from equation (53), this term is op(
1
Nη ). Finally, note thatW

−1
jNT

d→ 1
q0j
V −1j , part

(1) is proved.

Part (2) can be proved similarly.

Proof of Theorem 5

Proof. First, by Woodbury identity,

f̃t =
∑J0

j=1
(σ̃2Ir0j + Λ̃

′
jΛ̃j)

−1Λ̃′jxtp̃tj|T

=
∑J0

k=1

∑J0

j=1
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jΛ
0
kf

0
t 1zt=k +

∑J0

j=1
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jet.

When zt = k, we have

∑J0

j=1
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jΛ
0
kf

0
t

= (σ̃2Ir0
k
+ Λ̃′kΛ̃k)

−1Λ̃′kΛ
0
kf

0
t

+(p̃tk|T − 1)(σ̃2Ir0
k
+ Λ̃′kΛ̃k)

−1Λ̃′kΛ
0
kf

0
t +

∑
j 6=k
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jΛ
0
kf

0
t

= H−1
k f

0
t + (σ̃

2Ir0
k
+ Λ̃′kΛ̃k)

−1Λ̃′k(Λ
0
kHk − Λ̃k)H−1

k f
0
t − (σ̃2Ir0k + Λ̃

′
kΛ̃k)

−1σ̃2H−1
k f

0
t

+(p̃tk|T − 1)(σ̃2Ir0
k
+ Λ̃′kΛ̃k)

−1Λ̃′kΛ
0
kf

0
t +

∑
j 6=k
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jΛ
0
kf

0
t

≡ H−1
k f

0
t +Bk1t −Bk2t +Bk3t +Bk4t,

and

∑J0

j=1
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jet

= (σ̃2Ir0
k
+ Λ̃′kΛ̃k)

−1(Λ̃k − Λ0kHk)′et + (σ̃2Ir0k + Λ̃
′
kΛ̃k)

−1H ′
kΛ

0′
k et

+(p̃tk|T − 1)(σ̃2Ir0
k
+ Λ̃′kΛ̃k)

−1Λ̃′ket +
∑J0

j 6=k
p̃tj|T (σ̃

2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′jet

≡ Ck1t + Ck2t + Ck3t + Ck4t.

It follows that f̃t−H−1
zt
f 0t = Bzt1t−Bzt2t+Bzt3t+Bzt4t+Czt1t+Czt2t+Czt3t+Czt4t.

Proof of part (1): First consider Bzt1t.

∑T

t=1 ‖Bzt1t‖
2

T
≤
∑J0

j=1

∥∥∥(σ̃2Ir0j + Λ̃
′
jΛ̃j)

−1Λ̃′j(Λ
0
jHj − Λ̃j)H−1

j

∥∥∥
2
∑T

t=1 ‖f 0t ‖
2

T
= Op(

1

δ2NT
),
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where the equality is due to the following facts:

(1) By Proposition 1(1), 1
N
(σ̃2Ir0j + Λ̃

′
jΛ̃j) = WjNT/

1
T

∑T

t=1 p̃tj|T
p→ Vj for all j.

(2)
∥∥∥ 1√

N
Λ̃′j

∥∥∥
F
=
√
tr( 1

N
Λ̃′jΛ̃j)

p→
√
tr(Vj) for all j.

(3) By Theorem 3,
∥∥∥ 1√

N
(Λ0jHj − Λ̃j)

∥∥∥ = Op( 1
δNT
) for all j.

(4) By Proposition 1(1),
∥∥H−1

j

∥∥ = Op(1) for all j.

(5) 1
T

∑T

t=1 ‖f 0t ‖
2
= Op(1) by Assumption 1.

It is easy to see that 1
T

∑T

t=1 ‖Bzt2t‖
2 = Op(

1
N2 ). For Bzt3t, we have

∑T

t=1 ‖Bzt3t‖
2

T
≤ sup

t

∥∥p̃tzt|T − 1
∥∥2
∥∥∥(σ̃2Ir0zt + Λ̃

′
zt
Λ̃zt)

