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Abstract

Partial identification is a prominent feature of several economic models.
Such prevalence has spurred a large literature on valid set estimation under
partial identification from a frequentist viewpoint. From the Bayesian per-
spective, it is well known that, under partial identification, the asymptotic
validity of Bayesian credible sets in conducting frequentist inference, which is
ensured by several Bernstein von-Mises theorems available in the literature,
breaks down. Existing solutions to this problem require either knowledge of
the map between the distribution of the data and the identified set – which
is generally unavailable in more complex models –, or modifications to the
methodology that difficult the Bayesian interpretability of the proposed so-
lution. In this paper, I show how one can leverage Approximate Bayesian
Computation, a Bayesian methodology designed for settings where evaluation
of the model likelihood is unfeasible, to reestablish the asymptotic validity of
Bayesian credible sets in conducting frequentist inference, whilst preserving the
core interpretation of the Bayesian approach and dispensing with knowledge of
the map between data and identified set. Specifically, I show in a simple, yet
encompassing, setting how, by calibrating the main tuning parameter of the
ABC methodology, one could hope to achieve asymptotic frequentist coverage.
Based on my findings, I then propose a semiautomatic algorithm for selecting
this parameter and constructing valid confidence sets.

This is a work in progress. In future versions, I intend to present further
theoretical results, Monte Carlo simulations and an empirical application on
the Economics of Networks.

∗Post-doctoral researcher, Fundação Getúlio Vargas. email: luisfantozzialvarez@gmail.com.
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1 Introduction

Partially identified models are ubiquitous in Economics (Ho and Rosen, 2017; Moli-
nari, 2020). In several settings, point identification is either (i) difficult to establish;
or (ii) requires stringent conditions that may not be credible. In these settings, a
partial identification analysis may produce more credible estimates and still be infor-
mative (Tamer, 2010, 2019). Interval estimation under partial identification has been
extensively studied in the frequentist framework. I refer the reader to the surveys of
Canay and Shaikh (2017) and Molinari (2020) for comprehensive expositions on the
topic.

From the Bayesian viewpoint, inference under partial identification has been
somewhat less studied. Gustafson (2010, 2012, 2014) has shown in different set-
tings that, when point identification fails, the choice of prior plays a crucial role
on posterior inferences, even in large samples.1 Relatedly, Moon and Schorfheide
(2012) show that, in partially identified models, the asymptotic validity of Bayesian
credible intervals in conducting frequentist inference, which is ensured by several
“Bernstein von-Mises” theorems available in the literature, breaks down. The intu-
ition for this phenomenon is provided by the results in Gustafson (2010, 2012), which
show that, under partial identification, the posterior is asymptotically supported on
the identified set; and Bayesian credible sets with nontrivial posterior coverage will
be eventually strictly contained in this region. In these settings, frequentist validity
of credible intervals will be a feature essentially of the prior, and cannot be ensured
to hold for every possible value in the identified set.

Since the results of Moon and Schorfheide (2012) were published, there have been
several proposals in the literature which aim to reconcile Bayesian and frequentist
inference in partially identified models. Müller and Norets (2016) introduce an al-
gorithm for modifying a prior in a Bayesian analysis so the resulting confidence set
attains frequentist coverage. Their proposed methodology requires evaluation of the
model likelihood, which is not a trivial task in more complex models. Their pro-
posed methodology also departs from standard Bayesian analyses, where the prior
may or should embody scientific knowledge. Kline and Tamer (2016) recommend
Bayesian inference be conducted in reduced-form, point-identified parameters, and
that inferene on the identified set be made by pushing draws from the posterior of
the reduced form through the map that associates, for every value of the reduced
form, the corresponding identified set. The resulting posterior distribution of iden-
tified sets can then be used to conduct inference on features of the identified set,
whilst preserving asymptotic frequentist validity. Their approach suffers from some

