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Abstract

This paper combines induced innovation and endogenous growth to in-

vestigate both the relation between the wage share and labor productivity

growth and the long-run determinants of the wage share. We assume that

myopic competitive firms choose the size and direction of technical change

to maximize the growth rate of profits. We first prove that the optimal

choice of labor productivity growth may be either a positive or a negative

function of the wage share, depending on specific restrictions on the inno-

vation technology. Next, by embedding the microeconomic problem into a

Classical growth model, we show that a rise in the saving rate may reduce

the steady state wage share. Both results conflict with the standard find-

ings of the induced innovation literature, where labor productivity growth

is always a positive function of the wage share and where the steady state

labor share is independent of the saving rate.

1 Introduction

The notion that high real wages or real wage growth may foster labor pro-

ductivity growth is well-established both in economic history and in economic

theory. The Habakkuk hypothesis (Habakkuk, 1962) maintains that in the

nineteenth century the pace of labor-saving technical change was faster in the
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United States than in Britain because of scarcer and more expensive labor.

Allen (2009) singled out the high price of labor relative to energy costs as one

of the fundamental forces that triggered the British industrial revolution.

From a theoretical standpoint, this connection is rooted in the incentive

to introduce labor-saving innovations for competitive, profit-maximizing, firms

that face high labor costs. It has been formally developed and investigated

within different analytical frameworks. The theory of induced technical change

traces back to Hicks’s conjecture that “a change in the relative prices of the fac-

tors of production is itself a spur to invention....directed to economizing the use

of a factor which has become relatively expensive” (Hicks, 1932, p.124). This

result was later proved independently by Kennedy (1964) and von Weizsäcker

(1962). They assumed the existence of an innovation possibility frontier (IPF

hereafter), which describes the trade-off between freely available capital- and

labor-augmenting innovations. The IPF is decreasing and strictly concave so

that substituting capital- to labor- saving technical change becomes progres-

sively harder as capital productivity growth increases. Myopic competitive firms

choose a point on the IPF, that is the direction of technical change, in order to

maximize the rate of unit cost reduction, or equivalently the rate of growth of

the profit rate, given the level of labor and capital employed. The firms’ optimal

choice produces a relation between the direction, or bias, of technical change and

functional income distribution: labor- (capital-) productivity growth becomes

a positive function of the wage (profit) share. At the macroeconomic level, the

mechanism of induced innovation, also known as induced innovation hypoth-

esis (Funk, 2002), has been implemented both in neoclassical (Drandakis and

Phelps, 1965; von Weizsacker, 1966) and Classical (Shah and Desai, 1981; van

der Ploeg, 1987; Foley, 2003; Julius, 2005) growth models with exogenous labor

supply. One important implication of these models concerns long-run income
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distribution. In steady state, the wage share only depends on the shape of the

innovation possibility frontier; it is ’exogenous’ in the sense that changes in the

economy’s saving preferences do not affect it. In particular, the curvature of the

IPF at the point where capital productivity growth is zero uniquely determines

the long-run level of the wage share.

The same positive relation between the wage share and labor productivity

growth can be found in a recent literature, which has introduced endogenous,

costly, technical change in Classical models of growth. In these contributions

(Foley et al., 2019, Ch.9; Tavani and Zamparelli, 2021), competitive firms choose

the intensity, or size, of technical change rather than its direction. In fact, cap-

ital productivity is fixed and firms can only augment the productivity of labor.

Specifically, they need to decide how to allocate resources between the alter-

native uses of physical capital accumulation and labor-saving R&D investment.

In this context, a higher wage share makes R&D investment relatively more

profitable so that firms divert funds from physical to R&D investment thus

raising labor productivity growth. Contrary to the induced innovation theory,

the saving rate affects long-run income distribution in Classical growth models

with endogenous intensity of technical change and exogenous labor supply. In

this framework, the wage share is not constrained by the slope of the IPF when

capital productivity growth is zero and it will adjust to balance the warranted

and the natural growth rate, both of which are affected in different ways by the

saving rate. In Tavani and Zamparelli (2021), a higher propensity to save raises

capital accumulation (the warranted growth rate) more than labor productivity

growth (the natural growth rate): the wage share increases as a result of higher

labor demand relative to its fixed supply.

This paper offers a synthesis of induced and endogenous technical change

to investigate both the relation between the wage share and labor productivity
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growth and the long-run determinants of the wage share. In line with to the in-

duced innovation tradition, we assume that myopic competitive firms maximize

the instantaneous rate of growth of profits subject to an innovation technol-

ogy. The set of capital- and labor- saving innovations, however, is not freely

available to firms but depends on the amount of R&D investment they perform.

