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Abstract

We study long-lived rational agents who learn through experimentation and observing

each other’s actions. Experimentation and social learning, even when combined, often

lead to learning failures as agents may stop experimenting due to the Rothschild effect

or social conformity. We show that when there is diversity in preferences, there will be

complete learning in the limit, thereby overcoming these learning failures. Our analysis

demonstrates the critical interaction between experimentation, social learning, and

diversity and provides a new rationale for the increasingly held view that diversity is

crucial in institutions.
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1 Introduction

Agents may attempt to learn the true state of the world by experimentation and by observing

the choices of others. When agents learn only from the outcomes of their own choices, as in

a single agent multi-armed bandit, complete learning often fails. With positive probability,

agents settle on a suboptimal choice (Rothschild [1974]). Furthermore, learning exclusively

from observing the actions of others may result in informational cascades, leading to further

flawed learning outcomes (Banerjee [1992] and Bikhchandani et al. [1992]).1

A conjecture once held was that allowing agents to learn both from their own actions

and the actions of others would be sufficient for complete learning. The failure of complete

learning in a single-agent environment with experimentation is because the agent eventually

settles for a single choice. Once she does, she no longer learns about the other possible choices

(Rothschild [1974]). However, in environments with both experimentation and social learning,

agents are simultaneously learning from their past experiences and, by observing others’

choices, inferring something from the actions they do not take. Thus, one might expect social

learning to help overcome the so-called Rothschild effect. However, Aoyagi [1998], and later

Camargo [2014], showed a surprising no-learning result: complete learning fails even in a

large pool of agents learning from their own previous experiences and the actions of others.

The main intuition for this failure of complete learning is that social learning leads to social

conformity; agents eventually settle for the same action, and thus, the learning-from-others

component halts. Importantly, the action is often not the optimal one.

We are interested in understanding how diversity may affect learning in an environment

where agents learn from their own past experiences and the actions of others. Specifically,

by diversity, we mean a pool of agents with sufficiently rich heterogeneity in preferences. In

environments with diversity, agents look at the actions of others with the understanding that

others are choosing actions by balancing their private preferences with the information they

1Smith and Sørensen [2000] show that suboptimal herds may persist indefinitely if and only if signals are
bounded.
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have accumulated about the different options. Diversity might deter social conformity since

individuals with different preferences are less likely to settle on the same choice. However,

diversity also means that the information externality of each agent’s choice is small: an agent

might have taken an action because she "likes it," irrespective of the information she has

received about it.2

We have a continuum of rational long-lived agents who play a two-armed bandit. At every

period, they simultaneously choose an arm after observing a random sample of past play and

their own previous history of actions and outcomes. Analyzing learning in our environment

is not straightforward since beliefs are private due to each agent’s private experimentation

and their private history of observation of others. Moreover, our diversity assumption implies

that each agent’s choice balances the idiosyncratic preference of this agent and her private

belief about the expected payoffs of all actions. Thus, it becomes difficult to infer anything

meaningful from any single observation from others. Nevertheless, we prove a learning result

by studying the long run information aggregation.

Our main result is to show that in environments with experimentation and social learning,

diversity implies that complete learning happens with probability one in the long run. The

intuition is two-fold. First, agents eventually learn about the choice they settle for, a direct

consequence of the law of large numbers. The second part of the intuition is an equilibrium

argument. In the long run, after observing a sufficiently long sequence of others’ choices,

every agent will form a belief about the distribution of choices in the economy. Agents know

how preferences are distributed across the pool of agents, and they know that each agent has

learned about the expected payoff of the choices they have settled for. The most detailed part

of the argument (our Lemma 8, together with an induction argument) is to use the results

mentioned above to prove that each state of the world must induce a different asymptotic

distribution of choices. Consequently, any agent that has settled for a wrong choice is likely

2As an illustration, consider the paper by Munshi [2004] who uses data from the Indian Green Revolution
to show that rice growers respond less to neighbors’ experience than wheat growers since rice-growing regions
are more heterogeneous in growing conditions and rice varieties are more sensitive to unobserved farm
characteristics.
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to revise it based on her observed sequence of actions from others, which uniquely pins down

the underlying true state of the world in the long run. Only a small fraction of agents will

choose suboptimal actions, and complete learning happens with probability one in the limit.