1See Wechsler et al. (2013) for an instructive example.
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drawbacks, though. First, the authors’ suggested construction of credible sets can be
quite conservative. Moreover, their method requires knowledge of the map between
the reduced form and the identified set, which is usually unknown in more complex
applications. Finally, in settings where structural parameters can be identified with
a scientific theory, a prior for the structural parameter appears “more principled”
than one on the reduced form. Drawing on the “push-through” insight of Kline and
Tamer (2016), Liao and Simoni (2019) propose computationally efficient methods
to draw posterior samples from the identified set and construct credible regions in
smooth convex models. Though less conservative than Kline and Tamer’s approach,
their method still suffers from the remaining drawbacks. Giacomini and Kitagawa
(2021) propose that Bayesian inference be conducted in partially identified models in
the standard way, but that sensitivity to the choice of prior be analysed by varying
the prior of the structural parameter over a nonparametric class. The authors pro-
pose constructing confidence sets that achieve posterior coverage in the “worst-prior
case”, and show this procedure leads to asymptotically valid frequentist coverage.
While their method achieves correct frequentist coverage, it departs from standard
Bayesian analyses, where one sticks with a single prior and credible sets can be easily
constructed using the resulting posterior draws. Their approach also requires that
the map between reduced form and identified set be known.

In this paper, I propose an alternative solution that seeks to reestablish frequen-
tist validity of Bayesian credible sets in large samples, whilst overcoming some of the
issues previously discussed. Through a simple, yet encompassing example, I show
that, by using Approximate Bayesian Computation (ABC), a class of algorithms
originally proposed in settings where evaluation of the model likelihood is unfeasible
(Beaumont et al., 2002; Tavaré, 2018), one is able to conduct standard Bayesian anal-
ysis and still retain asymptotic validity in the frequentist sense. Specifically, I show
that, by carefully choosing the main tuning parameter required by the algorithm, the
resulting approximate high-posterior density sets will have asymptotic valid frequen-
tist coverage. Importantly, due to the likelihood-free nature of the method, we need
not know the map between reduced form and identified set. Based on my findings,
I then propose an algorithm to semiautomatically calibrate the tuning paramaters.
With these tools, I hope to provide a more unified approach between Bayesian and
frequentist inference in partially identified models.

To get the intuition behind the main result, it is instructive to review the ABC
approach. In its simplest inception, ABC is an accept-reject algorithm that presumes
the researcher be able to draw a vector of statistics T ∈ Rd from the data generating
process under structural parameter θ. Specifically, given a draw θ from prior π,
the researcher draws T ∼ Pθ, where Pθ is the distribution function under θ. The
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researcher then accepts θ if ∥T̂ −T∥ < ϵ, where T̂ is the vector of statistics computed
under the data and ϵ > 0 is a pre-specified tolerance. The resulting posterior draws
can be seen as coming from:

pϵ(θ|T̂ ) ∝ Pθ,T∼[∥T − T̂∥ < ϵ]π(θ) . (1)

As, ϵ → 0, the distribution converges to the Bayesian posterior that uses the
likelihood of T given θ. More complex implementations of the ABC approach seek
to provide a better-quality approximation than the simple accept-reject algorithm,
but retain the essential feature of approximating the posterior by accepting draws
with some tolerance (Sisson et al., 2018).

The choice of tolerance ϵ is crucial for proper functioning of the ABC approach.
Unsurprisingly, it has been extensively studied in the literature (Beaumont, 2019).
Blum (2010) shows that, with a finite number of simulations, there is a bias-variance
tradeoff in the choice of ϵ akin to the one found in frequentist kernel density esti-
mation. Li and Fearnhead (2018a,b) and Frazier et al. (2018) study the frequentist
properties of ABC. They show that, in point identified models, choices of ϵ that are
optimal for point estimation lead the posterior to overstate frequentist uncertainty.
It is precisely this insight we seek to extend and explore in the partially identified
setting. Since the failure of credible intervals in achieving frequentist coverage can
be attributed to the posterior being asymptotically supported in the identified set,
we show that, by carefully choosing ϵ, we can detain this effect, insasmuch that high-
posterior density credible sets attain frequentist coverage. Importantly, our proposed
method for calibrating ϵ does not require knowledge of the map between reduced
form and identified set, and is agnostic about the ABC method used for posterior
draws. Thus, our approach can be used in conjunction with the main computational
methods in the ABC literature (Marin et al., 2011). Relatedly, even though the con-
struction of high-posterior density sets is complicated by the fact that the likelihood
is unknown, any method that estimates this density from posterior draws can be
used, provided they yield good enough approximations.