Accordingly, firms maximize their objective function by simultaneously choos-

ing the allocation of funds between capital accumulation and R&D investment,

which determines the size of technical change, and whether to direct technolog-

ical progress relatively more toward capital- or labor- saving innovations, the

direction of technical change. This integration is relevant because the emerging

relation between the wage share and labor productivity growth is not neces-

sarily positive, contrary to both the literatures we reviewed, and because this

possibility affects the relation between the saving rate and the wage share in

steady state. In particular, we make the following two contributions. First, we

devise the restrictions on the innovation technology necessary for a ’perverse’,

negative, relation between the wage share and labor productivity growth; and

we discuss this result in light of the original 1960s debate that followed the

emergence of the induced innovation theory. Secondly, we embed our microeco-

nomic analysis into a Classical growth model with exogenous labor supply. We

show that the saving rate affects the long-run distribution of income and that

its rise may reduce the steady state wage share. This conflicts with the long-run

results obtained both in the original induced innovation literature, where the la-

bor share is a mere function of the slope of the IPF and thus independent of the

saving rate, and in Classical growth models with constant output-capital ratio,

where the saving rate and the wage share always move in the same direction. It

is useful to anticipate the intuition underlying these results. They both depend

on a specific feature of the innovation technology, that is the possibility that the
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level of R&D investment affect the trade-off between labor- and capital- saving

innovations. In the original induced innovation literature, a rise in the wage

share enhances labor productivity growth because firms’ optimality condition

will make them move along the IPF to points where its slope (in absolute terms)

is lower. These points are necessarily associated to higher (lower) labor (capital)

productivity growth. In our setting, on the contrary, restoring optimality after

an increase in the wage share may not require an increase in labor productivity

growth if the higher wage share, through its effect on R&D investments, bends

the trade-off between labor and capital productivity growth. The logic is simi-

lar with respect to our second result. When firms only choose the direction of

technical change, the steady state wage share is determined by the slope of the

IPF irrespective of the saving rate. However, when they also simultaneously

choose the intensity of innovation, the saving rate influences long-run income

distribution if its effect on R&D investments also deforms the trade-off between

labor and capital saving innovations.

At the onset of the induced innovation literature, a number of contributions

have investigated the simultaneous choice of direction and intensity of technical

change. Kamien and Schwartz (1969) explored the problem from a microeco-

nomic point of view under the alternative assumptions of myopic and forward

looking competitive firms. Nordhaus (1967) solved the infinite horizon problem

of a benevolent planner who maximizes the discounted value of consumption

per capita. von Weizsäcker (1966) analyzed a competitive two-sector economy.

The innovation technology they adopt, however, produces the standard positive

relation between the wage share and labor productivity growth (see Kamien

and Schwartz, 1969, p. 676, eq. 36). From this point of view, the present con-

tribution can be seen as an inquiry into the consequences of generalizing their

assumptions on technology.
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More recently, the joint determination of intensity and direction of technical

change has also been analyzed by Acemoglu (2002, 2003, 2007) within the en-

dogenous growth framework based on monopolistic competition developed at the

beginning of the 1990s (see Segerstrom et al. (1990), Grossman and Helpman

(1991), Aghion and Howitt (1992)). He focuses more on the relation between

relative factors scarcity, rather than relative factors share, and factors produc-

tivity growth. He shows that the factors elasticity of substitution is crucial in

determining the sign of this relation. When the elasticity is lower (higher) than

one, a scarcer labor supply will favor labor (capital) augmenting innovations.

Our contribution shows that even with zero factors elasticity of substitution the

relation between labor productivity growth and relative factors shares can be

either positive or negative.

Finally, Zamparelli (2015) has introduced the endogenous direction and in-

tensity of technical change in a Classical growth model with exogenous labor

supply. On the one hand, he does not find an explicit relation between la-

bor productivity growth and the wage share; on the other, even though he finds

that the saving rate affects the wage share, he does not discuss the technological

assumptions necessary for this result.

The rest of the paper is organized as follows. Section 2 presents the microe-

conomic problem of the firm and derives the relation between the wage share

and labor productivity growth. Section 3 analyzes the macroeconomic long-run

equilibrium of the model with a specific focus on the connection between the

saving rate and the wage share. Section 4 concludes.
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2 The Model

2.1 Households and firms

The economy is populated by a fixed number (normalized to one) of identical

households, who are endowed with one unit of homogeneous labor (L) and own

a certain share of the capital stock (K). Households supply labor inelastically

and, if employed, earn the real wage rate w; they also earn profit income on

the capital they own. They save a constant fraction (s) of their total income,

which they transfer to a representative firm. The firm invests aggregate savings

to either increase its physical capital stock or to improve technology1.

