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1 Introduction

To our knowledge, there is no explicit formula for pricing Arithmetic Asian

options. Recent literature used orthogonal polynomial expansions to approx-

imate the distribution of the arithmetic average. Examples include Willems

(2019) and Asmussen et al (2016). Some of the literature used Edgeworth

expansions to approximate the distributions (see, for example, Li and Chen

(2016)). Gambaro et al (2020) used a tree method for discrete Asian options.

Carsaro et al (2019) adopted a computational method. Cui et al (2018) used

approximations. Others such as Aprahmiam and Maddah (2015) used the

Gamma distribution approach. Some studies relied on Monte Carlo simula-

tions. Examples include Lapeyre et al (2001) and Fu et al (1999). Others

adopted a numerical approach. Examples include Linetsky (2004), Cerny and

Kyriakou (2011), and Fusai et al (2011). Curran (1994) used the geometric

mean to estimate the arithmetic mean.

The literature on pricing the arithmetic Asian options has two main fea-

tures in common. First, it relies on approximations. Secondly, it largely

adopts complex methods. Consequently, this paper overcomes these two lim-

itations. In this paper, we use a pioneering approach to pricing the arithmetic
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Asian options in continuous time. In doing so, we present an exact, simple

formula. Particularly, we show that the price of the arithmetic Asian option

is equivalent to the price of the European option with an earlier known expiry.

The pricing formula is as simple as the classical Black-Scholes formula.

2 The method

The arithmetic average of the price underlying asset S (u) over the time

interval [t; T ] is given by

At =

TR

t

S (u) du

T ¡ t
; (1)

where t is the initial time and T is the expiry time. So that, using the Black-

Scholes assumptions, EAt = E

TR

t

S(u)du

T¡t
= er(T¡t)¡1

r(T¡t)
s; where s ´ S (t) and r is

the risk-free rate of return.

By the mean value theorem for integrals, E

TR

t

S(u)du

T¡t
= ES

¡
t̂
¢
; where t̂

is a time such that t < t̂ < T and ES
¡
t̂
¢
= er(t̂¡t)s: This implies that

er(T¡t)¡1
r(T¡t)

= er(t̂¡t): We can solve for t̂ as follows
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t̂ = t+
ln
³
er(T¡t)¡1
r(T¡t)

´

r
: (2)

Thus, t̂ is known. For example, if T ¡ t = 1; t = 0 and r = :01; t̂ =

t +
ln
³
e
:01

¡1
:01

´

:01
= .498. Also, by continuity, there is a constant a such that

V ar (At) = s
2e2r(t̂¡t)

³
ea(t̂¡t) ¡ 1

´
:

Proposition:

C (t; s) = sN (d1)¡ e¡r(T¡t)KN (d2) ; (3)

where d1 =
1p

·v2(T¡t)
[ln (s=K) + (r + ·v2=2) (T ¡ t)] ; d2 = d1 ¡

p
·v2 (T ¡ t);

and K is the strike price.

Proof. Let At = elnAt = s
s
elnAt = sec+lnAt ; where c is not random.

Consider this transformation

At = se
c+lnAt = se

c+ WT

WT
lnAt

= sec+VWT ; (4)

where WT is a Brownian motion. The option price can be expressed as a

4



weighted average of the Black-Scholes prices conditional on V as follows

C (t) =

Z

v

E
£
e¡r(T¡t)g (A) =V = v

¤
dF (v) =

Z

v

CBS (v) dF (v) ; (5)

where g is the payo¤, T is the expiry time, F is the cumulative density of

V , and CBS is the Black-Scholes price. By the continuity, the expected value

is a speci…c value of CBS denoted by ĈBS = CBS (·v) ; where ·v is a value

(outcome) of V . Thus, by continuity

C (t) =

Z

v

CBS (v) dF (v) = CBS (·v) : (6)

Thus, the price of the call option is

C (t) = sN (d1)¡ e¡r(T¡t)KN (d2) ; (7)

where d1 =
ln(s=K)+(r+·v2=2)(T¡t)p

·v2(T¡t)
and d2 = d1 ¡

p
·v2 (T ¡ t): ¤

Similar to other models, the volatility parameter ·v can be estimated.

A veri…cation:

A simple way to verify the result is to let C (t; s) be the true Asian option

price, and CBS(r; s; ¾; T ¡ t) be the Black-Scholes price of the European
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option. By the continuity, there is a speci…c value of the volatility parameter

such as ·¾ = ·v , so that C (t; s) = CBS(r; s; ·v; T¡t): Therefore, the true Asian

option price can be expressed using the Black-Scholes formula with volatility

·v.

Practical example:

If r = :05; T ¡ t = 1; ·v = :2; s = K = $100; then the option price is

C (t; s) = $6:91:

3 Conclusion

In sum, this paper o¤ers an explicit, simple formula for the price of the arith-

metic Asian options. The contribution will have a big impact on statistics

since it will have so many applications in the future. Furthermore, there is

a big practical advantage. In practice, the choice of the discrete times to

be included in the average is arbitrary and controversial. The industry can

avoid this problem altogether by trading continuous-average options (using

our formula).
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