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Abstract

Coordination games admit two types of equilibria: pure equilibria, where all players

successfully coordinate their actions, and mixed equilibria, where players frequently

experience miscoordination. The existing literature shows that under many evo-

lutionary dynamics, populations converge to a pure equilibrium from almost any

initial distribution of actions. By contrast, we show that under plausible learning

dynamics, where agents observe the actions of a random sample of their opponents

and adjust their strategies accordingly, stable miscoordination can arise when there

is heterogeneity in the sample sizes. This occurs when some agents make decisions

based on small samples (anecdotal evidence) while others rely on large samples.

Finally, we demonstrate the empirical relevance of our results in a bargaining ap-

plication.
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1 Introduction

Many real-life situations can be modeled as coordination games, in which the best re-

sponse against an opponent’s action is to play the same action (possibly after relabeling

the actions of one of the players). Two-player, two-action coordination games admit three

equilibria of two distinct types: two strict pure equilibria, where the players successfully

coordinate their actions, and a mixed equilibrium, where players frequently experience

miscoordination. A fundamental result in evolutionary game theory is that under a

broad set of learning dynamics, the mixed equilibrium is unstable and populations in

which agents are randomly matched to play coordination games must converge to ev-

eryone playing one of the pure equilibria (as surveyed in Section 2). By contrast, in

this paper we show that the mixed equilibrium with miscoordination can be stable if the

populations are heterogeneous in the sense that some (but not all) of the agents rely on

anecdotal evidence induced by small samples.

Highlights of the Model Consider a setup in which pairs of agents from two infinite

populations are repeatedly randomly matched to play a (one-shot) coordination game.1

Agents occasionally die and are replaced by new agents (or, alternatively, agents occa-

sionally receive opportunities to revise their actions). The new agents do not have precise

information about the aggregate behavior in the opponent’s population, and estimate this

from sampling the opponent’s population. Specifically, each population i is characterized

by a distribution of sample sizes θi, such that θi (k) is the frequency of agents with sample

size k. Each such agent observes the behavior of k random opponents, and then adopts

the action that is a best response to her sample (with an arbitrary tie-breaking rule).2

These learning dynamics, which seem plausible in various setups, are called sam-

pling best-response dynamics (Sandholm, 2001; Osborne and Rubinstein, 2003; Oyama,

Sandholm, and Tercieux, 2015, henceforth abbreviated as sampling dynamics).

As explained in Appendix A.1, any two-action coordination game (such as the battle

of the sexes or the stag hunt) can be represented w.l.o.g. by the payoff matrix presented

in Table 1 that has two positive parameters (u1, u2) that represent the players’ payoffs

when both play the first action: the payoffs when coordinating on the second action are

1Appendix A.2 extends our results to symmetric coordination games played within a single population.
2This behavior can be interpreted by each new agent utilizing her own sample to calculate a maximum

likelihood estimation for the overall behavior of the opposing population.
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Table 1: Standard Representation of Two-Action Coordination Game
a2 b2

a1 u1
u2

0
0

b1 0
0

1
1

normalized to 1, and the payoffs for miscoordinating are normalized to 0.

The following definition will be helpful for presenting our results. An action is q-

dominant (Morris, Rob, and Shin, 1995) to player i if it is the player’s best response

against any opponent’s mixed action that assigns a mass of at least q to the opponent

playing the same action. In particular, action ai (resp., bi) is 1
2
-dominant for player i if

it is the best response against an opponent’s uniform play, which is the case iff ui > 1

(resp., ui < 1).

Global Convergence to Miscoordination Theorem 1 presents a full characterization

for environments in which the populations converge to states with miscoordination from

almost all initial states. This happens if (and essentially only if): (1) each population has

a different 1
2
-dominant action (i.e., u2 < 1 < u1), (2) the product of the mass of agents

with sample size 1 times the expected sample size of the other population is larger than

one (i.e., ∀i, θi (1) · E (θj) > 1 ), and (3) each population has a q-dominant action for a

sufficiently low q (which is satisfied iff each ui is sufficiently far from 1).

