MPRA
 Munich Personal RePEc Archive

Sensitivity Analysis of Inputs of an Organization: A Profit Maximization Exploration

Mohajan, Devajit and Mohajan, Haradhan

Department of Civil Engineering, Chittagong University of Engineering Technology, Chittagong, Bangladesh, Department of Mathematics, Premier University, Chittagong, Bangladesh

10 March 2023

Online at https://mpra.ub.uni-muenchen.de/117121/
MPRA Paper No. 117121, posted 23 Apr 2023 01:17 UTC

Sensitivity Analysis of Inputs of an Organization: A Profit Maximization Exploration

Devajit Mohajan
Department of Civil Engineering, Chittagong University of Engineering \& Technology,
Chittagong, Bangladesh
Email: devajit1402@gmail.com

Mobile: +8801866207021

Haradhan Kumar Mohajan
Department of Mathematics, Premier University, Chittagong, Bangladesh
Email: haradhan1971@gmail.com

Mobile: +8801716397232

Abstract

This article tries to discuss sensitivity analysis of various inputs of an organization during profit maximization investigations. In this study Cobb-Douglas production function is analyzed with a detail mathematical analysis. The method of Lagrange multiplier is a very useful and powerful technique in multivariate calculus, and it is applied here to obtain higher dimensional unconstrained problem from the lower dimensional constrained one. In the article determinant of the 6×6 bordered Hessian matrix and 6×6 Jacobian are operated for consulting sensitivity analysis efficiently.

Keywords: Lagrange multiplier, profit maximization, sensitivity analysis

1. Introduction

At the present globalized world, mathematical modeling becomes a part and parcel in economics (Samuelson, 1947). In the $21^{\text {st }}$ century, it is widely used to investigate optimization strategy (Carter, 2001). It plays an important role in modern economics for the development of global financial structure (Ferdous \& Mohajan, 2022). In the society economics sees its benefits and also sees welfare of the global humankind. Profit maximization policy provides sustainable environment of the organization, and in parallel it increases welfare of the society (Eaton \& Lipsey, 1975; Mohajan et al., 2013). To obtain maximum profit, an organization must be very sincere in every step of its operation, such as in production, financial balance, demand and supply strategy, transportation, total management system, etc. (Mohajan, 2015; Mohajan \& Mohajan, 2022a).

Cobb-Douglas production function is one of the most widely used production function in mathematical economics that helps the organization to take rational decision on the quantity of each factor inputs to employ so as to minimize the production cost for its profit maximization (Cobb \& Douglas, 1928). In this paper we have used the determinant of 6×6 bordered Hessian matrix, 6×6 Jacobian and four input variables. For convenient we have applied Implicit Function Theorem of multivariable calculus. In this article we have tried to show mathematical calculations in some detail.

2. Literature Review

In any research work, the literature review is an elementary section where a researcher shows the works of previous researchers in the same field within the existing knowledge (Polit \& Hungler, 2013). It deals with a secondary research source and does not report a new or a coming research work (Gibbs, 2008). In 1928, two American dedicated persons, mathematician Charles W. Cobb (1875-1949) and economist Paul H. Douglas (1892-1976) have derived the functional distribution of income between capital and labor (Cobb \& Douglas, 1928). After a few years in 1984, another two American professors: mathematician John V. Baxley and economist John C.

Moorhouse have provided a mathematical formulation for nontrivial constrained optimization problem with special reference to application in economics (Baxley \& Moorhouse, 1984).

Steven D. Levitt shows that profit maximizing behavior by firms is one of the most fundamental and widely applied policies in all of economics (Levitt, 2006). Well-established Bangladeshi mathematician Jamal Nazrul Islam and his coauthors have given reasonable interpretation of the Lagrange multipliers. In some research papers they have tried to examine the behavior of optimization problems (Islam et al., 2009a,b, 2010a,b). Cambodian professor Pahlaj Moolio and his coauthors have stressed on optimization of output in an organization (Moolio et al., 2009). Devajit Mohajan and Haradhan Kumar Mohajan have discussed utility maximization and profit maximization policies. They have studied the Cobb-Douglas production function with detailed mathematical analysis (Mohajan et al., 2012, 2013; Mohajan \& Mohajan, 2022a-j, 2023a-s).

On the other hand, Haradhan Kumar Mohajan has considered three inputs in his optimization investigation (Mohajan, 2021a). Earlier, Lia Roy and her coauthors have shown that cost minimization is essential for the sustainable development of an industry (Roy et al., 2021). Jannatul Ferdous and Haradhan Kumar Mohajan have developed a profit maximization problem that is a splendid work in mathematical economics (Mohajan, 2012; Ferdous \& Mohajan, 2022).

3. Research Methodology of the Study

Research is a vital and significant device to the academicians for the leading in academic empire (Pandey \& Pandey, 2015). On the other hand, methodology is a guideline to perform a good research that follows scientific methods efficiently (Kothari, 2008). Therefore, research methodology is the collection of a set of principles for organizing, planning, designing and conducting a good research (Legesse, 2014). In this study we have tried to discuss sensitivity analysis for the welfare of the organization and humankind. First we have considered a CobbDouglas production function, and then we have used Lagrange multiplier to make the paper interesting to the readers. Moreover, we have used the 6×6 bordered Hessian matrix and 6×6 Jacobian to make the profit function easier.

To prepare this paper, we have followed both qualitative and quantitative research approaches (Mohajan, 2018a, 2020). Throughout the study we have tried our best to maintain the reliability and validity properly (Das \& Mohajan, 2014a,b,c; Mohajan, 2017b). In this paper, we have depended on the secondary data sources of optimization, such as journal articles, books of famous authors, conference papers, internet, websites, etc. (Islam et al., 2009a,b, 2010a,b, 2011a,b,c, 2012a,b,c, Mohajan, 2011a-d, 2012a-h, 2013a-j, 2014a-g, 2015a-e, 2016a,b,c, 2017a-g, 2018a-e, 2020a-e, 2021a-e, 2022a-d, Rahman \& Mohajan, 2019).

4. Objective of the Study

The main objective of this study is to discuss sensitivity analysis of various inputs if interest rate of the organization increases during profit maximization investigation. Other minor but related objectives are as follows:

- to show the calculation properly,
- to highlight matrix representation, and
- to provide predictions properly.

5. Economic Model

Let us consider that an organization produces and distributes its products to achieve maximum profit within a year using a_{1} quantity of capital, a_{2} quantity of labor, a_{3} quantity of principal raw materials, and a_{4} quantity of other inputs. The profit function is represented by the CobbDouglas production function (Islam et al., 2011; Mohajan, 2017a),

$$
\begin{equation*}
P=f\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=A a_{1}^{x} a_{2}^{y} a_{3}^{z} a_{4}^{w} \tag{1}
\end{equation*}
$$

where A is the technical process of economic system that indicates total factor productivity. Here x, y, z, and w are parameters; x indicates the output of elasticity of capital measures the percentage change in P for 1% change in a_{1}, while a_{2}, a_{3}, and a_{4} are held constants. Similar properties carry parameters y, z, and w. The values of x, y, z, and w are determined by the
available technologies, and must satisfy the following four inequalities (Mohajan, 2021a; Roy et al., 2021):

$$
\begin{equation*}
0<x<1,0<y<1,0<z<1, \text { and } 0<w<1 . \tag{2}
\end{equation*}
$$

A strict Cobb-Douglas production function, in which $\Pi=x+y+z+w=1$ indicates constant returns to scale, $\Pi<1$ indicates decreasing returns to scale, and $\Pi>1$ indicates increasing returns to scale (Moolio et al., 2009; Mohajan, 2021b).

Now we consider that the budget constraint,

$$
\begin{equation*}
B\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=k a_{1}+l a_{2}+m a_{3}+n a_{4}, \tag{3}
\end{equation*}
$$

where k is rate of interest or services of capital per unit of capital $a_{1} ; l$ is the wage rate per unit of labor $a_{2} ; m$ is the cost per unit of principal raw material a_{3}; and n is the cost per unit of other inputs a_{4}.

Now we introduce a single Lagrange multiplier λ, as a device; and by using equations (1) and (3) we can represent the Lagrangian function $L\left(a_{1}, a_{2}, a_{3}, a_{4}, \lambda\right)$, in a 5-dimensional unconstrained problem as follows (Mohajan et al., 2013; Mohajan, 2022):

$$
\begin{equation*}
L\left(a_{1}, a_{2}, a_{3}, a_{4}, \lambda\right)=A a_{1}^{x} a_{2}^{y} a_{3}^{z} \alpha_{4}^{w}+\lambda\left(B-k a_{1}-l a_{2}-m a_{3}-n a_{4}\right) . \tag{4}
\end{equation*}
$$

where $\frac{\partial B}{\partial a_{1}}=B_{1}, \frac{\partial B}{\partial a_{2}}=B_{2}, \frac{\partial L}{\partial a_{1}}=L_{1}, \frac{\partial^{2} L}{\partial a_{1} \partial a_{3}}=L_{31}, \frac{\partial^{2} L}{\partial a_{2}^{2}}=L_{22}$, etc. are partial derivatives.
Let us consider the determinant of the 5×5 bordered Hessian matrix as,

$$
H=\left|\begin{array}{ccccc}
0 & -B_{1} & -B_{2} & -B_{3} & -B_{4} \tag{5}\\
-B_{1} & L_{11} & L_{12} & L_{13} & L_{14} \\
-B_{2} & L_{21} & L_{22} & L_{23} & L_{24} \\
-B_{3} & L_{31} & L_{32} & L_{33} & L_{34} \\
-B_{4} & L_{41} & L_{42} & L_{43} & L_{44}
\end{array}\right| .
$$

Taking first-order partial differentiations of (3) we get,

$$
\begin{equation*}
B_{1}=k, B_{2}=l, B_{3}=m, \text { and } B_{4}=n . \tag{6}
\end{equation*}
$$

Taking second-order and cross partial derivatives of (4) we get,

$$
\begin{aligned}
& L_{11}=x(x-1) A a_{1}^{x-2} a_{2}^{y} a_{3}^{z} a_{4}^{w}, \\
& L_{22}=y(y-1) A a_{1}^{x} a_{2}^{y-2} a_{3}^{z} a_{4}^{w},
\end{aligned}
$$

$$
\begin{align*}
& L_{33}=z(z-1) A a_{1}^{x} a_{2}^{y} a_{3}^{z-2} a_{4}^{w}, \\
& L_{44}=w(w-1) A a_{1}^{x} a_{2}^{y} a_{3}^{z} a_{4}^{w-2}, \\
& L_{12}=L_{21}=x y A a_{1}^{x-1} a_{2}^{y-1} a_{3}^{z} a_{4}^{w}, \\
& L_{13}=L_{31}=x z A a_{1}^{x-1} a_{2}^{y} a_{3}^{z-1} a_{4}^{w}, \\
& L_{14}=L_{41}=x w A a_{1}^{x-1} a_{2}^{y} a_{3}^{z} a_{4}^{w-1}, \tag{7}\\
& L_{23}=L_{32}=y z A a_{1}^{x} a_{2}^{y-1} a_{3}^{z-1} a_{4}^{w}, \\
& L_{24}=L_{42}=y w A a_{1}^{x} a_{2}^{y-1} a_{3}^{z} a_{4}^{w-1}, \\
& L_{34}=L_{43}=z w A a_{1}^{x} a_{2}^{y} a_{3}^{z-1} a_{4}^{w-1} .
\end{align*}
$$

Now we expand the bordered Hessian (5) as,

$$
\begin{equation*}
|H|=\frac{A^{3} B^{2} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} \Pi}>0 \tag{8}
\end{equation*}
$$

where $A>0, x, y, z, w>0$, and budget, $B>0$, therefore, $|H|>0$. Hence, the profit is maximized (Mohajan \& Mohajan, 2022b; Moolio et al., 2009).