Our result, combined with other existing results in the literature, delivers the following

message: Diversity is critical for complete learning. Commonly cited reasons for pursuing

diversity in institutions include the fact that diversity boosts creativity, helps overcome

behavioral biases, and increases the pool of talents. Moreover, exposure to diverse groups

reduces bias toward ethnic minorities and plays an important role in fostering tolerance (See

Boisjoly et al. [2006]; Carrell et al. [2019]). Our result provides another rationale for the

increasingly held view that diversity is crucial in institutions.3

Ours is the first paper that shows that diversity in preferences will lead to complete learning

in an environment that combines experimentation with social learning. In pure social learning

environments, diversity has been shown to lead to learning in some cases but not others. On

the one hand, diversity can foster learning by breaking informational cascades, an intuition

similar to the case of homogeneous preferences but unbounded signals (Smith and Sørensen

[2000]). In a sufficiently rich private values environment, all actions are played infinitely often

since a player with a strong preference for an action may disregard the public belief when

choosing (see Goeree et al. [2006] and Wiseman [2008]). This intuition does not carry over in

a direct way to environments such as ours. In our environment, the fact that all actions are

taken in all states of the world is not sufficient for complete learning: indeed, in all states, all

actions will be taken infinitely often. On the other hand, diversity in pure social learning

environments can also be detrimental to learning—for example, a positive fraction of players

that disregard public beliefs when acting could preclude information aggregation. Indeed,

Monzon [2019] provides a simple example in which even a small fraction of extreme types

(which may be interpreted as agents that strictly prefer an action over another, regardless of

3As an example, universities are actively pursuing diversity goals. For example, Harvard’s diversity
and inclusion commitment message includes: “Harvard’s commitment to diversity in all forms is rooted in
our fundamental belief that engaging with unfamiliar ideas, perspectives, cultures, and people creates the
conditions for dramatic and meaningful growth.”
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the information received) can lead to significant deviations from complete learning. In our

case, the inference from observing others’ choices is always taken with caution: it is obfuscated

by the fact that others might be experimenting, making it difficult to draw a meaningful

conclusion from a single observation. It is, instead, the aggregation of the observation of

others that is meaningful in our environment.

1.1 Related Literature

This paper contributes to the literature on social learning and experimentation. Our approach

extends that of Aoyagi [1998] and Camargo [2014]. Aoyagi [1998] studies a two-armed bandit

model with finite homogeneous players who observe each other’s actions in every period.

Camargo [2014] considers a multi-armed bandit model with a continuum of homogeneous

players that observe, in each period, the action of another randomly chosen player, which

he refers to as observation in society. Both of them show that, in equilibrium, all players

eventually settle on the same alternative, although not necessarily on the best one. That

is, social learning is not enough to overcome the so called “Rothschild effect”,4 when players

completely drop the best alternative in the long run. Camargo [2014] goes on to derive a

sufficient condition on the distribution of prior beliefs that prevents this result.

Other papers studied the importance of heterogeneity in pure social learning environments.

Goeree et al. [2006] and Wiseman [2008] consider a continuum of agents’ types, with continuous

possible payoffs for each action that depend on agent’s type. Short-lived rational individuals

decide sequentially, observe the choices of previous agents and receive a private signal about

the state of the world.5 They show that society completely learns the true state of the world

in the long run. With enough heterogeneity, there is always a type of agent whose decision

will depend on her private signal. Our approach complements that of Goeree et al. [2006]

4Due to the work of Rothschild [1974].
5Related to the case with homogeneous players, introduced by Banerjee [1992] and Bikhchandani et al.

[1992]. In a recent paper, Kartik et al. [2022] studies a general model of sequential learning over social
networks, and the interplay of preferences and information. They provide necessary and sufficient conditions
for learning.
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and Wiseman [2008] since we consider long-lived agents, who choose optimal experimentation

strategies. A key difference is that, in our environment, players’ private signals depend on their

own actions, and each player observes a different history of others’ actions. Furthermore, we

consider states with two independent components, which makes an action to be uninformative

about the other.

Social learning with heterogeneous agents has been studied in other different frameworks.