The proof idea is as follows. Global convergence to miscoordination occurs iff both

pure equilibria are unstable. Assume that u2 < 1 < u1. Consider a slightly perturbed

state near the equilibrium (a1, a2), in which ǫi << 1 of the agents in population i plays

bi. Events in which a new agent observes multiple occurrences of the opponent’s rare

action bj in her sample are negligible (O
(

ǫ2
j

)

). Neglecting these very rare events implies

that new agents of population 1 will adopt the risk-dominated action b1 only when they

have sample size 1, and they have observed the rare action b2 (the probability of this is

θ1 (1) · ǫ2). By contrast, if u2 < 1 is sufficiently small, then a single occurrence of the

rare action b1 in a sample of size k (which occurs with probability of k · ǫ1) is sufficient

to induce a new agent of population 2 to play her 1
2
-dominant action b2. This implies

that the total share of new agents of population 2 who play action b2 is E (θ2) · ǫ1. This,

in turn, implies that the product of the number of agents playing the rare action in each
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population increases iff θ1 (1) · E (θ2) > 1.

Heterogeneity and Stable Miscoordination Our second main result (Theorem 2)

shows that heterogeneity in the sample sizes is necessary for stable miscoordination.

Specifically, we show that if all agents in each population i have the same sample size

ki ≥ 2, then all states with miscoordination are unstable (the case in which everyone

has sample size 1 is discussed in Remark 1). Our final result (Theorem 3) shows that

many heterogeneous distributions of sample sizes in which some agents have relatively

small samples and others have sufficiently large samples induce locally stable states with

miscoordination if u1 and u2 are not too close to 1.

The intuition for why heterogeneity in the sample sizes is important for the stability

of interior states with miscoordination is as follows. Consider homogeneous populations

with a fixed sample size k in a stationary interior state. In such a state the random

sample of size k frequently yields both outcomes for which action ai is a best response

and outcomes for which bi is a best response. We show that in such situations the

probability of each action being a best response is sensitive to small perturbations in the

opponent’s distribution of actions. That is, if ǫ more of the opponent’s population play

aj, it increases the probability that ai is the best response to the random sample by more

than ǫ.

Next consider a heterogeneous population in which some agents have relatively small

samples, while other agent have large samples. The stationary interior state with miscoor-

dination typically does not coincide with the mixed Nash equilibrium, which implies that

almost all agents with large samples play the same action (the unique best response to

the true distribution of the opponents’ actions), and that their play is insensitive to small

perturbations of the opponents’ behavior. This allows the overall sensitivity of the entire

population to small perturbations to be sufficiently small to allow stable miscoordination.

Theorem 2’s proof relies on deriving a property of binomial distributions (Proposition

3), which may be of independent interest. This property states that a composition of two

binomial cumulative distributions has a unique interior fixed point.

Numerical Analysis and Insights In Section 7 we demonstrate our main insight

that heterogeneity in the sample sizes induces stable miscoordination does not depend

on the specific details of the sampling dynamics. Specifically, we numerically study
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the commonly used logit dynamics, in which agents play a noisy best response to their

opponents’ aggregate behavior, with ηi describing the noise level in population i. We

first demonstrate that if the noise level in each population is homogeneous, then one can

induce stable miscoordination only with implausibly high levels of noise. By contrast,

when we introduce an extension of logit dynamics that allows heterogeneity in the level

of noise in each population, we show that stable miscoordination can be supported by

moderate heterogeneous levels of noise.

Taken together, our results show that the conventional wisdom that miscoordination

is unstable is not accurate. Miscoordination can be stable in heterogeneous populations

in which some agents rely on anecdotal evidence or noisy data, while other agents have

access to more accurate data. The experimentally testable implications of our results are

discussed in Section 2.

Bargaining Application and Empirical Relevance Demonstrating the empirical

relevance of our theoretical findings requires real-life scenarios in which it is plausible to

have: (1) heterogeneous sample sizes, (2) persistent miscoordination within an interior

state, and (3) a substantial proportion of agents not maximizing their payoffs with respect

to the aggregate behavior of the other population. We argue that these conditions might

exist in bargaining situations in both housing and used-car markets. Coordination games

can model simple bargaining in these markets, where each agent has two strategies: a

high-price strategy or low-price strategy. For example, a seller can either demand a high

price (with the risk of bargaining failure) or agree to a low price, and a buyer can either

agree to a high price or insist on a low price (as modeled by hawk-dove coordination

games; see Example 3 in Appendix A.1). Heterogeneity in the sample sizes is likely

to exist in these markets, where both professional players (real-estate investors and car

dealers) and inexperienced players (those who have only bought or sold houses or cars

a couple of times) participate. Professional players are likely to have access to large

samples, while inexperienced players may rely on anecdotal evidence.

