Celso-Arellano, Pedro and Gualajara, Victor and Coronado, Semei and Martinez, Jose N. and Venegas-Martínez, Francisco (2023): Impact of the global fear index (covid-19 panic) on the S&P global indices associated with natural resources, agribusiness, energy, metals and mining: Granger Causality and Shannon and Rényi Transfer Entropy. Published in: Entropy , Vol. 25, No. 303 (8 February 2023): pp. 1-12.
Preview |
PDF
entropy-mpra.pdf Download (608kB) | Preview |
Abstract
The Global Fear Index (GFI) is a measure of fear/panic based on the number of people infected and deaths due to COVID-19. This paper aims to examine the interconnection or interdependencies between the GFI and a set of global indexes related to the financial and economic activities associated with natural resources, raw materials, agribusiness, energy, metals, and mining, such as: the S&P Global Resource Index, the S&P Global Agribusiness Equity Index, the S&P Global Metals and Mining Index, and the S&P Global 1200 Energy Index. To this end, we first apply several common tests: Wald exponential, Wald mean, Nyblom, and Quandt Likelihood Ratio. Subsequently, we apply Granger causality using a DCC-GARCH model. Data for the global indices are daily from 3 February 2020 to 29 October 2021. The empirical results obtained show that the volatility of the GFI Granger causes the volatility of the other global indices, except for the Global Resource Index. Moreover, by considering heteroskedasticity and idiosyncratic shocks, we show that the GFI can be used to predict the co-movement of the time series of all the global indices. Additionally, we quantify the causal interdependencies between the GFI and each of the S&P global indices using Shannon and Rényi transfer entropy flow, which is comparable to Granger causality, to confirm directionality more robustly The main conclusion of this research is that financial and economic activity related to natural resources, raw materials, agribusiness, energy, metals, and mining were affected by the fear/panic caused by COVID-19 cases and deaths.
Item Type: | MPRA Paper |
---|---|
Original Title: | Impact of the global fear index (covid-19 panic) on the S&P global indices associated with natural resources, agribusiness, energy, metals and mining: Granger Causality and Shannon and Rényi Transfer Entropy |
Language: | English |
Keywords: | Global indices, Co-movement, Granger causality, DCC-GARCH |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G19 - Other |
Item ID: | 117138 |
Depositing User: | Dr. Francisco Venegas-Martínez |
Date Deposited: | 27 Apr 2023 07:07 |
Last Modified: | 27 Apr 2023 07:07 |
References: | 1. World Health Organization Rolling Updates on Coronavirus Disease (COVID-19) Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen. 2. Ashraf, B.N. Stock Markets’ Reaction to COVID-19: Cases or Fatalities? Res Int Bus Finance 2020, 54, 101249, doi:10.1016/j.ribaf.2020.101249. 3. Zhang, D.; Hu, M.; Ji, Q. Financial Markets under the Global Pandemic of COVID-19. Financ Res Lett 2020, 36, 101528, doi:10.1016/j.frl.2020.101528. 