−1Λ̃′ztΛ
0
zt

∥∥∥
2
∑T

t=1 ‖f 0t ‖
2

T
= op(

1

N2η
),

where the equality is due to supt
∥∥p̃tzt|T − 1

∥∥ ≤ supj supt
∥∥p̃tj|T − 1zt=j

∥∥ = op(
1
Nη )

by Theorem 2. It is easy to see that 1
T

∑T

t=1 ‖Bzt4t‖
2 = op(

1
N2η ). Similarly, we can

show that
∑T
t=1‖Czt1t‖2

T
is Op(

1
δ2NT
),

∑T
t=1‖Czt2t‖2

T
is Op(

1
N
), and both

∑T
t=1‖Czt3t‖2

T
and

∑T
t=1‖Czt4t‖2

T
are op(

1
N2η )(Op(

1
N
) +Op(

1
δ2NT
)). Thus 1

T

∑T

t=1

∥∥∥f̃t −H−1
zt
f 0t

∥∥∥
2

= Op(
1

δ2NT
).

Proof of part (2): By Theorem 3 and Lemma 3(2), Λ̃′k(Λ
0
kHk − Λ̃k) = Op( 1

δ2NT
) for

any k. This together with fact (1) and fact (4) listed above implies Bzt1t = Op(
1

δ2NT
).

Similarly, it is easy to see that Bzt2t = Op(
1
N
), Bzt3t = op(

1
Nη ), Bzt4t = op(

1
Nη ),

Czt1t = Op(
1

δ2NT
), Czt2t = Op(

1√
N
), Czt3t = op(

1
Nη ) and Czt4t = op(

1
Nη ). The leading

term is Czt2t. Since
Λ̃′zt Λ̃zt
N

p→ Vzt, Hzt
p→ Σ

− 1
2

Λzt
ΥztV

1
2
zt and

1√
N
Λ0′ztet

d→ N (0,Γztt) by
Assumption 7(4), we have

√
N(f̃t−H−1

zt
f 0t )

d→ N (0, V −
1
2

zt Υ
′
zt
Σ
− 1
2

Λzt
ΓzttΣ

− 1
2

Λzt
ΥztV

− 1
2

zt ).

E Proof of Theorem 6

Proof. First, Q̃jk =
∑T

t=2 p̃tjk|T /
∑J0

j=1

∑T

t=2 p̃tjk|T =
1

T−1
∑T

t=2 p̃tjk|T /
1

T−1
∑T−1

t=1 p̃tk|T .

For the denominator, by Theorem 2, we have

1

T − 1
∑T−1

t=1
p̃tk|T =

1

T − 1
∑T−1

t=1
1zt=k + op(

1

Nη
)
p→ q0k. (58)
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For the numerator, we have

1

T − 1
∑T

t=2
p̃tjk|T =

1

T − 1
∑T

t=2
p̃tj|T Pr(zt−1 = k

∣∣∣zt = j, x1:T ; Λ̃, σ̃2, Q, φ)

=
1

T − 1
∑T

t=2
[1zt=j + op(

1

Nη
)][1zt−1=k + op(

1

Nη
)]. (59)

The second equality of (59) follows from: (1) p̃tj|T = 1zt=j + op(
1
Nη ) by Theorem 2,

(2) Pr(zt−1 = k
∣∣∣zt = j, x1:T ; Λ̃, σ̃2, Q, φ) = Pr(zt−1 = k

∣∣∣zt = j, x1:t−1; Λ̃, σ̃2, Q, φ)

=
Pr(zt−1 = k, zt = j

∣∣∣x1:t−1; Λ̃, σ̃2, Q, φ)

Pr(zt = j
∣∣∣x1:t−1; Λ̃, σ̃2, Q, φ)

=
Qjkp̃t−1,k|t−1

∑J0

h=1Qjhp̃t−1,h|t−1

= 1zt−1=k + op(
1

Nη
),

where the last equality follows from Theorem 2. Since zt follows a Markov process,

1

T − 1
∑T

t=2
1zt=j1zt−1=k

p→ E(1zt=j1zt−1=k) = E[E(1zt=j1zt−1=k
∣∣1zt−1=k )] = q

0
kQ

0
jk.

(60)

Take equations (58)-(60) together, we have shown Q̃jk
p→ Q0jk.

F Proof of Theorem 7

Proof. First, for notational convenience, let the J̄-dimensional vector (r1, ..., rJ̄)

denote the numbers of factors. When the number of regime is less than J̄ , some

elements of this vector are zeros. Rank (r1, ..., rJ̄) in descending order and denote

it as (r(1), ..., r(J̄)). Similarly, let (r
0
(1), ..., r

0
(J0), 0, ..., 0) denote the true numbers of

factors, then it suffices to show that Pr(r̃(j) = r
0
(j) for j = 1, ..., J̄)→ 1.