The remainder of this paper is structured as follows. Section 2 illustrates the
main insights on the relation between partial identification and ABC by means of
a simple example. Based on these findings, Section 3 proposes an algorithm for
the calibration of the tolerance ϵ that enables ABC to attain frequentist coverage.
Section 4 concludes. This is a work in progress. Future versions of this working
paper will feature a more general theory, Monte Carlo simulations and an empirical
application on the Economics of Networks.
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2 A motivating example

I start with a simple, yet encompassing, example to motivate the main results. The
more general theory, where the model likelihood need not be exactly Gaussian and
multidimensional summary statistics are considered, is a work in progress and de-
ferred to future versions of this working paper. Our starting point is a measure
space (Θ,Ω, µ), where Θ denotes the structural parameter space of our model. We
make no assumptions on the measure space, beyond the requirement that the Bayes
rule produces a valid posterior distribution in this setting (see Ghosal and Vaart,
2017, for a discussion). For each n ∈ N, we associate with the structural parameter
space a family of distributions on Rd, Pn = {Pn,θ : θ ∈ Θ}. The index n is usually
interpreted as a sample size, but more generally it could simply indicate the close-
ness to an approximation (Geyer, 2013). In our simple example, we set d = 1 and
Pn,θ = N(T (θ), σ2(θ)/n). Denoting by θ0 the true parameter value, the researcher
observes:

T̂ ∼ Pn,θ0 ,

and, given a prior density π on (Θ,Ω, µ), the posterior distribution is given by:

H0(A) =

∫
A

1
σ(θ)

ϕ
(√

n
(

T̂−T (θ)
σ(θ)

))
π(θ)µ(dθ)

∫
1

σ(θ)
ϕ
(√

n
(

T̂−T (θ)
σ(θ)

))
π(θ)µ(dθ)

, A ∈ Ω .

To understand the properties of the posterior distribution under partial identifi-
cation, we define the set CT (θ0) = {θ ∈ Θ : T (θ) = T (θ0)}. Observe that this set
corresponds to the identification region associated with the first moment of T̂ . In
the more general theory available in a work in progress version of this paper, the
likelihood need not be Gaussian, and T (·) is, borrowing the terminology from the
Indirect Inference literature (Gouriéroux et al., 2010), the binding function defined

by T̂
Pn,θ→ T (θ), where

Pn,θ→ denotes convergence in probability under the sequence
Pn,θ.

Suppose that
∫
CT (θ0)

π(θ)µ(dθ) > 0.2 In this case, straightforward application of

2Even if this assumption does not hold for the full parameter space, similar arguments may
still hold for the posterior induced by transformations of the structural parameter. For example, if
Θ = R2, CT (θ0) = {(t, t2) : t ∈ [a, b]} and one adopts a Gaussian prior on R2, then the assumption
is not satisfied. Yet, if we consider the transformation θ̃ = h(θ) = θ1, the induced prior will assign
positive mass to the identified set of θ̃. In this case, our arguments may be used to show how one
can construct credible sets with valid frequentist coverage for θ̃. See Moon and Schorfheide (2012)
for a related discussion.
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the dominated convergence theorem shows that, as n→∞:

sup
A∈Ω
|H0(A)−H∗(A)| a.s.→ 0,

where

H∗(A) =

∫
A∩CT (θ0)

1
σ(θ)

ϕ
(

σ(θ0)
σ(θ)

Z
)
π(θ)µ(dθ)

∫
CT (θ0)

1
σ(θ)

ϕ
(

σ(θ0)
σ(θ)

Z
)
π(θ)µ(dθ)

,

and Z =
√
n(T̂ − T (θ0))/σ(θ0). This is a restatement of the results of Gustafson