Ellison and Fudenberg [1993] consider, for example, that agents are heterogeneous in the

sense that each one has a different (real-valued) parameter. In each period, agents can

choose a technology and observe choice and payoff from those with parameters close to theirs.

This parameter also affects payoffs, which makes the best technology not to be the same for

everyone. Among other results, Ellison and Fudenberg [1993] show that, in general, agents do

not eventually take the best alternative for themselves. A key difference from our paper is that

the learning process in their environment do not follow Bayes’ rule, but an exogenous rule that

do not consider all the past experiences. On the other hand, Bala and Goyal [2001] consider

agents that update their beliefs with Bayes’ rule. One difference from our paper is that

agents are myopic in their environment. Bala and Goyal [2001] consider a network in which

agents can observe the actions and outcomes of the ones connected to them. Heterogeneity

comes from the fact that there are two types of agents, with different preferences. Agents

eventually choose the best action for themselves depending on the connections they have in

the network. Ali [2018] studies a model of social learning with information acquisition and

heterogeneity in the cost of acquiring information. His main message is that there will be

herding only on correct actions if and only if for every interior public belief, players might

have strict incentives to acquire information that can overturn the belief.

Harel et al. [2021] study a model of long-lived rational agents learning form each other’s

actions and from private signals. In their paper, there is no experimentation (signals are

independent of actions), so their focus is to study the speed of learning from others’ actions.

5



2 Model

A continuum of anonymous players is identified with a probability space (I, I, λ). Where I is

the set of players, I is a σ-algebra on I, and λ is a probability measure on I. These players

are playing a two-armed bandit: they choose between two arms with stochastic payoffs, but

fixed expected payoffs. That is, in every period t ∈ N, each agent has to choose one action

in the set A = {1, 2}. The set of states of the world is Θ = Θ1 × Θ2, where, for each arm

k ∈ A, Θk = {θ1k, θ
2
k, ..., θ

nk

k } for some nk ∈ N. We define a linear order on Θk such that

θ1k < θ2k < ... < θnk

k and a partial order on Θ such that θ ≥ θ′ if, and only if, θ1 ≥ θ′1 and

θ2 ≥ θ′2. We say that θ > θ′ if at least one of the two inequalities is strict.

For each agent i ∈ I, let Y i denote the set of her finitely many possible payoffs.6 She gets

payoff y with probability gi(y|k, θk) when she chooses action k and the state of the world

is θ = (θ1, θ2). Players are heterogeneous since Y i and gi may be different for each i ∈ I.

Player i’s expected payoff is denoted by rik(θk), for each k ∈ A and θk ∈ Θk. We assume that,

for each state θ ∈ Θ,

∀ε > 0, λ{0 < rik(θk)− rik′(θk′) < ε} > 0, for k, k′ ∈ A s.t k ̸= k′, (A1)

and that

λ{ri1(θ1) = ri2(θ2)} = 0. (A2)

For each state θ ∈ Θ, assumptions A1 and A2 imply that, under complete information,

there would be a strict positive mass of players arbitrarily close to the indifference between the

two actions but no mass of players exactly in the indifference. Assumption A1 is important to

make asymptotic distributions different depending on the state of the world, and assumption

A2 is important for the convergence of the observation likelihood (Lemma 4).

6Although we could consider infinitely many different payoffs without changing the results, we chose
finitely many payoffs for ease of notation.
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We also assume that rik is strictly increasing in θk. Stronger than that, we consider, for

each k ∈ A,

inf{rik(θk)− rik(θ
′
k) : θk, θ

′
k ∈ Θk s.t. θk > θ′k, i ∈ I} > 0. (A3)

Assumption A3 implies that agents are not arbitrarily close to the indifference between

states θ and θ′ with θk ̸= θ′k when they choose k ∈ A.7

Let Π = ∆(Θ) be the set of possible beliefs about the state of the world. Let us consider

a common prior π1 ∈ Π. Assume that π1(θ) > 0, ∀θ ∈ Θ.8 Denote by πi
t(θ) the probability

player i assigns to θ ∈ Θ in period t and πi
t(k, θk) :=

∑

{θ′:θ′
k
=θk}

πi
t(θ

′) the probability she

assigns to θk ∈ Θk.