Step (1):

Pr(PC(r(1), ..., r(J̄)) > PC(r0(1), ..., r
0
(J0)))→ 0 if r(1) > r

0
(1), (61)

Pr(PC(r(1), ..., r(J̄)) > PC(r0(1), ..., r
0
(J0)))→ 0 if r(1) < r

0
(1). (62)
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Proof of expression (61): From expressions (30) and (31),

l(Λ̃1,r(1) , ..., Λ̃J̄ ,r(J̄) , σ
2, Q, φ) ≤

−NT log 2π
2

− 1
2

∑T

t=1
log
∣∣∣Λ̃mt,r(mt)

Λ̃′mt,r(mt)
+ σ2IN

∣∣∣−
∑T

t=1

∥∥∥MΛ̃mt,r(mt)
xt

∥∥∥
2

2σ2

−1
2

∑T

t=1
x′tΛ̃mt,r(mt)

(σ2Ir(mt) + Λ̃
′
mt,r(mt)

Λ̃mt,r(mt)
)−1(Λ̃′mt,r(mt)

Λ̃mt,r(mt)
)−1Λ̃′mt,r(mt)

xt,

where Λ̃j,r(j) is N × r(j) and the subscript r(j) is suppressed if r(j) = r0(j). If r(j) = 0,
then Λ̃j,r(j) = 0. From expressions (32) and (33), we have

l(Λ01, ...,Λ
0
J0 , σ

2, Q, φ)

≥ −NT
2
log 2π − 1

2

∑T

t=1
log
∣∣Λ0ztΛ

0′
zt
+ σ2IN

∣∣− T logmin
j,k
Qjk −

1

2σ2

∑T

t=1

∥∥∥MΛ0zt
xt

∥∥∥
2

− 1
2

∑T

t=1
x′tΛ

0
zt
(σ2Ir0zt + Λ

0′
zt
Λ0zt)

−1(Λ0′ztΛ
0
zt
)−1Λ0′ztxt.

It follows that

l(Λ̃1,r(1) , ..., Λ̃J̄ ,r(J̄) , σ
2, Q, φ)− l(Λ01, ...,Λ0J0 , σ2, Q, φ) ≤

− 1

2σ2

∑T

t=1

∥∥∥MΛ̃mt,r(mt)
Λ0ztf

0
t

∥∥∥
2

− 1

σ2

∑T

t=1
e′tMΛ̃mt,,r(mt)

Λ0ztf
0
t

− 1

2σ2

∑T

t=1

∥∥∥PΛ0ztet
∥∥∥
2

+
1

2σ2

∑T

t=1

∥∥∥PΛ̃mt,r(mt)
et

∥∥∥
2

+T logmin
j,k
Qjk −

1

2

∑T

t=1
log

∣∣∣Λ̃mt,r(mt)
Λ̃′mt,r(mt)

+ σ2IN

∣∣∣
∣∣Λ0ztΛ0′zt + σ2IN

∣∣

−1
2

∑T

t=1
x′tΛ̃mt,r(mt)

(σ2Ir(mt) + Λ̃
′
mt,r(mt)

Λ̃mt,r(mt)
)−1(Λ̃′mt,r(mt)

Λ̃mt,r(mt)
)−1Λ̃′mt,r(mt)

xt

+
1

2

∑T

t=1
x′tΛ

0
zt
(σ2Ir0zt + Λ

0′
zt
Λ0zt)

−1(Λ0′ztΛ
0
zt
)−1Λ0′ztxt (63)

The first, the third and the seventh term on the right hand side of expression (63) are

negative, thus the inequality still holds when these terms are thrown away. Steps (3.1),

(3.2) and (3.4) in the proof of Theorem 1 show that the fifth term is O(T ), the sixth

term is Op(T logN) and the eighth term is Op(T ). For the fourth term, by expres-

sion (38) and Lemma 1, we have
∑T

t=1

∥∥∥PΛ̃mt,r(mt)
et

∥∥∥
2

≤∑J0

j=1 r(j) ‖E ′E‖ = Op( NTδNT ).
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The second term is Op(
NT
δNT
) because step (3.5) in the proof of Theorem 1 shows

∑T

t=1 e
′
tΛ
0
zt
f 0t = Op(N

1
2T ) and

∑T

t=1 e
′
tPΛ̃mt,rmt

Λ0ztf
0
t = Op(N

1
2T

1
2 (
∑T

t=1

∥∥∥PΛ̃mt,rmt et
∥∥∥
2

)
1
2 ).