(2010) and Moon and Schorfheide (2012), to our setting. It suggests that, from a
frequentist perspective, Bayesian credible intervals constructed under partial iden-
tification will generally undercover the parameter of interest, as the posterior is
asymptotically supported on (a subset of) the identified set. Indeed, letting An be a
sequence of credible sets with posterior coverage bounded above by strictly less than
unity, we have from the convergence above that:

lim
n→∞

Pn,θ0 [An ⊊ CT (θ0)] = 1 ,

i.e. the credible interval is eventually strictly contained in the identified set, Pn,θ0

almost surely. In addition, if we consider high-posterior density sets of the form

An =

{
θ ∈ Θ :

1

σ(θ)
ϕ

(
√
n

(
T̂ − T (θ)

σ(θ)

))
π(θ) > c1−α(T̂ )

}
,

where the constant is chosen as to ensure (1−α)-posterior coverage; and we assume
σ(θ) to be constant in CT (θ0), meaning that there is no additional identifying infor-
mation in the second moment of T̂ (see footnote 3 below for a discussion), we expect
from our results that:

lim
n→∞

Pn,θ0 [θ0 ∈ An] = 1{π(θ0) > c∗} ,

where c∗ is the largest threshold such that
∫
CT (θ0)

1{π(θ) > c∗}π(θ)µ(dθ) ≥ (1 −
α)
∫
CT (θ0)

π(θ)µ(dθ) . In this setting, correct coverage is essentially a feature of the

prior, and cannot be ensured to hold for every possible value of the structural pa-
rameter in the identified set, i.e.

inf
θ∈Θ0

lim
n→∞

Pn,θ[θ ∈ An] = 0 .

6



Given that the difficulty of correct coverage lies in the posterior being strictly
contained in the prior, consider “inflating” the likelihood by considering the posterior:

Hϵ(A) =

∫
A

(
Φ
(√

n
(

T̂−T (θ)+ϵ

σ(θ)

))
− Φ

(√
n
(

T̂−T (θ)−ϵ

σ(θ)

)))
π(θ)µ(dθ)

∫ (
Φ
(√

n
(

T̂−T (θ)+ϵ

σ(θ)

))
− Φ

(√
n
(

T̂−T (θ)−ϵ

σ(θ)

)))
π(θ)µ(dθ)

.

This is precisely the posterior implemented by the ABC algorithm discussed in
the introduction. Observe that, as n→∞:

sup
A∈Ω
|Hϵ(A)−H∗

ϵ (A)|
a.s.→ 0,

where

H∗
ϵ (A) ∝

∫

A∩Bϵ,T (θ0)

π(θ)µ(dθ0)+

∫

A∩Rϵ,T (θ0)

Φ

(
σ(θ0)

σ(θ)
Z

)
π(θ)µ(dθ0)+

∫

A∩R−ϵ,T (θ0)

(
1− Φ

(
σ(θ0)

σ(θ)
Z

))
π(θ)µ(dθ0) ,

(2)

with Bϵ,T (θ0) = {θ ∈ Θ : |T (θ) − T (θ0)| < ϵ}, and Rs,T (θ0) = {θ ∈ Θ : T (θ) =
T (θ0)+s}. This result shows that, with fixed ϵ, the ABC posterior is asymptotically
supported on a set larger than CT (θ0). By carefully choosing ϵ, we hope to construct
confidence sets that yield valid frequentist coverage. To see this intuitively, we con-
sider high-posterior density sets in the asymptotic posterior. Specifically, denoting
by p∗ϵ(·|Z) the density of H∗

ϵ , we consider credible sets constructed as:

S = {θ ∈ Θ : p∗ϵ(θ|Z) > c1−α(Z)}, (3)

where the threshold c1−α(Z) is chosen such that H∗
ϵ (S) ≥ (1 − α). Suppose that

σ(θ) = σ(θ0) for all θ ∈ R−ϵ,T (θ0) ∪ Rϵ,T (θ0). Notice that this assumption limits
identifying information available in second moments.3 In this case, for S to achieve

3This can be ensured by augmenting T̂ with further statistics, so that second moments become
uninformative. Alternatively, this condition may be forced to hold by working with studentised

statistics, though in this case the identification region CT (θ0) will in general differ from the unstu-
dentised setting. We defer discussion on these different strategies for future versions of this working
paper.