In a given period t, a player i chooses an action k ∈ A, observes an outcome y ∈ Y i and,

a choice k̃ ∈ A of another randomly chosen anonymous player. The set of histories in period

t is H i
t = (A× Y i × A)t−1. The set of infinite histories is H i

∞ = (A× Y i × A)∞. A strategy

for player i is a sequence σ = {σt} such that σt : H
i
t → ∆(A) maps any history in H i

t to an

action (possibly mixed) in period t. Let Σi be the set of all possible strategies for player i ∈ I

and define Σ := ∪i∈IΣ
i. A strategy profile F : I → Σ is a I-measurable function9 that maps

each player i ∈ I to a strategy F (i) ∈ Σi. The set of all possible strategy profiles is denoted

by F .

Given a strategy profile F , the proportion of players choosing each action k ∈ A at period

7Assuming only that ri
k

is strictly increasing for each k ∈ A and i ∈ I is not enough. To see that, consider
states θ and θ′ such that θ1 > θ′

1
and θ2 = θ′

2
. Consider that either ri

1
(θ′

1
) − ri

2
(θ′

2
) < ri

1
(θ1) − ri

2
(θ2) < 0

or 0 < ri
1
(θ′

1
)− ri

2
(θ′

2
) < ri

1
(θ1)− ri

2
(θ2) for each i ∈ I. This means that agents would like to make exactly

the same choices in both states, without breaking strict monotonicity of ri
k
. Since different asymptotic

distributions of actions are important in our model, we rule out this type of situation. We illustrate the
importance of this assumption in figures 2 and 3.

8We could consider an economy with heterogeneous prior and all our results would follow. For that, let
φ : I → Π be such that φ(i) ∈ Π is the initial prior of player i ∈ I, which considers that state components
are independent. Assume that players do not assign a probability arbitrarily close to 0 to any state in the
beginning of the game:

η := inf{πi

1
(θ) : i ∈ I, θ ∈ Θ} > 0. (A4)

9F must be a I-measurable function so we can aggregate individual actions.
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t ∈ N when the state of the world is θ ∈ Θ is well defined. We denote it by mt(k, θ) and

define mt(θ) := (mt(1, θ),mt(2, θ)).
10 Let M be the set of all possible sequences m = {mt}

from A×Θ into [0, 1]. We denote by M : F → M the map such that m = M(F ) gives us

the proportion of players choosing each action for each state of the world and period when

the strategy profile is F .

Fix a player i ∈ I and her strategy σ ∈ Σi. Her (possibly mixed) action is defined by

strategy σ in the first period, θ defines the outcome distribution gi(y|k, θ), and m1(k, θ) the

probability of observing a player who plays k in period t = 1. Hence, σ, θ and m define a

probability distribution on H1. For each h1 ∈ H1, σ defines the player’s action in the second

period, and so on. Therefore, σ, θ and m define a probability distribution on H∞, which we

denote by µ(σ|θ,m). Since i does not know θ, she considers the prior π1 ∈ Π with µ(σ|θ,m)

to find a distribution probability on Θ×H∞, which we denote by µ(σ|π,m).

Let yit be player i’s stochastic payoff at period t and denote by Ri =
∑∞

t=1 δ
t−1yit the

expected sum of payoffs, where δ ∈ [0, 1) is the discount factor. Given m, we denote

the individual learning problem of player i under prior π1 by ILP i(π1,m). An optimal

experimentation strategy σ∗ for ILP i(π1,m) is such that

Eµ(σ∗|π1,m)[R
i] = sup

σ∈Σi

Eµ(σ|π1,m)[R
i]. (1)

Hence, the observation likelihood m affects optimal strategies and a strategy profile F

defines the observation likelihood through m = M(F ). This is the idea behind the Nash

equilibrium for non-atomic games that we adapt to our environment.

Definition 1 (Equilibrium). An equilibrium is a pair (m∗, F ∗) such that F ∗(i) is an optimal

experimentation strategy for ILP i(π1,m
∗) for λ-almost all i ∈ I and m∗ = M(F ∗).

10Although individual behavior may be stochastic, aggregate is not. Appendix A.2 of Camargo [2014]
shows how to aggregate individual behavior to find {mt}.