Koster and Rouwendal (2021) conducted an empirical study on the Dutch housing

market. They found that a significant number of sellers set low list prices, which can be

consistent with profit maximization only if the sellers have high annual discount factors

of up to 50%. This behavior is consistent with an interior stable state in our model
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in which some sellers rely on small, noisy samples to choose non-payoff-maximizing low

prices. Koster and Rouwendal’s data does not allow separating between different types

of sellers. By contrast, Genesove and Mayer (2001) does allow separating the sellers to

owner-occupants and investors, and show that the two groups have systematic differences

in their list prices.

Larsen (2021) empirically studied the efficiency of bargaining following wholesale used-

car auctions in which the highest bid is lower than the reserve price, and found that

bargaining fails in about 35% of these cases (which is consistent with an interior stable

state with miscoordination). The data suggests that this inefficiency results in substantial

losses, representing 12%-23% of ex-post gains from trade. Furthermore, Larsen’s analysis

suggests that only a small part of this loss is due to incomplete information constraints.

Structure Section 2 presents the related literature. Our model is described in Section

3. Section 4 presents a “complete” characterization of global convergence to states with

miscoordination. In Section 5, we show that homogeneous populations always converge

to one of the pure equilibria. Section 6 shows that many heterogeneous populations can

induce locally stable states with miscoordination. In Section 7, we numerically analyze

logit dynamics, and demonstrate that our main insights hold in this setup as well. We

conclude in Section 8. Formal proofs and additional results are presented in the appendix.

Appendix A.2 extends our results to one-population dynamics. Appendix A.3 states and

proves an interesting general result on binomial distributions.

2 Related Literature

Instability of Miscoordination It is well-known that strict equilibria satisfy strong

stability refinements, while mixed equilibria with miscoordination do not satisfy even

weak stability refinements. In particular, strict equilibria are evolutionarily stable (May-

nard Smith and Price, 1973), while the mixed equilibrium does not satisfy neutral stabil-

ity (Maynard Smith, 1982) or even the mild refinement of weak stability (Heller, 2017).

Moreover, it is well known that interior stationary states in all multiple-population games

cannot be asymptotically stable under the widely studied replicator dynamics (see, e.g.,

Sandholm, 2010, Theorem 9.1.6). Instability of interior states is further shown for various

classes of learning dynamics in Crawford (1989).
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Moreover, various papers in the literature have proven that populations playing coor-

dination games converge to one of the pure equilibria from almost all initial states under

various dynamics. Kaniovski and Young (1995) show that there is global convergence to

one of the pure equilibria for sampling dynamics with sufficiently large samples. Oprea,

Henwood, and Friedman (2011) show that there is global convergence to one of the pure

equilibria under monotone dynamics (i.e., under any dynamics in which an action be-

comes more frequent iff it yields a higher payoff than the alternative action).3 Recently,

Oyama, Sandholm, and Tercieux (2015) proved the global stability of the 1
2
-dominant

pure equilibrium in symmetric coordination games for distributions of sample sizes in

which sufficiently many agents have sufficiently small samples. The stochastic evolution-

ary dynamics literature (pioneered by Kandori, Mailath, and Rob, 1993; Young, 1993; see

also the recent application to hawk-dove games in Bilancini, Boncinelli, Ille, and Vicario,

2022) shows that only pure equilibria can be stochastically stable in large finite popula-

tions in which agents most of the time best respond to a large sample, but occasionally

mistakenly play the other action.

Thus, taken together, the various existing studies suggest that states with miscoordi-

nation are unstable. Our contribution is in showing that this is not the case in plausible

learning dynamics in which agents base their behavior on sampling the actions of the other

population, and there is substantial heterogeneity in the sample sizes in each population.

Sampling Dynamics Sampling best-response dynamics (henceforth, sampling dynam-

ics) were pioneered by Sandholm (2001) and Osborne and Rubinstein (2003). As argued

by Oyama, Sandholm, and Tercieux (2015), the deterministic nature of sampling dynam-

ics implies that when there is convergence to a stable state (which is always the case in

our setup; see Proposition 2) the convergence is fast.4 Recently, Heller and Mohlin (2018)

studied the conditions on the expected sample size that implies global convergence for

all payoff functions and all sampling dynamics.5

3Oprea, Henwood, and Friedman (2011) proved this for hawk-dove games, but the proof can be
extended to all coordination games.