2.2 Technology

The final good Y is produced using labor and capital in fixed proportions.

Letting A and B denote, respectively, labor and capital productivity, the pro-

duction function is

Y = min{AL,BK}. (1)

The modeling of technological change includes insights from both the in-

duced innovation literature and endogenous growth theory. As anticipated in

the Introduction, the former represented the evolution of technology through

an IPF, which states an inverse relation between the freely available maximum

growth rates of labor and capital productivity. The frontier is decreasing and

strictly concave in order to capture the increasing complexity in the trade-off

between labor-augmenting and capital-augmenting innovations. On the other

hand, the endogenous growth literature (see for example Aghion, 2010) posited

1The assumption of a representative firm may appear restrictive, but it is equivalent to

assuming a fixed number of firms, each of which has access to the same technology and to the

same fraction of aggregate savings.
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that technical change is a costly activity, which requires the investment of phys-

ical or human resources. If we let gx be the growth rate of variable x, we have

gA = f(gB , b), (2)

where b ≡ R/Y and R is the amount of physical output invested in R&D. f is

twice continuously differentiable, and we incorporates the labor- capital- pro-

ductivity trade-off described by the IPF by assuming f
′

gB < 0, f
′′

gB ,gB < 0. On

the other hand, f
′

b > 0 makes the position of the IPF dependent on R&D invest-

ment: higher investment raises the highest achievable labor productivity growth

rate for any given capital productivity growth rate. We make the additional as-

sumption f
′′

b,b < 0, which implies decreasing returns to R&D. Notice also that

the normalization of R&D investment by total output is imposed in order to

rule out explosive growth; this is a standard result in endogenous growth mod-

els when R&D inputs consist of an accumulable factor such as physical output,

and it is typically justified with the increasing complexity of discovering new

ideas. We do not place restrictions on the sign of the second-order mixed partial

derivatives, but we know from Young’s theorem that f
′′

gB ,b = f
′′

b,gB
.

2.3 Income distribution, saving allocation and optimal pro-

ductivity growth

The representative firm has no incentive to keep spare capacity or hire un-

productive labor, therefore AL = BK, so that the number of employed workers

in the economy is L = BK/A. We denote the wage share as ω ≡ wL/Y = w/A,

equal to the unit labor cost. Accordingly, total profits are Π = Y − wL =

Y (1 − ω) = BK(1 − ω). The next step is the description of how savings are

allocated to physical capital accumulation and R&D investment. From the

standpoint of a profit-seeking firm, the two types of investment pose a trade-off.
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They both increase total profits. While capital accumulation increases the size

of a firm, innovations raise its profits per unit of capital by reducing unit costs.

Letting δ be the share of savings invested in R&D, the R&D investment share

of output is:

b = R/Y = δsY/Y = δs. (3)

Physical capital accumulation, on the other end, obeys:

gK = (1− δ)sY/K = (1− δ)sB. (4)

We assume that the representative firm acts myopically and choose δ and

gB in order to maximize the instantaneous rate of growth of profits. In fact,

this is the same objective function originally assumed by the induced inno-

vation literature2 (Kennedy, 1964). While in Kennedy’s model firms choose

only the direction of technical change given the position of the IPF and the

factors employment, we let it choose both the intensity and the direction of

technical change. In so doing, the firm also chooses how much to invest in

physical capital. Differentiating total profits with respect to time we find

Π̇ =ḂK(1 − ω) + K̇B(1 − ω) + gAωBK, where the time derivative of variable

x is denoted by ẋ. The corresponding rate of growth of profits is

gΠ ≡ Π̇/Π = gB + gK + gAω/(1− ω). (5)

Substituting from equations (2), (3) and (4), the firms’ problem is to choose

δ and gB so as to maximize gΠ = gB + s(1 − δ)B + f(gB , sδ)ω/(1 − ω). We

study this problem by first assuming two specific functional forms for f and

2In the original induced innovation theory, to be precise, firms maximize the rate of growth

of the profit rate, rather than the rate of growth of profits. But the two rates coincide when

the level of capital stock is given, as commonly assumed in that literature.
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later discussing the general case.