In summary, we have

l(Λ̃1,r(1) , ..., Λ̃J̄ ,r(J̄) , σ
2, Q, φ) ≤ l(Λ01, ...,Λ0J0 , σ2, Q, φ) +Op(

NT

δNT
). (64)

Note that expression (64) holds no matter what the values of r(1), ..., r(J̄) are. When

r(1), ..., r(J̄) equal the true values, l(Λ
0
1, ...,Λ

0
J0 , σ

2, Q, φ) ≤ l(Λ̃1, ..., Λ̃J0 , σ2, Q, φ). Thus

PC(r(1), ..., r(J̄))− PC(r0(1), ..., r0(J0))

≤ Op(
1

δNT
)−

∑J̄

j=1
(g(N, T ))b(r(j)) +

∑J0

j=1
(g(N, T ))b(r

0
(j)
).

If r(1) > r
0
(1), Pr(PC(r(1), ..., r(J̄)) ≤ PC(r0(1), ..., r0(J0)))→ 1, i.e., (g(N, T ))b(r(1)) would

dominate if r(1) > r
0
(1), no matter what the values of r(2), ..., r(J̄) are.

Proof of expression (62): Since l(Λ01, ...,Λ
0
J0 , σ

2, Q, φ) ≤ l(Λ̃1, ..., Λ̃J0 , σ2, Q, φ),

l(Λ̃1,r(1) , ..., Λ̃J̄ ,r(J̄) , σ
2, Q, φ)− l(Λ̃1, ..., Λ̃J0 , σ2, Q, φ)

≤ l(Λ̃1,r(1) , ..., Λ̃J̄ ,r(J̄) , σ
2, Q, φ)− l(Λ01, ...,Λ0J0 , σ2, Q, φ)

≤ the right hand side of expression (63)

≤ − 1

2σ2

∑T

t=1

∥∥∥MΛ̃mt,r(mt)
Λ0ztf

0
t

∥∥∥
2

+Op(
NT

δNT
)

≤ − 1

2σ2

∑
t:zt=(1)

∥∥∥MΛ̃mt,r(mt)
Λ0(1)f

0
t

∥∥∥
2

+Op(
NT

δNT
), (65)

where
∑

t:zt=(1)
denotes summation over the regime corresponding to r0(1), and there

are q0(1)T terms in this summation since q
0
(1) is the unconditional probability of zt = (1).

For each t with zt = (1), Λ0(1)f
0
t is projected on one of Λ̃j,r(j) , j = 1, ..., J̄ , thus

there exists Λ̃k,r(k) such that Λ
0
(1)f

0
t is projected on Λ̃k,r(k) at least

q0
(1)
T

J̄
times, i.e.,

∑T

t=1 1mt=(k)1zt=(1) ≥
q0
(1)
T

J̄
. Thus by Assumption 1(1), ρmin(

∑T
t=1 f

0
t f

0′
t 1mt=(k)1zt=(1)∑T

t=1 1mt=(k)1zt=(1)
) ≥ c
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for some c > 0 w.p.a.1. It follows that

∑
t:zt=(1)

∥∥∥MΛ̃mt,r(mt)
Λ0(1)f

0
t

∥∥∥
2

≥
∑T

t=1

∥∥∥MΛ̃k,r(k)
Λ0(1)f

0
t

∥∥∥
2

1mt=(k)1zt=(1)

= tr(Λ0′(1)MΛ̃k,r(k)
Λ0(1)

∑T

t=1
f 0t f

0′
t 1mt=(k)1zt=(1))

≥ tr(Λ0′(1)MΛ̃k,r(k)
Λ0(1))ρmin(

∑T

t=1
f 0t f

0′
t 1mt=(k)1zt=(1))

≥ tr(Λ0′(1)MΛ̃k,r(k)
Λ0(1))

q0(1)T

J̄
c w.p.a.1. (66)

If r(1) < r0(1), then r(k) ≤ r(1) < r0(1), and consequently
1
N
tr(Λ0′(1)MΛ̃k,r(k)

Λ0(1)) > c for

some c > 0. Since (g(N, T ))b(r(j)) → 0 for 1 ≤ r(j) ≤ r̄, we have Pr(PC(r(1), ..., r(J̄)) >
PC(r0(1), ..., r

0
(J0)))→ 0 if r(1) < r

0
(1).