4Conditions in which stochastic dynamics induce fast convergence are studied in Kreindler and Young
(2013) and Arieli, Babichenko, Peretz, and Young (2020).

5Hauert and Miekisz (2018) used the term “sampling dynamics” to refer to a variant of the replicator
dynamics, in which when an agent samples another agent and mimics the other agent’s behavior, it is
more likely that these two agents will be matched with each other. This is less related to our use of the
notion of “sampling dynamics,” which is in line with the literature cited above.
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Salant and Cherry (2020) (see also Sawa and Wu, 2023) generalized sampling dy-

namics by allowing new agents to use various procedures to infer from their samples the

aggregate behavior of the opponents (in addition to allowing for payoff heterogeneity in

the population). Salant and Cherry paid special attention to unbiased inference proce-

dures in which the agent’s expected belief about the share of opponents who play an

action coincides with the sample mean. Examples of unbiased procedures are maximum

likelihood estimation, beta estimation with a prior representing complete ignorance, and

a truncated normal posterior around the sample mean. In our setup, the payoffs are

linear in the share of agents who play action aj, which implies that the agent’s perceived

best response depends only on the expectation of her posterior belief. This implies that

the behavior of agents in our model can be interpreted as each new agent utilizes her

own sample to calculate an unbiased estimation procedure (such as, maximum likelihood

estimation) for the overall behavior of the opposing population. remains the same with

any unbiased inference procedure.

Experimental Literature and Testable Predictions Our model yields a novel

testable prediction: miscoordination can persist when there is heterogeneity in the amount

of information that the agents have about the opponents’ behavior, and for each popu-

lation one of the actions is q-dominant for a sufficiently low q. Brunner, Camerer, and

Goeree (2011) compared the predictive power of various learning models when applied

to the experimental data of McKelvey, Palfrey, and Weber (2000), Goeree, Holt, and

Palfrey (2003), and Selten and Chmura (2008), in which (1) agents are randomly and

repeatedly matched to play a one-shot two-action two-player game against an anonymous

opponent, and (2) agents get feedback only about their most recent opponent’s play (and

can rely on their memory of her previous feedback about past opponents). Brunner,

Camerer, and Goeree’s findings show that sampling dynamics explain well the aggregate

experimental behavior, and that sampling dynamics’ predictions are: (1) as good as the

quantal response equilibrium in all games and significantly better in some games, (2)

significantly better than the Nash equilibrium in all games, and (3) significantly improve

when focusing on the less noisy second halves of the treatments (see, Brunner, Camerer,

and Goeree, 2011, Figure 4).
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Brunner, Camerer, and Goeree’s results suggest that sample sizes of 3–12 fit the data

best (which is roughly in line with the typical estimates of people’s short-run memory

capacity). The prediction of global convergence to miscoordination (Theorem 1) requires

that a substantial part of the population to have a small sample size of 1. This may be

induced by having some subjects playing in different rounds different underlying games.

For example, in each round, one of several underlying games will be played. Each subject

will be informed about the payoff matrix of the current game, and will be reminded about

her most recent past opponent’s behavior in the previous period in which the same game

was played. It seems plausible that many subjects will rely only on this feedback when

deciding how to play (i.e., essentially have a sample of size 1), while only a few subjects

will exert effort to remember relevant past feedback from less recent periods in which the

same game was played.

Recently, Lyu, Li, and Xu (2022) applied a more elaborate experimental setup that

aims to implement sampling dynamics. In their implementation the subjects are endowed

with a specific “default” action to play in the first round. This novel design component

allows us to test dynamic predictions with respect to specific initial states. At the end of

each round each agent observes the k most recent actions (k = 2 and k = 7 were applied

in their treatments) of random opponents among the 14 players in their matching group.

Their underlying games were symmetric coordination games with Pareto-ranked pure

equilibria. Lyu, Li, and Xu showed that action-sampling dynamics (with respect to the

most recent k observed actions) fits about 80% of the subjects’ behavior.

A central reason why some subjects deviated from the predictions of sampling dy-

namics (especially in early rounds) was that they played the action that is part of the

Pareto-dominant equilibrium in order to “teach” the other subjects in the matching group

to move from the Pareto-dominated equilibrium to the Pareto-dominant equilibrium.

