MPRA
 Munich Personal RePEc Archive

Mathematical Model for Nonlinear Budget Constraint: Economic Activities on Increased Budget

Mohajan, Devajit and Mohajan, Haradhan

Department of Civil Engineering, Chittagong University of Engineering Technology, Chittagong, Bangladesh, Department of Mathematics, Premier University, Chittagong, Bangladesh

15 March 2023

Online at https://mpra.ub.uni-muenchen.de/117299/
MPRA Paper No. 117299, posted 15 May 2023 14:32 UTC

Mathematical Model for Nonlinear Budget Constraint: Economic Activities on Increased Budget

Devajit Mohajan
Department of Civil Engineering, Chittagong University of Engineering \& Technology, Chittagong, Bangladesh
Email: devajit1402@gmail.com
Mobile: +8801866207021
Haradhan Kumar Mohajan
Department of Mathematics, Premier University, Chittagong, Bangladesh
Email: haradhan1971@gmail.com
Mobile: +8801716397232

Abstract

In this study economic predictions of the various inputs are analyzed when the budget of the organization increases. Method of Lagrange multiplier is applied here to work with nonlinear budget constraint for the achievement of the profit maximization atmosphere. In the study 6×6 bordered Hessian matrix and 6×6 Jacobian matrix are also operated for the prediction of economic analysis. In mathematical economics, efficient and wise decisions can provide profit maximization setting, which is essential for the sustainability of the industrial organizations.

Keywords: Lagrange multiplier, nonlinear budget constraint, increased budget

1. Introduction

In modern economics, mathematical modeling becomes popular to the applied mathematicians (Samuelson, 1947). At present it becomes an essential part of many branches of social sciences, such as in economics, sociology, psychology, political science, etc. (Carter, 2001). Profit
maximization practice is essential for the sustainability of an industrial firm (Eaton \& Lipsey, 1975; Islam et al. 2010). Mathematics is extensively used in economics to solve optimization problems and many other problems of welfare economics (Zheng \& Liu, 2022). To create profit maximization environment, an organization must be sincere in every step of its total operation, such as in production, financial balance, inventory, transportation, assignment, supply chain management, total management system, etc. (Ferdous \& Mohajan, 2022; Mohajan \& Mohajan, 2022a).

Lagrange multipliers method is a very useful and powerful practice in multivariable calculus that is applied as a device for transforming a constrained problem to a higher dimensional unconstrained problem (Baxley \& Moorhouse, 1984). In this study we have used Cobb-Douglas production function as our profit function to discuss economic effects of future production procedures (Cobb \& Douglas, 1928; Husain, 2012). In the study we have used the determinant of 6×6 bordered Hessian matrix, 6×6 Jacobian matrix, and four input variables to provide economic predictions precisely.

2. Literature Review

The literature review section is an introductory unit of any research that exhibits the works of previous researchers in the same field (Polit \& Hungler, 2013). In 1928, two US scholars; mathematician Charles W. Cobb (1875-1949) and economist Paul H. Douglas (1892-1976), have taken a bold attempt to derive a formula on production functions which is known as "CobbDouglas production function" (Cobb \& Douglas, 1928). Later in 1984, another two US Professors; mathematician John V. Baxley and economist John C. Moorhouse have worked on the Cobb-Douglas production function for optimization (Baxley \& Moorhouse, 1984). Professor Jamal Nazrul Islam (1939-2013) is an eminent mathematician of Bangladesh. He and his coauthors have discussed profit maximization for the welfare of the mathematical economics (Islam et al., 2009a,b, 2010, 2011).

Recently Jannatul Ferdous and Haradhan Kumar Mohajan have worked taking three inputs variables, such as capital, labor, and raw materials and other inputs on profit maximization of an industry (Ferdous \& Mohajan, 2022). Professor Pahlaj Moolio and his coworkers have worked on the Cobb-Douglas production functions to analyze the mathematical structure of profit maximization and utility maximization (Moolio et al., 2009; Islam et al., 2011). Lia Roy and her coauthors have established a series of theorems with proofs in a cost minimization analysis paper (Roy et al., 2021). Devajit Mohajan and Haradhan Kumar Mohajan have worked on various types of optimization problems, such as sensitivity analyses of profit maximization, cost minimization, and utility maximization (Mohajan et al., 2012, 2013; Ferdous \& Mohajan, 2022; Mohajan \& Mohajan, 2022a-j, 2023a-z).

3. Research Methodology of the Study

Research is a hard-working search, scholarly inquiry, and investigation that aims to discover new facts and findings (Adams et al., 2007). In any kind of research, a researcher collects data and information, and then analyzes and interprets them efficiently to present a research paper or so on (Groh, 2018). Research always searches for truth and tries to develop the storehouse of human knowledge (Pandey \& Pandey, 2015). It uses scientific methods to explain, predict, and control the observed phenomenon of a researcher (Babbie, 2017). Methodology is a systematic guideline for the accomplishment of a good research (Kothari, 2008). It tries to make relationship with the nature and power to science, truth, and epistemology (Ramazanoglu \& Holland, 2002). It shows the research design and analysis procedures (Hallberg, 2006). Hence we have realized that research methodology is the specific procedures that are used to identify, select, process, and analyze materials related to the research matters (Somekh \& Lewin, 2005; Schwandt, 2014).

A well-developed outline of the study and an efficient understanding are essential to reach the goal of a research (Tie et al., 2019). To prepare this study we have used the mathematical logics and depended on the secondary data sources that are related to the profit maximization (Das \& Mohajan, 2014a,b,c; Moolio et al., 2009). We have also unsparingly consulted valuable articles and books of famous authors (Mohajan, 2017b, 2018a). To enrich this paper we have managed
some research materials from the internet and websites (Islam et al., 2009a, b, 2010a,b, 2011a,b,c, 2012a,b,c, Mohajan, 2011a-d, 2012a-h, 2013a-j, 2014a-g, 2015a-e, 2016a,b,c, 2017a-g, 2018a-e, 2020a-e, 2021a-e, 2022a-d, Rahman \& Mohajan, 2019; Roy et al., 2021).

4. Objective of the Study

The principal objective of this article is to discuss the economic strategies of various inputs when the budget of the industry increases. Other minor related objectives of the study are as follows:

- to provide the mathematical calculations in some details,
- to give the economic predictions properly, and
- to show the physical significances efficiently.

5. Lagrange Function

We consider that an organization tries to make a maximum profit from its products and it wants to establish a sustainable environment in the economic world. Let the organization uses ℓ_{1} amount of capital, ℓ_{2} quantity of labor, ℓ_{3} quantity of principal raw materials, and ℓ_{4} quantity of irregular raw material for its usual production process. Let us consider the Cobb-Douglas production function $f\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$ as a profit function for our economic model (Cobb \& Douglas, 1928; Islam et al., 2011; Mohajan \& Mohajan, 2022c),

$$
\begin{equation*}
P\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)=f\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)=A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}, \tag{1}
\end{equation*}
$$

where A is the efficiency parameter that reflects the level of technology, i.e., technical process, economic system, etc., which represents total factor productivity. Moreover, A reflects the skill and efficient level of the workforce. Here a, b, c, and d are parameters; a indicates the output of elasticity of capital, and measures the percentage change in $P\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$ for 1% change in ℓ_{1}, while ℓ_{2}, ℓ_{3}, and ℓ_{4} are held constants. Similarly, b indicates the output of elasticity of labor, c indicates the output of elasticity of principal raw material, and d indicates the output of elasticity of irregular raw material. These four parameters a, b, c, and d must satisfy the
following four inequalities (Islam et al., 2010; Moolio et al., 2009; Mohajan, 2022; Mohajan \& Mohajan, 2023a):

$$
\begin{equation*}
0<a<1,0<b<1,0<c<1, \text { and } 0<d<1 . \tag{2}
\end{equation*}
$$

A strict Cobb-Douglas production function, in which $\Delta=a+b+c+d>1$ indicates increasing returns to scale, $\Delta=1$ indicates constant returns to scale, and $\Delta<1$ indicates decreasing returns to scale. Now we consider that the profit function is subject to a nonlinear budget constraint as (Roy et al., 2021; Mohajan \& Mohajan, 2022c, 2023d),

$$
\begin{equation*}
B\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)=k \ell_{1}+l \ell_{2}+m \ell_{3}+n\left(\ell_{4}\right) \ell_{4}, \tag{3}
\end{equation*}
$$

where k is rate of interest or services of per unit of capital $\ell_{1} ; l$ is the wage rate per unit of labor $\ell_{2} ; m$ is the cost per unit of principal raw material ℓ_{3}; and n is the cost per unit of irregular raw material ℓ_{4}. In nonlinear budget equation (3) we consider (Moolio et al., 2009; Mohajan \& Mohajan, 2023c),

$$
\begin{equation*}
n\left(\ell_{4}\right)=n_{0} \ell_{4}-n_{0}, \tag{4}
\end{equation*}
$$

where n_{0} being the discounted price of the irregular input ℓ_{4}. Therefore, the nonlinear budget constraint (3) takes the form (Mohajan, 2021a; Mohajan \& Mohajan, 2023b);

$$
\begin{equation*}
B\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)=k \ell_{1}+l \ell_{2}+m \ell_{3}+n_{0} \ell_{4}^{2}-n_{0} \ell_{4} . \tag{5}
\end{equation*}
$$

We now formulate the maximization problem for the profit function (1) in terms of single Lagrange multiplier λ by defining the Lagrangian function $L\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \lambda\right)$ as (Ferdous \& Mohajan, 2022; Mohajan \& Mohajan, 2023a),

$$
\begin{equation*}
L\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \lambda\right)=A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}+\lambda\left\{B\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)-k \ell_{1}-l \ell_{2}-m \ell_{3}-n_{0} \ell_{4}^{2}+n_{0} \ell_{4}\right\} . \tag{6}
\end{equation*}
$$

Relation (6) is a 5-dimensional unconstrained problem that is formed combining (1) and 4dimensional constrained problem (3), where Lagrange multiplier λ, is considered as a device in our profit maximization model.

6. Four Variable Inputs

For maximization, first order differentiation equals to zero; then from (6) we can write (Islam et al., 2011; Mohajan, 2021c; Mohajan \& Mohajan, 2022d),

$$
\begin{gather*}
L_{\lambda}=B-k \ell_{1}-l \ell_{2}-m \ell_{3}-n_{0} \ell_{4}^{2}+n_{0} \ell_{4}=0, \tag{7a}\\
L_{1}=a A \ell_{1}^{a-1} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}-\lambda k=0, \tag{7b}\\
L_{2}=b A \ell_{1}^{a} \ell_{2}^{b-1} \ell_{3}^{c} \ell_{4}^{d}-\lambda l=0, \tag{7c}\\
L_{3}=c A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c-1} \ell_{4}^{d}-\lambda m=0, \tag{7d}\\
L_{4}=d A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c}{ }_{4}^{d-1}-\lambda n_{0}\left(2 \ell_{4}-1\right)=0, \tag{7e}
\end{gather*}
$$

where, $\frac{\partial L}{\partial \lambda}=L_{\lambda}, \quad \frac{\partial L}{\partial \ell_{1}}=L_{1}, \frac{\partial L}{\partial \ell_{2}}=L_{2}$, etc. indicate first-order partial differentiations of multivariate Lagrangian function.