Step (2):

Pr(PC(r0(1), r(2), ..., r(J̄)) > PC(r0(1), ..., r
0
(J0)))→ 0 if r(2) > r

0
(2), (67)

Pr(PC(r0(1), r(2), ..., r(J̄)) > PC(r0(1), ..., r
0
(J0)))→ 0 if r(2) < r

0
(2). (68)

Proof of expression (67): In the proof of expression (61) we have shown that

expression (64) holds no matter what the values of r(1), ..., r(J̄) are, thus (64) also

holds here for (r0(1), r(2), ..., r(J̄)). It follows that

PC(r0(1), r(2), ..., r(J̄))− PC(r0(1), ..., r0(J0))

≤ Op(
1

δNT
)−

∑J̄

j=2
(g(N, T ))b(r(j)) +

∑J0

j=2
(g(N, T ))b(r

0
(j)
).

If r(2) > r0(2), Pr(PC(r
0
(1), r(2), ..., r(J̄)) ≤ PC(r0(1), ..., r

0
(J0))) → 1, i.e., (g(N, T ))b(r(2))

would dominate if r(2) > r
0
(2), no matter what the values of r(3), ..., r(J̄) are.

Proof of expression (68): Similar to expressions (65) and (66), we have

l(Λ̃1,r0
(1)
, Λ̃2,r(2) , ..., Λ̃J̄ ,r(J̄) , σ

2, Q, φ)− l(Λ̃1, ..., Λ̃J0 , σ2, Q, φ)

≤ − 1

2σ2

∑
t:zt=(1)

∥∥∥MΛ̃mt,r(mt)
Λ0(1)f

0
t

∥∥∥
2

+Op(
NT

δNT
)

≤ − 1

2σ2
tr(Λ0′(1)MΛ̃k,r(k)

Λ0(1))ρmin(
∑T

t=1
f 0t f

0′
t 1mt=(k)1zt=(1)) +Op(

NT

δNT
),
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and
∑T

t=1 1mt=(k)1zt=(1) ≥
q0
(1)
T

J̄
. The event PC(r0(1), r(2), ..., r(J̄)) > PC(r

0
(1), ..., r

0
(J0))

implies

l(Λ̃1,r0
(1)
, Λ̃2,r(2) , ..., Λ̃J̄ ,r(J̄) , σ

2, Q, φ)− l(Λ̃1, ..., Λ̃J0 , σ2, Q, φ)
NT

+
∑J0

j=2
(g(N, T ))b(r

0
(j)
) > 0,

i.e.,

tr(
1

N
Λ0′(1)MΛ̃k,r(k)

Λ0(1)) <
2σ2(Op(

1
δNT
) +

∑J0

j=2(g(N, T ))
b(r0

(j)
))

ρmin(
1
T

∑T

t=1 f
0
t f

0′
t 1mt=(k)1zt=(1))

.

If r(2) < r
0
(2), then r(k) < r

0
(2) for k = 2, ..., J̄ . Thus if r(2) < r

0
(2),

Pr(PC(r0(1), r(2), ..., r(J̄)) > PC(r
0
(1), ..., r

0
(J0)), k 6= 1)→ 0.

Similarly, the event PC(r0(1), r(2), ..., r(J̄)) > PC(r
0
(1), ..., r

0
(J0)) also implies that

tr(
1

N
Λ0′(2)MΛ̃k′,r(k′)

Λ0(2)) <
2σ2(Op(

1
δNT
) +

∑J0

j=2(g(N, T ))
b(r0

(j)
))

ρmin(
1
T

∑T

t=1 f
0
t f

0′
t 1mt=(k′)1zt=(2))

,

with
∑T

t=1 1mt=(k)1zt=(1) ≥
q0
(1)
T

J̄
. If r(2) < r

0
(2), then r(k′) < r

0
(2) for k

′ = 2, ..., J̄ , thus

Pr(PC(r0(1), r(2), ..., r(J̄)) > PC(r
0
(1), ..., r

0
(J0)), k

′ 6= 1)→ 0.