These “teaching” incentives were justified, as they often helped groups starting in the

Pareto-dominated equilibrium to shift to the Pareto-dominant equilibrium. We think

that “teaching”incentives would be substantially reduced, and the fit of sampling dynam-

ics would be substantially improved, if either (1) the strict equilibria of the underlying

coordination games were not Pareto-ranked (e.g., battle of the sexes), or (2) the matching

groups were substantially larger.

The predictions of Theorem 3 (local stability of miscoordination) require both an
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appropriate initial state (which can be implemented à la Lyu, Li, and Xu, 2022), and

that some agents will have accurate information about the opponents’ aggregate behav-

ior. This can be implemented by providing some agents with full feedback about the

behavior of all opponents in the previous round (while providing the remaining agents

with feedback about the behavior of only their own matched opponents).

3 Model

3.1 Coordination Games

Let G = {A1 × A2, u} denote a normal-form two-action two-player coordination game.

Let i ∈ {1, 2} be an index denoting one of the players (“she”), and let j denote her

opponent (“he”). For each i ∈ {1, 2}, let Ai = {ai, bi} denote the actions of player i.

The standard two-parameter payoff matrix of a coordination game is given in Table

2: the players get a low payoff (normalized to 0) if they miscoordinate (i.e., one player

plays ai and the opponent plays bj), they get a high payoff (normalized to 1) if they

coordinate on both playing (b1, b2), and they get a payoff of ui > 0 if they coordinate

on both playing (a1, a2). By relabeling the actions we can assume w.l.o.g. that action

profile a is the weakly preferred outcome of Player 1; i.e., we assume that u1 ≥ 1. We

say that the coordination game is (1) symmetric if u1 = u2, and (2) antisymmetric if

u1 = 1
u2

. Antisymmetric coordination games can be interpreted as battle of the sexes

games, in which Player 1’s preference for the first coordinated outcome a over the second

coordinated outcome b is as strong as Player 2’s preference for b over a.

In Appendix A.1 we formally show that this standard two-parameter representation

captures w.l.o.g. two-action coordination games (including battle of the sexes, stag hunt,

and hawk-dove games). This is so because our dynamics (as defined in Eq. (3.1) and Eq.

(A.1))) depend only on the differences between the payoffs of a player in action profiles in

which the opponent plays the same action. This implies that the dynamics are invariant

to (1) adding a constant to the two payoffs of Player 1 (resp., Player 2) in the same row

(resp., column), and (2) dividing all the payoffs of a player by a positive constant.

We extend the game to mixed actions in the standard linear way. We identify each

mixed action with the probability it assigns to the first action (ai), and we denote it

by pi ∈ [0, 1]. We identify the degenerate mixed action 1 (resp., 0) with the pure ac-
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Table 2: Standard Representation of Two-Action Coordination Game
a2 b2

a1 u1
u2

0
0

b1 0
0

1
1

u1 ≥ 1, u2>0

tion ai (resp., bi). Observe that the coordination game admits three Nash equilibria:

two pure equilibria, (a1, a2) and (b1, b2) , in which the players coordinate their actions,

and a mixed equilibrium pNE =
(

1
1+u2

, 1
1+u1

)

in which the players frequently experience

miscoordination.

1
2
-Dominance Fix q ∈ [0, 1]. We say that action ai (resp., bi) is q-dominant (Morris,

Rob, and Shin, 1995; Oyama, Sandholm, and Tercieux, 2015) for player i if it is a strict

best response to any opponent’s mixed action that assigns a mass of at least q to the

counterpart action aj (resp., bj).

Notice that both actions are 1-dominant (which is equivalent to being part of a strict

equilibrium). Additionally, it can be noted that as q decreases, the q-dominance condition

becomes more stringent. In other words, if an action is q-dominant, it also satisfies r-

dominance for any q between r and 1. Lastly, it can be observed that action ai is

1
1+ui

-dominant, while action bi is ui

1+ui
-dominant.

We say that the pure equilibrium a (resp., b) is 1
2
-dominant if each action ai (resp.,

bi) is 1
2
-dominant; in this case we say that the remaining equilibrium is risk dominated.

Observe that the game admits a 1
2
-dominant equilibrium iff u1, u2 > 1. By contrast, if

u1 > 1 > u2, then a1 is 1
2
-dominant for player 1 and b2 is 1

2
-dominant for player 2.