2.3.1 Two special cases

Let us start by positing gA = f(gB , b) = h(gB) + (sδ)
α
, with α ∈ (0, 1) and

h′, h′′ < 0. Under this functional form, R&D investments produce a vertical

translation of the IPF and do not affect the terms of the trade-off between

labor- and capital- productivity growth. If we denote the optimal level of a

choice variable by ∗, the first order conditions with respect to gB and δ are

h′(g∗B) = −
1− ω

ω
, (6)

and (after some manipulations)

δ∗ =
1

s

(

α

B

ω

1− ω

)
1

1−α

. (7)

Equations (6) and (7) show that the choice of direction and intensity of technical

change decomposes into two parts. Equation (6) demands the equality between

the slope of the IPF and of the relative unit cost; this is the same exact tangency

condition, which produced the positive relation between the wage share and

labor productivity growth under the original induced innovation hypothesis. In

fact, total differentiation of (6) yields dgB/dω = 1/
(

h′(g∗B) (1− ω)
2
)

< 0: for a

given amount of R&D investments (the position of the IPF), a rise in the wage

share biases the direction of technical change away from capital productivity

growth and in favor of labor productivity growth. Equation (7), on the other

hand, shows that R&D investments are a positive function of the wage share

because raising productivity growth becomes relatively more profitable than

capital accumulation when unit labor costs increase. We can use the optimal
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values for δ and gB to solve for the equilibrium labor productivity growth as

g∗A =

(

α

B

ω

1− ω

)
α

1−α

+ h(g∗B),

which shows that an increase in the wage share unequivocally raises labor pro-

ductivity growth given h′(g∗B)dg
∗

B/dω > 0. In other words, both effects of the

labor share on the direction and the size of technical change move in the same

direction to contribute to labor-saving technical change.

We can now consider the alternative specification gA = f(gB , b) =h(gB) (sδ)
α
.

In this case, R&D investments dilates the IPF up and to the right. The IPF be-

comes steeper (in absolute terms) and the trade-off between labor- and capital-

productivity growth changes. After some tedious but straightforward manipu-

lations, the first order conditions with respect to gB and δ are

δ∗ = −
1

s

(

1− ω

ω

1

h′(g∗B)

)
1
α

, (8)

and

δ∗ =
1

s

(

α

B

ω

1− ω
h(g∗B)

)
1

1−α

. (9)

The system made up of (8) and (9) shows that in this case the choice of

direction of technical change and size of R&D investment does not decompose.

Both equations are needed to investigate how the wage share affects δ∗ and g∗B .

We can equate the right hand side of the two equations to study the dependence

of g∗B on the wage share

−

(

1− ω

ω

1

h′(g∗B)

)
1
α

=

(

α

B

ω

1− ω
h(g∗B)

)
1

1−α

,

or
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( α

B
h(g∗B)

)
α

1−α

(

ω

1− ω

)
1

1−α

h′(g∗B) = −1. (10)

Equation (10) implies that capital productivity growth is not necessarily a

negative function of the wage share. In fact, we prove in Appendix A that

dg∗B/dω > 0 when α
1−α (h′(g∗B))

2
/h(g∗B)+h′′(g∗B) > 0, which may or may not

be true since h′′ < 0 . This result has dramatic consequences for the relation

between the wage share and labor productivity growth. In order to investigate

this issue, let us also posit h(gB) = a(1 − gB)
γ , with a > 0, γ ∈ (0, 1); and use

it together with (9) to find

g∗A = a
1

1−α

( α

B

)
α

1−α

(

ω

1− ω

)
α

1−α

(1− g∗B(ω))
γ

1−α , (11)

where we emphasized the dependence of optimal capital productivity growth

on the wage share. Equation (11) shows that the wage share affects labor pro-

ductivity growth both directly and through its effect on capital productivity

growth. While the first effect is always positive, we have just discussed that the

second one may move in the opposite direction. In Appendix A we prove that

dg∗B/dω > 0 requires γ > 1− α, and that the positive effect on capital produc-

tivity growth is strong enough to ensure dg∗A/dω < 0. When the curvature of

the IPF (a positive function of γ) is relatively high, labor productivity growth

becomes sufficiently sensitive to changes in capital productivity growth to en-

sure that the ’perverse’ relation between the wage share and labor productivity

growth emerges. We discuss in more depth the intuition underlying this result

in section 2.4 after presenting the general case, to which we now turn.

2.3.2 The general case

We now generalize our analysis by removing any specific functional form
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on the innovation function gA = f(gB , b). In this case, choosing gB and δ to

maximize gΠ = gB + s(1− δ)B+ f(gB , sδ)ω/(1−ω) yields the following system

of first order conditions

f ′

gB (g
∗

B , sδ
∗) = −

1− ω

ω

f ′

b(g
∗

B , sδ
∗) = B

1− ω

ω
.

We are interested in understanding under what conditions this system is

compatible with a negative effect of the wage share on labor productivity growth.

Notice that

dg∗A
dω

= f ′

gB (g
∗

B , sδ
∗)
dg∗B
dω

+ sf ′

b(g
∗

B , sδ
∗)
dδ∗

dω
.