Using equations (2) to (7) we can determine the values of $\ell_{1}, \ell_{2}, \ell_{3}$, and ℓ_{4} as follows (Ferdous \& Mohajan, 2022; Mohajan, 2021b; Mohajan \& Mohajan, 2022c):

$$
\begin{align*}
& \ell_{1}=\frac{a B}{k \Delta} \tag{8a}\\
& \ell_{2}=\frac{b B}{l \Delta}, \tag{8b}\\
& \ell_{3}=\frac{c B}{m \Delta}, \tag{8c}\\
& \ell_{4}=\frac{d B}{n \Delta} . \tag{8d}
\end{align*}
$$

7. Bordered Hessian

Let us consider the determinant of the 5×5 bordered Hessian matrix as (Islam et al. 2010; Mohajan \& Mohajan, 2023b),

$$
|H|=\left|\begin{array}{ccccc}
0 & -B_{1} & -B_{2} & -B_{3} & -B_{4} \tag{9}\\
-B_{1} & L_{11} & L_{12} & L_{13} & L_{14} \\
-B_{2} & L_{21} & L_{22} & L_{23} & L_{24} \\
-B_{3} & L_{31} & L_{32} & L_{33} & L_{34} \\
-B_{4} & L_{41} & L_{42} & L_{43} & L_{44}
\end{array}\right| .
$$

Taking first-order partial differentiations of (5) we get,

$$
\begin{equation*}
B_{1}=k, B_{2}=l, B_{3}=m, \text { and } B_{4}=2 n_{0} \ell_{4}-n_{0} \tag{10}
\end{equation*}
$$

Taking second-order and cross-partial derivatives of (6) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023b),

$$
\begin{align*}
& L_{11}=a(a-1) A \ell_{1}^{a-2} \ell_{2}^{b}{ }_{3}^{c} \ell_{4}^{d}, \\
& L_{22}=b(b-1) A \ell_{1}^{a} \ell_{2}^{b-2} \ell_{3}^{c} \ell_{4}^{d}, \\
& L_{33}=c(c-1) A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c-2} \ell_{4}^{d}, \\
& L_{44}=d(d-1) A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d-2}, \\
& L_{12}=L_{21}=a b A \ell_{1}^{a-1} \ell_{2}^{b-1} \ell_{3}^{c} \ell_{4}^{d}, \\
& L_{13}=L_{31}=a c A \ell_{1}^{a-1} \ell_{2}^{b} \ell_{3}^{c-1} \ell_{4}^{d}, \\
& L_{14}=L_{41}=a d A \ell_{1}^{a-1} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d-1}, \tag{11}\\
& L_{23}=L_{32}=b c A \ell_{1}^{a} \ell_{2}^{b-1} \ell_{3}^{c-1} \ell_{4}^{d}, \\
& L_{24}=L_{42}=b d A \ell_{1}^{a} \ell_{2}^{b-1} \ell_{3}^{c} \ell_{4}^{d-1}, \\
& L_{34}=L_{43}=c d A \ell_{1}^{a} \ell_{2}^{b}{ }_{3}^{c-1} \ell_{4}^{d-1} .
\end{align*}
$$

where $\frac{\partial^{2} L}{\partial \ell_{1} \partial \ell_{2}}=L_{12}=L_{21}, \frac{\partial^{2} L}{\partial \ell_{2}^{2}}=L_{22}$, etc. indicate cross-partial, second order differentiations of multivariate Lagrangian function, respectively, etc.

Now we expand the Hessian (9) as $|H|>0$ (Moolio et al., 2009; Mohajan et al., 2013; Mohajan \& Mohajan, 2023c),

$$
\begin{equation*}
|H|=\frac{A^{3} a b c d A \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B^{2}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2} \Delta^{2}}(a+b+c+d)(d+3)>0 \tag{12}
\end{equation*}
$$

where efficiency parameter, $\Delta>0$, and budget of the firm, $B>0 ; \ell_{1}, \ell_{2}, \ell_{3}$, and ℓ_{4} are four different types of inputs; and consequently, $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}>0$. Parameters, $a, b, c, d>0$; also in the model either $0<\Delta=a+b+c+d<1, \Delta=1$ or $\Delta>1$. Hence, equation (12) gives; $|H|>0$ (Islam et al., 2010; Mohajan \& Mohajan, 2022c, 2023a).

8. Lagrange Multiplier λ

Now using the necessary values from (8) in (7a) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023b),

$$
\begin{gather*}
B=\frac{a A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}}{\lambda}+\frac{b A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}}{\lambda}+\frac{c A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}}{\lambda}+\frac{d A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d}}{\lambda} \\
\lambda=\frac{A \ell_{1}^{a} \ell_{2}^{b} \ell_{3}^{c} \ell_{4}^{d} \Delta}{B} . \tag{13}
\end{gather*}
$$

9. Jacobian

We have observed that the second-order condition is satisfied, so that the determinant of (5) survives at the optimum, i.e., $|J|=|H|$; and hence, we can apply the implicit function theorem. Now we compute twenty-five partial derivatives, such as $\frac{\partial \lambda}{\partial k}, \frac{\partial \ell_{1}}{\partial k}, \frac{\partial \ell_{3}}{\partial l}, \frac{\partial \ell_{4}}{\partial B}$, etc. that are referred to as the comparative statics of the model (Chiang, 1984; Mohajan \& Mohajan, 2022c).

Let \mathbf{G} be the vector-valued function of ten variables $\lambda^{*}, \ell_{1}^{*}, \ell_{2}^{*}, \ell_{3}^{*}, \ell_{4}^{*}, k, l, m, n$, and B, and we define the function \mathbf{G} for the point $\left(\lambda^{*}, \ell_{1}^{*}, \ell_{2}^{*}, \ell_{3}^{*}, \ell_{4}^{*}, k, l, m, n, B\right) \in R^{10}$, and take the values in R^{5}. By the Implicit Function Theorem of multivariable calculus, the equation (Mohajan, 2021b; Mohajan \& Mohajan, 2022d, 2023d),

$$
\begin{equation*}
F\left(\lambda^{*}, \ell_{1}^{*}, \ell_{2}^{*}, \ell_{3}^{*}, \ell_{4}^{*}, k, l, m, n, B\right)=0 \tag{14}
\end{equation*}
$$

may be solved in the form of

$$
\left[\begin{array}{l}
\lambda \tag{15}\\
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4}
\end{array}\right]=\mathbf{G}(k, l, m, n, B)
$$

Now the 5×5 Jacobian matrix for $\mathbf{G}(k, l, m, n, B)$; regarded as $J_{G}=\frac{\partial\left(\lambda, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)}{\partial\left(k, l, m, n_{0}, B\right)}$, and is represented by;

$$
\begin{align*}
& J_{G}=\left[\begin{array}{ccccc}
\frac{\partial \lambda}{\partial k} & \frac{\partial \lambda}{\partial l} & \frac{\partial \lambda}{\partial m} & \frac{\partial \lambda}{\partial n_{0}} & \frac{\partial \lambda}{\partial B} \\
\frac{\partial \ell_{1}}{\partial k} & \frac{\partial \ell_{1}}{\partial l} & \frac{\partial \ell_{1}}{\partial m} & \frac{\partial \ell_{1}}{\partial n_{0}} & \frac{\partial \ell_{1}}{\partial B} \\
\frac{\partial \ell_{2}}{\partial k} & \frac{\partial \ell_{2}}{\partial l} & \frac{\partial \ell_{2}}{\partial m} & \frac{\partial \ell_{2}}{\partial n_{0}} & \frac{\partial \ell_{2}}{\partial B} \\
\frac{\partial \ell_{3}}{\partial k} & \frac{\partial \ell_{3}}{\partial l} & \frac{\partial \ell_{3}}{\partial m} & \frac{\partial \ell_{3}}{\partial n_{0}} & \frac{\partial \ell_{3}}{\partial B} \\
\frac{\partial \ell_{4}}{\partial k} & \frac{\partial \ell_{4}}{\partial l} & \frac{\partial \ell_{4}}{\partial m} & \frac{\partial \ell_{4}}{\partial n_{0}} & \frac{\partial \ell_{4}}{\partial B}
\end{array}\right] \tag{16}\\
& =-J^{-1}\left[\begin{array}{rrrrrr}
-\ell_{1} & -\ell_{2} & -\ell_{3} & -\ell_{4}^{2}+\ell_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -2 \lambda \ell_{4}+\lambda & 0
\end{array}\right] . \tag{17}
\end{align*}
$$

The inverse of Jacobian matrix is, $J^{-1}=\frac{1}{|J|} C^{T}$, where $C=\left(C_{i j}\right)$, the matrix of cofactors of J, where T for transpose, then (17) becomes (Moolio et al., 2009; Roy et al., 2021; Mohajan, 2021a),

$$
\begin{align*}
& =-\frac{1}{|J|}\left[\begin{array}{lllll}
C_{11} & C_{21} & C_{31} & C_{41} & C_{51} \\
C_{12} & C_{22} & C_{32} & C_{42} & C_{52} \\
C_{13} & C_{23} & C_{33} & C_{43} & C_{53} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{54} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55}
\end{array}\right]\left[\begin{array}{ccccc}
-\ell_{1} & -\ell_{2} & -\ell_{3} & -\ell_{4}^{2}+\ell_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -2 \lambda \ell_{4}+\lambda & 0
\end{array}\right] . \tag{18}\\
& J_{G}=-\frac{1}{|J| \mid}\left[\begin{array}{llllll}
-\ell_{1} C_{11}-\lambda C_{21} & -\ell_{2} C_{11}-\lambda C_{31} & -\ell_{3} C_{11}-\lambda C_{41} & -\ell_{4}^{2} C_{11}+\ell_{4} C_{11}-2 \lambda \ell_{4} C_{51}+\lambda C_{51} & C_{11} \\
-\ell_{1} C_{12}-\lambda C_{22} & -\ell_{2} C_{12}-\lambda C_{32} & -\ell_{3} C_{12}-\lambda C_{42} & -\ell_{4}^{2} C_{12}+\ell_{4} C_{12}-2 \lambda \ell_{4} C_{52}+\lambda C_{52} & C_{12} \\
-\ell_{1} C_{13}-\lambda C_{23} & -\ell_{2} C_{13}-\lambda C_{33} & -\ell_{3} C_{13}-\lambda C_{43} & -\ell_{4}^{2} C_{13}+\ell_{4} C_{13}-2 \lambda \ell_{4} C_{53}+\lambda C_{53} & C_{13} \\
-\ell_{1} C_{14}-\lambda C_{24} & -\ell_{2} C_{14}-\lambda C_{34} & -\ell_{3} C_{14}-\lambda C_{44} & -\ell_{4}^{2} C_{14}+\ell_{4} C_{14}-2 \lambda \ell_{4} C_{54}+\lambda C_{54} & C_{14} \\
-\ell_{1} C_{15}-\lambda C_{25} & -\ell_{2} C_{15}-\lambda C_{35} & -\ell_{3} C_{15}-\lambda C_{45} & -\ell_{4}^{2} C_{15}+\ell_{4} C_{15}-2 \lambda \ell_{4} C_{55}+\lambda C_{55} & C_{15}
\end{array}\right] . \tag{19}
\end{align*}
$$

In (19) there are total 25 comparative statics, and in this study we shall deal only with five of them. We shall study the economic analysis of Lagrange multiplier when per unit costs of various inputs are increased. Now we consider that the organization always attempts for the profit maximization production (Baxley \& Moorhouse, 1984; Islam et al., 2011).