6. Highlights on Matrix Operations

We have observed that the second order condition is satisfied, so that the determinant of (5) survives at the optimum, i.e., $|J|=|H|$; hence, we can apply the implicit function theorem. Let G be the vector-valued function of ten variables $\lambda^{*}, a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*}, k, l, m, n$, and B, and we define the function \mathbf{G} for the point $\left(\lambda^{*}, a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*}, k, l, m, n, B\right) \in R^{10}$, and take the values in R^{5}. By the implicit function theorem of multivariable calculus, the equation,

$$
\begin{equation*}
F\left(\lambda^{*}, a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*}, k, l, m, n, B\right)=0 \tag{9}
\end{equation*}
$$

may be solved in the form of

$$
\left[\begin{array}{c}
\lambda \tag{10}\\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\mathbf{G}(k, l, m, n, B)
$$

Now the 5×5 Jacobian matrix for \mathbf{G}; regarded as $J_{G}=\frac{\partial\left(\lambda, a_{1}, a_{2}, a_{3}, a_{4}\right)}{\partial(k, l, m, n, B)}$, and is presented by;

$$
\begin{align*}
& J_{G}=\left[\begin{array}{ccccc}
\frac{\partial \lambda}{\partial k} & \frac{\partial \lambda}{\partial l} & \frac{\partial \lambda}{\partial m} & \frac{\partial \lambda}{\partial n} & \frac{\partial \lambda}{\partial B} \\
\frac{\partial a_{1}}{\partial k} & \frac{\partial a_{1}}{\partial l} & \frac{\partial a_{1}}{\partial m} & \frac{\partial a_{1}}{\partial n} & \frac{\partial a_{1}}{\partial B} \\
\frac{\partial a_{2}}{\partial k} & \frac{\partial a_{2}}{\partial l} & \frac{\partial a_{2}}{\partial m} & \frac{\partial a_{2}}{\partial n} & \frac{\partial a_{2}}{\partial B} \\
\frac{\partial a_{3}}{\partial k} & \frac{\partial a_{3}}{\partial l} & \frac{\partial a_{3}}{\partial m} & \frac{\partial a_{3}}{\partial n} & \frac{\partial a_{3}}{\partial B} \\
\frac{\partial a_{4}}{\partial k} & \frac{\partial a_{4}}{\partial l} & \frac{\partial a_{4}}{\partial m} & \frac{\partial a_{4}}{\partial n} & \frac{\partial a_{4}}{\partial B}
\end{array}\right] . \tag{11}\\
& =-J^{-1}\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & -a_{3} & -a_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -\lambda & 0
\end{array}\right] .
\end{align*}
$$

The inverse of Jacobian matrix is, $J^{-1}=\frac{1}{|J|} C^{T}$, where $C=\left(C_{i j}\right)$, the matrix of cofactors of J, where T indicates transpose, then (11) becomes (Mohajan, 2017a; Mohajan \& Mohajan, 2022f),

$$
=-\frac{1}{|J|}\left[\begin{array}{ccccc}
C_{11} & C_{21} & C_{31} & C_{41} & C_{51} \\
C_{12} & C_{22} & C_{32} & C_{42} & C_{52} \\
C_{13} & C_{23} & C_{33} & C_{43} & C_{53} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{54} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55}
\end{array}\right]\left[\begin{array}{rrrrr}
-a_{1} & -a_{2} & -a_{3} & -a_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -\lambda & 0
\end{array}\right]
$$

$J_{G}=-\frac{1}{|J|}\left[\begin{array}{lllll}-a_{1} C_{11}-\lambda C_{21} & -a_{2} C_{11}-\lambda C_{31} & -a_{3} C_{11}-\lambda C_{41} & -a_{4} C_{11}-\lambda C_{51} & C_{11} \\ -a_{1} C_{12}-\lambda C_{22} & -a_{2} C_{12}-\lambda C_{32} & -a_{3} C_{12}-\lambda C_{42} & -a_{4} C_{12}-\lambda C_{52} & C_{12} \\ -a_{1} C_{13}-\lambda C_{23} & -a_{2} C_{13}-\lambda C_{33} & -a_{3} C_{13}-\lambda C_{43} & -a_{4} C_{13}-\lambda C_{53} & C_{13} \\ -a_{1} C_{14}-\lambda C_{24} & -a_{2} C_{14}-\lambda C_{34} & -a_{3} C_{14}-\lambda C_{44} & -a_{4} C_{14}-\lambda C_{54} & C_{14} \\ -a_{1} C_{15}-\lambda C_{25} & -a_{2} C_{15}-\lambda C_{35} & -a_{3} C_{15}-\lambda C_{45} & -a_{4} C_{15}-\lambda C_{55} & C_{15}\end{array}\right]$.
In (11) total 25 comparative statics are available, and for sensitivity analysis we will try some of them to predict the economic analysis for the profit maximization (Baxley \& Moorhouse, 1984; Wiese, 2021).

7. Sensitivity Analysis

Now we observe the effect on capital a_{1} when its interest rate, k increases. Taking T_{21} (i.e., term of $2^{\text {nd }}$ row and $1^{\text {st }}$ column) from both sides of (12) we get (Islam et al., 2010b; Mohajan, 2021a, b),