4. Baker, S.R.; Bloom, N.; Davis, S.J.; Kost, K.; Sammon, M.; Viratyosin, T. The Unprecedented Stock Market Reaction to COVID-19. The Review of Asset Pricing Studies 2020, doi:10.1093/rapstu/raaa008. 5. Zhang, Y.; Wang, R. COVID-19 Impact on Commodity Futures Volatilities. Financ Res Lett 2022, 47, doi:10.1016/j.frl.2021.102624. 6. Bouri, E.; Demirer, R.; Gupta, R.; Pierdzioch, C. Infectious Diseases, Market Uncertainty and Oil Market Volatility. Energies (Basel) 2020, 13, 1–8, doi:10.3390/en13164090. 7. Scherf, M.; Matschke, X.; Rieger, M.O. Stock Market Reactions to COVID-19 Lockdown: A Global Analysis. Financ Res Lett 2022, 45, doi:10.1016/j.frl.2021.102245. 8. Ganie, I.R.; Wani, T.A.; Yadav, M.P. Impact of COVID-19 Outbreak on the Stock Market: An Evidence from Select Economies. Business Perspectives and Research 2022, doi:10.1177/22785337211073635. 9. Mazur, M.; Dang, M.; Vega, M. COVID-19 and the March 2020 Stock Market Crash. Evidence from S&P1500. Financ Res Lett 2021, 38, doi:10.1016/j.frl.2020.101690. 10. Shapoval, V.; Hägglund, P.; Pizam, A.; Abraham, V.; Carlbäck, M.; Nygren, T.; Smith, R.M. The COVID-19 Pandemic Effects on the Hospitality Industry Using Social Systems Theory: A Multi-Country Comparison. Int J Hosp Manag 2021, 94, doi:10.1016/j.ijhm.2020.102813. 11. Muche, M.; Yemata, G.; Molla, E.; Muasya, A.M.; Tsegay, B.A. COVID-19 Lockdown and Natural Resources: A Global Assessment on the Challenges, Opportunities, and the Way Forward. Bull Natl Res Cent 2022, 46, doi:10.1186/s42269-022-00706-2. 12. Rajput, H.; Changotra, R.; Rajput, P.; Gautam, S.; Gollakota, A.R.K.; Arora, A.S. A Shock like No Other: Coronavirus Rattles Commodity Markets. Environ Dev Sustain 2021, 23, 6564–6575. 13. Ramelli, S.; Wagner, A.F. Feverish Stock Price Reactions to COVID-19. The Review of Corporate Finance Studies 2020, 0, 622–655, doi:10.1093/rcfs/cfaa012. 14. Sibley, C.G.; Greaves, L.M.; Satherley, N.; Wilson, M.S.; Overall, N.C.; Lee, C.H.J.; Milojev, P.; Bulbulia, J.; Osborne, D.; Milfont, T.L.; et al. Effects of the COVID-19 Pandemic and Nationwide Lockdown on Trust, Attitudes toward Government, and Well-Being. American Psychologist 2020, 75, 618–630, doi:10.1037/amp0000662. 15. Narayan, P.K.; Iyke, B.N.; Sharma, S.S. New Measures of the COVID-19 Pandemic: A New Time-Series Dataset. Asian Economics Letters 2021, 2, doi:10.46557/001c.23491. 16. Amewu, G.; Owusu Junior, P.; Amenyitor, E.A. Co-Movement between Equity Index and Exchange Rate: Fresh Evidence from COVID-19 Era. Sci Afr 2022, 16, doi:10.1016/j.sciaf.2022.e01146. 17. Sazzad Jeris, S.; Deb Nath, R. Covid-19, Oil Price and UK Economic Policy Uncertainty: Evidence from the ARDL Approach. Quantitative Finance and Economics 2020, 4, 503–514, doi:10.3934/QFE.2020023. 18. Chiang, T.C. Evidence of Economic Policy Uncertainty and COVID-19 Pandemic on Global Stock Returns. Journal of Risk and Financial Management 2022, 15, doi:10.3390/jrfm15010028. 19. Udeaja, E.A.; Isah, K.O. Stock Markets’ Reaction to COVID-19: Analyses of Countries with High Incidence of Cases/Deaths in Africa. Sci Afr 2022, 15, doi:10.1016/j.sciaf.2021.e01076. 