10. Comparative Statics

Now we analyze the economic effects on Lagrange multiplier λ when the budget of the organization increases. Taking T_{15} from both sides of (19) we get (Moolio et al., 2009; Islam et al., 2011; Roy et al., 2021),

$$
\begin{aligned}
& \frac{\partial \lambda}{\partial B}=-\frac{1}{J}\left[C_{11}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{11}
\end{aligned}
$$

$$
=-\frac{1}{|J|}\left|\begin{array}{llll}
L_{11} & L_{12} & L_{13} & L_{14} \\
L_{21} & L_{22} & L_{23} & L_{24} \\
L_{31} & L_{32} & L_{33} & L_{34} \\
L_{41} & L_{42} & L_{43} & L_{44}
\end{array}\right|
$$

$$
\begin{align*}
& =-\frac{1}{|J|}\left\{L_{11}\left|\begin{array}{lll}
L_{22} & L_{23} & L_{24} \\
L_{32} & L_{33} & L_{34} \\
L_{42} & L_{43} & L_{44}
\end{array}\right|-L_{12}\left|\begin{array}{ccc}
L_{21} & L_{23} & L_{24} \\
L_{31} & L_{33} & L_{34} \\
L_{41} & L_{43} & L_{44}
\end{array}\right|+L_{13}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{24} \\
L_{31} & L_{32} & L_{34} \\
L_{41} & L_{42} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33} \\
L_{41} & L_{42} & L_{43}
\end{array}\right|\right\} \\
& =\frac{1}{|J|}\left[-L_{11}\left\{L_{22}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(L_{42} L_{34}-L_{32} L_{44}\right)+L_{24}\left(L_{32} L_{43}-L_{42} L_{33}\right)\right\}\right. \\
& -L_{12}\left\{-L_{21}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-L_{41} L_{34}+L_{31} L_{44}\right)+L_{24}\left(-L_{31} L_{43}+L_{41} L_{33}\right)\right\} \\
& +L_{13}\left\{-L_{21}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-L_{41} L_{34}+L_{31} L_{44}\right)+L_{24}\left(-L_{31} L_{42}+L_{41} L_{32}\right)\right\} \\
& \left.-L_{14}\left\{-L_{21}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-L_{41} L_{33}+L_{31} L_{43}\right)+L_{23}\left(-L_{31} L_{42}+L_{41} L_{32}\right)\right\}\right] \\
& =\frac{1}{|J|}\left\{-L_{11} L_{22} L_{33} L_{44}+L_{11} L_{24} L_{42} L_{33}-L_{11} L_{24} L_{32} L_{43}+L_{11} L_{23} L_{32} L_{44}-L_{11} L_{23} L_{42} L_{34}+L_{11} L_{22} L_{43} L_{34}\right. \\
& +L_{12} L_{21} L_{33} L_{44}-L_{12} L_{21} L_{43} L_{34}+L_{12} L_{23} L_{41} L_{34}-L_{12} L_{23} L_{31} L_{44}+L_{12} L_{24} L_{31} L_{43}-L_{12} L_{24} L_{41} L_{33} \\
& -L_{13} L_{21} L_{32} L_{44}+L_{13} L_{21} L_{42} L_{34}-L_{13} L_{22} L_{41} L_{34}+L_{13} L_{22} L_{31} L_{44}-L_{13} L_{24} L_{31} L_{42}+L_{13} L_{24} L_{41} L_{32} \\
& \left.+L_{14} L_{21} L_{32} L_{43}-L_{14} L_{21} L_{42} L_{33}+L_{14} L_{22} L_{41} L_{33}-L_{14} L_{22} L_{31} L_{43}+L_{14} L_{23} L_{31} L_{42}-L_{14} L_{23} L_{41} L_{32}\right\} \\
& =\frac{1}{|J|} \frac{A^{4} \ell_{1}^{4 a} \ell_{2}^{4 b} \ell_{3}^{4 c} \ell_{4}^{4 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{-a(a-1) b(b-1) c(c-1) d(d-1)+a(a-1) b^{2} c(c-1) d^{2}-a(a-1) b^{2} c^{2} d^{2}\right. \\
& +a(a-1) b^{2} c^{2} d(d-1)-a(a-1) b^{2} c^{2} d^{2}+a(a-1) b(b-1) c^{2} d^{2}+a^{2} b^{2} c(c-1) d(d-1)-a^{2} b^{2} c^{2} d^{2} \\
& +a^{2} b^{2} c^{2} d^{2}-a^{2} b^{2} c^{2} d(d-1)+a^{2} b^{2} c^{2} d^{2}-a^{2} b^{2} c(c-1) d^{2}-a^{2} b^{2} c^{2} d(d-1)+a^{2} b^{2} c^{2} d^{2} \\
& -a^{2} b(b-1) c^{2} d^{2}+a^{2} b(b-1) c^{2} d(d-1)-a^{2} b^{2} c^{2} d^{2}+a^{2} b^{2} c^{2} d^{2}+a^{2} b^{2} c^{2} d^{2}-a^{2} b^{2} c(c-1) d^{2} \\
& \left.-a^{2} b(b-1) c^{2} d^{2}+a^{2} b^{2} c^{2} d^{2}-a^{2} b^{2} c^{2} d^{2}\right\} \\
& =\frac{1}{|J|} \frac{A^{4} a b c d \ell_{1}^{4 a} \ell_{2}^{4 b} \ell_{3}^{4 c} \ell_{4}^{4 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\{-(a-1)(b-1)(c-1)(d-1)+(a-1) b c(d-1)+a b(c-1)(d-1) \\
& -2 a b c(d-1)+a(b-1) c(d-1)-2 a b(c-1) d+3 a b c d-2(a-1) b c d+(a-1)(b-1) c d \\
& +(a-1) b(c-1) d-3 a(b-1) c d\} \\
& \frac{\partial \lambda}{\partial B}=\frac{1}{|J|} \frac{A^{4} a b c d \ell_{1}^{4 a} \ell_{2}^{4 b} \ell_{3}^{4 c} \ell_{4}^{4 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}(-2 a b c d+2 a c d+a b d+b d+a+b+c-1) . \tag{20}
\end{align*}
$$

Now we consider $a=b=c=d=\frac{1}{2}$ then we get, $\Delta=2$, i.e., for increasing returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=\frac{A^{4}}{2^{4}|J|}>0 \tag{21}
\end{equation*}
$$

From the relation (21) we see that when budget of the organization increases, the level of Lagrange multiplier, i.e., marginal profit also increases. Hence, for increasing returns to scale profit maximization attempts may be successful, and organization may be sustainable.

Now we consider $a=b=c=d=\frac{1}{4}$ then we get, $\Delta=1$, i.e., for constant returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=-\frac{19 A^{4}}{2^{13} \ell_{1} \ell_{2} \ell_{3} \ell_{4}|J|}<0 \tag{22}
\end{equation*}
$$

From the relation (22) we see that when budget of the organization increases, the level of Lagrange multiplier decreases. Consequently, the organization faces difficulties on the way of sustainability. Hence, in this situation constant return to scale is not suitable for the organization.

Now we consider $a=b=c=\frac{1}{8}$ and $d=\frac{1}{2}$ then we get, $\Delta=\frac{7}{8}$, i.e., for decreasing returns to scale, in (20) we get,

$$
\begin{equation*}
\frac{\partial \lambda}{\partial B}=-\frac{277 A^{4}}{2^{7}|J|}<0 \tag{23}
\end{equation*}
$$

From the relation (23) we see that it provides same property as in (22). Hence, both constant and decreasing returns to scale are not suitable for the sustainable environment of the organization when budget of the organization increases.

Now we analyze the economic effects of capital when budget of the organization increases. Taking T_{25} from both sides of (19) we get (Islam et al., 2011; Roy et al., 2021, Mohajan \& Mohajan, 2022a, 2023b),

$$
\begin{aligned}
& \frac{\partial \ell_{1}}{\partial B}=-\frac{1}{J}\left[C_{12}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{12} \\
& =\frac{1}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{12} & L_{13} & L_{14} \\
-B_{2} & L_{22} & L_{23} & L_{24} \\
-B_{3} & L_{32} & L_{33} & L_{34} \\
-B_{4} & L_{42} & L_{43} & L_{44}
\end{array}\right|
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{22} & L_{23} & L_{24} \\
L_{32} & L_{33} & L_{34} \\
L_{42} & L_{43} & L_{44}
\end{array}\right|-L_{12}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|+L_{13}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{23} \\
-B_{3} & L_{32} & L_{33} \\
-B_{4} & L_{42} & L_{43}
\end{array}\right|\right\} \\
& =\frac{1}{|J|}\left[-B_{1}\left\{L_{22}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(L_{42} L_{34}-L_{32} L_{44}\right)+L_{24}\left(L_{32} L_{43}-L_{42} L_{33}\right)\right\}\right. \\
& -L_{12}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\} \\
& +L_{13}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& \left.-L_{14}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\}\right] \\
& =\frac{1}{|J|}\left\{-B_{1} L_{22} L_{33} L_{44}+B_{1} L_{22} L_{43} L_{34}-B_{1} L_{23} L_{42} L_{34}+B_{1} L_{23} L_{32} L_{44}-B_{1} L_{24} L_{32} L_{43}+B_{1} L_{24} L_{42} L_{33}\right. \\
& +B_{2} L_{12} L_{33} L_{44}-B_{2} L_{12} L_{43} L_{34}+B_{4} L_{12} L_{23} L_{34}-B_{3} L_{12} L_{22} L_{44}+B_{3} L_{12} L_{24} L_{43}-B_{4} L_{12} L_{24} L_{33}-B_{2} L_{13} L_{32} L_{44} \\
& +B_{2} L_{13} L_{42} L_{34}-B_{4} L_{13} L_{22} L_{34}+B_{3} L_{13} L_{22} L_{44}-B_{3} L_{13} L_{24} L_{42}+B_{4} L_{13} L_{24} L_{32}+B_{2} L_{14} L_{32} L_{43}-B_{2} L_{14} L_{42} L_{33} \\
& \left.+B_{4} L_{14} L_{22} L_{33}-B_{3} L_{14} L_{22} L_{43}+B_{3} L_{14} L_{23} L_{42}-B_{4} L_{14} L_{23} L_{32}\right\} \\
& =\frac{1}{|J|} \frac{A^{3} \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{-k \ell_{1}^{2} b(b-1) c(c-1) d(d-1)+k \ell_{1}^{2} b(b-1) c^{2} d^{2}-k \ell_{1}^{2} b^{2} c^{2} d^{2}+k \ell_{1}^{2} b^{2} c^{2} d(d-1)\right. \\
& -k \ell_{1}^{2} b^{2} c^{2} d^{2}+k \ell_{1}^{2} b^{2} c(c-1) d^{2}+l \ell_{1} \ell_{2} a b c(c-1) d(d-1)-l \ell_{1} \ell_{2} a b c^{2} d^{2}+n \ell_{1} \ell_{4} a b^{2} c^{2} d \\
& -m \ell_{1} \ell_{3} a b^{2} c d(d-1)+m \ell_{1} \ell_{3} a b^{2} c d^{2}-n \ell_{1} \ell_{4} a b^{2} c(c-1) d-l \ell_{1} \ell_{2} a b c^{2} d(d-1)+l \ell_{1} \ell_{2} a b c^{2} d^{2} \\
& -n \ell_{1} \ell_{4} a b(b-1) c^{2} d+m \ell_{1} \ell_{3} a b(b-1) c d(d-1)-m \ell_{1} \ell_{3} a b^{2} c d^{2}+n \ell_{1} \ell_{4} a b^{2} c^{2} d+l \ell_{1} \ell_{2} a b c^{2} d^{2} \\
& \left.-l \ell_{1} \ell_{2} a b c(c-1) d^{2}+n \ell_{1} \ell_{4} a b(b-1) c(c-1) d-m \ell_{1} \ell_{3} a b(b-1) c d^{2}+m \ell_{1} \ell_{3} a b^{2} c d^{2}-n \ell_{1} \ell_{4} a b^{2} c^{2} d\right\} \\
& =\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2} \Delta}\{-(b-1)(c-1)(d-1)+b(c-1)(d-1)-b c(d-1)+(b-1) c(d-1) \\
& \left.+2(b-1) c d+\left(2 \ell_{4}-1\right) b c d-\left(2 \ell_{4}-1\right) b c(d-1)-\left(2 \ell_{4}-1\right)(b-1) c d+\left(2 \ell_{4}-1\right)(b-1)(c-1) d\right\} \\
& \frac{\partial \ell_{1}}{\partial B}=\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2} \Delta}\left\{2 \ell_{4}(b c-b d+d)+(b d-2 d-3 b c-2 c d+1)\right\} . \tag{24}
\end{align*}
$$