Accordingly, since f ′

gB < 0 and f ′

b > 0, a necessary condition for
dg∗

A

dω < 0 is that

either
dg∗

B

dω > 0 or dδ∗

dω < 0. If we totally differentiate the system with respect to

g∗B , δ
∗ and ω, after rearranging we find

f ′′

gB ,gB (g
∗

B , sδ
∗)
dg∗B
dω

+ sf ′′

gB ,b(g
∗

B , sδ
∗)
dδ∗

dω
=

1

ω2

f ′′

b,gB (g
∗

B , sδ
∗)
dg∗B
dω

+ sf ′′

b,b(g
∗

B , sδ
∗)
dδ∗

dω
= −

B

ω2
.

Let us focus on the role played by the second-order mixed partial derivatives

f
′′

gB ,b = f
′′

b,gB
. When f

′′

gB ,b = f
′′

b,gB
= 0, the system simplifies to

dg∗B
dω

=
1

ω2f ′′

gB ,gB (g
∗

B , sδ
∗)

< 0
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dδ∗

dω
= −

B

ω2sf ′′

b,b(g
∗

B , sδ
∗)

> 0.

This shows that both the alternative necessary conditions for the negative

effect of the wage share on labor productivity growth are violated, and
dg∗

A

dω > 0

follows necessarily. Our first example f(gB , b) = [sδ]
α
+ h(gB) statisfies f

′′

gB ,b =

f
′′

b,gB
= 0 and it confirms

dg∗

A

dω > 0 always. When, on the other hand, f
′′

gB ,b =

f
′′

b,gB
6= 0,

dg∗

B

dω > 0 and dδ∗

dω < 0 cannot be simultaneously excluded so that

dg∗

A

dω < 0 is in principle a possibility. Our second example, where f(gB , b) =

(sδ)
α
h(gB) and f

′′

gB ,b = f
′′

b,gB
= sαα [δ]

α−1
h′(gB) < 0, confirms that

dg∗

A

dω < 0 is

possible when f
′′

gB ,b = f
′′

b,gB
6= 0.

2.4 Discussion

We have established that labor productivity growth is necessarily a positive

function of the wage share when f
′′

gB ,b = 0, that is when the trade-off between

capital- and labor- productivity growth is independent of the size of R&D in-

vestment. Let us now dig deeper into the economic intuition of this result. If we

go back to the original induced innovation hypothesis, where firms only choose

the direction of technical change, we know that firms optimize their plans when

the slope of the IPF equals the ratio of capital to labor unit cost, which coin-

cides with the relative factors share (see for example Samuelson (1965, p.344),

or Drandakis and Phelps (1966, p.830)). The (absolute value of the) slope of the

IPF is in fact the marginal rate of transformation between labor- and capital-

productivity growth and it is increasing in gB . A rise in the wage share produces

a reduction in the unit factor cost ratio, which requires a lower slope of the IPF

to preserve the optimality condition. This can only be achieved by reducing

gB , which, in turn, raises labor productivity growth. When we turn to our
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general innovation technology, we are in the exact same situation if f
′′

gB ,b = 0,

as shown by equation (6). However, things may change if the size of techni-

cal change affects the trade-off between capital- and labor- productivity growth

(f
′′

gB ,b 6= 0). In this case, a rise in the wage share affects R&D investments,

which alters the productivity growth trade-off; if the result is a reduction in the

marginal rate of transformation, a higher labor productivity growth may not

be needed to reestablish the optimality condition. In other words, a rise in the

labor share reduces the unit cost ratio. Optimality requires that the marginal

rate of transformation between types of innovation also declines. In the original

framework, this could only be achieved by changing the direction of technical

change in favor of labor productivity growth; in our case, firms now have an

additional tool to ensure that the marginal rate of transformation decreases, so

that labor productivity growth does not necessarily need to increase.

The relevance of our result on income distribution and labor productivity

growth thus depends on the plausibility of f
′′

gB ,b 6= 0. If we go back to the early

stages of the development of the induced innovation theory, we can learn some

insights from Nordhaus’ (1973) radical rejection of the theory. The absence of

path dependence in the innovation technology was one of his main concerns; he

found problematic that the evolution of labor and capital productivity would

not affect the relative difficulty of introducing factor augmenting innovations:

’..the rate of capital-augmenting technological change is everywhere independent

of the level of labor augmentation. Thus as technological change accumulates,

there is no effect on the trade-off between labor and capital augmenting tech-

nological change.’ (p. 215) He argued that an IPF such as gA = f(gB) was just

an extremely special case of the more general one gA = f(gB , A,B), where the

actual path followed by labor and capital productivity affects the innovation

set available to firms. Now, the innovation technology we proposed is different
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from the one advocated by Nordhaus. However, the possibility that f
′′

gB ,b 6= 0

goes in the direction of taking path dependence into account as the amount of

actually performed technical change affects the marginal rate of transformation

between labor- and capital- productivity growth. Just as an example, assume

that f
′′

gB ,b = 0; in this case, given the level of capital productivity growth gB ,

we can raise R&D investment to improve labor productivity growth without

labor-saving innovations ever becoming relatively harder to be discovered. If on

the contrary we assumed f
′′

gB ,b < 0 as in our second example, pursuing labor

productivity growth would become increasingly harder in comparative terms.