$$
\begin{aligned}
& \frac{\partial a_{1}}{\partial k}=\frac{a_{1}}{|J|}\left[C_{12}\right]+\frac{\lambda}{|J|}\left[C_{22}\right] \\
& =\frac{a_{1}}{|J|} \text { Cofactor of } C_{12}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{22} \\
& =-\frac{a_{1}}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{12} & L_{13} & L_{14} \\
-B_{2} & L_{22} & L_{23} & L_{24} \\
-B_{3} & L_{32} & L_{33} & L_{34} \\
-B_{4} & L_{42} & L_{43} & L_{44}
\end{array}\right|+\frac{\lambda}{|J|}\left|\begin{array}{cccc}
0 & -B_{2} & -B_{3} & -B_{4} \\
-B_{2} & L_{22} & L_{23} & L_{24} \\
-B_{3} & L_{32} & L_{33} & L_{34} \\
-B_{4} & L_{42} & L_{43} & L_{44}
\end{array}\right| \\
& =-\frac{a_{1}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{22} & L_{23} & L_{24} \\
L_{32} & L_{33} & L_{34} \\
L_{42} & L_{43} & L_{44}
\end{array}\right|-L_{12}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|+L_{13}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{23} \\
-B_{3} & L_{32} & L_{33} \\
-B_{4} & L_{42} & L_{43}
\end{array}\right|\right\} \\
& +\frac{\lambda}{|J|}\left\{B_{2}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{23} \\
-B_{3} & L_{32} & L_{33} \\
-B_{4} & L_{42} & L_{43}
\end{array}\right|\right\} \\
& =-\frac{a_{1}}{|J|}\left[-B_{1}\left\{L_{22}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(L_{42} L_{34}-L_{32} L_{44}\right)+L_{24}\left(L_{32} L_{43}-L_{42} L_{33}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -L_{12}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\} \\
& +L_{13}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& \left.-L_{14}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4 d} L_{32}\right)\right\}\right] \\
& +\frac{\lambda}{|J|}\left[B_{2}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\}\right. \\
& -B_{3}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& \left.+B_{4}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\}\right] \\
& =-\frac{a_{1}}{|J|}\left\{-B_{1} L_{22} L_{33} L_{44}+B_{1} L_{22} L_{43} L_{34}-B_{1} L_{23} L_{42} L_{34}+B_{1} L_{23} L_{32} L_{44}-B_{1} L_{24} L_{32} L_{43}+B_{1} L_{24} L_{42} L_{33}\right. \\
& +B_{2} L_{12} L_{33} L_{44}-B_{2} L_{12} L_{43} L_{34}+B_{4} L_{12} L_{23} L_{34}-B_{3} L_{12} L_{23} L_{44}+B_{3} L_{12} L_{24} L_{43}-B_{4} L_{12} L_{24} L_{33} \\
& -B_{2} L_{13} L_{32} L_{44}+B_{2} L_{13} L_{42} L_{34}-B_{4} L_{13} L_{22} L_{34}+B_{3} L_{13} L_{22} L_{44}-B_{3} L_{13} L_{24} L_{42}+B_{4} L_{13} L_{24} L_{32} \\
& \left.+B_{2} L_{14} L_{32} L_{43}-B_{2} L_{14} L_{42} L_{33}+B_{4} L_{14} L_{22} L_{33}-B_{3} L_{14} L_{22} L_{43}+B_{3} L_{14} L_{23} L_{42}-B_{4} L_{14} L_{23} L_{32}\right\} \\
& +\frac{\lambda}{|J|}\left\{-B_{2}^{2} L_{33} L_{44}+B_{2}^{2} L_{43} L_{34}-B_{2} B_{4} L_{23} L_{34}+B_{2} B_{3} L_{23} L_{44}-B_{2} B L_{24} L_{43}+B_{2} B_{4} L_{24} L_{33}\right. \\
& +B_{2} B_{3} L_{32} L_{44}-B_{2} B_{3} L_{42} L_{34}+B_{3} B_{4} L_{22} L_{34}-B_{3}^{2} L_{22} L_{44}+B_{3}^{2} L_{24} L_{42}-B_{3} B_{4} L_{24} L_{32} \\
& \left.-B_{2} B_{4} L_{32} L_{43}+B_{2} B_{4} L_{42} L_{33}-B_{4}^{2} L_{22} L_{33}+B_{3} B_{4} L_{22} L_{43}-B_{3} B_{4} L_{23} L_{42}+B_{4}^{2} L_{23} L_{32}\right\} \\
& =-\frac{a_{1}}{|J|}\left\{-B_{1} L_{22} L_{33} L_{44}+B_{1} L_{22} L_{34}^{2}-B_{1} L_{23} L_{42} L_{34}+B_{1} L_{23}^{2} L_{44}-B_{1} L_{24} L_{32} L_{43}+B_{1} L_{24}^{2} L_{33}\right. \\
& +B_{2} L_{12} L_{33} L_{44}-B_{2} L_{12} L_{34}^{2}+B_{4} L_{12} L_{23} L_{34}-B_{3} L_{12} L_{23} L_{44}+B_{3} L_{12} L_{24} L_{43}-B_{4} L_{12} L_{24} L_{33} \\
& -B_{2} L_{13} L_{32} L_{44}+B_{2} L_{13} L_{42} L_{34}-B_{4} L_{13} L_{22} L_{34}+B_{3} L_{13} L_{22} L_{44}-B_{3} L_{13} L_{24}^{2}+B_{4} L_{13} L_{24} L_{32} \\
& \left.+B_{2} L_{14} L_{32} L_{43}-B_{2} L_{14} L_{42} L_{33}+B_{4} L_{14} L_{22} L_{33}-B_{3} L_{14} L_{22} L_{43}+B_{3} L_{14} L_{23} L_{42}-B_{4} L_{14} L_{23}^{2}\right\} \\
& +\frac{\lambda}{|J|}\left\{-B_{2}^{2} L_{33} L_{44}+B_{2}^{2} L_{34}^{2}-B_{2} B_{4} L_{23} L_{34}+B_{2} B_{3} L_{23} L_{44}-B_{2} B_{3} L_{24} L_{43}+B_{2} B_{4} L_{24} L_{33}\right. \\
& +B_{2} B_{3} L_{32} L_{44}-B_{2} B_{3} L_{42} L_{34}+B_{3} B_{4} L_{22} L_{34}-B_{3}^{2} L_{22} L_{44}+B_{3}^{2} L_{24}^{2}-B_{3} B_{4} L_{24} L_{32} \\
& \left.-B_{2} B_{4} L_{32} L_{43}+B_{2} B_{4} L_{42} L_{33}-B_{4}^{2} L_{22} L_{33}+B_{3} B_{4} L_{22} L_{43}-B_{3} B_{4} L_{23} L_{42}+B_{4}^{2} L_{23}^{2}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{|J|} \frac{A^{3} a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-k a_{1} y(y-1) z(z-1) w(w-1)+k a_{1} y(y-1) z^{2} w^{2}-k a_{1} y^{2} z^{2} w^{2}\right. \\
& +k a_{1} y^{2} z^{2} w(w-1)-k a_{1} y^{2} z^{2} w^{2}+k a_{1} y^{2} z(z-1) w^{2}+l a_{2} x y z(z-1) w(w-1)-l a_{2} x y z^{2} w^{2}+n a_{4} x y^{2} z^{2} w \\
& -m a_{3} x y^{2} z w(w-1)+m a_{3} x y^{2} z w^{2}-n a_{4} x y^{2} z(z-1) w-l a_{2} x y z^{2} w(w-1)+l a_{2} x y z^{2} w^{2} \\
& -n a_{4} x y(y-1) z^{2} w+m a_{3} x y(y-1) z w(w-1)-m a_{3} x y^{2} z w^{2}+n a_{4} x y^{2} z^{2} w+l a_{2} x y z^{2} w^{2} \\
& \left.-l a_{2} x y z(z-1) w^{2}+n a_{4} x y(y-1) z(z-1) w-m a_{3} x y(y-1) z w^{2}+m a_{3} x y^{2} z w^{2}-n a_{4} x y^{2} z^{2} w\right\} \\
& +\frac{\lambda}{|J|} \frac{A^{2} a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-l^{2} a_{2}^{2} z(z-1) w(w-1)+l^{2} a_{2}^{2} z^{2} w^{2}-n l a_{2} a_{4} y z^{2} w+\operatorname{lm} a_{2} a_{3} y z w(w-1)\right. \\
& -l m a_{2} a_{3} y z w^{2}+n l a_{2} a_{4} y z(z-1) w+\operatorname{lma_{2}} a_{3} y z w(w-1)-l m a_{2} a_{3} y z w^{2}+n l a_{3} a_{4} y(y-1) z w \\
& -m^{2} a_{3}^{2} y(y-1) w(w-1)+m^{2} a_{3}^{2} y^{2} w^{2}-n l a_{3} a_{4} y^{2} z w-n l a_{2} a_{4} y z^{2} w+n l a_{2} a_{4} y z(z-1) w \\
& \left.-n^{2} a_{4}^{2} y(y-1) z(z-1)+m n a_{3} a_{4} y(y-1) z w-m n a_{3} a_{4} y^{2} z w+n^{2} a_{4}^{2} y^{2} z^{2}\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-k a_{1} x^{-1}(y-1)(z-1)(w-1)+k a_{1} x^{-1}(y-1) z w-k a_{1} x^{-1} y z w\right. \\
& +k a_{1} x^{-1} y z(w-1)-k a_{1} x^{-1} y z w+k a_{1} x^{-1} y(z-1) w+l a_{2}(z-1)(w-1)-l a_{2} z w+n a_{4} y z-m a_{3} y(w-1) \\
& +m a_{3} y w-n a_{4} y(z-1)-l a_{2} z(w-1)+l a_{2} z w-n a_{4}(y-1) z+m a_{3}(y-1)(w-1)-m a_{3} y w+n a_{4} y z \\
& \left.+l a_{2} z w-l a_{2}(z-1) w+n a_{4}(y-1)(z-1)-m a_{3}(y-1) w+m a_{3} y w-n a_{4} y z\right\} \\
& +\frac{\lambda}{|J|} \frac{A^{2} y z w a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-l^{2} a_{2}^{2} y^{-1}(z-1)(w-1)+y^{-1} l^{2} a_{2}^{2} z w-z^{-1} m^{2} a_{3}^{2}(y-1)(w-1)\right. \\
& \left.+z^{-1} m^{2} a_{3}^{2} y w-w^{-1} n^{2} a_{4}^{2}(y-1)(z-1)+w^{-1} n^{2} a_{4}^{2} y z\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{2}^{2} a_{3}^{2} a_{4}^{2} \Pi}+\frac{1}{|J|} \frac{A^{2} y z w a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{2}^{2} a_{3}^{2} a_{4}^{2}} \frac{A a_{1}^{x} a_{2}^{y} a_{3}^{z} a_{4}^{w} \Pi}{B} \frac{B^{2}}{\Pi^{2}}(y+z+w) \\
& \frac{\partial a_{1}}{\partial k}=\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{2}^{2} a_{3}^{2} a_{4}^{2} \Pi}(\Pi-2 x) . \tag{13}
\end{align*}
$$

If $(\Pi-2 x)>0$ in equation (13), we get,

$$
\begin{equation*}
\frac{\partial a_{1}}{\partial k}<0 . \tag{14}
\end{equation*}
$$

The relation (14) specifies that if the interest rate of the capital a_{1} increases, the organization may decrease the level of input capital a_{1} for the sustainability of its production and also for profit maximization. In this situation we observe that the organization may face decreasing returns to scale (Moolio et al., 2009; Mohajan \& Mohajan, 2022a).

Again if $(\Pi-2 x)<0$ in equation (13), we get,

$$
\begin{equation*}
\frac{\partial a_{1}}{\partial k}>0 . \tag{15}
\end{equation*}
$$

The inequality (15) indicates that when the interest rate of the capital a_{1} increases, the organization also increases its capital structure. It seems that for the increasing demand of the products, and for the maintenance of the total cost; the organization also needs to increase its capital structure for profit maximization. From this analysis we see that the organization may face increasing returns to scale (Islam et al., 2011; Mohajan \& Mohajan, 2022c).

Now we observe the effect on wage α_{2} when its interest rate, k of the capital α_{1} increases. Taking T_{31} (i.e., term of $3^{\text {rd }}$ row and $1^{\text {st }}$ column) from both sides of (12) we get (Moolio et al., 2009; Mohajan, 2021c),

$$
\begin{aligned}
& \frac{\partial a_{2}}{\partial k}=\frac{a_{1}}{|J|}\left[C_{13}\right]+\frac{\mu}{|J|}\left[C_{23}\right] \\
& =\frac{a_{1}}{|J|} \text { Cofactor of } C_{13}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{23}
\end{aligned}
$$

$$
=\frac{a_{1}}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{11} & L_{13} & L_{14} \\
-B_{2} & L_{21} & L_{23} & L_{24} \\
-B_{3} & L_{31} & L_{33} & L_{34} \\
-B_{4} & L_{41} & L_{43} & L_{44}
\end{array}\right|-\frac{\lambda}{|J|}\left|\begin{array}{cccc}
0 & -B_{1} & -B_{3} & -B_{4} \\
-B_{2} & L_{21} & L_{23} & L_{24} \\
-B_{3} & L_{31} & L_{33} & L_{34} \\
-B_{4} & L_{41} & L_{43} & L_{44}
\end{array}\right|
$$

$$
=\frac{a_{1}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{23} & L_{24} \\
L_{31} & L_{33} & L_{34} \\
L_{41} & L_{43} & L_{44}
\end{array}\right|-L_{11}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|+L_{13}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{23} \\
-B_{3} & L_{31} & L_{33} \\
-B_{4} & L_{41} & L_{43}
\end{array}\right|\right\}
$$

$$
-\frac{\lambda}{|J|}\left\{B_{1}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{23} \\
-B_{3} & L_{31} & L_{33} \\
-B_{4} & L_{41} & L_{43}
\end{array}\right|\right\}
$$

$$
=-\frac{a_{1}}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(L_{41} L_{34}-L_{31} L_{44}\right)+L_{24}\left(L_{31} L_{43}-L_{41} L_{33}\right)\right\}\right.
$$