Now we consider $a=b=c=d=\frac{1}{2}$ then we get, $\Delta=2$, i.e., for increasing returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=\frac{A^{4} B}{2^{9}|J| \sqrt{\ell_{1} \ell_{2} \ell_{3} \ell_{4}}}\left(\ell_{4}-2\right) \tag{25}
\end{equation*}
$$

In (25) if $\ell_{4}>2$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}>0 \tag{26}
\end{equation*}
$$

From the inequality (26) we see that when budget of the organization increases, the capital of the organization also increases. We believe that for increasing returns to scale profit maximization is possible for this organization, and we think that the organization is in sustainable position.

In (25) if $\ell_{4}<2$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}<0 . \tag{27}
\end{equation*}
$$

From the inequality (27) we see that when budget of the organization increases, the capital of the organization decreases. At this situation, the organization is not in profit maximization position. It should take future production decisions very carefully.

In (25) if $\ell_{4}=2$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=0 . \tag{28}
\end{equation*}
$$

From the equation (28) we see that when budget of the organization increases, there is no effect on the level of capital. Hence, capital and budget are mutually indifferent for this organization for $\ell_{4}=2$.

Now we consider $a=b=c=d=\frac{1}{4}$ then we get, $\Delta=1$, i.e., for constant returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=\frac{A^{4} B}{2^{9}|J| \ell_{1}^{\frac{5}{4}} \ell_{2}^{\frac{5}{4}} \ell_{3}^{\frac{5}{4}} \ell_{4}^{\frac{5}{4}}}\left(\ell_{4}-1\right) \tag{29}
\end{equation*}
$$

In (29) if $\ell_{4}>1$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}>0 . \tag{30}
\end{equation*}
$$

Inequality (30) provides the same result as in the inequality (26). In this situation, the organization may run to the profit maximization and it seems that the organization is in sustainable position.

In (29) if $\ell_{4}<1$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}<0 \tag{31}
\end{equation*}
$$

Inequality (31) gives the same result as the inequality (27). It seems that in both cases the organization is in unsustainable condition.
In (29) if $\ell_{4}=1$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=0 \tag{32}
\end{equation*}
$$

Properties of equations (32) and (28) are same. In both cases there is no relation between budget and capital for this organization.

Now we consider $a=b=c=\frac{1}{8}$ and $d=\frac{1}{2}$ then we get, $\Delta=\frac{7}{8}<1$, i.e., for decreasing returns to scale, in (24) we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=\frac{A^{4} B}{7 \times 2^{11}|J| \ell_{1}^{\frac{13}{8}} \ell_{2}^{\frac{13}{8}} \ell_{3}^{\frac{13}{8}} \ell_{4}^{\frac{5}{4}}}\left(5-14 \ell_{4}\right) \tag{33}
\end{equation*}
$$

In (33) if $\ell_{4}>\frac{5}{14}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}<0 \tag{34}
\end{equation*}
$$

From the inequality (34) we see that when the budget of the organization increases, the amount of capital decreases. In this situation the organization is not in profit maximization production procedure and increase of budget will not be beneficial for this organization.

In (33) if $\ell_{4}<\frac{5}{14}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}>0 . \tag{35}
\end{equation*}
$$

From the inequality (35) we see that when the budget of the organization increases, the amount of capital also increases. We see that the organization may proceed to the profit maximization and the organization is in sustainable atmosphere.

In (33) if $\ell_{4}=\frac{5}{14}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{1}}{\partial B}=0 \tag{36}
\end{equation*}
$$

The equation (36) shows that budget and capital of the organization have no relation for $\ell_{4}=\frac{5}{14}$. Now we analyze the economic effects of wage rate when the budget of the organization increases. Taking T_{35} from both sides of (19) we get (Moolio et al., 2009; Roy et al., 2021, Mohajan, 2022a; Mohajan \& Mohajan, 2022c, 2023b),

$$
\begin{aligned}
& \frac{\partial \ell_{2}}{\partial B}=-\frac{1}{J}\left[C_{13}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{13} \\
& =-\frac{1}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{11} & L_{13} & L_{14} \\
-B_{2} & L_{21} & L_{23} & L_{24} \\
-B_{3} & L_{31} & L_{33} & L_{34} \\
-B_{4} & L_{41} & L_{43} & L_{44}
\end{array}\right| \\
& =-\frac{1}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{23} & L_{24} \\
L_{31} & L_{33} & L_{34} \\
L_{41} & L_{43} & L_{44}
\end{array}\right|-L_{11}\left|\begin{array}{lll}
-B_{2} & L_{23} & L_{24} \\
-B_{3} & L_{33} & L_{34} \\
-B_{4} & L_{43} & L_{44}
\end{array}\right|+L_{13}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{23} \\
-B_{3} & L_{31} & L_{33} \\
-B_{4} & L_{41} & L_{43}
\end{array}\right|\right\} \\
& =-\frac{1}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(L_{41} L_{34}-L_{31} L_{44}\right)+L_{24}\left(L_{31} L_{43}-L_{41} L_{33}\right)\right\}\right. \\
& -L_{11}\left\{-B_{2}\left(L_{33} L_{44}-L_{43} L_{34}\right)+L_{23}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{43}+B_{4} L_{33}\right)\right\} \\
& +L_{13}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.-L_{14}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& =-\frac{1}{|J|}\left\{B_{1} L_{21} L_{33} L_{44}-B_{1} L_{21} L_{43} L_{34}+B_{1} L_{23} L_{41} L_{24}-B_{1} L_{23} L_{31} L_{44}+B_{1} L_{24} L_{31} L_{43}-B_{1} L_{24} L_{41} L_{33}\right. \\
& -B_{2} L_{11} L_{33} L_{44}+B_{2} L_{11} L_{43} L_{34}-B_{4} L_{11} L_{23} L_{34}+B_{3} L_{11} L_{23} L_{44}-B_{3} L_{11} L_{24} L_{43}+B_{4} L_{11} L_{24} L_{33}+B_{2} L_{13} L_{31} L_{44} \\
& -B_{2} L_{13} L_{41} L_{34}+B_{4} L_{13} L_{21} L_{34}-B_{3} L_{13} L_{21} L_{44}+B_{3} L_{13} L_{24} L_{41}-B_{4} L_{13} L_{24} L_{31}-B_{2} L_{14} L_{31} L_{43}+B_{2} L_{14} L_{41} L_{33} \\
& \left.-B_{4} L_{14} L_{21} L_{33}+B_{3} L_{14} L_{21} L_{43}-B_{3} L_{14} L_{23} L_{41}+B_{4} L_{14} L_{23} L_{31}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{|J|} \frac{A^{3} \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{k \ell_{1} \ell_{2} a b c(c-1) d(d-1)-k \ell_{1} \ell_{2} a b c^{2} d^{2}+k \ell_{1} \ell_{2} a b c d^{2}-k \ell_{1} \ell_{2} a b c^{2} d(d-1)\right. \\
& +k \ell_{1} \ell_{2} a b c d^{2}-k \ell_{1} \ell_{2} a b c(c-1) d^{2}-l \ell_{2}^{2} a(a-1) c(c-1) d(d-1)+l \ell_{2}^{2} a(a-1) c^{2} d^{2} \\
& -n \ell_{2} \ell_{4} a(a-1) b c^{2} d+m \ell_{2} \ell_{3} a(a-1) b c d(d-1)-m \ell_{2} \ell_{3} a(a-1) b c d^{2}+n \ell_{2} \ell_{4} a(a-1) b c(c-1) d \\
& +l \ell_{2}^{2} a^{2} c^{2} d(d-1)-l \ell_{2}^{2} a^{2} c^{2} d^{2}+n \ell_{2} \ell_{4} a^{2} b c^{2} d-m \ell_{2} \ell_{3} a(a-1) b c d(d-1)+m \ell_{2} \ell_{3} a^{2} b c d^{2} \\
& -n \ell_{2} \ell_{4} a^{2} b c^{2} d-l \ell_{2}^{2} a^{2} c^{2} d^{2}+l \ell_{2}^{2} a^{2} c(c-1) d^{2}-n \ell_{2} \ell_{4} a^{2} b c(c-1) d+m \ell_{2} \ell_{3} a^{2} b c d^{2}-m \ell_{2} \ell_{3} a^{2} b c d^{2} \\
& \left.+n \ell_{2} \ell_{4} a^{2} b c^{2} d\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d}}{\ell_{1}^{2} \ell_{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{k \ell_{1}(c-1)(d-1)-k \ell_{1} c(d-1)+k \ell_{1} c d-k \ell_{1}(c-1) d+l \ell_{2} a b^{-1} c(d-1)\right. \\
& -2 l \ell_{2} a b^{-1} c d+l \ell_{2} a b^{-1}(c-1) d-l \ell_{2}(a-1) b^{-1}(c-1)(d-1)+l_{2} \ell_{2}(a-1) b^{-1} c d+m \ell_{3}(a-1)(d-1) \\
& \left.+2 m \ell_{3} a d-2 m \ell_{3} a(a-1)+n \ell_{4}(a-1)(c-1)-n \ell_{4}(a-1) c-n \ell_{4} a(c-1)+n \ell_{4} a c\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2} \ell_{3}^{2} \ell_{4}^{2} \Delta}\{a(c-1)(d-1)-(a-1)(c-1)(d-1)+(a-1) c(d-1)-2 a c(d-1)+a c d \\
& \left.+(a-1) c d+\left(2 \ell_{4}-1\right)(a-1)(c-1) d-\left(2 \ell_{4}-1\right)(a-1) c d-\left(2 \ell_{4}-1\right) a(c-1) d+\left(2 \ell_{4}-1\right) a c d\right\} \\
& \frac{\partial \ell_{2}}{\partial B}=-\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2} \ell_{3}^{2} \ell_{4}^{2} \Delta}\left(2 \ell_{4} d-a c d+a c-c d-2 d+1\right) . \tag{37}
\end{align*}
$$

Now we consider $a=b=c=d=\frac{1}{2}$ then we get, $\Delta=2$, i.e., for increasing returns to scale, in (37) we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}=\frac{A^{3} B \sqrt{\ell_{2}}}{2^{8}|J| \sqrt{\ell_{1} \ell_{3} \ell_{4}}}\left(1-8 \ell_{4}\right) . \tag{38}
\end{equation*}
$$

In (38) if $\ell_{4}<\frac{1}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}>0 . \tag{39}
\end{equation*}
$$

From the inequality (39) we see that when budget of the organization increases, the wage rate also increases. We believe that for increasing returns to scale profit maximization is possible for this organization, and we think that the organization is in sustainable position.