Observe that q-dominance depends only on the differences between the payoffs a player

can get by playing the different actions. This implies that q-dominance is invariant to

both of the payoff transformations mentioned above (and described in detail in Appendix

A.1). This implies that an action is q-dominant in the standard representation of Table

2 iff it is q-dominant in the original representation as a general coordination game (as

described in Appendix A.1). By contrast, payoff dominance is not invariant to the first of

these two transformations. Specifically, adding a constant to the two payoffs of Player 1

(Player 2) in the same row (column) might change a Pareto-dominated equilibrium into
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a Pareto-dominant equilibrium.

3.2 Evolutionary Dynamics

We assume that there are two unit-mass continuums of agents and that agents in popu-

lation 1 are randomly matched with agents in population 2. Aggregate behavior at time

t ∈ R
+ is described by a state p (t) = (p1 (t) , p2 (t)) ∈ [0, 1]2, which is equivalent to a

mixed action profile (i.e., pi (t) represents the share of agents playing action ai at time t

in population i). A state p = (p1, p2) is interior (i.e., mixed) if p1, p2 ∈ (0, 1).

Agents die at a constant rate of 1, and are replaced by new agents (or, equivalently,

agents get opportunities to revise their actions). The evolutionary process is represented

by a function w : [0, 1]2 → [0, 1]2, which describes the frequency of new agents in each

population who play action ai as a function of the current state. Thus, the instantaneous

change in the share of agents in population i who play ai is given by the following dynamics

(where wi is as defined in Eq. (A.1) below):

ṗi = wi (pj) − pi. (3.1)

Sample Sizes We allow heterogeneity in the sample sizes used by new agents. Let

θi ∈ ∆ (Z+) denote the distribution of sample sizes of new agents in population i. We

assume that θi has a finite support. A share of θi (k) of the new agents have a sample of

size k. Let supp (θi) denote the support of θi. If there exists some k, for which θi(k) = 1,

then we use k to denote the degenerate (homogeneous) distribution θi ≡ k.

Remark 1. We assume that some agents have sample sizes larger than 1 (i.e., ∀i

max(supp(θi)) > 1). This rules out the trivial case in which all agents have sample size

1. In this case, the entire diagonal {(p, p) |p ∈ [0, 1]} is Lyapunov stable, and no state is

asymptotically stable (as shown in Sethi, 2000, Example 7 in a related setup).6

Definition 1. An environment is a tuple (u, θ) = ((u1, u2) , (θ1, θ2)), where (u1, u2)

6See Appendix A.4 for the formal definitions of Lyapunov and asymptotic stability. Lyapunov stability
requires that populations starting near the state remain close to the state, and asymptotic stability further
requires that the populations eventually converge to the state. The intuition for the stability of the entire
main diagonal is that new agents with sample size 1 always adopt the action that they observe. If all
new agents have sample size 1, this implies that the share of new agents who play ai coincides with the
share of incumbents of the other population who play aj . This, in turn, implies that the populations
move from any initial state toward the closest point in the main diagonal, until reaching a stationary
state in which both populations have the same aggregate behavior.
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describe the payoffs of the underlying coordination game, and (θ1, θ2) describes the dis-

tributions of sample sizes in each population.

Sampling Best-Response Dynamics Sampling best-response dynamics (henceforth

sampling dynamics; Sandholm, 2001; Oyama, Sandholm, and Tercieux, 2015 ) fit situ-

ations in which agents do not know the exact distribution of actions in the other pop-

ulation. New agents estimate this unknown distribution by sampling the opponent’s

actions. Specifically, each new agent with sample size k (henceforth, k-agent) samples k

randomly drawn agents from the other population and then plays the action that is the

best response against the sample. One possible interpretation of this behavior is that

each new agent utilizes her own sample to calculate a maximum likelihood estimation

for the overall behavior of the opposing population (or by any other unbiased estimation

procedure, à la Salant and Cherry, 2020).

To simplify notation, we assume that in case of the tie, the new agent plays ai. Our

results are essentially the same for any tie-breaking rule.

Let X(k, pj) ∼ Bin (k, pj) denote a random variable with binomial distribution with

parameters k (number of trials) and pj (probability of success in each trial), which is

interpreted as the number of aj-s in the sample. Observe that the sum of payoffs of

playing action ai against the sample is ui · X(k, pj) and the sum of payoffs of playing

action bi against the sample is k − X(k, pj).