20. Abu, N.; Gamal, A.A.M.; Sakanko, M.A.; Mateen, A.; Joseph, D.; Amaechi, B.O.O. How Have Covid-19 Confirmed Cases and Deaths Affected Stock Markets? Evidence from Nigeria. Contemporary Economics 2021, 15, 76–99, doi:10.5709/ce.1897-9254.437. 21. Al-Awadhi, A.M.; Alsaifi, K.; Al-Awadhi, A.; Alhammadi, S. Death and Contagious Infectious Diseases: Impact of the COVID-19 Virus on Stock Market Returns. J Behav Exp Finance 2020, 27, doi:10.1016/j.jbef.2020.100326. 22. Mishra, P.K.; Mishra, S.K. Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia 2020, 11, 341–365, doi:10.1177/0976399620952354. 23. Onali, E. Covid-19 and Stock Market Volatility; 2020; 24. Corbet, S.; Larkin, C.; Lucey, B. The Contagion Effects of the COVID-19 Pandemic: Evidence from Gold and Cryptocurrencies. Financ Res Lett 2020, 35, 101554, doi:10.1016/j.frl.2020.101554. 25. Li, Y.; Liang, C.; Ma, F.; Wang, J. The Role of the IDEMV in Predicting European Stock Market Volatility during the COVID-19 Pandemic. Financ Res Lett 2020, 36, 101749, doi:10.1016/j.frl.2020.101749. 26. Coronado, S.; Martinez, J.N.; Romero-Meza, R. Time-Varying Multivariate Causality among Infectious Disease Pandemic and Emerging Financial Markets: The Case of the Latin American Stock and Exchange Markets. Appl Econ 2021, doi:10.1080/00036846.2021.2018127. 27. Romero-Meza, R.; Coronado, S.; Ibañez-Veizaga, F. COVID-19 y Causalidad en la volatilidad del mercado accionario chileno. Estudios Gerenciales 2021, 37, 242–250, doi:10.18046/j.estger.2021.159.4412. 28. Bouri, E.; Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting Power of Infectious Diseases-Related Uncertainty for Gold Realized Variance. Financ Res Lett 2021, 101936, doi:https://doi.org/10.1016/j.frl.2021.101936. 29. Gupta, R.; Subramaniam, S.; Bouri, E.; Ji, Q. Infectious Disease-Related Uncertainty and the Safe-Haven Characteristic of US Treasury Securities. International Review of Economics and Finance 2021, 71, 289–298, doi:10.1016/j.iref.2020.09.019. 30. Salisu, A.A.; Akanni, L.O. Constructing a Global Fear Index for the COVID-19 Pandemic. Emerging Markets Finance and Trade 2020, 56, 2310–2331, doi:10.1080/1540496X.2020.1785424. 31. Li, W.; Chien, F.; Kamran, H.W.; Aldeehani, T.M.; Sadiq, M.; Nguyen, V.C.; Taghizadeh-Hesary, F. The Nexus between COVID-19 Fear and Stock Market Volatility. Economic Research-Ekonomska Istraživanja 2022, 35, 1765–1785, doi:10.1080/1331677X.2021.1914125. 32. Tao, R.; Su, C.W.; Yaqoob, T.; Hammal, M. Do Financial and Non-Financial Stocks Hedge against Lockdown in Covid-19? An Event Study Analysis. Economic Research-Ekonomska Istrazivanja 2021, doi:10.1080/1331677X.2021.1948881. 33. Paule-Vianez, J.; Orden-Cruz, C.; Escamilla-Solano, S. Influence of COVID-Induced Fear on Sovereign Bond Yield. Economic Research-Ekonomska Istrazivanja 2021, doi:10.1080/1331677X.2021.1934509. 34. Lu, F.; Hong, Y.; Wang, S.; Lai, K.; Liu, J. Time-Varying Granger Causality Tests for Applications in Global Crude Oil Markets. Energy Econ 2014, 42, 289–298, doi:10.1016/j.eneco.2014.01.002. 35. Caporin, M.; Costola, M. Time-Varying Granger Causality Tests in the Energy Markets: A Study on the DCC-MGARCH Hong Test. Energy Econ 2022, 111, 106088, doi:10.1016/j.eneco.2022.106088. 