In (38) if $\ell_{4}>\frac{1}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}<0 \tag{40}
\end{equation*}
$$

From the inequality (40) we see that when budget of the organization increases, the wage rate decreases. We see that for the decreased wage rate the workers may leave the organization and consequently profit maximization may not be possible.
In (38) if $\ell_{4}=\frac{1}{8}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}=0 . \tag{41}
\end{equation*}
$$

From the inequality (41) we see that when budget of the organization increases, there is no change of wage rate. We have realized that in this circumstance there is no relation between budget and wage rate.

Now we consider $a=b=c=d=\frac{1}{4}$ then we get, $\Delta=1$, i.e., for constant returns to scale, in (37) we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}=-\frac{A^{3} B}{2^{14}|J| \ell_{1}^{\frac{5}{4}} \ell_{2}^{\frac{1}{4}} \ell_{3}^{\frac{5}{4}} \ell_{4}^{\frac{5}{4}}}\left(32 \ell_{4}+63\right)<0 \tag{42}
\end{equation*}
$$

From (42) we see that when the budget of the organization increases, the wage rate of the laborers decreases. Hence, organization faces various difficulties for the increased budget and it compel to decrease the wage rate for the sustainability in the local and global economic markets.
Now we consider $a=b=c=\frac{1}{8}$ and $d=\frac{1}{2}$ then we get, $\Delta=\frac{7}{8}$, i.e., for decreasing returns to scale, in (37) we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}=\frac{A^{3} B}{2^{10}|J| \ell_{1}^{\frac{13}{8}} \ell_{2}^{\frac{5}{8}} \ell_{3}^{\frac{13}{8}} \ell_{4}^{\frac{1}{2}}}\left(7-128 \ell_{4}\right) . \tag{43}
\end{equation*}
$$

In (43) if $\ell_{4}<\frac{7}{128}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}>0 . \tag{44}
\end{equation*}
$$

From the inequality (44) we see that when budget of the organization increases, the wage rate increases too. Therefore, wage rate and budget of the organization are positively correlated. It seems that the organization should increase both of them for the profit maximization.

In (43) if $\ell_{4}>\frac{7}{128}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}<0 . \tag{45}
\end{equation*}
$$

From (45) we see that when budget of the organization increases, the wage rate decreases. This is not happy news for the organization. In this situation the organization may proceed in production process very carefully with patient, otherwise it cannot sustain in the competitive global economy.

In (43) if $\ell_{4}=\frac{7}{128}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{2}}{\partial B}=0 . \tag{46}
\end{equation*}
$$

From (46) we see that when budget of the organization increases, there are no effects in wage rate. Hence, we observe that there is no relation between wage rate and budget.

Now we analyze the economic effects of principal raw material, when budget of the organization increases. Taking T_{45} from both sides of (19) we get (Islam et al., 2011; Roy et al., 2021; Wiese, 2021; Mohajan \& Mohajan, 2023a),

$$
\begin{aligned}
& \frac{\partial \ell_{3}}{\partial B}=-\frac{1}{J}\left[C_{14}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{14} \\
& =\frac{1}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{11} & L_{12} & L_{14} \\
-B_{2} & L_{21} & L_{22} & L_{24} \\
-B_{3} & L_{31} & L_{32} & L_{34} \\
-B_{4} & L_{41} & L_{42} & L_{44}
\end{array}\right|
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{24} \\
L_{31} & L_{32} & L_{34} \\
L_{41} & L_{42} & L_{44}
\end{array}\right|-L_{11}\left|\begin{array}{lll}
-B_{2} & L_{22} & L_{24} \\
-B_{3} & L_{32} & L_{34} \\
-B_{4} & L_{42} & L_{44}
\end{array}\right|+L_{12}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{24} \\
-B_{3} & L_{31} & L_{34} \\
-B_{4} & L_{41} & L_{44}
\end{array}\right|-L_{14}\left|\begin{array}{lll}
-B_{2} & L_{21} & L_{22} \\
-B_{3} & L_{31} & L_{32} \\
-B_{4} & L_{41} & L_{42}
\end{array}\right|\right\} \\
& =\frac{1}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(L_{41} L_{34}-L_{31} L_{44}\right)+L_{24}\left(L_{31} L_{42}-L_{41} L_{32}\right)\right\}\right. \\
& -L_{11}\left\{-B_{2}\left(L_{32} L_{44}-L_{42} L_{34}\right)+L_{22}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& +L_{12}\left\{-B_{2}\left(L_{31} L_{44}-L_{41} L_{34}\right)+L_{21}\left(-B_{4} L_{34}+B_{3} L_{44}\right)+L_{24}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.-L_{14}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& =\frac{1}{|J|}\left\{-B_{1} L_{21} L_{32} L_{44}+B_{1} L_{21} L_{42} L_{34}-B_{1} L_{22} L_{41} L_{34}+B_{1} L_{22} L_{31} L_{44}-B_{1} L_{24} L_{31} L_{42}+B_{1} L_{24} L_{41} L_{32}\right. \\
& +B_{2} L_{11} L_{32} L_{44}-B_{2} L_{11} L_{42} L_{34}+B_{4} L_{11} L_{22} L_{34}-B_{3} L_{11} L_{22} L_{44}+B_{3} L_{11} L_{24} L_{42}-B_{4} L_{11} L_{24} L_{32} \\
& -B_{2} L_{12} L_{31} L_{44}+B_{2} L_{12} L_{41} L_{34}-B_{4} L_{12} L_{21} L_{34}+B_{3} L_{12} L_{21} L_{44}-B_{3} L_{12} L_{24} L_{41}+B_{4} L_{12} L_{24} L_{31} \\
& \left.+B_{2} L_{14} L_{31} L_{42}-B_{2} L_{14} L_{41} L_{32}+B_{4} L_{14} L_{21} L_{32}-B_{3} L_{14} L_{21} L_{42}+B_{3} L_{14} L_{22} L_{41}-B_{4} L_{14} L_{22} L_{31}\right\} \\
& =\frac{1}{|J|} \frac{A^{3} \ell_{1}^{3 \alpha} \ell_{2}^{3 \beta} \ell_{3}^{3 \gamma} \ell_{4}^{3 \delta}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{-k \ell_{1} \ell_{3} a b^{2} c d(d-1)+k \ell_{1} \ell_{3} a b^{2} c d^{2}-k \ell_{1} \ell_{3} a b(b-1) c d^{2}-k \ell_{1} \ell_{3} a b^{2} c d^{2}\right. \\
& +k \ell_{1} \ell_{3} a b(b-1) c d(d-1)+k \ell_{1} \ell_{3} a b^{2} c d^{2}+l \ell_{2} \ell_{3} a(a-1) b c d(d-1)-l \ell_{2} \ell_{3} a(a-1) b c d^{2} \\
& +n \ell_{3} \ell_{4} a(a-1) b(b-1) c d-m \ell_{3}^{2} a(a-1) b(b-1) d(d-1)+m \ell_{3}^{2} a(a-1) b^{2} d^{2}-n \ell_{3} \ell_{4} a(a-1) b^{2} c d \\
& -l \ell_{2} \ell_{3} a^{2} b c d(d-1)+l \ell_{2} \ell_{3} a^{2} b c d^{2}-n \ell_{3} \ell_{4} a^{2} b^{2} c d+m \ell_{3}^{2} a^{2} b^{2} d(d-1)-m \ell_{3}^{2} a^{2} b^{2} d^{2}+n \ell_{3} \ell_{4} a^{2} b^{2} c d \\
& \left.+l \ell_{2} \ell_{3} a^{2} b c d^{2}-l \ell_{2} \ell_{3} a^{2} b c d^{2}+n \ell_{3} \ell_{4} a^{2} b^{2} c d-m \ell_{3}^{2} a^{2} b^{2} d^{2}+m \ell_{3}^{2} a^{2} b(b-1) d^{2}-n \ell_{3} \ell_{4} a^{2} b(b-1) c d\right\} \\
& =\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 \alpha} \ell_{2}^{3 \beta} \ell_{3}^{3 \gamma} \ell_{4}^{3 \delta} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3} \ell_{4}^{2} \Delta}\{-a b(d-1)+a(b-1)(d-1)+(a-1) b(d-1)-(a-1)(b-1)(d-1) \\
& \left.+\left(2 \ell_{4}-1\right)(a-1)(b-1) d-\left(2 \ell_{4}-1\right)(a-1) b d+\left(2 \ell_{4}-1\right) a b d-\left(2 \ell_{4}-1\right) a(b-1) d\right\} \\
& \frac{\partial \ell_{3}}{\partial B}=\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 \alpha} \ell_{2}^{3 \beta} \ell_{3}^{3 \gamma} \ell_{4}^{3 \delta} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3} \ell_{4}^{2} \Delta}\left(2 \ell_{4} d-2 d+1\right) . \tag{47}
\end{align*}
$$

Now we consider $a=b=c=d=\frac{1}{2}$ then we get, $\Delta=2$, i.e., for increasing returns to scale, in (47) we get,

$$
\begin{equation*}
\frac{\partial \ell_{3}}{\partial B}=\frac{A^{3} B \sqrt{\ell_{3} \ell_{4}}}{2^{5}|J| \sqrt{\ell_{1} \ell_{2}}}>0 . \tag{48}
\end{equation*}
$$

From the relation (48) we see that when budget of the organization increases, the level of principal raw material also increases. Hence, it seems that the organization is in extreme position of sustainability, and can continue its production without any tension.

Now we consider $a=b=c=d=\frac{1}{4}$ then we get, $\Delta=1$, i.e., for constant returns to scale, in (47) we get,

$$
\begin{equation*}
\frac{\partial \ell_{3}}{\partial B}=\frac{A^{3} B}{2^{8} \ell_{1}^{\frac{5}{4}} \ell_{2}^{\frac{5}{4}} \ell_{3}^{\frac{1}{4}} \ell_{4}^{\frac{5}{4}}|J|}\left(\ell_{4}+1\right)>0 \tag{49}
\end{equation*}
$$

From the relation (49) we see that when budget of the organization increases, the amount of principal raw material also increases. It seems that the organization is in profit maximization and can easily achieve sustainable atmosphere.