Finally, the event (PC(r0(1), r(2), ..., r(J̄)) > PC(r
0
(1), ..., r

0
(J0)), k = 1, k

′ = 1) implies

tr(
1

N
Λ0′(1)MΛ̃

1,r0
(1)

Λ0(1)) <
2σ2(Op(

1
δNT
) +

∑J0

j=2(g(N, T ))
b(r0

(j)
))

ρmin(
1
T

∑T

t=1 f
0
t f

0′
t 1mt=(1)1zt=(1))

, (69)

tr(
1

N
Λ0′(2)MΛ̃

1,r0
(1)

Λ0(2)) <
2σ2(Op(

1
δNT
) +

∑J0

j=2(g(N, T ))
b(r0

(j)
))

ρmin(
1
T

∑T

t=1 f
0
t f

0′
t 1mt=(1)1zt=(2))

, (70)

with
∑T

t=1 1mt=(1)1zt=(1) ≥
q0
(1)
T

J̄
and

∑T

t=1 1mt=(1)1zt=(2) ≥
q0
(2)
T

J̄
. From expression

(49), we have

∥∥∥∥PΛ0(1) − PΛ̃1,r0
(1)

∥∥∥∥
2

≤ 2tr( 1
N
Λ0′(1)MΛ̃

1,r0
(1)

Λ0(1))

∥∥∥∥(
1

N
Λ0′(1)Λ

0
(1))

− 1
2

∥∥∥∥
2

F

,
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and it follows that

tr(
1

N
Λ0′(2)MΛ̃

1,r0
(1)

Λ0(2))

> tr(
1

N
Λ0′(2)MΛ0

(1)
Λ0(2))−

∣∣∣∣tr(
1

N
Λ0′(2)(PΛ0(1) − PΛ̃1,r0

(1)

)Λ0(2))

∣∣∣∣

≥ tr(
1

N
Λ0′(2)MΛ0

(1)
Λ0(2))−

√

2tr(
1

N
Λ0′(1)MΛ̃

1,r0
(1)

Λ0(1))

∥∥∥∥∥
(
Λ0′(1)Λ

0
(1)

N
)−

1
2

∥∥∥∥∥
F

∥∥∥∥∥
Λ0(2)√
N

∥∥∥∥∥

2

F

(71)

Expressions (69)-(71) together imply that tr( 1
N
Λ0′(2)MΛ0

(1)
Λ0(2)) ≤ op(1). Since we as-

sume lim 1
N
Λ0′(2)MΛ0

(1)
Λ0(2) 6= 0, we have Pr(tr( 1NΛ0′(2)MΛ0

(1)
Λ0(2)) ≤ op(1))→ 0, thus

Pr(PC(r0(1), r(2), ..., r(J̄)) > PC(r
0
(1), ..., r

0
(J0)), k = 1, k

′ 6= 1)→ 0.

In summary, we have proved expression (68). Similarly, we can continue to prove

that for j = 3, ..., J̄ , Pr(PC(r0(1), ...r
0
(j−1), r(j), ..., r(J̄)) > PC(r0(1), ..., r

0
(J0))) → 0 if

r(j) 6= r0(j).

G Details on First Order Conditions

First order condition of σ2:

∂
∑T

t=1

∑J0

j=1 logL(xt |zt = j; Λj, σ2 )ptj|T
∂σ2

=
∑T

t=1

∑J0

j=1
ptj|T

∂(−1
2
log |Σj| − 1

2
x′tΣ

−1
j xt)

∂σ2

= −1
2

∑T

t=1

∑J0

j=1
ptj|T tr(Σ

−1
j − Σ−1j xtx′tΣ−1j )

= −1
2

∑J0

j=1
tr(
∑T

t=1
ptj|T Σ

−1
j − Σ−1j

∑T

t=1
ptj|T xtx

′
tΣ

−1
j )

= −1
2

∑J0

j=1
(
∑T

t=1
ptj|T )tr(Σ

−1
j − Σ−1j SjΣ−1j )

= − 1

2σ4

∑J0

j=1
(
∑T

t=1
ptj|T )tr(Σj − Sj)