7



frequentist coverage, it suffices that: first, with probability at least (1− α),

π(θ) > Φ(Z)π(θ′) ∨ (1− Φ(Z))π(θ′′), ∀θ ∈ CT (θ0), θ
′ ∈ Rϵ,T (θ0), θ

′′ ∈ R−ϵ,T (θ0) ,

which ensures the posterior density assigned to the identified set is among the largest
with probability at least (1 − α). Since Φ(Z) ∼ Uniform[0, 1], the condition is
equivalent to:

P[Uπ̄ϵ ∨ (1− U)π̄−ϵ ≤ π0] ≥ 1− α , (4)

where U := Φ(Z) and π̄s = supθ∈Rs,T (θ0) π(θ) and πs = inf
θ∈Rs,T (θ0)

π(θ).

The second required condition limits the relative mass of the region Bϵ,T (θ0), on
the event Uπ̄ϵ ∨ (1 − U)π̄−ϵ ≤ π0. This ensures that, on this event, the identified
set will be always contained within the credible set. Specifically, we require that, on
Uπ̄ϵ ∨ (1− U)π̄−ϵ ≤ π0:

∫

Bϵ,T (θ0)

π(θ)µ(dθ0) ≤ (1− α)
[ ∫

Bϵ,T (θ0)

π(θ)µ(dθ0)+

∫

Rϵ,T (θ0)

Φ (Z) π(θ)µ(dθ0)+

∫

R−ϵ,T (θ0)

(1− Φ (Z)) π(θ)µ(dθ0)
]
a.s.

This condition can be seen to be equivalent to:

α

(1− α)

∫

Bϵ,T (θ0)

π(θ)µ(dθ0) ≤
[ ∫

Rϵ,T (θ0)

(
1− π0

π−ϵ

)
π(θ)µ(dθ0) +

∫

R−ϵ,T (θ0)

π0

π−ϵ
π(θ)µ(dθ0)

]
∧

[ ∫

Rϵ,T (θ0)

π0

πϵ
π(θ)µ(dθ0) +

∫

R−ϵ,T (θ0)

(1− π0

πϵ
)π(θ)µ(dθ0)

]
.

(5)

In practice, these conditions cannot be immediately used to calibrate ϵ, because
the regions CT (θ0) and Rc(θ0) are not known. However, as our proposed algorithm in
Section 3 shows, we can conservatively estimate the unknown quantities so asymp-
totic frequentist coverage is achieved.
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3 Proposed algorithm

In light of the preceding discussion, Algorithm 1 introduces a semiautomatic pro-
cedure for the calibration of ϵ. The algorithm searches for a candidate tolerance
ϵ ∈ [ϵ, ϵ], by verifying whether estimated versions of (4) and (5) hold. The inter-
val [ϵ, ϵ] may be chosen using the standard logic in the ABC literature (e.g. Li and
Fearnhead, 2018b), where ϵ and ϵ correspond, respectively, to the smallest and largest
tolerable acceptance rates, given the number of Monte Carlo draws S. The algorithm
also depends on a bandwidth b > 0 for the estimation of the regions RT,c(θ0). In
future versions, I intend to explore the correct tuning of this hyperparameter, as well
as to provide formal continuity conditions on π and that ensure validity of Algorithm
1.

Once a tolerance ϵ∗ > 0 is found, the researcher may use any ABC algorithm
that targets the approximate posterior (1).4 Using the approximate posterior draws,
the researcher may then choose a semi- or nonparametric method to estimate the
posterior density; and use this estimated density to construct the high posterior
density sets.