Now we consider $a=b=c=\frac{1}{8}$ and $d=\frac{1}{2}$, then we get, $\Delta=\frac{7}{8}<1$, i.e., for decreasing returns to scale, in (47) we get,

$$
\begin{equation*}
\frac{\partial \ell_{3}}{\partial B}=\frac{A^{3} B}{7 \times 2^{7} \ell_{1}^{\frac{13}{8}} \ell_{2}^{\frac{13}{8}} \ell_{3}^{\frac{5}{8}} \ell_{4}^{\frac{5}{8}}|J|}>0 . \tag{50}
\end{equation*}
$$

From the relation (50) we see have obtained the same result as there in (48) and (49). Hence, the organization is in sustainable profit maximization stage at any situation.

Now we analyze the economic effects irregular raw material when the budget of the organization increases. Taking T_{55} from both sides of (19) we get (Wiese, 2021; Mohajan \& Mohajan, 2023a),

$$
\begin{aligned}
& \frac{\partial \ell_{4}}{\partial B}=-\frac{1}{J}\left[C_{15}\right] \\
& =-\frac{1}{|J|} \text { Cofactor of } C_{15} \\
& =-\frac{1}{|J|}\left|\begin{array}{llll}
-B_{1} & L_{11} & L_{12} & L_{13} \\
-B_{2} & L_{21} & L_{22} & L_{23} \\
-B_{3} & L_{31} & L_{32} & L_{33} \\
-B_{4} & L_{41} & L_{42} & L_{43}
\end{array}\right|
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33} \\
L_{41} & L_{42} & L_{43}
\end{array}\right|-L_{11}\left|\begin{array}{ccc}
-B_{2} & L_{22} & L_{23} \\
-B_{3} & L_{32} & L_{33} \\
-B_{4} & L_{42} & L_{43}
\end{array}\right|+\left|\begin{array}{lll}
-L_{12} & L_{21} & L_{23} \\
-B_{3} & L_{31} & L_{33} \\
-B_{4} & L_{41} & L_{43}
\end{array}\right|-L_{13}\left|\begin{array}{ccc}
-B_{2} & L_{21} & L_{22} \\
-B_{3} & L_{31} & L_{32} \\
-B_{4} & L_{41} & L_{42}
\end{array}\right|\right\} \\
& =-\frac{1}{|J|}\left[-B_{1}\left\{L_{21}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(L_{41} L_{33}-L_{31} L_{43}\right)+L_{23}\left(L_{31} L_{42}-L_{41} L_{32}\right)\right\}\right. \\
& -L_{11}\left\{-B_{2}\left(L_{32} L_{43}-L_{42} L_{33}\right)+L_{22}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{42}+B_{4} L_{32}\right)\right\} \\
& +L_{12}\left\{-B_{2}\left(L_{31} L_{43}-L_{41} L_{33}\right)+L_{21}\left(-B_{4} L_{33}+B_{3} L_{43}\right)+L_{23}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\} \\
& \left.-L_{13}\left\{-B_{2}\left(L_{31} L_{42}-L_{41} L_{32}\right)+L_{21}\left(-B_{4} L_{32}+B_{3} L_{42}\right)+L_{22}\left(-B_{3} L_{41}+B_{4} L_{31}\right)\right\}\right] \\
& =-\frac{1}{|J|}\left\{-B_{1} L_{21} L_{32} L_{43}+B_{1} L_{21} L_{42} L_{33}-B_{1} L_{22} L_{41} L_{33}+B_{1} L_{22} L_{31} L_{43}-B_{1} L_{23} L_{31} L_{42}+B_{1} L_{23} L_{41} L_{32}\right. \\
& +B_{2} L_{11} L_{32} L_{43}-B_{2} L_{11} L_{42} L_{33}+B_{4} L_{11} L_{22} L_{33}-B_{3} L_{11} L_{22} L_{43}+B_{3} L_{11} L_{23} L_{42}-B_{4} L_{11} L_{23} L_{32} \\
& -B_{2} L_{12} L_{31} L_{43}+B_{2} L_{12} L_{41} L_{33}-B_{4} L_{12} L_{21} L_{33}+B_{3} L_{12} L_{21} L_{43}-B_{3} L_{12} L_{23} L_{41}+B_{4} L_{12} L_{23} L_{31} \\
& \left.+B_{2} L_{13} L_{31} L_{42}-B_{2} L_{13} L_{41} L_{32}+B_{4} L_{13} L_{21} L_{32}-B_{3} L_{13} L_{21} L_{42}+B_{3} L_{13} L_{22} L_{41}-B_{4} L_{13} L_{22} L_{31}\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d}}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4}^{2}}\left\{-k \ell_{1} \ell_{4} a b^{2} c^{2} d+k \ell_{1} \ell_{4} a b^{2} c(c-1) d-k \ell_{1} \ell_{4} a b(b-1) c(c-1) d\right. \\
& +k \ell_{1} \ell_{4} a b(b-1) c(c-1) d-k \ell_{1} \ell_{4} a b^{2} c^{2} d+k \ell_{1} \ell_{4} a b^{2} c^{2} d+l \ell_{2} \ell_{4} a(a-1) b c^{2} d+l \ell_{2} \ell_{4} a^{2} b c(c-1) d \\
& +n \ell_{4}^{2} a(a-1) b(b-1) c(c-1)-m \ell_{3} \ell_{4} a(a-1) b(b-1) c d+m \ell_{3} \ell_{4} a(a-1) b^{2} c d-n \ell_{4}^{2} a(a-1) b^{2} c^{2} \\
& -l \ell_{2} \ell_{4} a^{2} b c^{2} d+l \ell_{2} \ell_{4} a^{2} b c(c-1) d-n \ell_{4}^{2} a^{2} b^{2} c(c-1)+m \ell_{3} \ell_{4} a^{2} b^{2} c d-m \ell_{3} \ell_{4} a^{2} b^{2} c d+n \ell_{4}^{2} a^{2} b^{2} c^{2} \\
& \left.+l \ell_{2} \ell_{4} a^{2} b c^{2} d-l \ell_{2} \ell_{4} a^{2} b c^{2} d+n \ell_{4}^{2} a^{2} b^{2} c^{2}-m \ell_{3} \ell_{4} a^{2} b^{2} c d+m \ell_{3} \ell_{4} a^{2} b(b-1) c d-n a^{2} b(b-1) c^{2}\right\} \\
& =-\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4} \Delta}\{-3 a b c+2(a-1) b c+3 a b(c-1)-(a-1)(b-1) c+a(b-1) c \\
& -\left(2 \ell_{4}-1\right)(a-1) b c+\left(2 \ell_{4}-1\right)(a-1)(b-1)(c-1)-\left(2 \ell_{4}-1\right) a b(c-1)+2\left(2 \ell_{4}-1\right) a b c \\
& \left.-\left(2 \ell_{4}-1\right) a(b-1) c\right\} \\
& \frac{\partial \ell_{4}}{\partial B}=-\frac{1}{|J|} \frac{A^{3} a b c d \ell_{1}^{3 a} \ell_{2}^{3 b} \ell_{3}^{3 c} \ell_{4}^{3 d} B}{\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2} \ell_{4} \Delta}\left\{2 \ell_{4}(a+b+c-1)+(2 a b c-3 a b-b c-a-b-2 c+1)\right\} . \tag{51}
\end{align*}
$$

Now using $a=b=c=d=\frac{1}{4}$ then we get, $\Delta=1$, i.e., for constant returns to scale, in (51) we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}=\frac{A^{3} B}{2^{12} \ell_{1}^{\frac{5}{4}} \ell_{2}^{\frac{5}{4}} \ell_{3}^{\frac{5}{4}} \ell^{\frac{1}{4}}|J|}\left(8 \ell_{4}+7\right)>0 \tag{52}
\end{equation*}
$$

The inequality (52) indicates that if the budget of the organization increases; the amount of irregular input increases too. It seems that irregular input is an essential element, and the organization increases purchasing capacity in parallel to the increase of the budget.

Now we consider $a=b=c=\frac{1}{8}$ and $d=\frac{1}{2}$, then we get, $\Delta=\frac{7}{8}<1$, i.e., for decreasing returns to scale, in (51) we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}=\frac{A^{3} B \ell_{4}^{\frac{1}{2}}}{7 \times 2^{12} \ell_{1}^{\frac{13}{8}} \ell_{2}^{\frac{13}{8}} \ell_{3}^{\frac{13}{8}}|J|}\left(320 \ell_{4}-113\right) \tag{53}
\end{equation*}
$$

In equation (53) if $\ell_{4}>\frac{113}{320}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}>0 . \tag{54}
\end{equation*}
$$

The inequality (54) provides the same result as in (52) for decreasing returns to scale. Hence, in this situation it seems that the organization is in better position for the economic sustainability. In equation (53) if $\ell_{4}<\frac{113}{320}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}<0 . \tag{55}
\end{equation*}
$$

The inequality (55) shows that when the budget of the organization increases the level of purchasing irregular input decreases. It seems that the irregular input may be not essential material or the organization is not in profit maximization condition.

In equation (53) if $\ell_{4}=\frac{113}{320}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}=0 \tag{56}
\end{equation*}
$$

The equation (56) provides that when the budget of the organization increases, there is no effect on the irregular input.
Now using $a=b=c=d=\frac{1}{2}$ then we get, $\Delta=2$, i.e., for increasing returns to scale, in (51) we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}=\frac{A^{3} B \ell_{4}^{\frac{51}{2}}}{2^{7} \ell_{1}^{\frac{5}{4}} \ell_{2}^{\frac{5}{4}} \ell_{3}^{\frac{5}{4}}|J|}\left(4 \ell_{4}-7\right) \tag{57}
\end{equation*}
$$

In equation (53) if $\ell_{4}>\frac{7}{4}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}>0 . \tag{58}
\end{equation*}
$$

The inequality (58) indicates that if the budget of the organization increases; irregular input responses positively. It seems that the organization has no headache to operate irregular input for profit maximization during increase of budget.

In equation (53) if $\ell_{4}<\frac{7}{4}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}<0 \tag{59}
\end{equation*}
$$

The inequality (59) shows that if the budget of the organization increases; purchasing power of irregular input decreases. It is bad information for the organization. In this situation the organization has no alternate except the decrease of production level.

In equation (53) if $\ell_{4}=\frac{7}{4}$ we get,

$$
\begin{equation*}
\frac{\partial \ell_{4}}{\partial B}=0 \tag{60}
\end{equation*}
$$

The inequality (60) shows that there is no relation between the budget and irregular input. Because, the irregular input has no change after increase the budget of the organization.

11. Conclusions

In this study we have consulted the economic effects of various inputs when the budget of the organization increases. We have started our study with Cobb-Douglas production function as profit function. Moreover, we have allowed 5×5 bordered Hessian matrix and 5×5 Jacobian to show economic predictions more confidently. In the study we have tried to give a sustainable environment to the organization through the mathematical analysis by considering nonlinear budget constraint.

References

Adams, J., Khan, H. T. A., Raeside, R., \& White, D. (2007). Research Methods for Graduate Business and Social Science Students. Sage Publications Ltd., London.