8



3 Results

In this section we present our main result: there will be complete learning in the limit. We

construct this result by presenting 8 lemmas. The first four lemmas are adapted from Aoyagi

[1998], Rosenberg et al. [2009] and Camargo [2014] and we simply refer to the original work

for the proofs, while the remaining four lemmas are specific to our environment and we

present their proofs.

Consider a player i who chooses k infinitely many times. She will have infinitely many

outcome observations and, by the Strong Law of Large Numbers (and assumption A3), will

asymptotically learn the true expected payoff of action k with probability 1. This is what

Lemma 1 below states. The proof is omitted since it is essentially that of Lemma 1 of Aoyagi

[1998].

Let Ik ∈ I be the set of players who play k ∈ A infinitely many times. Let Ei
k be the

event such that i ∈ Ik.

Lemma 1 (Learning about your choice). Assume θ is the true state of the world. Suppose

the sequence of observation likelihoods is m. Consider a player i ∈ I, prior π1 and strategy

σi. If µ(σi|π1,m)(Ei
k) > 0, then µ(σi|π1,m) (limt→∞ πi

t(k, θk) = 1|Ei
k) = 1.

Our next result states that almost all players will eventually choose actions that are

myopically optimal according to their beliefs. Intuitively, players do not want to experiment

forever, since they experiment when they want to acquire information for the future, giving

up current expected payoff. This result is a consequence of Proposition 2.1 of Rosenberg

et al. [2009], and we state without proof.

Before stating Lemma 2, we need to establish some notation. Consider a player i with

belief π. Let Eπ[r
i
k] :=

∑nk

j=1 π(k, θ
j
k)r

i
k(θ

j
k) be her current expected outcome when she plays

k and define BRi(π) the set of her myopically optimal actions, that is, k ∈ BRi(π) ⇔

k ∈ argmaxk Eπ[r
i
k]. Since beliefs {πi

t}
∞
t=1 are martingales, they converge almost surely to a

(random) limit πi
∞. Let Ai

∞ be the (random) set of actions player i chooses infinitely many

9



times.

Lemma 2 (Myopic optimal actions in the limit). Suppose the sequence of observation

likelihoods is m and σi is an optimal strategy. Then µ(σi|πi
1,m)(Ai

∞ ⊆ BRi(πi
∞)) = 1 for

each player i ∈ I.

Consider a player i who plays both actions infinitely many times, that is, i ∈ I1 ∩ I2.

Lemma 1 implies that she asymptotically learns the true state of the world. Lemma 2 requires

that {1, 2} ⊆ BR(πi
∞) and, therefore, ri1(θ1) = ri2(θ2) with probability 1. However, this is

ruled out by assumption A2. Thus, we can state our next result.

Lemma 3 (Settle on one choice). Suppose almost all players follow optimal strategies. Then

the mass of players that choose two actions infinitely many times is zero.

If the mass of players who choose k = 1 did not converge, there would be a positive mass

of players alternating their choice infinitely many times, which cannot occur, according to

Lemma 3. This result is our Lemma 4, which comes from Lemma 6 of Camargo [2014] and,

therefore, we state without proof.

Lemma 4 (Long-run proportion is convergent). Let (m∗, F ∗) be an equilibrium. Then

{m∗
t (θ)} is convergent for all θ ∈ Θ.

We define m∞(θ), for each θ ∈ Θ, such that mt(θ) → m∞(θ).

Now assume θ is the true state of the world. Then Lemma 4 asserts that the fraction

of players choosing action k converges to m∞(k, θ). Since players make infinitely many

observations in society, the fraction of players they observe choosing k must also converge to

m∞(k, θ). It is a consequence of the Strong Law of Large Numbers. Therefore, players will

asymptotically know that the true state cannot be any state θ′ such that m∞(k, θ′) ̸= m∞(k, θ).

This is what Lemma 5 below states. For a formal proof, see Appendix A.1.

Lemma 5 (Correct shares are observed in the limit ). Let (m∗, F ∗) be an equilibrium and

θ, θ′ ∈ Θ such that m∗
∞(θ′) ̸= m∗

∞(θ). Then µ(F ∗(i)|θ,m∗)(πi
∞(θ′) = 0) = 1, for λ-almost all

i ∈ I.
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Before we proceed, we state some definitions. Suppose that, when the true state is θ,

almost all players asymptotically discover that the state is not θ′, and vice-versa. In this case,

we say that θ is distinguishable from θ′.