4It is immediate to extend the proposed algorithm to settings where acceptance of a draw occurs
with probability K(∥T̂ − T̃∥/ϵ), with K being a rescaled kernel. This is a common approach in the
ABC literature (Fearnhead and Prangle, 2012; Li and Fearnhead, 2018b).
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Algorithm 1 Proposed algorithm for the calibration of the tolerance in ABC

Require: S ∈ N, ϵ > 0, ϵ > 0, b > 0, step > 0.
Ensure: ϵ∗ ∈ [ϵ, ϵ]
d← []
for s=1 to S do

Draw θs ∼ π.
Draw T̃s ∼ Pn,θs .
d← [d, (θs, T̃s)].

end for

Estimate π̂0 = mins:|T̃s−T̂ |≤ϵ π(θs).
ϵ∗ ← ϵ.
while ϵ∗ ≥ ϵ and stop criterion not met do

Estimate ̂∫
Bϵ∗,T (θ0)

π(θ)µ(dθ0) =
1
S

∑S

s=1 1{|T̂ − T̃s| ≤ ϵ∗}.
Estimate ̂∫

Rϵ∗,T (θ0)
π(θ)µ(dθ0) =

1
S

∑S

s=1 1{T̂ + ϵ∗ − b ≤ T̃s ≤ T̂ + ϵ∗ + b} and
̂∫

R−ϵ∗,T (θ0)
π(θ)µ(dθ0) =

1
S

∑S

s=1 1{T̂ − ϵ∗ − b ≤ T̃s ≤ T̂ − ϵ∗ + b}.
Estimate π̂ϵ∗ = maxs:T̂+ϵ∗−b≤T̃s≤T̂+ϵ∗+b π(θs) and π̂−ϵ∗ =

maxs:T̂−ϵ∗−b≤T̃s≤T̂−ϵ∗+b π(θs).

if ϵ∗ satisfies (4) and (5) then
stop

else

ϵ∗ ← ϵ∗ − step.
end if

end while

4 Concluding remarks

This paper showed, by the means of a simple example, that Approximate Bayesian
Computation, a popular algorithm in settings where the model likelihood is in-
tractable, can be a convenient method to conduct Bayesian inference in partially
identified models. Specifically, I show that, by properly calibrating the main tun-
ing parameter in the algorithm, one can construct credible sets with asymptotic
frequentist validity.

This is a work in progress. In future versions, I intend to incorporate the gen-
eral theory, which does not assume a normal likelihood nor unidimensional sufficient
statistics, and to provide high-level conditions on the prior density and on the esti-
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mator of the posterior density for validity of the proposed method. I also intend to
present Monte Carlo simulations, and an empirical application on the Economics of
Networks.

References

Beaumont, Mark A (2019). “Approximate Bayesian Computation”. In: Annual Re-
view of Statistics and Its Application 6.1, pp. 379–403. doi: 10.1146/annurev-
statistics-030718-105212. eprint: https://doi.org/10.1146/annurev-
statistics- 030718- 105212. url: https://doi.org/10.1146/annurev-
statistics-030718-105212.

Beaumont, Mark A, Wenyang Zhang, and David J Balding (Dec. 2002). “Approxi-
mate Bayesian Computation in Population Genetics”. In:Genetics 162.4, pp. 2025–
2035. issn: 1943-2631. doi: 10.1093/genetics/162.4.2025. eprint: https:
/ / academic . oup . com / genetics / article - pdf / 162 / 4 / 2025 / 42049447 /

genetics2025.pdf. url: https://doi.org/10.1093/genetics/162.4.2025.
Blum, Michael G. B. (2010). “Approximate Bayesian Computation: A Nonparamet-

ric Perspective”. In: Journal of the American Statistical Association 105.491,
pp. 1178–1187. doi: 10.1198/jasa.2010.tm09448. eprint: https://doi.org/
10.1198/jasa.2010.tm09448. url: https://doi.org/10.1198/jasa.2010.
tm09448.

Canay, Ivan A. and Azeem M. Shaikh (2017). “Practical and Theoretical Advances in
Inference for Partially Identified Models”. In: Advances in Economics and Econo-
metrics: Eleventh World Congress. Ed. by Bo Honoré et al. Vol. 2. Econometric
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