Babbie, E. R. (2017). The Basics of Social Research. Cengage Learning, Boston, MA, USA.
Baxley, J. V., \& Moorhouse, J. C. (1984). Lagrange Multiplier Problems in Economics. The American Mathematical Monthly, 91(7), 404-412.

Carter, M. (2001). Foundations of Mathematical Economics. MIT Press, Cambridge, London.
Chiang, A. C. (1984). Fundamental Methods of Mathematical Economics ($3^{\text {rd }}$ Ed.). Singapore: McGraw-Hill.

Cobb, C. W., \& Douglass, P. H. (1928). A Theory of Production. American Economics Review, 18(1), 139-165.

Das, S., \& Mohajan, H. K. (2014a). Mock Theta Conjectures. Journal of Environmental Treatment Techniques, 2(1), 22-28.

Das, S., \& Mohajan, H. K. (2014b). Generating Functions for $X(n)$ and $Y(n)$. American Review of Mathematics and Statistics, 2(1), 41-43.

Das, S., \& Mohajan, H. K. (2014c). The Number of Vector Partitions of n (Counted According to the Weight) with Crank m. International Journal of Reciprocal Symmetry \& Theoretical Physics, 1(2), 91-105.

Eaton, B., \& Lipsey, R. (1975). The Principle of Minimum Differentiation Reconsidered: Some New Developments in the Theory of Spatial Competition. Review of Economic Studies, 42(1), 27-49.

Ferdous, J., \& Mohajan, H. K. (2022). Maximum Profit Ensured for Industry Sustainability. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Groh, A. (2018). Research Methods in Indigenous Contexts. New York: Springer.
Hallberg, L. (2006). The "Core-Category" of Grounded Theory: Making Constant Comparisons. International Journal of Qualitative Studies on Health and Well-being, 1(3), 141-148.

Hussain, W. (2012). Corporations, Profit Maximization and the Personal Sphere. Economics and Philosophy, 28(3), 311-331.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009a). Preference of Social Choice in Mathematical Economics. Indus Journal of Management \& Social Sciences, 3(1), 17-38.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009b). Political Economy and Social Welfare with Voting Procedure. KASBIT Business Journal, 2(1), 42-66.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2010a). Utility Maximization Subject to Multiple Constraints. Indus Journal of Management \& Social Sciences, 4(1), 15-29.

Islam, J. N., Mohajan, H. K., Moolio, P., \& Reymond, P. (2010b). A Study on Global HumanImmunodeficiency Virus and its Effect in Bangladesh. KASBIT Business Journal, 3(1), 64-87.

Islam, J.N.; Mohajan, H. K., \& Moolio, P. (2011a), Output Maximization Subject to a Nonlinear Constraint, KASBIT Business Journal, 4(2), 104-120.

Islam, J. N., Mohajan, H. K., \& Paul, J. (2011b). Taxes on Cars and Gasoline to Control of Air Pollution: Suggested Models for Bangladesh. Indus Journal of Management \& Social Sciences, 5(2), 60-73.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2011c). Method of Voting System and Manipulation of Voting. International Journal of Management and Transformation, 5(1), 10-34.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012a). Aspects of Microfinance System of Grameen Bank of Bangladesh. International Journal of Economics and Research, 3(4), 76-96.

Islam, J. N., Mohajan, H. K., \& Datta, R. (2012b). Stress Management Policy Analysis: A Preventative Approach. International Journal of Economics and Research, 3(6), 1-17.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2012c). Borda Voting is Non-manipulable but Cloning Manipulation is Possible. International Journal of Development Research and Quantitative Techniques, 2(1), 28-37.

Kothari, C. R. (2008). Research Methodology: Methods and Techniques ($2^{\text {nd }}$ Ed.). New Delhi: New Age International (P) Ltd.

Mohajan, D., \& Mohajan, H. K. (2022a). Mathematical Analysis of SEIR Model to Prevent COVID-19 Pandemic. Journal of Economic Development, Environment and People, 11(4), 5-30.

Mohajan, D., \& Mohajan, H. K. (2022b). Utility Maximization Analysis of an Emerging Firm: A Bordered Hessian Approach. Annals of Spiru Haret University. Economic Series, 22(4), 292-308.

Mohajan, D., \& Mohajan, H. K. (2022c). Sensitivity Analysis among Commodities and Coupons during Utility Maximization. Frontiers in Management Science, 1(3), 13-28.

Mohajan, D., \& Mohajan, H. K. (2022d). Importance of Total Coupon in Utility Maximization: A Sensitivity Analysis. Law and Economy, 1(5), 65-67.

Mohajan, D., \& Mohajan, H. K. (2022e). Development of Grounded Theory in Social Sciences: A Qualitative Approach. Studies in Social Science \& Humanities, 1(5), 13-24.

Mohajan, D., \& Mohajan, H. K. (2022f). Exploration of Coding in Qualitative Data Analysis: Grounded Theory Perspective. Research and Advances in Education, 1(6), 50-60.

Mohajan, D., \& Mohajan, H. K. (2022g). Memo Writing Procedures in Grounded Theory Research Methodology. Studies in Social Science \& Humanities, 1(4), 10-18.

Mohajan, D., \& Mohajan, H. K. (2022h). Constructivist Grounded Theory: A New Research Approach in Social Science. Research and Advances in Education, 1(4), 8-16.

Mohajan, D., \& Mohajan, H. K. (2022i). Feminism and Feminist Grounded Theory: A Comprehensive Research Analysis. Journal of Economic Development, Environment and People, 11(3), 49-61.

Mohajan, D., \& Mohajan, H. K. (2022j). Profit Maximization Strategy in an Industry: A Sustainable Procedure. Law and Economy, 1(3), 17-43.

Mohajan, D., \& Mohajan, H. K. (2023a). Sensitivity Analysis among Commodities and Prices: Utility Maximization Perceptions. Law and Economy, 2(2), 1-16.

Mohajan, D., \& Mohajan, H. K. (2023b). Straussian Grounded Theory: An Evolved Variant in Qualitative Research. Studies in Social Science \& Humanities, 2(2), 33-40.

Mohajan, D., \& Mohajan, H. K. (2023c). Sensitivity Analysis between Lagrange Multipliers and Consumer Coupon: Utility Maximization Perspective. Frontiers in Management Science, 2(1), 14-25.

Mohajan, D., \& Mohajan, H. K. (2023d). Utility Maximization Analysis of an Organization: A Mathematical Economic Procedure. Law and Economy, 2(1), 1-15.

Mohajan, D., \& Mohajan, H. K. (2023e). Classic Grounded Theory: A Qualitative Research on Human Behavior. Studies in Social Science \& Humanities, 2(1), 1-7.

Mohajan, D., \& Mohajan, H. K. (2023f). Sensitivity Analysis between Commodity and Budget: Utility Maximization Case. Law and Economy, 2(3), 10-21.

Mohajan, D., \& Mohajan, H. K. (2023g). Sensitivity Analysis for Profit Maximization with Respect to Per Unit Cost of Subsidiary Raw Materials. Frontiers in Management Science, 2(2), 13-27.

Mohajan, D., \& Mohajan, H. K. (2023h). Families of Grounded Theory: A Theoretical Structure for Novel Researchers. Studies in Social Science \& Humanities, 2(1), 56-65.

Mohajan, D., \& Mohajan, H. K. (2023i). Broca Index: A Simple Tool to Measure Ideal Body Weight. Innovation in Science and Technology, 2(2), 21-24.

Mohajan, D., \& Mohajan, H. K. (2023j). Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. Journal of Innovations in Medical Research, 2(3), 12-23.

Mohajan, D., \& Mohajan, H. K. (2023k). A Study on Body Fat Percentage for Physical Fitness and Prevention of Obesity: A Two Compartment Model. Journal of Innovations in Medical Research, 2(4), 1-10.

Mohajan, D., \& Mohajan, H. K. (2023l). Sensitivity Analysis of Inputs of an Organization: A Profit Maximization Exploration. Law and Economy, 2(4), 32-48.

Mohajan, D., \& Mohajan, H. K. (2023m). Ponderal Index: An Important Anthropometric Indicator for Physical Growth. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023n). Long-Term Regular Exercise Increases $\dot{\mathrm{VO}}_{2}$ max for Cardiorespiratory Fitness. Innovation in Science and Technology, 2(2), 38-43.

Mohajan, D., \& Mohajan, H. K. (2023o). Sensitivity Analysis between Lagrange Multipliers and Consumer Budget: Utility Maximization Case. Annals of Spiru Haret University. Economic Series, 23(1), 167-185.

Mohajan, D., \& Mohajan, H. K. (2023p). Glaserian Grounded Theory and Straussian Grounded Theory: Two Standard Qualitative Research Approaches in Social Science. Journal of Economic Development, Environment and People, 12(1), 72-81.

Mohajan, D., \& Mohajan, H. K. (2023q). Economic Situations of Lagrange Multiplier When Costs of Various Inputs Increase for Nonlinear Budget Constraint. Studies in Social Science \& Humanities, 2(4), 40-64.

Mohajan, D., \& Mohajan, H. K. (2023r). Sensitivity Analysis for Utility Maximization: A Study on Lagrange Multipliers and Commodity Coupons. Journal of Economic Development, Environment, and People, 12(1), 25-40.

Mohajan, D., \& Mohajan, H. K. (2023s). Anorexia Nervosa: A Dreadful Psychosocial Health Complication. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023u). Binge-Eating: A Life-Threatening Eating Disorder. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023v). Panniculus Morbidus: A New Global Health Crisis Due to Extreme Obesity. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023w). Abdominal Elephantiasis: An Obstructive Disease Due to Extreme Obesity. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023x). Bulimia Nervosa: A Psychiatric Problem of Disorder. Innovation in Science and Technology, 2(3), 26-32.

Mohajan, D., \& Mohajan, H. K. (2023y). Body Mass Index (BMI) is a Popular Anthropometric Tool to Measure Obesity among Adults. Journal of Innovations in Medical Research, 2(4), 2533.

Mohajan, D., \& Mohajan, H. K. (2023z). A Study on Nonlinear Budget Constraint of a Local Industrial Firm of Bangladesh: A Profit Maximization Investigation. Law and Economy, 2(5), 27-33.

Mohajan, H. K. (2011a). Greenhouse Gas Emissions Increase Global Warming. International Journal of Economic and Political Integration, 1(2), 21-34.

Mohajan, H. K. (2011b). The NNP and Sustainability in Open Economy: Highlights on Recent World Economy and on Open Economy of Bangladesh. KASBIT Business Journal, 4(2), 32-47.

Mohajan, H. K. (2011c). Optimal Environmental Taxes Due to Health Effect. KASBIT Business Journal, 4(1), 1-19.

Mohajan, H. K. (2011d). The Real Net National Product in Sustainable Development. KASBIT Business Journal, 4(2), 90-103.

Mohajan, H. K. (2012a). Green Marketing is a Sustainable Marketing System in the Twenty First Century. International Journal of Management and Transformation, 6(2), 23-39.

Mohajan, H. K. (2012b). Aspects of Green Marketing: A Prospect for Bangladesh. International Journal of Economics and Research, 3(3), 1-11.