This shows that f
′′

gB ,b < 0 may in fact be a more realistic assumption than

f
′′

gB ,b = 0, so that the possible ’perverse’ relation between the wage share and

labor productivity growth cannot be discarded as a simple theoretical curiosity.

3 Income distribution implications

As anticipated in the Introduction, the induced innovation hypothesis has

been embedded both in neoclassical and Classical growth models with exoge-

nous labor supply. An important result common to both frameworks is that

long-run income distribution depends solely on technology, and specifically on

the curvature of the IPF; this implies that the saving rate and fiscal policy do

not affect the steady state wage share. In this section, we show how the gen-

eralization of innovation technology to simultaneously encompass the choice of

direction and size of technical change has radical consequences in terms of the

role played by the saving rate in the steady state equilibrium. We illustrate

this result by implementing the induced innovation hypothesis into a Classi-

cal growth model. Shah and Desai (1981) offer an example of classical growth

where firms choose the direction of technical change, but where innovations can

be implemented with no cost. They do so by introducing the IPF into the classi-
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cal Goodwin’s (1967) growth cycle model. The aggregate economy is described

by three differential equations, and the output-capital ratio, the labor share

and the employment rate are the three state variables (see also Foley (2003)

and Julius (2005)). Since according to the original IPF firms do not perform

R&D investment, labor productivity growth only depends on capital produc-

tivity growth, say gA = j(gB), while all savings are invested in physical capital

accumulation. Notice also that when exogenous labor supply is normalized to

one the employment rate coincides with total employment L. In our notation,

the dynamical system is:

j′(g∗B) = −
1− ω

ω

gL = g∗B + sB − j(g∗B)

gω = gw − j(g∗B) = m(L)− j(g∗B),

where gw = m(L) is a real wage Phillips curve describing the positive effect of

labor market tightness on real wage growth. Steady states require that capital

productivity growth be turned off, so that g∗B = 0 determines the long run wage

share. If we denote steady state values by ss, we can find ωss as solution to

j′(0) = − 1−ωss

ωss
. The steady state wage share is determined by the slope of the

IPF where capital productivity growth is zero, irrespective of the saving rate.

Le us now explore how the dynamical system changes when innovations are

costly and require investment, that is when we adopt the innovation technology

gA = f(gB , b). In particular, in order to obtain analytical conclusions, let us

focus on our second example f(gB , b) = h(gB) (sδ)
α
. We can use (8) and (9)

to find a differential equation for the output-capital ratio as −
(

1−ω
ω

1
h′(g∗

B
)

)
1
α

=
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(

α
B

ω
1−ωh(g

∗

B)
)

1
1−α

. The rest of the model is

gL = g∗B + s(1− δ∗)B − h(g∗B) (sδ
∗)

α

gω = m(L)− h(g∗B) (sδ
∗)

α
,

where δ∗ = 1
s

(

α
B

ω
1−ωh(g

∗

B)
)

1
1−α

from (9). The system shows that the sta-

bility of the output-capital ratio g∗B = 0 cannot determined the long-run wage

share by itself anymore. In fact, g∗B = 0, rather than solving for the equilib-

rium wage share, yields an isocline in the (ωss, Bss) space: −
(

1−ωss

ωss

1
h′(0)

)
1
α

=
(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

. If we also impose gL = 0, while using δ∗ss =
1
s

(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

,

we obtain an additional isocline in the (ωss, Bss) plane: s

(

1− 1
s

(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

)

Bss =

(

α
Bss

ωss

1−ωss
h(0)

)
α

1−α

sαh(0). The two isoclines jointly determine the long-run

values of the wage share and the capital-output ratio. Since the saving rate

enters the second isocline both through capital accumulation and through the

size of R&D investment, it also affects the steady state wage share. In Appendix

B we show that the two isoclines can be used to find ωss as solution to

α (−h′(0))
1/α

s = α

(

1− ωss

ωss

)

1
α

+ sα
(

1− ωss

ωss

)

1+α
α

.