$$
-L_{11}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\}
$$

$$
+L_{13}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}
$$

$$
\begin{aligned}
& \left.-L_{14}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& -\frac{\lambda}{|J|}\left[B_{1}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\}\right. \\
& -B_{3}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.+B_{4}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& =-\frac{a_{1}}{|J|}\left\{B_{1} L_{21} L_{33} L_{44}-B_{1} L_{21} L_{43} L_{34}+B_{1} L_{23} L_{41} L_{24}-B_{1} L_{23} L_{31} L_{44}+B_{1} L_{24} L_{31} L_{43}-B_{1} L_{24} L_{41} L_{33}\right. \\
& -B_{2} L_{11} L_{33} L_{44}+B_{2} L_{11} L_{43} L_{34}-B_{4} L_{11} L_{23} L_{34}+B_{3} L_{11} L_{23} L_{44}-B_{3} L_{11} L_{24} L_{43}+B_{4} L_{11} L_{24} L_{33}+B_{2} L_{13} L_{31} L_{44} \\
& -B_{2} L_{13} L_{41} L_{34}+B_{4} L_{13} L_{21} L_{34}-B_{3} L_{13} L_{21} L_{44}+B_{3} L_{13} L_{24} L_{41}-B_{4} L_{13} L_{24} L_{31}-B_{2} L_{14} L_{31} L_{43}+B_{2} L_{14} L_{41} L_{33} \\
& \left.-B_{4} L_{14} L_{21} L_{33}+B_{3} L_{14} L_{21} L_{43}-B_{3} L_{14} L_{23} L_{41}+B_{4} L_{14} L_{23} L_{31}\right\}+\frac{\lambda}{|J|}\left\{B_{1} B_{2} L_{33} L_{44}-B_{1} B_{2} L_{34}^{2}+B_{1} B_{4} L_{23} L_{34}\right. \\
& -B_{4} B_{3} L_{23} L_{44}+B_{1} B_{3} L_{24} L_{43}-B_{1} B_{4} L_{24} L_{33}+B_{2} B_{3} L_{31} L_{44}-B_{2} B_{3} L_{41} L_{34}+B_{3} B_{4} L_{21} L_{34}-B_{3}^{2} L_{21} L_{44} \\
& +B_{3}^{2} L_{24} L_{41}-B_{3} B_{4} L_{24} L_{31}-B_{2} B_{4} L_{31} L_{43}+B_{2} B_{4} L_{41} L_{33}-B_{4}^{2} L_{21} L_{33}+B_{3} B_{4} L_{21} L_{43}-B_{3} B_{4} L_{23} L_{41} \\
& \left.+B_{4}^{2} L_{23} L_{31}\right\} \\
& =-\frac{a_{1}}{|J|}\left\{B_{1} L_{21} L_{33} L_{44}-B_{1} L_{21} L_{34}^{2}+B_{1} L_{23} L_{41} L_{34}-B_{1} L_{23} L_{31} L_{44}+B_{1} L_{24} L_{31} L_{43}-B_{1} L_{24} L_{41} L_{33}\right. \\
& -B_{2} L_{11} L_{33} L_{44}+B_{2} L_{11} L_{34}^{2}-B_{4} L_{11} L_{23} L_{34}+B_{3} L_{11} L_{23} L_{44}-B_{3} L_{11} L_{24} L_{43}+B_{4} L_{11} L_{24} L_{33}+B_{2} L_{13}^{2} L_{44} \\
& -B_{2} L_{13} L_{41} L_{34}+B_{4} L_{13} L_{21} L_{34}-B_{3} L_{13} L_{21} L_{44}+B_{3} L_{13} L_{24} L_{41}-B_{4} L_{13}^{2} L_{24}-B_{2} L_{14} L_{31} L_{43}+B_{2} L_{14}^{2} L_{33} \\
& \left.-B_{4} L_{14} L_{21} L_{33}+B_{3} L_{14} L_{21} L_{43}-B_{3} L_{14}^{2} L_{23}+B_{4} L_{14} L_{23} L_{31}\right\}+\frac{\lambda}{|J|}\left\{B_{1} B_{2} L_{33} L_{44}-B_{1} B_{2} L_{34}^{2}+B_{1} B_{4} L_{23} L_{34}\right. \\
& -B_{1} B_{3} L_{23} L_{44}+B_{1} B_{3} L_{24} L_{43}-B_{1} B_{4} L_{24} L_{33}+B_{2} B_{3} L_{31} L_{44}-B_{2} B_{3} L_{41} L_{34}+B_{3} B_{4} L_{24} L_{34}-B_{3}^{2} L_{21} L_{44} \\
& +B_{3}^{2} L_{24} L_{41}-B_{3} B_{4} L_{24} L_{31}-B_{2} B_{4} L_{31} L_{43}+B_{2} B_{4} L_{41} L_{33}-B_{4}^{2} L_{21} L_{33}+B_{3} B_{4} L_{21} L_{43}-B_{3} B_{4} L_{23} L_{41} \\
& \left.+B_{4}^{2} L_{23} L_{31}\right\} \\
& =-\frac{a_{1}}{|J|} \frac{A^{3} a_{1}^{3 y} a_{2}^{3 x} a_{3}^{3 z} a_{4}^{3 w}}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{k a_{1} a_{2} x y z(z-1) w(w-1)-k a_{1} a_{2} x y z^{2} w^{2}+k a_{1} a_{2} x y z^{2} w^{2}-k a_{1} a_{2} x y z^{2} w(w-1)\right. \\
& +k a_{1} a_{2} x y z^{2} w^{2}-k a_{1} a_{2} x y z(z-1) w^{2}-l a_{2}^{2} x(x-1) z(z-1) w(w-1)+l a_{2}^{2} x(x-1) z^{2} w^{2} \\
& -n a_{2} a_{4} x(x-1) y z^{2} w+m a_{2} a_{3} x(x-1) y z w(w-1)-m a_{2} a_{3} x(x-1) y z w^{2}+n a_{2} a_{4} x(x-1) y z(z-1) w \\
& +l a_{2}^{2} x^{2} z^{2} w(w-1)-l a_{2}^{2} x^{2} z^{2} w^{2}+n a_{2} a_{4} x^{2} y z^{2} w-m a_{2} a_{3} x^{2} y z w(w-1)+m a_{2} a_{3} x^{2} y z w^{2} \\
& -n a_{2} a_{4} x^{2} y z^{2} w-l a_{2}^{2} x^{2} z^{2} w^{2}+l a_{2}^{2} x^{2} z(z-1) w^{2}-n a_{2} a_{4} x^{2} y z(z-1) w+m a_{2} a_{3} x^{2} y z w^{2} \\
& \left.-m a_{2} a_{3} x^{2} y z w^{2}+n a_{2} a_{4} x^{2} y z^{2} w\right\}+\frac{\lambda}{|J|} \frac{A^{2} a_{1}^{2 y} a_{2}^{2 x} a_{3}^{2 z} a_{4}^{2 w}}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{k l a_{1}^{2} a_{2}^{2} z(z-1) w(w-1)-k l a_{1}^{2} a_{2}^{2} z^{2} w^{2}\right. \\
& +k n a_{1}^{2} a_{2} a_{4} y z^{2} w-k m a_{1}^{2} a_{2} a_{3} y z w(w-1)+k m a_{1}^{2} a_{2} a_{3} y z w^{2}-k n a_{1}^{2} a_{2} a_{4} y z(z-1) w
\end{aligned}
$$

$$
\begin{align*}
& +l m a_{1} a_{2}^{2} a_{3} x z w(w-1)-l m a_{1} a_{2}^{2} a_{3} x z w^{2}+m n a_{1} a_{2} a_{3} a_{4} x y z w-m^{2} a_{1} a_{2} a_{3}^{2} x y w(w-1)+m^{2} a_{3}^{2} x y w^{2} \\
& -m n a_{1} a_{2} a_{3} a_{4} x y z w-n l a_{1} a_{2}^{2} a_{4} x z^{2} w+n l a_{1} a_{2}^{2} a_{4} x z(z-1) w-n^{2} a_{1} a_{2} a_{4}^{2} x y z(z-1)+m n a_{1} a_{2} a_{3} a_{4} x y z w \\
& \left.-m n a_{1} a_{2} a_{3} a_{4} x y z w+n^{2} a_{1} a_{2} a_{4}^{2} x y z^{2}\right\} \\
& =-\frac{a_{1}}{|J|} \frac{A^{3} x y z w a_{1}^{3 y} a_{2}^{3 x} a_{3}^{3 z} a_{4}^{3 w}}{a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2}}\left\{-k a_{1}(z-1) w+l a_{2}(1-w-z) y^{-1}+m a_{3}+n a_{4}\right\} \\
& +\frac{\lambda}{|J|} \frac{A^{2} z w a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{1} a_{2} a_{3}^{2} a_{4}^{2}}\left\{k l a_{1} a_{2}(1-z-w)+k n a_{1} a_{4} y+k m a_{1} a_{3} y-l m a_{2} a_{3} x+z^{-1} m^{2} a_{3}^{2} x y\right. \\
& \left.-n l a_{2} a_{4} x+w^{-1} n^{2} a_{4}^{2} x y z\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 y} a_{2}^{3 x} a_{3}^{3 z} a_{4}^{3 w}}{a_{1} a_{2} a_{3}^{2} a_{4}^{2}}\left\{\frac{B}{\Pi}(1-w-z)+\frac{z B}{\Pi}+\frac{w B}{\Pi}\right\}+\frac{1}{|J|} \frac{A^{2} x y z w a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{1} a_{2} a_{3}^{2} a_{4}^{2}} \frac{A a_{1}^{x} a_{2}^{y} a_{3}^{z} a_{4}^{w} \Pi}{B} \\
& \times\left\{\frac{B^{2}}{\Pi^{2}}(1-z-w)+\frac{z B^{2}}{\Pi^{2}}+\frac{w B^{2}}{\Pi^{2}}\right\} \\
& \frac{\partial a_{2}}{\partial k}=-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 y} a_{2}^{3 x} a_{3}^{3 z} a_{4}^{3 w}}{a_{1} a_{2} a_{3}^{2} a_{4}^{2}}\left(\frac{B}{\Pi}-\frac{B}{\Pi}\right)=0 . \tag{16}
\end{align*}
$$

Equation (16) notices that there will be no effect on the level of labor a_{2}, if the interest rate of capital a_{1} increases. Hence, there is no relation between labor a_{2} and capital a_{1} in the production procedure of the organization. In this situation the organization may increase or decrease its total labor. It seems that the organization may face constant returns to scale (Islam et al., 2010a,b; Mohajan \& Mohajan, 2022f).