36. Cevik, E.I.; Atukeren, E.; Korkmaz, T. Oil Prices and Global Stock Markets: A Time-Varying Causality-in-Mean and Causality-in-Variance Analysis. Energies (Basel) 2018, 11, doi:10.3390/en11102848. 37. Gupta, R.; Kanda, P.; Wohar, M.E. Predicting Stock Market Movements in the United States: The Role of Presidential Approval Ratings*. International Review of Finance 2021, 21, 324–335, doi:10.1111/irfi.12258. 38. Coronado, S.; Gupta, R.; Hkiri, B.; Rojas, O. Time-Varying Spillovers between Currency and Stock Markets in the USA: Historical Evidence from More than Two Centuries. Advances in Decision Sciences 2020, 24. 39. Kanda, P.; Burke, M.; Gupta, R. Time-Varying Causality between Equity and Currency Returns in the United Kingdom: Evidence from over Two Centuries of Data. Physica A: Statistical Mechanics and its Applications 2018, 506, 1060–1080, doi:10.1016/j.physa.2018.05.037. 40. Jammazi, R.; Ferrer, R.; Jareño, F.; Shahzad, S.J.H. Time-Varying Causality between Crude Oil and Stock Markets: What Can We Learn from a Multiscale Perspective? International Review of Economics & Finance 2017, 49, 453–483, doi:10.1016/j.iref.2017.03.007. 41. Bera, A.K.; Jarque, C.M. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Econ Lett 1981, 7, 313–318, doi:10.1016/0165-1765(81)90035-5. 42. Meng, M.; Lee, J.; Payne, J.E. RALS-LM Unit Root Test with Trend Breaks and Non-Normal Errors: Application to the Prebisch-Singer Hypothesis. Studies in Nonlinear Dynamics and Econometrics 2017, 21, 31–45, doi:10.1515/snde-2016-0050. 43. Sadiq, M.; Hsu, C.-C.; Zhang, Y.; Chien, F. COVID-19 Fear and Volatility Index Movements: Empirical Insights from ASEAN Stock Markets. Environmental Science and Pollution Research 2021, 28, 67167–67184, doi:10.1007/s11356-021-15064-1. 44. Ayyildiz, M. Asymmetrical Relationship between COVID-19 Global Fear Index and Agricultural Commodity Prices. Emir J Food Agric 2022, 34, 239–247, doi:10.9755/ejfa.2022.v34.i3.2798. 45. Dogan, E.; Majeed, M.T.; Luni, T. Analyzing the Nexus of COVID-19 and Natural Resources and Commodities: Evidence from Time-Varying Causality. Resources Policy 2022, 77, doi:10.1016/j.resourpol.2022.102694. 46. Zaremba, A.; Kizys, R.; Aharon, D.Y.; Demir, E. Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe. Financ Res Lett 2020, 35, doi:10.1016/j.frl.2020.101597. 47. Sharif, A.; Aloui, C.; Yarovaya, L. COVID-19 Pandemic, Oil Prices, Stock Market, Geopolitical Risk and Policy Uncertainty Nexus in the US Economy: Fresh Evidence from the Wavelet-Based Approach. International Review of Financial Analysis 2020, 70, doi:10.1016/j.irfa.2020.101496. 48. Lyócsa, Š.; Baumöhl, E.; Výrost, T.; Molnár, P. Fear of the Coronavirus and the Stock Markets. Financ Res Lett 2020, 36, doi:10.1016/j.frl.2020.101735. 49. Naseem, S.; Mohsin, M.; Hui, W.; Liyan, G.; Penglai, K. The Investor Psychology and Stock Market Behavior During the Initial Era of COVID-19: A Study of China, Japan, and the United States. Front Psychol 2021, 12, doi:10.3389/fpsyg.2021.626934. 50. Xiang, Y.