Total differentiation with respect to ωss and s, also developed in Appendix B,

shows that signdωss

ds = sign

(

(

1−ωss

ωss

)

1+α
α

− s1−α (−h′(0))
1/α

)

. This condition

shows that we cannot sign a priori the relation between the saving rate and the

steady state equilibrium wage share. The reason is that we cannot establish

how the saving rate affects R&D investment share in the long-run, that is bss =

sδ∗ss; in fact, the optimal allocation of investment is itself some function of the
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steady state output-capital ratio and wage share δ∗ss = δ(Bss, ωss), which in

turn depend on the saving rate. In our specific example, where f
′′

gB ,b < 0, if a

rise in the saving rate increased R&D investment then the trade-off between the

two types of innovations would become steeper and the steady state wage share

would be lower; if, on the contrary, the higher saving rate produced a reduction

in R&D investment, the wage share would increase.

This result appears particularly significant once compared with the predic-

tions of Classical labor-constrained growth models both with and without in-

duced technical change. First, the mere possibility that a rise in the saving rate

reduces the long-run equilibrium wage share is particularly remarkable because

it contrasts with the model without technical change. In this case, the relation

between the saving rate and the labor share is as follows. A rise in the saving

rate produces an increase in capital accumulation. Since labor supply is fixed,

or grows at a constant rate, higher accumulation tightens the labor market.

Real wages grow relative to labor productivity and the wage share increases.

In fact, this same mechanism is at work in Tavani and Zamparelli (2021) even

though labor productivity growth is endogenous. Secondly, the other hand, we

have seen that when the induced direction of technical change is added to this

framework, the saving rate becomes irrelevant in determining the long-run wage

share and the wage share is merely a function of the curvature of the IPF at

gB = 0. Under our generalization, on the contrary, the saving rate affects the

steady state wage share when f
′′

gB ,b 6= 0. The sign of the relation will depend

both on the actual sign of f
′′

gB ,b and on whether R&D investments rise or fall

after a rise in the saving rate.

4 Conclusions

Most advanced economies have recently experienced a slowdown in produc-
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tivity growth (Dieppe, 2021). The notion that declining, or low, real wages may

be contributing to this trend is becoming increasingly more popular in the pub-

lic debate: ’Faced with reduced labour costs, employers have lesser incentives

to substitute capital for labour, especially in labour intensive sectors, which

hinders diffusion of artificial intelligence and other technologies.’ (ILO, 2018).

More in general, several commentators have suggested that rising income in-

equality is likely an important factor in explaining the present sluggish level of

economy activity known a ’secular stagnation’. This relation may operate both

through demand side factors, such as a higher average propensity to save (see

for example Summers, 2014; Storm, 2017; and Kiefer et al. 2020), and by means

of supply side elements, like the limited incentives to innovate due to low labor

costs (Petach and Tavani, 2020).

Our paper has reviewed different strands of economic literature that, by

focusing either on the direction or on the size on innovation, have provided

strong microfoundations for a positive relation between the wage share and

labor productivity growth. It has shown that this relation may also be present

when the innovation technology allows firms to simultaneously choose both the

direction and the size of innovation. However, it has proved that under specific

technological restrictions the sign of the relation may change. In particular, it

has established that labor productivity growth may be a negative function of

the wage share when the level of R&D investment, that is the size of technical

change, affect the trade-off between labor- and capital- productivity growth.

Furthermore, it has shown that when this negative ’perverse’ relation emerges,

the saving rate influences the long-run distribution of income and its rise may

reduce the steady state wage share. This result contrasts with the implications

of most Classical labor constrained growth models.
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6 Appendices

6.1 Appendix A

In order to prove that dg∗B/dω > 0 requires α
1−α (h(g∗B))

2α−1
1−α (h′(g∗B))

2
+(h(g∗B))

α
1−α h′′(g∗B) >

0, start by setting −1/
(

ω
1−ω

)
1

1−α

≡ G(ω) and (h(g∗B))
α

1−α ≡ H(g∗B) in (10) to

find

(α/B)
α

1−α H(g∗B)h
′(g∗B) = G(ω). Total differentiation w.r.t. ω and g∗B yields

dg∗B/dω = G′(ω)/
(

(α/B)
α

1−α (H ′(g∗B)h
′(g∗B) +H(g∗B)h

′′(g∗B))
)

. Since G′(ω) >

0, then dg∗B/dω > 0 requires H ′(g∗B)h
′(g∗B) +H(g∗B)h

′′(g∗B) > 0, that is to say

α
1−α (h(g∗B))

2α−1
1−α (h′(g∗B))

2
+ (h(g∗B))

α
1−α h′′(g∗B) > 0. If we divide both addends

by (h(g∗B))
α

1−α , we find dg∗B/dω > 0 when α
1−α (h′(g∗B))

2
/h(g∗B) + h′′(g∗B) > 0.