Now we observe the effect on principal raw material a_{3} when interest rate of capital, k increases.
Taking T_{41} (i.e., term of $4^{\text {th }}$ row and $1^{\text {st }}$ column) from both sides of (12) we get (Mohajan, 2021a),

$$
\begin{aligned}
& \frac{\partial a_{3}}{\partial k}=\frac{a_{1}}{|J|}\left[C_{14}\right]+\frac{\lambda}{|J|}\left[C_{24}\right] \\
& =\frac{a_{1}}{|J|} \text { Cofactor of } C_{14}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{24}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{a_{4}}{|J|}\left|\begin{array}{cccc}
-B_{1} & L_{11} & L_{12} & L_{14} \\
-B_{2} & L_{21} & L_{22} & L_{24} \\
-B_{3} & L_{31} & L_{32} & L_{34} \\
-B_{4} & L_{41} & L_{42} & L_{44}
\end{array}\right|+\frac{\lambda}{|J|}\left|\begin{array}{cccc}
0 & -B_{1} & -B_{2} & -B_{4} \\
-B_{2} & L_{21} & L_{22} & L_{24} \\
-B_{3} & L_{31} & L_{32} & L_{34} \\
-B_{4} & L_{41} & L_{42} & L_{44}
\end{array}\right| \\
& =-\frac{a_{4}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{24} \\
L_{31} & L_{32} & L_{34} \\
L_{41} & L_{42} & L_{44}
\end{array}\right|-L_{11}\left|\begin{array}{ccc}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|+L_{12}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{22} \\
-B_{3} & L_{31} & L_{32} \\
-B_{4} & L_{41} & L_{42}
\end{array}\right|\right\} \\
& +\frac{\lambda}{|J|}\left\{B_{1}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|-B_{2}\left|\begin{array}{ccc}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|+B_{4}\left|\begin{array}{ccc}
-B_{2} & L_{21} & L_{22} \\
-B_{3} & L_{31} & L_{32} \\
-B_{4} & L_{41} & L_{42}
\end{array}\right|\right\} \\
& =-\frac{a_{4}}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(L_{41} L_{34}-L_{31} L_{44}\right)+L_{24}\left(L_{31} L_{42}-L_{41} L_{32}\right)\right\}\right. \\
& -L_{11}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& +L_{12}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.-L_{14}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& +\frac{\lambda}{|J|}\left[B_{1}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\}\right. \\
& -B_{2}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.+B_{4}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& =-\frac{a_{4}}{|J|}\left\{-B_{1} L_{21} L_{32} L_{44}+B_{1} L_{21} L_{42} L_{34}-B_{1} L_{22} L_{41} L_{34}+B_{1} L_{22} L_{31} L_{44}-B_{1} L_{24} L_{31} L_{42}+B_{1} L_{24} L_{41} L_{32}\right. \\
& +B_{2} L_{11} L_{32} L_{44}-B_{2} L_{11} L_{42} L_{34}+B_{4} L_{11} L_{22} L_{34}-B_{3} L_{11} L_{22} L_{44}+B_{3} L_{11} L_{24} L_{42}-B_{4} L_{11} L_{24} L_{32} \\
& -B_{2} L_{12} L_{31} L_{44}+B_{2} L_{12} L_{41} L_{34}-B_{4} L_{12} L_{21} L_{34}+B_{3} L_{12} L_{21} L_{44}-B_{3} L_{12} L_{24} L_{41}+B_{4} L_{12} L_{24} L_{31} \\
& \left.+B_{2} L_{14} L_{31} L_{42}-B_{2} L_{14} L_{41} L_{32}+B_{4} L_{14} L_{21} L_{32}-B_{3} L_{14} L_{21} L_{42}+B_{3} L_{14} L_{22} L_{41}-B_{4} L_{14} L_{22} L_{31}\right\} \\
& +\frac{\lambda}{|J|}\left\{-B_{1} B_{2} L_{32} L_{44}+B_{1} B_{2} L_{42} L_{34}-B_{1} B_{4} L_{22} L_{34}+B_{1} B_{3} L_{22} L_{44}-B_{1} B_{3} L_{24} L_{42}+B_{1} B_{4} L_{24} L_{32}\right. \\
& +B_{2}^{2} L_{31} L_{44}-B_{2}^{2} L_{41} L_{34}+B_{2} B_{4} L_{21} L_{34}-B_{2} B_{3} L_{21} L_{44}+B_{2} B_{3} L_{24} L_{41}-B_{2} B_{4} L_{24} L_{31} \\
& \left.-B_{2} B_{4} L_{31} L_{42}+B_{2} B_{4} L_{41} L_{32}-B_{4}^{2} L_{21} L_{32}+B_{3} B_{4} L_{21} L_{42}-B_{3} B_{4} L_{22} L_{41}+B_{4}^{2} L_{22} L_{31}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{|J|} \frac{A^{3} a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}}\left\{-k a_{1} a_{3} x y^{2} z w(w-1)+k a_{1} a_{3} x y^{2} z w^{2}-k a_{1} a_{3} x y(y-1) z w^{2}\right. \\
& +k a_{1} a_{3} x y(y-1) z w(w-1)-k a_{1} a_{3} x y^{2} z w^{2}+k a_{1} a_{3} x y^{2} z w^{2}+l a_{2} a_{3} x(x-1) y z w(w-1) \\
& -l a_{2} a_{3} x(x-1) y z w^{2}+n a_{3} a_{4} x(x-1) y(y-1) z w-m a_{3}^{2} x(x-1) y(y-1) w(w-1)+m a_{3}^{2} x(x-1) y^{2} w^{2} \\
& -n a_{3} a_{4} x(x-1) y^{2} z w-l a_{2} a_{3} x^{2} y z w(w-1)+l a_{2} a_{3} x^{2} y z w^{2}-n a_{3} a_{4} x^{2} y^{2} z w+m a_{3}^{2} x^{2} y^{2} w(w-1) \\
& -m a_{3}^{2} x^{2} y^{2} w^{2}+n a_{3} a_{4} x^{2} y^{2} z w+l a_{2} a_{3} x^{2} y z w^{2}-l a_{2} a_{3} x^{2} y z w^{2}+n a_{3} a_{4} x^{2} y^{2} z w-m a_{3}^{2} x^{2} y^{2} w^{2} \\
& \left.+m a_{3}^{2} x^{2} y(y-1) w^{2}-n a_{3} a_{4} x^{2} y(y-1) z w\right\}+\frac{1}{|J|} \frac{A^{3} a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} \Lambda}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} B}\left\{-k l a_{1}^{2} a_{2} a_{3} y z w(w-1)\right. \\
& +k l a_{1}^{2} a_{2} a_{3} y z w^{2}-k n a_{1}^{2} a_{3} a_{4} y(y-1) z w+k m a_{1}^{2} a_{3}^{2} y(y-1) w(w-1)-k m a_{1}^{2} a_{3}^{2} y^{2} w^{2}+k n a_{1}^{2} a_{3} a_{4} y^{2} z w \\
& +l^{2} a_{1} a_{2}^{2} a_{3} x z w(w-1)-l^{2} a_{1} a_{2}^{2} a_{3} x z w^{2}+n l a_{1} a_{2} a_{3} a_{4} x y z w-l m a_{1} a_{2} a_{3}^{2} x y w(w-1)+l m a_{1} a_{2} a_{3}^{2} x y w^{2} \\
& -n l a_{1} a_{2} a_{3} a_{4} x y z w-n l a_{1} a_{2} a_{3} a_{4} x y z w+n l a_{1} a_{2} a_{3} a_{4} x y z w-n^{2} a_{1} a_{3} a_{4}^{2} x y^{2} z+m n a_{1} a_{3}^{2} a_{4} x y^{2} w \\
& \left.-m n a_{1} a_{3}^{2} a_{4} x y(y-1) w+n^{2} a_{1} a_{3} a_{4}^{2} x y(y-1) z\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{1}^{2} a_{2}^{2} a_{3} a_{4}}\left\{-k a_{1} y(w-1)-k a_{1}(y-1) w+k a_{1}(y-1)(w-1)+k a_{1} y w\right. \\
& +l a_{2}(x-1)(w-1)-l a_{2} x(w-1)+l a_{2} x w-l a_{2}(x-1) w-2 m a_{3} x y z^{-1} w+m a_{3} x(y-1) z^{-1} w \\
& -m a_{3}(x-1)(y-1) z^{-1}(w-1)+m a_{3} x y z^{-1}(w-1)+m a_{3}(x-1) y z^{-1} w+n a_{4}(x-1)(y-1)-n a_{4}(x-1) y \\
& \left.+n a_{4} x y-n a_{4} x(y-1)\right\}+\frac{1}{|J|} \frac{A^{3} a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} \Pi}{a_{1} a_{2}^{2} a_{3} a_{4}^{2} B}\left\{-k l a_{1} a_{2} y z w(w-1)+k l a_{1} a_{2} y z w^{2}\right. \\
& +k m a_{1} a_{3} y(y-1) w(w-1)-k m a_{1} a_{3} y^{2} w^{2}+k n a_{1} a_{4} y^{2} z w-k n a_{1} a_{4} y(y-1) z w+l^{2} a_{2}^{2} x z w(w-1) \\
& -l^{2} a_{2}^{2} x z w^{2}-l m a_{2} a_{3} x y w(w-1)+l m a_{2} a_{3} x y w^{2}+m n a_{4} a_{4} x y^{2} w-m n a_{3} a_{4} x y(y-1) w-n^{2} a_{4}^{2} x y^{2} z \\
& \left.+n^{2} a_{4}^{2} x y(y-1) z\right\} \\
& \frac{\partial a_{3}}{\partial k}=-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{1}^{2} a_{2}^{2} a_{3} a_{4} \Pi}<0 \tag{17}
\end{align*}
$$

From (17) we have realized that if the interest rate of the capital a_{1} increases, the organization may decrease purchasing of principal raw material a_{3}. Consequently, in this situation the production rate of the organization may decrease. It seems that the organization may face decreasing returns to scale (Moolio et al., 2009; Mohajan, 2022).