-T.; Yang, Y.; Li, W.; Zhang, L.; Zhang, Q.; Cheung, T.; Ng, C.H. Timely Mental Health Care for the 2019 Novel Coronavirus Outbreak Is Urgently Needed. Lancet Psychiatry 2020, 7, 228–229, doi:10.1016/S2215-0366(20)30046-8. 51. Jawadi, F.; Namouri, H.; Ftiti, Z. An Analysis of the Effect of Investor Sentiment in a Heterogeneous Switching Transition Model for G7 Stock Markets. J Econ Dyn Control 2018, 91, 469–484, doi:10.1016/j.jedc.2017.10.004. 52. Dash, S.R.; Maitra, D. The COVID-19 Pandemic Uncertainty, Investor Sentiment, and Global Equity Markets: Evidence from the Time-Frequency Co-Movements. North American Journal of Economics and Finance 2022, 62, doi:10.1016/j.najef.2022.101712. 53. Zhang, H.; Ding, Y.; Li, J. Impact of the COVID-19 Pandemic on Economic Sentiment: A Cross-Country Study. Emerging Markets Finance and Trade 2021, 57, 1603–1612, doi:10.1080/1540496X.2021.1897005. 54. Su, Z.; Liu, P.; Fang, T. Pandemic-Induced Fear and Stock Market Returns: Evidence from China. Global Finance Journal 2021, doi:10.1016/j.gfj.2021.100644. 55. Haroon, O.; Rizvi, S.A.R. COVID-19: Media Coverage and Financial Markets Behavior—A Sectoral Inquiry. J Behav Exp Finance 2020, 27, 100343, doi:10.1016/j.jbef.2020.100343. 56. Schell, D.; Wang, M.; Huynh, T.L.D. This Time Is Indeed Different: A Study on Global Market Reactions to Public Health Crisis. J Behav Exp Finance 2020, 27, doi:10.1016/j.jbef.2020.100349. 57. Huynh, T.L.D.; Foglia, M.; Nasir, M.A.; Angelini, E. Feverish Sentiment and Global Equity Markets during the COVID-19 Pandemic. J Econ Behav Organ 2021, 188, 1088–1108, doi:10.1016/j.jebo.2021.06.016. 58. Rossi, B.; Wang, Y. Vector Autoregressive-Based Granger Causality Test in the Presence of Instabilities. Stata Journal 2019, 19, 883–899, doi:10.1177/1536867X19893631. 59. Shi, S.; Phillips, P.C.B.; Hurn, S. Change Detection and the Causal Impact of the Yield Curve. In Proceedings of the Journal of Time Series Analysis; Blackwell Publishing Ltd, November 1 2018; Vol. 39, pp. 966–987. 60. Coronado, S.; Gupta, R.; Nazlioglu, S.; Rojas, O. <scp>Time‐varying</Scp> Causality between Bond and Oil Markets of the United States: Evidence from over One and Half Centuries of Data. International Journal of Finance & Economics 2021, 1–9, doi:10.1002/ijfe.2534. 61. Aggarwal, S.; Nawn, S.; Dugar, A. What Caused Global Stock Market Meltdown during the COVID Pandemic–Lockdown Stringency or Investor Panic? Financ Res Lett 2021, 38, 101827, doi:10.1016/j.frl.2020.101827. 62. Mishra, R.; Sharma, R.; Karedla, Y.; Patel, N. Impact of COVID-19 Cases, Deaths, Stringency and Vaccinations on the US Stock Market. Vision: The Journal of Business Perspective 2022, 097226292210749, doi:10.1177/09722629221074901. 63. Jizba, P.; Laviˇcka, H.; Tabachová, Z. Causal Inference in Time Series in Terms of Rényi Transfer Entropy. Entropy 2022, 24, 855. https://doi.org/10.3390/ e24070855 64. Shannon, C. E.. A mathematical theory of communication. Bell Systems Technical Journal, 1948, 27 :379–423 and 623–656. 65. Rényi. On measures of entropy and information. In Proc. Fourth Berkeley Symp. Math. Stat. Prob., 1960, vol. 1, p. 547 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117138 |