This implies that action ai is a best response to a sample of size k iff ui · X(k, pj) ≥
k − X(k, pj) ⇔ X(k, pj) ≥ k

ui+1
. This, in turn, implies that the sampling dynamics for

environment (u, θ) is given by

wi (pj) =
∑

k∈supp(θi)

θi(k) · Pr

(

X (k, pj) ≥ k

ui + 1

)

. (3.2)

Observe that Pr
(

X (k, pj) ≥ k
ui+1

)

=
∑ki

l=

⌈

k
ui+1

⌉







k

l





 pl
j (1 − pj)

k−l , which is a poly-

nomial of pj of degree k. This implies that wi (pj) is a polynomial with a finite degree of

max supp (θi) > 1.

Remark 2. Our model deals with coordination games played between two different pop-

ulations (or, equivalently, with games played within a single population where an agent

13



can condition her play on the role she was assigned to in the game: Player 1 or Player

2). In Appendix A.2 we show that our results remain the same under the alternative

one-population dynamics that can be applied to symmetric coordination games (u1 = u2)

in which a player cannot condition her play on her assigned role of Player 1 or Player 2.

4 Global Convergence to Miscoordination

As discussed in Section 2, various existing papers have shown that populations playing

coordination games will always converge to pure equilibria under various dynamics. In

this section, we fully characterize the conditions for which the opposite result holds under

sampling dynamics; i.e., the populations converge from almost any initial state to interior

states with miscoordination.

4.1 Analysis of wi(p)

The characteristics of sampling dynamics are closely related to the properties of the

polynomials w1(p2) and w2(p1) and their intersection points, which are analyzed in this

subsection.

Figure 4.1 illustrates the phase plots of sampling dynamics and the properties of

the curves w2(p1) and w1(p2). We refer to the latter curve also as w−1
1 (p1). The left

panel illustrates a symmetric coordination game with u1 = u2 = 3, and the right panel

illustrates an antisymmetric coordination game with u1 = 3 and u2 = 1
3
. In both panels

all agents have sample size of 3 (θi ≡ 3). The dashed orange curve is the polynomial

p2 = w2(p1), which describes the states in which ṗ2 = 0. In all states above (resp., below)

this curve ṗ2 < 0 (resp., ṗ2 > 0). The solid purple curve is the polynomial p1 = w1(p2),

which describes the states in which ṗ1 = 0. In all states to the right (resp., left) of this

curve ṗ1 < 0 (resp., ṗ1 > 0). Observe that in both panels, all nonstationary initial states

converge to a pure state. In the left panel there is global convergence to (1, 1), while in

the right panel some states converge to (1, 1) and others to (0, 0).

The following fact is immediate given the basic properties of binomial random vari-

ables.

Fact 1. wi(pj) is a strictly increasing polynomial function that satisfies wi(0) = 0 and

14



Figure 4.1: Illustrative Phase Plots (θi ≡ 3 = u1; u2 is either 3 or 1
3
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The figure illustrates the phase plots of sampling dynamics for two environments: (1) ∀i θi ≡
3 = ui (left panel, a symmetric coordination game), and (2) ∀i θi ≡ 3 = u1 = 1

u2
(right panel,

an antisymmetric coordination game). The solid purple (resp., dashed orange ) curve of w1 (p2)
(resp., w2 (p1)) shows the states for which ṗ1 = 0 (resp., ṗ2 = 0 ). The intersection points of
these curves are the stationary states. A solid (resp., hollow) dot represents an asymptotically
stable (resp., unstable) stationary state.

wi(1) = 1. This implies that the inverse function w−1
i : [0, 1] → [0, 1] exists, is continu-

ously differentiable, and that w−1
i (0) = 0 and w−1

i (1) = 1.

Fact 1 implies that the two curves intersect at (0, 0) and (1, 1).

Appendix A.4 presents the standard definitions of stationary states, asymptotically

stable states, and unstable states. Observe that a state is stationary (i.e., it is a fixed

point of the dynamics) iff it is an intersection point of the two curves w1 and w2.

Fact 2. State p is stationary ⇐⇒ p2 = w2 (p1) and p1 = w1 (p2) =⇒ p1 = w1(w2(p1))

and p2 = w2(w1(p2)).

4.2 Asymptotic Stability of Pure Equilibria

To state our next results, it will be helpful to consider the condition in which a single

appearance of a rare action can change the behavior of a new agent. Specifically, consider

a new agent in population i with a sample size of k. Observe that:

1. Action ai induces a weakly higher payoff against a sample with an opponent’s action

aj (and k − 1 opponents’ actions bj) iff ui ≥ k − 1 ⇔ k ≤ ui + 1.
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2. Action bi induces a strictly7 higher payoff against a sample with an opponent’s

action bj (and k − 1 opponents’ actions aj) iff 1 > (k − 1) ui ⇔ k < 1
ui

+ 1.