Now we observe the effect on other inputs a_{4} when its interest rate, k increases. Taking T_{21} (i.e., term of $2^{\text {nd }}$ row and $1^{\text {st }}$ column) from both sides of (12) we get (Mohajan, 2021a; Roy et al., 2021),

$$
\frac{\partial a_{4}}{\partial k}=\frac{a_{1}}{|J|}\left[C_{15}\right]+\frac{\lambda}{|J|}\left[C_{25}\right]
$$

$$
=\frac{a_{1}}{|J|} \text { Cofactor of } C_{15}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{25}
$$

$$
=\frac{a_{1}}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{11} & L_{12} & L_{13} \\
-B_{2} & L_{21} & L_{22} & L_{23} \\
-B_{3} & L_{31} & L_{32} & L_{33} \\
-B_{4} & L_{41} & L_{42} & L_{43}
\end{array}\right|-\frac{\lambda}{|J|}\left|\begin{array}{cccc}
0 & -B_{1} & -B_{2} & -B_{3} \\
-B_{2} & L_{21} & L_{22} & L_{23} \\
-B_{3} & L_{31} & L_{32} & L_{33} \\
-B_{4} & L_{41} & L_{42} & L_{43}
\end{array}\right|
$$

$$
=\frac{a_{1}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33} \\
L_{41} & L_{42} & L_{43}
\end{array}\right|-L_{11}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{23} \\
-B_{3} & L_{32} & L_{33} \\
-B_{4} & L_{42} & L_{43}
\end{array}\right|+L_{12}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{23} \\
-B_{3} & L_{31} & L_{33} \\
-B_{4} & L_{41} & L_{43}
\end{array}\right|-L_{13}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{22} \\
-B_{3} & L_{31} & L_{32} \\
-B_{4} & L_{41} & L_{42} \\
L_{22}
\end{array}\right|\right\}
$$

$$
=\frac{a_{1}}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(L_{41} L_{33}-L_{31} L_{43}\right)+L_{23}\left(L_{31} L_{42}-L_{41} L_{32}\right)\right\}\right.
$$

$$
-L_{11}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\}
$$

$$
+L_{12}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}
$$

$$
\left.-L_{13}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right]
$$

$$
-\frac{\lambda}{|J|}\left[B_{1}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\}\right.
$$

$$
-B_{2}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}
$$

$$
\left.+B_{3}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right]
$$

$$
=\frac{a_{1}}{|J|}\left\{-B_{1} L_{21} L_{32} L_{43}+B_{1} L_{21} L_{42} L_{33}-B_{1} L_{22} L_{41} L_{33}+B_{1} L_{22} L_{31} L_{43}-B_{1} L_{23} L_{31} L_{42}+B_{1} L_{23} L_{41} L_{32}\right.
$$

$$
+B_{2} L_{11} L_{32} L_{43}-B_{2} L_{11} L_{42} L_{33}+B_{4} L_{11} L_{22} L_{33}-B_{3} L_{11} L_{22} L_{43}+B_{3} L_{11} L_{23} L_{42}-B_{4} L_{11} L_{23} L_{32}
$$

$$
-B_{2} L_{12} L_{31} L_{43}+B_{2} L_{12} L_{41} L_{33}-B_{4} L_{12} L_{21} L_{33}+B_{3} L_{12} L_{21} L_{43}-B_{3} L_{12} L_{23} L_{41}+B_{4} L_{12} L_{23} L_{31}
$$

$$
\begin{aligned}
& \left.+B_{2} L_{13} L_{31} L_{42}-B_{2} L_{13} L_{41} L_{32}+B_{4} L_{13} L_{21} L_{32}-B_{3} L_{13} L_{21} L_{42}+B_{3} L_{13} L_{22} L_{41}-B_{4} L_{13} L_{22} L_{31}\right\} \\
& -\frac{\lambda}{|J|}\left\{-B_{1} B_{2} L_{32} L_{43}+B_{1} B_{2} L_{42} L_{33}-B_{1} B_{4} L_{22} L_{33}+B_{1} B_{3} L_{22} L_{43}-B_{1} B_{3} L_{23} L_{42}+B_{1} B_{4} L_{23} L_{32}\right. \\
& +B_{2}^{2} L_{31} L_{43}-B_{2}^{2} L_{41} L_{33}+B_{2} B_{4} L_{21} L_{33}-B_{2} B_{3} L_{21} L_{43}+B_{2} B_{3} L_{23} L_{41}-B_{2} B_{4} L_{23} L_{31} \\
& \left.-B_{2} B_{3} L_{31} L_{42}+B_{2} B_{3} L_{41} L_{32}-B_{3} B_{4} L_{21} L_{32}+B_{3}^{2} L_{21} L_{42}-B_{3}^{2} L_{22} L_{41}+B_{3} B_{4} L_{22} L_{31}\right\} \\
& =\frac{1}{|J|} \frac{A^{3} a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-k a_{1} a_{4} x y^{2} z^{2} w+k a_{1} a_{4} x y^{2} z(z-1) w-k a_{1} a_{4} x y(y-1) z(z-1) w\right. \\
& +k a_{1} a_{4} x y(y-1) z(z-1) w-k a_{1} a_{4} x y^{2} z^{2} w+k a_{1} a_{4} x y^{2} z^{2} w+l a_{2} a_{4} x(x-1) y z^{2} w \\
& -l a_{2} a_{4} x(x-1) y z(z-1) w+n a_{4}^{2} x(x-1) y(y-1) z(z-1)-m a_{3} a_{4} x(x-1) y(y-1) z w \\
& +m a_{3} a_{4} x(x-1) y^{2} z w-n a_{4}^{2} x(x-1) y^{2} z^{2}-l a_{2} a_{4} x^{2} y z^{2} w+l a_{2} a_{4} x^{2} y z(z-1) w-n a_{4}^{2} x^{2} y^{2} z(z-1) \\
& +m a_{3} a_{4} x^{2} y^{2} z w-m a_{3} a_{4} x^{2} y^{2} z w+n a_{4}^{2} x^{2} y^{2} z^{2}+l a_{2} a_{4} x^{2} y z^{2} w-l a_{2} a_{4} x^{2} y z^{2} w+n a_{4}^{2} x^{2} y^{2} z^{2} \\
& \left.-m a_{3} a_{4} x^{2} y^{2} z w+m a_{3} a_{4} x^{2} y(y-1) z w-n a_{4}^{2} x^{2} y(y-1) z^{2}\right\}-\frac{\lambda}{|J|} \frac{A^{2} a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2}}\left\{-k l a_{1}^{2} a_{2} a_{4} y z^{2} w\right. \\
& +k l a_{1}^{2} a_{2} a_{4} y z(z-1) w-k n a_{1}^{2} a_{4}^{2} y(y-1) z(z-1)+k m a_{1}^{2} a_{3} a_{4} y(y-1) z w-k m a_{1}^{2} a_{3} a_{4} y^{2} z w \\
& +k n a_{1}^{2} a_{4}^{2} y^{2} z^{2}+l^{2} a_{1} a_{1}^{2} a_{4} x z^{2} w-l^{2} a_{1} a_{1}^{2} a_{4} x z(z-1) w+n l a_{1} a_{2} a_{4}^{2} x y z(z-1)-l m a_{1} a_{2} a_{3} a_{4} x y z w \\
& +l m a_{1} a_{2} a_{3} a_{4} x y z w-n l a_{1} a_{2}^{2} a_{4}^{2} x y z^{2}-l m a_{1} a_{2} a_{3} a_{4} x y z w+\operatorname{lma_{1}a_{2}a_{3}a_{4}xyzw-mna_{1}a_{3}a_{4}^{2}xy^{2}z} \\
& \left.+m^{2} a_{1} a_{3}^{2} a_{4} x y(y-1) w-m^{2} a_{1} a_{3}^{2} a_{4} x y^{2} w+m n a_{1} a_{3} a_{4}^{2} x y(y-1) z\right\}
\end{aligned}
$$

$$
=\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w}}{a_{1} a_{2}^{2} a_{3}^{2} a_{4}}\left\{-k a_{1} y z+k a_{1} y(z-1)+l a_{2}(x-1) z-l a_{2}(x-1)(z-1)+l a_{2} x(z-1)\right.
$$

$$
-l a_{2} x z-m a_{3}(x-1)(y-1)+m a_{3}(x-1) y-m a_{3} x y+m a_{3} x(y-1)+n a_{4}(x-1)(y-1)(z-1) w^{-1}
$$

$$
\left.-n a_{4}(x-1) y z w^{-1}-n a_{4} x y(z-1) w^{-1}+2 n a_{4} x y z w^{-1}-n a_{4} x(y-1) z w^{-1}\right\}
$$

$$
-\frac{1}{|J|} \frac{A a_{1}^{x} a_{2}^{y} a_{3}^{z} a_{4}^{w} \Lambda}{B} \frac{A^{2} a_{1}^{2 x} a_{2}^{2 y} a_{3}^{2 z} a_{4}^{2 w}}{a_{1} a_{2}^{2} a_{3}^{2} a_{4}}\left\{-k l a_{1} a_{2} y z^{2} w+k l a_{1} a_{2} y z(z-1) w-k n a_{1} a_{4} y(y-1) z(z-1)\right.
$$

$$
+k n a_{1} a_{4} y^{2} z^{2}+k m a_{1} a_{3} y(y-1) z w-k m a_{1} a_{3} y^{2} z w+l^{2} a_{2}^{2} x z^{2} w-l^{2} a_{2}^{2} x z(z-1) w+n l a_{2} a_{4} x y z(z-1)
$$

$$
\left.-n l a_{2} a_{4} x y z^{2}+m^{2} a_{3}^{2} x y(y-1) w-m^{2} a_{3}^{2} x y^{2} w-m n a_{3} a_{4} x y^{2} z+m n a_{3} a_{4} x y(y-1) z\right\}
$$

$$
=-\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{1} a_{2}^{2} a_{3}^{2} a_{4} \Pi}(x y+1)+\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{1} a_{2}^{2} a_{3}^{2} a_{4} \Pi}(2 z+1)
$$

$$
\begin{equation*}
=\frac{1}{|J|} \frac{A^{3} x y z w a_{1}^{3 x} a_{2}^{3 y} a_{3}^{3 z} a_{4}^{3 w} B}{a_{1} a_{2}^{2} a_{3}^{2} a_{4} \Pi}(2 z-x y) \tag{18}
\end{equation*}
$$

From (2) we see that $x y \ll 1$ and also $z<1$, so that we can consider $2 z-x y>0$; then from (18) we see that

$$
\begin{equation*}
\frac{\partial a_{4}}{\partial k}>0 \tag{19}
\end{equation*}
$$

From (19) we have realized that if the interest rate of the capital a_{1} increases, the use of other inputs also increases. This seems that other inputs for this organization are necessary and these have no substitutes. It seems that the organization may face increasing returns to scale (Moolio et al., 2009; Mohajan, 2021b).