= − 1

2σ4
tr(
∑J0

j=1

∑T

t=1
ptj|T ΛjΛ

′
j + Tσ

2IN −
∑T

t=1
xtx

′
t) = 0.
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The second equality is due to

∂ log |Σj|
∂σ2

= tr(Σ−1j ), (72)

∂x′tΣ
−1
j xt

∂σ2
= −tr(Σ−1j xtx′tΣ−1j ), (73)

and the fifth equality is due to

Σj(Σj − Sj)Σj = (ΛjΛ′j + σ2IN)(Σj − Sj)(ΛjΛ′j + σ2IN) = σ4(Σj − Sj), (74)

since (Σj − Sj)ΛjΛ′j = (ΛjΛ′j + σ2IN − Sj)ΛjΛ′j = 0 by equation (15). Thus we have
σ2 = 1

N
tr( 1

T

∑T

t=1 xtx
′
t −
∑J0

j=1
1
T

∑T

t=1 ptj|T ΛjΛ
′
j). The proof of expression (20) is the

same, with ptj|T replaced by p̃
(h)
tj|T and Sj replaced by S̃

(h)
j .

First order condition of Λj and Σe:

When equation (9) is replaced by Σj = ΛjΛ
′
j+Σe, equations (10) and (14) are still

valid, i.e., Σ−1j Λj = Σ
−1
j SjΣ

−1
j Λj. Right multiple Σj by Σ

−1
e Λj, we have ΣjΣ

−1
e Λj =

Λj(Λ
′
jΣ

−1
e Λj + Ir0j ). Left multiply SjΣ

−1
j on both sides of this equation, we have

SjΣ
−1
e Λj = SjΣ

−1
j Λj(Λ

′
jΣ

−1
e Λj + Ir0j ). From equation (14), we have Λj = SjΣ

−1
j Λj,

thus SjΣ
−1
e Λj = Λj(Λ

′
jΣ

−1
e Λj + Ir0j ), i.e., Σ

− 1
2

e Λj is the eigenvectors of Σ
− 1
2

e SjΣ
− 1
2

e and

Λ′jΣ
−1
e Λj + Ir0j is corresponding eigenvalues.

∂
∑T

t=1

∑J0

j=1 logL(xt |zt = j; Λj, σ2 )ptj|T
∂diag(Σe)

=
∑T

t=1

∑J0

j=1
ptj|T

∂(−1
2
log |Σj| − 1

2
x′tΣ

−1
j xt)

∂diag(Σe)

= −1
2

∑T

t=1

∑J0

j=1
ptj|T diag(Σ

−1
j − Σ−1j xtx′tΣ−1j )

= −1
2

∑J0

j=1
diag(

∑T

t=1
ptj|T Σ

−1
j − Σ−1j

∑T

t=1
ptj|T xtx

′
tΣ

−1
j )

= −1
2

∑J0

j=1
(
∑T

t=1
ptj|T )diag(Σ

−1
j − Σ−1j SjΣ−1j )

= Σ−1e [−
1

2

∑J0

j=1
(
∑T

t=1
ptj|T )diag(Σj − Sj)]Σ−1e

= Σ−1e [−
1

2
diag(

∑J0

j=1

∑T

t=1
ptj|T ΛjΛ

′
j + TΣe −

∑T

t=1
xtx

′
t)]Σ

−1
e = 0.
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The second equality is due to

∂ log |Σj|
∂diag(Σe)

= diag(Σ−1j ), (75)

∂x′tΣ
−1
j xt

∂diag(Σe)
= −diag(Σ−1j xtx′tΣ−1j ), (76)

and the fifth equality is due to

ΣjΣ
−1
e (Σj −Sj)Σ−1e Σj = (ΛjΛ′j +Σe)Σ−1e (Σj −Sj)Σ−1e (ΛjΛ′j +Σe) = (Σj −Sj), (77)

since (Σj−Sj)Σ−1e ΛjΛ′j = 0, which follows from SjΣ−1e Λj = Λj(Λ′jΣ−1e Λj+ Ir0j ). Thus
we have Σe = diag(

1
T

∑T

t=1 xtx
′
t −

∑J0

j=1
1
T

∑T

t=1 ptj|T ΛjΛ
′
j).