Definition 2 (Distinguishable States). Let (m∗, F ∗) be an equilibrium. We say θ is distin-

guishable from θ′, and vice-versa, if

1. µ(F ∗(i)|θ,m∗)(πi
∞(θ′) = 0) = 1 and

2. µ(F ∗(i)|θ′,m∗)(πi
∞(θ) = 0) = 1,

for λ-almost all i ∈ I.

Next we provide a stronger definition. When a state θ is distinguishable from all other

states of the world, players discover, in the long run, whether or not θ is the true state of the

world. In this situation, we say θ is identified.

Definition 3 (Identified States). θ is identified if θ is distinguishable from θ′, for every

θ′ ̸= θ.

We denote by ID the set of identified states.

We now provide two different sufficient conditions so that two states are distinguishable

from each other. Consider θ to be the true state. Because almost all players asymptotically

learn at least one component of the true state of the world (by Lemma 1), they asymptotically

discover that a state θ′ cannot be the true state if both θ′1 ≠ θ1 and θ′2 ̸= θ2. Moreover, the

same happens if the asymptotic distribution of actions in θ′, m∗
∞(θ′), is different from the

true one, m∗
∞(θ) (by Lemma 5). Lemma 6 summarizes these results.

Lemma 6 (Sufficiency for distinguishable states). Assume (m∗, F ∗) is an equilibrium. Let

θ, θ′ ∈ Θ. If at least one of the following conditions is true:

1. θk ̸= θ′k, for each k ∈ A;

2. m∗
∞(θ) ̸= m∗

∞(θ′).

11



Then θ is distinguishable from θ′.

Denote Bi
∞(k, θ̃k) the event such that player i asymptotically believes the true θk is at

least θ̃k, that is, πi
∞(θ′) = 0, for each θ′ such that θ′k < θ̃k.

We state the following definition regarding the players’ equilibrium asymptotic beliefs.

Definition 4 (Efficient Beliefs). Let (m∗, F ∗) be an equilibrium. We say players have efficient

beliefs in θ if µ(F ∗(i)|θ,m∗)(Bi
∞(k, θk)) = 1, for each k ∈ A and λ-almost all i ∈ I.

Intuitively, players do not underestimate the effect of any action if they have efficient

beliefs. We denote by EB the set of states in which players have efficient beliefs. It is

straightforward to see that ID ⊆ EB.

If a player chooses action k infinitely often and does not underestimate the payoff of

k′ ̸= k, she is certainly choosing the best action for herself in the long run: she asymptotically

learns θk (Lemma 1) and chooses k even though she can only have overestimated the expected

payoff of k′. Hence, players with efficient beliefs must eventually play the best action for

themselves. Next lemma is about this and this the reason we chose the name "efficient beliefs"

for the definition above.

Let BAi(θ) denote the set of player i’s best actions when the state is θ.

Lemma 7 (Optimal Action under Efficient Beliefs). Assume θ is the true state and players

follow optimal strategies. If θ ∈ EB, then Ai
∞ ⊆ BAi(θ), for λ-almost all players i ∈ I.

Assume θ is the true state and all states θ such that θ < θ are identified.11 It is

straightforward to see that θ is distinguishable from such θ’s. But, much stronger than that,

Lemma 8 below asserts that θ is also distinguishable from states θ̄ > θ. This means that a

sufficient condition for a given state to be identified is that all states “below” are identified.12

11Recall that "<" (and similarly ">") refers to the partial ordering on the set of states such that θ
′

< θ if
θ
′

1
< θ1 and θ

′

2
≤ θ2 or if θ

′

1
≤ θ1 and θ

′

2
< θ2.

12Note that states θ̃ such that neither θ̃ < θ nor θ̃ > θ are distinguishable from θ because both θ̃1 ̸= θ1
and θ̃2 ̸= θ2.
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To prove this result, first we show θ ∈ EB. Consider players who play k = 1 infinitely

often. Lemma 1 implies that they asymptotically learn θ1. Since they distinguish θ from any

θ < θ, they cannot asymptotically underestimate action k = 2. Analogously, players who

play k = 2 also do not asymptotically underestimate action k = 1, thus θ ∈ EB.