Also from (2) we see that $x y<1$ and also $z<1$, so that we can consider $2 z-x y<0$; then from (18) we see that

$$
\begin{equation*}
\frac{\partial a_{4}}{\partial k}<0 . \tag{20}
\end{equation*}
$$

From (20) we have realized that if the interest rate of the capital a_{1} increases; the use of other inputs decreases. Therefore, in this situation it seems that other inputs are not necessary for this organization or the organization has many substitutes of these. It seems that the organization may face decreasing returns to scale (Islam et al., 2011; Mohajan, 2022).

8. Conclusions

In this study we have considered the sensitivity analysis during profit maximization. We have used Lagrange multiplier method to make the constrained problem as unconstrained. For mathematical techniques we have analyzed the Cobb-Douglas production function with the subject to budget constraint. We have tried to predict on future production for maximum profit of the organization. Throughout the paper we have tried to show mathematical calculations in some details.

References

Baxley, J. V., \& Moorhouse, J. C. (1984). Lagrange Multiplier Problems in Economics. The American Mathematical Monthly, 91(7), 404-412.

Carter, M. (2001). Foundations of Mathematical Economics. MIT Press, Cambridge, London.

Cobb, C. W., \& Douglass, P. H. (1928). A Theory of Production. American Economics Review, 18(1), 139-165.

Das, S., \& Mohajan, H. K. (2014a). Mock Theta Conjectures. Journal of Environmental Treatment Techniques, 2(1), 22-28.

Das, S., \& Mohajan, H. K. (2014b). Generating Functions for $X(n)$ and $Y(n)$. American Review of Mathematics and Statistics, 2(1), 41-43.

Das, S., \& Mohajan, H. K. (2014c). The Number of Vector Partitions of n (Counted According to the Weight) with Crank m. International Journal of Reciprocal Symmetry \& Theoretical Physics, 1(2), 91-105.

Eaton, B., \& Lipsey, R. (1975). The Principle of Minimum Differentiation Reconsidered: Some New Developments in the Theory of Spatial Competition. Review of Economic Studies, 42(1), 27-49.

Ferdous, J., \& Mohajan, H. K. (2022). Maximum Profit Ensured for Industry Sustainability. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Gibbs, R. W., Jr. (2008). Metaphor and Thought: The State of the Art. In R. W. Gibbs, Jr. (Ed.), The Cambridge Handbook of Metaphor and Thought. Cambridge University Press, Cambridge.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009a). Preference of Social Choice in Mathematical Economics. Indus Journal of Management \& Social Sciences, 3(1), 17-38.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009b). Political Economy and Social Welfare with Voting Procedure. KASBIT Business Journal, 2(1), 42-66.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2010a). Utility Maximization Subject to Multiple Constraints. Indus Journal of Management \& Social Sciences, 4(1), 15-29.

Islam, J. N., Mohajan, H. K., Moolio, P., \& Reymond, P. (2010b). A Study on Global HumanImmunodeficiency Virus and its Effect in Bangladesh. KASBIT Business Journal, 3(1), 64-87.

Islam, J.N.; Mohajan, H. K., \& Moolio, P. (2011a), Output Maximization Subject to a Nonlinear Constraint, KASBIT Business Journal, 4(2), 104-120.

Islam, J. N., Mohajan, H. K., \& Paul, J. (2011b). Taxes on Cars and Gasoline to Control of Air Pollution: Suggested Models for Bangladesh. Indus Journal of Management \& Social Sciences, 5(2), 60-73.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2011c). Method of Voting System and Manipulation of Voting. International Journal of Management and Transformation, 5(1), 10-34.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012a). Aspects of Microfinance System of Grameen Bank of Bangladesh. International Journal of Economics and Research, 3(4), 76-96.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012b). Stress Management Policy Analysis: A Preventative Approach. International Journal of Economics and Research, 3(6), 1-17.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2012c). Borda Voting is Non-manipulable but Cloning Manipulation is Possible. International Journal of Development Research and Quantitative Techniques, 2(1), 28-37.

Kothari, C. R. (2008). Research Methodology: Methods and Techniques (2 ${ }^{\text {nd }}$ Ed.). New Delhi: New Age International (P) Ltd.

Legesse, B. (2014). Research Methods in Agribusiness and Value Chains. School of Agricultural Economics and Agribusiness, Haramaya University.

Levitt, S. D. (2006). An Economist Sells Bagels: A Case Study in Profit Maximization. NBER Working Paper Series, Working Paper 12152, Cambridge, MA.

Mohajan, D., \& Mohajan, H. K. (2022a). Mathematical Analysis of SEIR Model to Prevent COVID-19 Pandemic. Journal of Economic Development, Environment and People, 11(4), 5-30.

Mohajan, D., \& Mohajan, H. K. (2022b). Utility Maximization Analysis of an Emerging Firm: A Bordered Hessian Approach. Annals of Spiru Haret University. Economic Series, 22(4), 292-308.

Mohajan, D., \& Mohajan, H. K. (2022c). Sensitivity Analysis among Commodities and Coupons during Utility Maximization. Frontiers in Management Science, 1(3), 13-28.

Mohajan, D., \& Mohajan, H. K. (2022d). Importance of Total Coupon in Utility Maximization: A Sensitivity Analysis. Law and Economy, 1(5), 65-67.

Mohajan, D., \& Mohajan, H. K. (2022e). Development of Grounded Theory in Social Sciences: A Qualitative Approach. Studies in Social Science \& Humanities, 1(5), 13-24.

Mohajan, D., \& Mohajan, H. K. (2022f). Exploration of Coding in Qualitative Data Analysis: Grounded Theory Perspective. Research and Advances in Education, 1(6), 50-60.

Mohajan, D., \& Mohajan, H. K. (2022g). Memo Writing Procedures in Grounded Theory Research Methodology. Studies in Social Science \& Humanities, 1(4), 10-18.

Mohajan, D., \& Mohajan, H. K. (2022h). Constructivist Grounded Theory: A New Research Approach in Social Science. Research and Advances in Education, 1(4), 8-16.

Mohajan, D., \& Mohajan, H. K. (2022i). Feminism and Feminist Grounded Theory: A Comprehensive Research Analysis. Journal of Economic Development, Environment and People, 11(3), 49-61.

Mohajan, D., \& Mohajan, H. K. (2022j). Profit Maximization Strategy in an Industry: A Sustainable Procedure. Law and Economy, 1(3), 17-43.

Mohajan, D., \& Mohajan, H. K. (2023a). Sensitivity Analysis among Commodities and Prices: Utility Maximization Perceptions. Law and Economy, 2(2), 1-16.

Mohajan, D., \& Mohajan, H. K. (2023b). Straussian Grounded Theory: An Evolved Variant in Qualitative Research. Studies in Social Science \& Humanities, 2(2), 33-40.

Mohajan, D., \& Mohajan, H. K. (2023c). Sensitivity Analysis between Lagrange Multipliers and Consumer Coupon: Utility Maximization Perspective. Frontiers in Management Science, 2(1), 14-25.

Mohajan, D., \& Mohajan, H. K. (2023d). Utility Maximization Analysis of an Organization: A Mathematical Economic Procedure. Law and Economy, 2(1), 1-15.

Mohajan, D., \& Mohajan, H. K. (2023e). Classic Grounded Theory: A Qualitative Research on Human Behavior. Studies in Social Science \& Humanities, 2(1), 1-7.

Mohajan, D., \& Mohajan, H. K. (2023f). Sensitivity Analysis between Commodity and Budget: Utility Maximization Case. Law and Economy, 2(3), 10-21.

Mohajan, D., \& Mohajan, H. K. (2023g). Sensitivity Analysis for Profit Maximization with Respect to Per Unit Cost of Subsidiary Raw Materials. Frontiers in Management Science, 2(2), 13-27.

Mohajan, D., \& Mohajan, H. K. (2023h). Families of Grounded Theory: A Theoretical Structure for Novel Researchers. Studies in Social Science \& Humanities, 2(1), 56-65.

Mohajan, D., \& Mohajan, H. K. (2023i). Broca Index: A Simple Tool to Measure Ideal Body Weight. Innovation in Science and Technology, 2(2), 21-24.

Mohajan, D., \& Mohajan, H. K. (2023j). Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. Journal of Innovations in Medical Research, 2(3), 12-23.

Mohajan, D., \& Mohajan, H. K. (2023k). Body Mass Index (BMI) is a Popular Anthropometric Tool to Measure Obesity among Adults. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023l). A Study on Body Fat Percentage for Physical Fitness and Prevention of Obesity: A Two Compartment Model. Journal of Innovations in Medical Research, 2(4), 1-10.

Mohajan, D., \& Mohajan, H. K. (2023m). Ponderal Index: An Important Anthropometric Indicator for Physical Growth. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023n). Long-Term Regular Exercise Increases $\dot{V O}_{2}$ max for Cardiorespiratory Fitness. Innovation in Science and Technology, 2(2), 38-43.

Mohajan, D., \& Mohajan, H. K. (2023o). Sensitivity Analysis between Lagrange Multipliers and Consumer Budget: Utility Maximization Case. Annals of Spiru Haret University. Economic Series, 23(1), 167-185.

Mohajan, D., \& Mohajan, H. K. (2023p). Glaserian Grounded Theory and Straussian Grounded Theory: Two Standard Qualitative Research Approaches in Social Science. Journal of Economic Development, Environment and People, 12(1), 72-81.

Mohajan, D., \& Mohajan, H. K. (2023q). Economic Situations of Lagrange Multiplier When Costs of Various Inputs Increase for Nonlinear Budget Constraint. Studies in Social Science \& Humanities, 2(4), 40-64.

Mohajan, D., \& Mohajan, H. K. (2023r). Sensitivity Analysis for Utility Maximization: A Study on Lagrange Multipliers and Commodity Coupons. Journal of Economic Development, Environment, and People, 12(1), 25-40.

Mohajan, D., \& Mohajan, H. K. (2023s). Sensitivity Analysis for Profit Maximization with Respect to Per Unit Cost of Subsidiary Raw Materials. Frontiers in Management Science, 2(2), 13-27.

Mohajan, H. K. (2011a). Greenhouse Gas Emissions Increase Global Warming. International Journal of Economic and Political Integration, 1(2), 21-34.

Mohajan, H. K. (2011b). The NNP and Sustainability in Open Economy: Highlights on Recent World Economy and on Open Economy of Bangladesh. KASBIT Business Journal, 4(2), 32-47.

Mohajan, H. K. (2011c). Optimal Environmental Taxes Due to Health Effect. KASBIT Business Journal, 4(1), 1-19.