Mohajan, H. K. (2012c). Importance of Green Marketing at Present and Future. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2012d). Greenhouse Gas Emissions of the USA. Indus Journal of Management \& Social Sciences, 6(2), 132-148.

Mohajan, H. K. (2012e). Relation between Lease Finance and Purchase. International Journal of Economics and Research, 3(3), 146-158.

Mohajan, H. K. (2012f). Air Pollution Causes Health Effects and Net National Product of a Country Decreases: A Theoretical Framework. International Journal of Development Research and Quantitative Techniques, 2(2), 3-10.

Mohajan, H. K. (2012g). Certainty and Uncertainty in Cap and Trade System or in Carbon Tax for Green Accounting to Decrease Greenhouse Gas Emissions. Indus Journal of Management \& Social Sciences, 6(2), 108-122.

Mohajan, H. K. (2012h). Social Welfare and Social Choice in Different Individuals' Preferences. International Journal of Human Development and Sustainability, 5(1), 11-22.

Mohajan, H. K. (2013a). Economic Development of Bangladesh. Journal of Business Management and Administration, 1(4), 41-48.

Mohajan, H. K. (2013b). Ethiopia: A Socio-economic Study. Journal of Business Management and Administration, 1(5), 59-74.

Mohajan, H. K. (2013c). Friedmann, Robertson-Walker (FRW) Models in Cosmology. Journal of Environmental Treatment Techniques, 1(3), 158-164.

Mohajan, H. K. (2013d). Global Greenhouse Gas Emissions and Climate Change. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013e). Poverty and Economic Development of Kenya. International Journal of Information Technology and Business Management, 18(1), 72-82.

Mohajan, H. K. (2013f). Global Food Price Hike is a Burden to the Poor. International Journal of Information Technology and Business Management, 19(1), 1-15.

Mohajan, H. K. (2013g). Food, Agriculture and Economic Situation of Bangladesh. MPRA Paper No. 54240. https://mpra.ub.uni-muenchen.de/54240/

Mohajan, H. K. (2013h). Greenhouse Gas Emissions from Small Industries and its Impact on Global Warming. KASBIT Business Journal, 6(1\&2), 1-13.

Mohajan, H. K. (2013i). Scope of Raychaudhuri Equation in Cosmological Gravitational Focusing and Space-time Singularities. Peak Journal of Physical and Environmental Science Research, 1(7), 106-114.

Mohajan, H. K. (2013j). Violation of Human Rights in Bangladesh. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2014a). Greenhouse Gas Emissions of China. Journal of Environmental Treatment Techniques, 1(4), 190-202.

Mohajan, H. K. (2014b). Chinese Sulphur Dioxide Emissions and Local Environment Pollution. International Journal of Scientific Research in Knowledge, 2(6), 265-276.

Mohajan, H. K. (2014c). The Most Fatal 2014 Outbreak of Ebolavirus Disease in Western Africa. American Journal of Epidemiology and Infectious Disease, 2(4), 101-108.

Mohajan, H. K. (2014d). Improvement of Health Sector in Kenya. American Journal of Public Health Research, 2(4), 159-169.

Mohajan, H. K. (2014e). Food and Nutrition of Bangladesh. Peak Journal of Food Science and Technology, 2(1), 1-17.

Mohajan, H. K. (2014f). Gravitational Collapse of a Massive Star and Black Hole Formation. International Journal of Reciprocal Symmetry \& Theoretical Physics, 1(2), 125-140.

Mohajan, H. K. (2014g). General Upper Limit of the Age of the Universe. ARPN Journal of Science and Technology, 4(1), 4-12.

Mohajan, H. K. (2015a). Sustainable Development Policy of Global Economy. American Journal of Environmental Protection, 3(1), 12-29.

Mohajan, H. K. (2015b). Present and Future of Nestlé Bangladesh Limited. American Journal of Food and Nutrition, 3(2), 34-43.

Mohajan, H. K. (2015c). Basic Concepts of Differential Geometry and Fibre Bundles. ABC Journal of Advanced Research, 4(1), 57-73.

Mohajan, H. K. (2015d). Tuberculosis is a Fatal Disease among Some Developing Countries of the World. American Journal of Infectious Diseases and Microbiology, 3(1), 18-31.

Mohajan, H. K. (2015e). Generalization of Euler and Ramanujan's Partition Function. Asian Journal of Applied Science and Engineering, 4(3), 167-190.

Mohajan, H. K. (2016a). An Analysis of Knowledge Management for the Development of Global Health. American Journal of Social Sciences, 4(4), 38-57.

Mohajan, H. K. (2016b). Global Hyperbolicity in Space-time Manifold. International Journal of Professional Studies, 1(1), 14-30.

Mohajan, H. K. (2016c). Singularities in Global Hyperbolic Space-time Manifold. Asian Journal of Applied Science and Engineering, 5(1), 41-58.

Mohajan, H. K. (2017a). Roles of Communities of Practice for the Development of the Society. Journal of Economic Development, Environment and People, 6(3), 27-46.

Mohajan, H. K. (2017b). Two Criteria for Good Measurements in Research: Validity and Reliability. Annals of Spiru Haret University Economic Series, 17(3), 58-82.

Mohajan, H. K. (2017c). Optimization Models in Mathematical Economics. Journal of Scientific Achievements, 2(5), 30-42.

Mohajan, H. K. (2017d). A Brief Analysis of de Sitter Universe in Relativistic Cosmology. Journal of Scientific Achievements, 2(11), 1-17.

Mohajan, H. K. (2017e). Development of Einstein's Static Cosmological Model of the Universe. Journal of Scientific Achievements, 2(7), 18-30.

Mohajan, H. K. (2017f). Analysis of Reciprocity and Substitution Theorems, and Slutsky Equation. Noble International Journal of Economics and Financial Research, 2(3), 54-75.

Mohajan, H. K. (2017g). Research Methodology. Aspects of Mathematical Economics, Social Choice and Game Theory, PhD Thesis. Munich Personal RePEc Archive, 10, 1-20.

Mohajan, H. K. (2018a). Qualitative Research Methodology in Social Sciences and Related Subjects. Journal of Economic Development, Environment and People, 2(1), 19-46.

Mohajan, H. K. (2018b). Aspects of Mathematical Economics, Social Choice and Game Theory. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K. (2018c). The Rohingya Muslims in Myanmar are Victim of Genocide! ABC Journal of Advanced Research, 7(1), 59-72.

Mohajan, H. K. (2018d). Medical Errors Must be Reduced for the Welfare of the Global Health Sector. International Journal of Public Health and Health Systems, 3(5), 91-101.

Mohajan, H. K. (2018e). Analysis of Food Production and Poverty Reduction of Bangladesh. Annals of Spiru Haret University Economic Series, 18(1), 191-205.

Mohajan, H. K. (2019). The First Industrial Revolution: Creation of a New Global Human Era. Journal of Social Sciences and Humanities, 5(4), 377-387.

Mohajan, H. K. (2020a). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development, Environment and People, 9(4), 50-79.

Mohajan, H. K. (2020b). COVID-19-The Most Fatal Pandemic Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020c). The COVID-19 in Italy: Remedies to Reduce the Infections and Deaths. Malaysian Journal of Medical and Biological Research, 7(2), 59-66.

Mohajan, H. K. (2020d). Most Fatal Pandemic COVID-19 Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020e). Circular Economy can Provide a Sustainable Global Society. Journal of Economic Development, Environment and People, 9(3), 38-62.

Mohajan, H. K. (2020f). The Second Industrial Revolution has Brought Modern Social and Economic Developments. Journal of Social Sciences and Humanities, 6(1), 1-14.

Mohajan, H. K. (2021a). Aspects of Global COVID-19 Pandemic. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2021b). Global COVID-19 Pandemic: Prevention and Protection Techniques. Journal of Economic Development, Environment and People, 10(1), 51-72.

Mohajan, H. K. (2021c). Estimation of Cost Minimization of Garments Sector by CobbDouglass Production Function: Bangladesh Perspective. Annals of Spiru Haret University. Economic Series, 21(2), 267-299.

Mohajan, H. K. (2021d). Product Maximization Techniques of a Factory of Bangladesh: A Sustainable Procedure. American Journal of Economics, Finance and Management, 5(2), 23-44.

Mohajan, H. K. (2021e). Third Industrial Revolution Brings Global Development. Journal of Social Sciences and Humanities, 7(4), 239-251.

Mohajan, H. K. (2022a). Four Waves of Feminism: A Blessing for Global Humanity. Studies in Social Science \& Humanities, 1(2), 1-8.

Mohajan, H. K. (2022b). An Overview on the Feminism and Its Categories. Research and Advances in Education, 1(3), 11-26.

Mohajan, H. K. (2022c). Cost Minimization Analysis of a Running Firm with Economic Policy. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Mohajan, H. K. (2022d). Mathematical Analysis of SIR Model for COVID-19 Transmission. Journal of Innovations in Medical Research, 1(2), 1-18.

Mohajan, H. K. (2022e). Food Insecurity and Malnutrition of Africa: A Combined Attempt Can Reduce Them. Journal of Economic Development, Environment and People, 11(1), 24-34.

Mohajan, H. K., Datta, R., \& Das, A. K. (2012). Emerging Equity Market and Economic Development: Bangladesh Perspective. International Journal of Economics and Research, 3(3), 128-145.

Mohajan, H. K., Islam, J. N., \& Moolio, P. (2013). Optimization and Social Welfare in Economics. Lambert Academic Publishing, Germany.

Moolio, P., Islam, J. N., \& Mohajan, H. K. (2009). Output Maximization of an Agency. Indus Journal of Management and Social Sciences, 3(1), 39-51.

Pandey, P., \& Pandey, M. M. (2015). Research Methodology: Tools and Techniques. Bridge Center, Romania, European Union.

Polit, D. F., \& Hungler, B. P. (2013). Essentials of Nursing Research: Methods, Appraisal, and Utilization ($8^{\text {th }}$ Ed.). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.

Rahman, M. M., \& Mohajan, H. K. (2019). Rohingya-The Stateless Community Becoming the Lost Generation. Journal of Economic Development, Environment and People, 8(2), 24-36.

Ramazanoglu, C., \& Holland, J. (2002). Feminist Methodology: Challenges and Choices. Sage Publications, London.

Roy, L., Molla, R., \& Mohajan, H. K. (2021). Cost Minimization is Essential for the Sustainability of an Industry: A Mathematical Economic Model Approach. Annals of Spiru Haret University Economic Series, 21(1), 37-69.

Samuelson, P. A. (1947). Foundations of Economic Analysis. Harvard University Press, Cambridge, MA.

Schwandt, T. A. (2014). Methodology. Sage Publications Ltd.
Somekh, B., \& Lewin, C. (2005). Research Methods in the Social Sciences. Sage Publications Ltd.

Tie, C. Y, Birks, M, \& Francis, K. (2019). Grounded Theory Research: A Design Framework for Novice Researchers. Sage Open Medicine Volume, 7, 1-8.

Wiese, H. (2021). Cost Minimization and Profit Maximization. In Advanced Microeconomics. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34959-2_9

Zheng, K., \& Liu, Y. (2022). Application of Mathematical Models in Economic Variable Input and Output Models under the Scientific Visualization. Computational Intelligence and Neuroscience. Article ID 6269358.