Figure 1: θ = (θ21, θ
2
2) is the true state and θ ∈ ID for all θ < θ.

Now we argue that θ is distinguishable from any θ̄ > θ. Suppose, for instance, that

θ is not distinguishable from θ̄ and is such that θ̄1 = θ1 and θ̄2 > θ2 (see figure 1), then

m∞(θ̄) = m∞(θ) by Lemma 6. Since almost all players eventually play correctly when the

state is θ (Lemma 7), a strictly positive mass of players who would be better off playing k = 2

when the state is θ̄ have to play k = 1 infinitely often. In other words, under θ̄, every agent is

weakly better off, however, not all of them will have a different optimal action. Assumption

A3 guarantees that at least a positive mass of agents will have her optimal action reversed:

it is k = 1 under θ but is k = 2 under θ̄. The role that assumption A3 plays can be better

understood through figures 2 and 3 below.

13



Figure 2: Violation of Assumption A3

In the example of figure 2, every agent prefers θ̄ to θ, but the optimal action for each

agent i under θ is the same as under θ̄. This example violates Assumption A3. Instead,

assumption A3 guarantees that there is a minimum distance between the blue line and the

new curve representing the payoff distance between actions 1 and 2 in state θ̄. This can

better be seen below:

Figure 3: Payoff difference under Assumption A3

Note that now, in the example of figure 3, the outer curve has a minimum distance from

14



the inner curve. This means that if agents found out that the true state is θ̄ instead of θ,

there would be a positive mass of agents who would be better off by switching their actions.

When the true state is θ̄, players asymptotically discover the true state cannot be states

θ < θ since they are identified. If states θ̄ and θ are not distinguishable, then we use the

argument of the previous paragraph to show that a strictly positive mass of players (players

close to indifference between k = 1 and k = 2 when the state is θ who choose k = 1) has to

assign probability arbitrarily close to 0 to the true state θ̄ in the long run (otherwise, they

would switch actions and the states would be distinguishable). However, since beliefs in the

true state are submartingales, this cannot happen. This means that m∞(2, θ̄) > m∞(2, θ)

and, therefore, θ is also distinguishable from a state θ̄ > θ (Lemma 2). Hence, θ is identified.

A formal proof can be found in Appendix A.2.

Lemma 8 (Sufficiency: Lower States Identified ). Consider an equilibrium and let θ ∈ Θ.

Assume ∀θ ∈ Θ, θ < θ ⇒ θ ∈ ID. Then θ ∈ ID.

Lemma 8 implies that (θ11, θ
1
2) is identified. In turn, (θ11, θ

2
2) and (θ21, θ

1
2) are also identified,

and so on. With a simple induction argument, Lemma 8 is the key to prove Theorem 1, our

main result.

Theorem 1 (Complete Learning). In equilibrium, θ ∈ ID, for each θ ∈ Θ.

Theorem 1 shows that players asymptotically learn the true state of the world. Corollary

1 asserts that players eventually choose the best action for themselves.

Corollary 1 (Efficiency). In equilibrium, Ai
∞ ⊆ BAi(θ), for each θ ∈ Θ and λ-almost all

players i ∈ I.
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Appendix A Proofs

A.1 Proof of Lemma 5

Proof. Consider θ′ ̸= θ. Fix i ∈ Ik a player with strategy σ and beliefs {πt} that plays k

infinitely many times. If θ′k ≠ θk, Lemma 1 completes the proof. Suppose, then, that θ′k = θk.

Let {k̃t} be the sequence of observations in society. By Lemma 3, there exists T such that i

plays k for all t ≥ T . By Bayes’ Rule, for t ≥ T ,

πt+1(θ
′)

πt+1(θ)
=

πt(θ
′)

πt(θ)
.
mt(k̃t, θ

′)

mt(k̃t, θ)
. (2)

The outcome yt does not change the likelihood ratio π(θ′)
π(θ)

since θ′k = θk.