Mohajan, H. K. (2011d). The Real Net National Product in Sustainable Development. KASBIT Business Journal, 4(2), 90-103.

Mohajan, H. K. (2012a). Green Marketing is a Sustainable Marketing System in the Twenty First Century. International Journal of Management and Transformation, 6(2), 23-39.

Mohajan, H. K. (2012b). Aspects of Green Marketing: A Prospect for Bangladesh. International Journal of Economics and Research, 3(3), 1-11.

Mohajan, H. K. (2012c). Importance of Green Marketing at Present and Future. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2012d). Greenhouse Gas Emissions of the USA. Indus Journal of Management \& Social Sciences, 6(2), 132-148.

Mohajan, H. K. (2012e). Relation between Lease Finance and Purchase. International Journal of Economics and Research, 3(3), 146-158.

Mohajan, H. K. (2012f). Air Pollution Causes Health Effects and Net National Product of a Country Decreases: A Theoretical Framework. International Journal of Development Research and Quantitative Techniques, 2(2), 3-10.

Mohajan, H. K. (2012g). Certainty and Uncertainty in Cap and Trade System or in Carbon Tax for Green Accounting to Decrease Greenhouse Gas Emissions. Indus Journal of Management \& Social Sciences, 6(2), 108-122.

Mohajan, H. K. (2012h). Social Welfare and Social Choice in Different Individuals' Preferences. International Journal of Human Development and Sustainability, 5(1), 11-22.

Mohajan, H. K. (2013a). Economic Development of Bangladesh. Journal of Business Management and Administration, 1(4), 41-48.

Mohajan, H. K. (2013b). Ethiopia: A Socio-economic Study. Journal of Business Management and Administration, 1(5), 59-74.

Mohajan, H. K. (2013c). Friedmann, Robertson-Walker (FRW) Models in Cosmology. Journal of Environmental Treatment Techniques, 1(3), 158-164.

Mohajan, H. K. (2013d). Global Greenhouse Gas Emissions and Climate Change. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013e). Poverty and Economic Development of Kenya. International Journal of Information Technology and Business Management, 18(1), 72-82.

Mohajan, H. K. (2013f). Global Food Price Hike is a Burden to the Poor. International Journal of Information Technology and Business Management, 19(1), 1-15.

Mohajan, H. K. (2013g). Food, Agriculture and Economic Situation of Bangladesh. MPRA Paper No. 54240. https://mpra.ub.uni-muenchen.de/54240/

Mohajan, H. K. (2013h). Greenhouse Gas Emissions from Small Industries and its Impact on Global Warming. KASBIT Business Journal, 6(1\&2), 1-13.

Mohajan, H. K. (2013i). Scope of Raychaudhuri Equation in Cosmological Gravitational Focusing and Space-time Singularities. Peak Journal of Physical and Environmental Science Research, 1(7), 106-114.

Mohajan, H. K. (2013j). Violation of Human Rights in Bangladesh. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2014a). Greenhouse Gas Emissions of China. Journal of Environmental Treatment Techniques, 1(4), 190-202.

Mohajan, H. K. (2014b). Chinese Sulphur Dioxide Emissions and Local Environment Pollution. International Journal of Scientific Research in Knowledge, 2(6), 265-276.

Mohajan, H. K. (2014c). The Most Fatal 2014 Outbreak of Ebolavirus Disease in Western Africa. American Journal of Epidemiology and Infectious Disease, 2(4), 101-108.

Mohajan, H. K. (2014d). Improvement of Health Sector in Kenya. American Journal of Public Health Research, 2(4), 159-169.

Mohajan, H. K. (2014e). Food and Nutrition of Bangladesh. Peak Journal of Food Science and Technology, 2(1), 1-17.

Mohajan, H. K. (2014f). Gravitational Collapse of a Massive Star and Black Hole Formation. International Journal of Reciprocal Symmetry \& Theoretical Physics, 1(2), 125-140.

Mohajan, H. K. (2014g). General Upper Limit of the Age of the Universe. ARPN Journal of Science and Technology, 4(1), 4-12.

Mohajan, H. K. (2015a). Sustainable Development Policy of Global Economy. American Journal of Environmental Protection, 3(1), 12-29.

Mohajan, H. K. (2015b). Present and Future of Nestlé Bangladesh Limited. American Journal of Food and Nutrition, 3(2), 34-43.

Mohajan, H. K. (2015c). Basic Concepts of Differential Geometry and Fibre Bundles. $A B C$ Journal of Advanced Research, 4(1), 57-73.

Mohajan, H. K. (2015d). Tuberculosis is a Fatal Disease among Some Developing Countries of the World. American Journal of Infectious Diseases and Microbiology, 3(1), 18-31.

Mohajan, H. K. (2015e). Generalization of Euler and Ramanujan's Partition Function. Asian Journal of Applied Science and Engineering, 4(3), 167-190.

Mohajan, H. K. (2016a). An Analysis of Knowledge Management for the Development of Global Health. American Journal of Social Sciences, 4(4), 38-57.

Mohajan, H. K. (2016b). Global Hyperbolicity in Space-time Manifold. International Journal of Professional Studies, 1(1), 14-30.

Mohajan, H. K. (2016c). Singularities in Global Hyperbolic Space-time Manifold. Asian Journal of Applied Science and Engineering, 5(1), 41-58.

Mohajan, H. K. (2017a). Roles of Communities of Practice for the Development of the Society. Journal of Economic Development, Environment and People, 6(3), 27-46.

Mohajan, H. K. (2017b). Two Criteria for Good Measurements in Research: Validity and Reliability. Annals of Spiru Haret University Economic Series, 17(3), 58-82.

Mohajan, H. K. (2017c). Optimization Models in Mathematical Economics. Journal of Scientific Achievements, 2(5), 30-42.

Mohajan, H. K. (2017d). A Brief Analysis of de Sitter Universe in Relativistic Cosmology. Journal of Scientific Achievements, 2(11), 1-17.

Mohajan, H. K. (2017e). Development of Einstein's Static Cosmological Model of the Universe. Journal of Scientific Achievements, 2(7), 18-30.

Mohajan, H. K. (2017f). Analysis of Reciprocity and Substitution Theorems, and Slutsky Equation. Noble International Journal of Economics and Financial Research, 2(3), 54-75.

Mohajan, H. K. (2017g). Research Methodology. Aspects of Mathematical Economics, Social Choice and Game Theory, PhD Thesis. Munich Personal RePEc Archive, 10, 1-20.

Mohajan, H. K. (2018a). Qualitative Research Methodology in Social Sciences and Related Subjects. Journal of Economic Development, Environment and People, 2(1), 19-46.

Mohajan, H. K. (2018b). Aspects of Mathematical Economics, Social Choice and Game Theory. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K. (2018c). The Rohingya Muslims in Myanmar are Victim of Genocide! ABC Journal of Advanced Research, 7(1), 59-72.

Mohajan, H. K. (2018d). Medical Errors Must be Reduced for the Welfare of the Global Health Sector. International Journal of Public Health and Health Systems, 3(5), 91-101.

Mohajan, H. K. (2018e). Analysis of Food Production and Poverty Reduction of Bangladesh. Annals of Spiru Haret University Economic Series, 18(1), 191-205.

Mohajan, H. K. (2020a). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development, Environment and People, 9(4), 50-79.

Mohajan, H. K. (2020b). COVID-19-The Most Fatal Pandemic Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020c). The COVID-19 in Italy: Remedies to Reduce the Infections and Deaths. Malaysian Journal of Medical and Biological Research, 7(2), 59-66.

Mohajan, H. K. (2020d). Most Fatal Pandemic COVID-19 Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020e). Circular Economy can Provide a Sustainable Global Society. Journal of Economic Development, Environment and People, 9(3), 38-62.

Mohajan, H. K. (2021a). Aspects of Global COVID-19 Pandemic. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2021b). Global COVID-19 Pandemic: Prevention and Protection Techniques. Journal of Economic Development, Environment and People, 10(1), 51-72.

Mohajan, H. K. (2021c). Estimation of Cost Minimization of Garments Sector by CobbDouglass Production Function: Bangladesh Perspective. Annals of Spiru Haret University. Economic Series, 21(2), 267-299.

Mohajan, H. K. (2021d). Product Maximization Techniques of a Factory of Bangladesh: A Sustainable Procedure. American Journal of Economics, Finance and Management, 5(2), 23-44.

Mohajan, H. K. (2021e). Third Industrial Revolution Brings Global Development. Journal of Social Sciences and Humanities, 7(4), 239-251.

Mohajan, H. K. (2022a). Four Waves of Feminism: A Blessing for Global Humanity. Studies in Social Science \& Humanities, 1(2), 1-8.

Mohajan, H. K. (2022b). An Overview on the Feminism and Its Categories. Research and Advances in Education, 1(3), 11-26.

Mohajan, H. K. (2022c). Cost Minimization Analysis of a Running Firm with Economic Policy. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Mohajan, H. K. (2022d). Mathematical Analysis of SIR Model for COVID-19 Transmission. Journal of Innovations in Medical Research, 1(2), 1-18.

Mohajan, H. K., Datta, R., \& Das, A. K. (2012). Emerging Equity Market and Economic Development: Bangladesh Perspective. International Journal of Economics and Research, 3(3), 128-145.

Mohajan, H. K., Islam, J. N., \& Moolio, P. (2013). Optimization and Social Welfare in Economics. Lambert Academic Publishing, Germany.

Moolio, P., Islam, J. N., \& Mohajan, H. K. (2009). Output Maximization of an Agency. Indus Journal of Management and Social Sciences, 3(1), 39-51.

Pandey, P., \& Pandey, M. M. (2015). Research Methodology: Tools and Techniques. Bridge Center, Romania, European Union.

Polit, D. F., \& Hungler, B. P. (2013). Essentials of Nursing Research: Methods, Appraisal, and Utilization ($8^{\text {th }}$ Ed.). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.

Rahman, M. M., \& Mohajan, H. K. (2019). Rohingya-The Stateless Community Becoming the Lost Generation. Journal of Economic Development, Environment and People, 8(2), 24-36.

Roy, L., Molla, R., \& Mohajan, H. K. (2021). Cost Minimization is Essential for the Sustainability of an Industry: A Mathematical Economic Model Approach. Annals of Spiru Haret University Economic Series, 21(1), 37-69.

Samuelson, P. A. (1947). Foundations of Economic Analysis. Harvard University Press, Cambridge, MA.

Wiese, H. (2021). Cost Minimization and Profit Maximization. In Advanced Microeconomics. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34959-2_9