First order condition of Q:

Since
∑J0

j=1Qjk = 1, the Lagrangean is
∑T

t=2

∑J0

j=1

∑J0

k=1 logQjkptjk|T +
∑J0

k=1wk(1−
Q1k − Q2k − ... − QJ0k). The first order derivative of the Lagrangean with re-

spect to Qjk is
1
Qjk

∑T

t=2 ptjk|T − wk. Set it to zero, we have
∑T

t=2 ptjk|T = Qjkwk.

Take sum over j, we have
∑J0

j=1

∑T

t=2 ptjk|T =
∑J0

j=1Qjkwk = wk. Thus Qjk =
∑T

t=2 ptjk|T /
∑J0

j=1

∑T

t=2 ptjk|T .

First order condition of φ:

Since
∑J0

k=1 φk = 1, the Lagrangean is
∑J0

k=1 log φkp1k|T +w(1−φ1−φ2− ...−φJ0).
The first order derivative of the Lagrangean with respect to φk is

1
φk
p1k|T −w. Set it to

zero, we have p1k|T = φkw. Take sum over k, we have 1 =
∑J0

k=1 p1k|T =
∑J0

k=1 φkw =

w, thus φk = p1k|T =
∑J0

j=1 p2jk|T .

H Smoother Algorithm for p̃
(h)
tjk|T

Step (1): Calculate conditional likelihoods L(xt

∣∣∣x1:t−1; θ̃
(h)
) and filtered estimates

p̃
(h)
tjk|t for t = 2, ..., T .

p̃
(h)
tjk|t = Pr(zt = j, zt−1 = k

∣∣∣x1:t; θ̃
(h)
) = L(xt

∣∣∣zt = j; Λ̃(h), σ̃2(h) ))

×Pr(zt = j |zt−1 = k;Q) Pr(zt−1 = k
∣∣∣x1:t−1; θ̃

(h)
)/L(xt

∣∣∣x1:t−1; θ̃
(h)
),
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where Pr(z1 = k
∣∣∣x1; θ̃

(h)
) =

L(x1|z1=k;Λ̃(h),σ̃2(h) )φk
∑J0

j=1 L(x1|z1=j;Λ̃(h),σ̃2(h) )φj
and Pr(zt−1 = k

∣∣∣x1:t−1; θ̃
(h)
) =

∑J0

zt−2=1
Pr(zt−1 = k, zt−2

∣∣∣x1:t−1; θ̃
(h)
). The denominator L(xt

∣∣∣x1:t−1; θ̃
(h)
) equals the

sum of the numerator with respect to zt and zt−1.

Step (2): Fix down zt = j, zt−1 = k, for all zt+1,

Pr(zt+1, zt = j, zt−1 = k
∣∣∣x1:t+1; θ̃

(h)
) = L(xt+1

∣∣∣zt+1; Λ̃(h), σ̃2(h) )) Pr(zt+1 |zt = j;Q)

×Pr(zt = j, zt−1 = k
∣∣∣x1:t; θ̃

(h)
)/L(xt+1

∣∣∣x1:t; θ̃
(h)
),

for all zt+1 and zt+2,

Pr(zt+2, zt+1, zt = j, zt−1 = k
∣∣∣x1:t+2; θ̃

(h)
) = L(xt+2

∣∣∣zt+2; Λ̃(h), σ̃2(h) )) Pr(zt+2 |zt+1;Q)

×Pr(zt+1, zt = j, zt−1 = k
∣∣∣x1:t+1; θ̃

(h)
)/L(xt+2

∣∣∣x1:t+1; θ̃
(h)
),

and for τ = t+ 3, ..., T , for all zτ and zτ−1,

Pr(zτ , zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ ; θ̃

(h)
) = L(xτ

∣∣∣zτ ; Λ̃(h), σ̃2(h) )) Pr(zτ |zτ−1;Q)

×Pr(zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ−1; θ̃

(h)
)/L(xτ

∣∣∣x1:τ−1; θ̃
(h)
),

where Pr(zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ−1; θ̃

(h)
) =

∑J0

zτ−2=1
Pr(zτ−1, zτ−2, zt = j, zt−1 =

k
∣∣∣x1:τ−1; θ̃

(h)
).

Step (3): Calculate p̃
(h)
tjk|T =

∑J0

zT=1

∑J0

zT−1=1
Pr(zT , zT−1, zt = j, zt−1 = k

∣∣∣x1:T ; θ̃
(h)
).

Repeat steps (1)-(3) for all j and k.
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