In equation 2, defining γt := log
(

πt(θ′)
πt(θ)

)

and ζt := log
(

mt(k̃t,θ′)

mt(k̃t,θ)

)

,

γt+1 = γt + ζt. (3)

Using strict concavity of the log function, for t such that mt(θ) ̸= mt(θ
′),

E[ζt|θ] = mt(k̃, θ) log

(

mt(k̃t, θ
′)

mt(k̃t, θ)

)

+ (1−mt(k̃, θ)) log

(

1−mt(k̃t, θ
′)

1−mt(k̃t, θ)

)

< log

(

mt(k̃, θ)
mt(k̃t, θ

′)

mt(k̃t, θ)
+ (1−mt(k̃, θ))

1−mt(k̃t, θ
′)

1−mt(k̃t, θ)

)

= 0.

(4)

Since {mt} converges, {E[ζt|θ]} must also converge to some ζ∞. Because m∞(θ) ̸= m∞(θ′),

the previous equation guarantees that ζ∞ is strict negative.

Consider Zn := 1
n

∑T+n−1
t=T ζt. As a consequence of the Strong Law of Large Numbers, {Zn}

converges almost surely to ζ∞ < 0. Hence, we get that
∑∞

t=T ζt
a.s.
→ −∞. Then γt

a.s.
→ −∞

and, thus, {πt(θ
′)} converges almost surely to 0.
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A.2 Proof of Lemma 8

Proof. Fix θ ∈ Θ. Assume,

∀θ ∈ Θ, θ ≤ θ ⇒ θ ∈ ID. (5)

Since players can distinguish θ from any θ < θ, Lemma 1 implies that θ ∈ EB. Lemma 7

implies that Ai
∞ = BAi(θ) for λ-almost all players.

Now we prove that θ ∈ ID. Assume, by contradiction, there exists θ̄ ≠ θ such that θ is

not distinguishable from θ̄. Lemma 6 implies m∞(θ̄) = m∞(θ) and either θ̄1 = θ1 or θ̄2 = θ2.

Assume, without loss of generality, θ̄1 = θ1. Equation 5 implies that θ̄2 > θ2.

When the state is θ̄, using Lemmas 1 and 2 and the fact that states (θ1, θ2) with θ2 < θ2

are either inexistent or identified,

i ∈ I1 in θ̄ ⇒ ri1(θ1) = ri1(θ̄) ≥ Eπi
∞
[ri2] ≥ ri2(θ2), for almost all i ∈ I. (6)

When the state is θ, Ai
∞ = BAi(θ) for almost all players. Then equation 6 can be rewritten

as

i ∈ I1 in θ̄ ⇒ i ∈ I1 in θ, for almost all i ∈ I. (7)

Equation 7 implies that m∞(1, θ̄) ≤ λ{i ∈ I : BAi(θ) = {1}} = m∞(1, θ). Since we

assumed m∞(θ̄) = m∞(θ), the converse of equation 7 must be true.

i ∈ I1 in θ ⇒ i ∈ I1 in θ̄, for almost all i ∈ I. (8)

Consider I(ε) := {i ∈ I : 0 ≤ ri1(θ1)− ri2(θ2) < ε} ⊂ {i ∈ I : BAi(θ) = {1}}. Note that

λ{I(ε)} > 0 according to assumption A1. When the true state is θ, almost all i ∈ I(ε) are

such that i ∈ I1. Equation 8 implies also that almost all i ∈ I(ε) are such that i ∈ I1 when
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the true state is θ̄.

Consider θ̄ is the true state. For i ∈ I(ε) ∩ I1,

0 ≤ ri1(θ1)− Eπi
∞
[ri2] ≤ ri1(θ1)− [πi

∞(2, θ̄2)r
i
2(θ̄2) + (1− πi

∞(2, θ̄2))r
i
2(θ2)]. (9)

Where the last inequality considers that ri2(θ2) is the worst possible expected payoff for

action k = 2 according to equation 5. Rewriting equation 9,

0 ≤ ri1(θ1)− ri2(θ2)− πi
∞(2, θ̄2)(r

i
2(θ̄2)− ri2(θ2)) ≤ ri1(θ1)− ri2(θ2) < ε. (10)

Taking ε arbitrarily small, equation 10 implies that πi
∞(2, θ̄2) must be arbitrarily small

(using assumption A3), for almost all i ∈ I(ε). We get a contradiction: beliefs on the true

state are submartingales, thus cannot be arbitrarily wrong for almost all i ∈ I(ε).
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