Let us now calculate dg∗B/dω under the specification h(g∗B) = a(1 − g∗B)
γ .

If we substitute for h(g∗B) and h′(g∗B) = −aγ(1 − g∗B)
γ−1 into (10) we find

(

α
B

)
α

1−α a1/(1−α)γ
(

ω
1−ω

)
1

1−α

(1− g∗B)
α+γ−1
1−α = 1. Total differentiation of the lat-

est equation yields
(

α
B

)
α

1−α a1/(1−α)γ
(

ω
1−ω

)
α

1−α

(1−g∗B)
α+γ−1
1−α −1

(

1−g∗

B

(1−ω)2
dω − (α+ γ − 1) ω

1−ωdg
∗

B

)

=

0. Hence dg∗B/dω=
1−g∗

B

ω(1−ω)
1

α+γ−1 . It follows that dg
∗

B/dω > 0 requires α+γ > 1.

We now turn to study dg∗A/dω. We can use (11) to find dg∗A/dω =

a1/(1−α)
(

α
B

)
α

1−α ( α
1−α

(

ω
1−ω

)

2α−1
1−α 1

(1−ω)2
(1− g∗B)

γ
1−α−

(

ω
1−ω

)
α

1−α γ
1−α (1− g∗B)

α+γ−1
1−α dg∗B/dω)

=
(

α
B

)
α

1−α 1
1−αa

α/(1−α) (1− g∗B)
α+γ−1
1−α

(

ω
1−ω

)

2α−1
1−α 1

1−ω (α
1−g∗

B

1−ω −γωdg∗B/dω).

If we now plug dg∗B/dω=
1−g∗

B

ω(1−ω)
1

α+γ−1 into the previous expression we find

dg∗A/dω < 0 ⇐⇒ α < γ
α+γ−1 . If the necessary condition for dg∗B/dω > 0 is

satisfied, that is if α+ γ − 1 > 0, then dg∗A/dω < 0 always. We can prove it by

multiplying both sides of α < γ
α+γ−1 by (α+γ−1) to find α(α+γ−1) < γ; we
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can further develop the inequality to find α(α + γ) < (α + γ), which is always

satisfied since α < 1. On the contrary, when α + γ − 1 < 0, the condition for

dg∗A/dω < 0 becomes α(α + γ − 1) > γ: it is never true so that dg∗A/dω > 0

necessarily.

6.2 Appendix B

Starting with the first isocline, −
(

1−ωss

ωss

1
h′(0)

)
1
α

=
(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

, di-

vide both members by
(

ωss

1−ωss

)
1

1−α

and multiply them by (h′(0))
1/α

to find

−
(

1−ωss

ωss

)
1

α(1−α)

= (h′(0))
1/α
(

α
Bss

h(0)
)

1
1−α

. Next, consider the second isocline

s

(

1− 1
s

(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

)

Bss =
(

α
Bss

ωss

1−ωss
h(0)

)
α

1−α

sαh(0). Develop the

multiplication on the left hand side and rearrange to find sBss = Bss

(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

+
(

α
Bss

ωss

1−ωss
h(0)

)
α

1−α

sαh(0)=(h(0))
1

1−α

(

α
Bss

ωss

1−ωss

)
α

1−α
(

αωss

1−ωss
+ sα

)

.HenceB
1

1−α
ss =

(h(0))
1

1−α (αωss)

α
1−α

(1−ωss)
1

1−α

(

αωss+sα(1−ωss)
1−ωss

)

/s. Plug the latest result into−
(

1−ωss

ωss

1
h′(0)

)
1
α

=

(

α
Bss

ωss

1−ωss
h(0)

)
1

1−α

and rearrange to find (−h′(0))
1/α

sα = (1−ωss)
1
α

(ωss)
1+α
α

(αωss +

sα(1 − ωss)) = αF (ωss)
1
α + sαF (ωss)

1+α
α , where we used F (ωss) ≡ 1−ωss

ωss
.

We can totally differentiate the previous equation w.r.t. ωss and s to find:

F ′(ωss)
(

F (ωss)
1−α
α + sα 1+α

α F (ωss)
1
α

)

dωss= α
(

(−h′(0))
1/α

− sα−1F (ωss)
1+α
α

)

ds.

Hence we can find dωss

ds =
α

(

(−h′(0))
1/α

−sα−1F (ωss)
1+α
α

)

F ′(ωss)

(

F (ωss)
1−α
α +sα 1+α

α F (ωss)
1
α

) . Since F ′(ωss) < 0,

we can conclude that signdωss

ds = sign
(

F (ωss)
1+α
α − s1−α (−h′(0))

1/α
)

.
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