Next we define m-bounded expectation as the expected value of a probability distribution

when taking into account only values smaller than m. Formally:

Definition 2. The m-bounded expectation E≤m (resp., E<m) of distribution θi with sup-

port on integers is8
E≤m (θi) =

∑

1≤k≤m θi (k) · k (resp., E<m (θi) =
∑

1≤k<m θi (k) · k).

Proposition 1 characterizes the asymptotic stability of the pure equilibria. It shows

that asymptotic stability depends only on whether the product of the bounded expecta-

tions of the distributions of sample sizes is larger or smaller than one, where the bound

of each distribution is the maximal sample size for which a single appearance of a rare

action can change the behavior of a new agent. Formally:9

Proposition 1.

1. E< 1

u1
+1 (θ1) · E< 1

u2
+1 (θ2) = θ1 (1) · E< 1

u2
+1 (θ2) > 1 ⇒ a=(a1, a2) is unstable;

2. E< 1

u1
+1 (θ1) · E< 1

u2
+1 (θ2) = θ1 (1) · E< 1

u2
+1 (θ2) < 1 ⇒ a is asymptotically stable;

3. E≤u1+1 (θ1) · E≤u2+1 (θ2) > 1 ⇒ b=(b1, b2) is unstable; and

4. E≤u1+1 (θ1) · E≤u2+1 (θ2) < 1 ⇒ b=(b1, b2) is asymptotically stable.

Sketch of Proof. Consider a slightly perturbed state (1 − ǫ1, 1 − ǫ2) near a = (1, 1) (the

argument for b is analogous) in which almost all agents play action ai. The event of two

rare actions (bi-s) appearing in a sample of a new agent has a negligible probability of

O(ǫ2
i ). If a new agent has a sample size of k, then the probability of a rare action ap-

pearing in the sample is approximately k · ǫj. This rare appearance changes the perceived

best response of a new agent in population i iff k is smaller than 1
ui

+ 1. Thus, the prob-

ability that a new agent in population i adopts the rare action bi is equal to E< 1

ui
+1 (θi).

This implies that the product of the share of new agents adopting a rare action in each

population is ǫ1 ·E< 1

u1
+1 (θ1) · ǫ2 ·E< 1

u1
+1 (θ2). This shows that the share of agents playing

7We require strictly higher payoffs for action bi and weakly higher payoffs for action ai due to our
tie-breaking rule in favor of action ai.

8Observe that in our notation the parameter k takes only (positive) integer values (although we allow
the upper bound m to be a noninteger).

9Replacing the ai-favorable tie-breaking rule with a bi-favorable one would replace the “<”-s and the
“≤”-s in the bounded expectations in the statement of Proposition 1.
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rare actions gradually increases (resp., decreases) if E< 1

u1
+1 (θ1) · E< 1

u1
+1 (θ2) > 1 (resp.,

E< 1

u1
+1 (θ1) · E< 1

u1
+1 (θ2) < 1), which implies instability (resp., asymptotic stability). Fi-

nally, observe that our assumption that u1 ≥ 1 implies that 1
u1

+ 1 ≤ 2, which, in turn,

implies that θ1 (1) = E< 1

u1
+1 (θ1). See Appendix A.5 for a formal proof.

An interesting implication of Proposition 1 is the substantial difference in the sta-

bility of a 1
2
-dominant equilibrium and a risk-dominated equilibrium (related results for

symmetric coordination games are derived in Oyama, Sandholm, and Tercieux, 2015). A

risk-dominated equilibrium (say, b) is unstable as long as sufficiently many agents have

samples that are not too large (i.e., samples below ui + 1). The process inducing insta-

bility is as follows. A small perturbation of a few agents who play ai induces a slightly

larger number of new agents to observe ai at least once in their samples, which induces

them to play ai as well, which allows the small perturbations to gradually increase, until,

at the end of the process, everyone plays the 1
2
-dominant action ai.

By contrast, any 1
2
-dominant equilibrium is asymptotically stable. To see this, observe

that if a is a weakly 1
2
-dominant equilibrium (i.e., if u2 ≥ 1, where the weak inequal-

ity is due to the tie-breaking rule in favor of ai) then 1
u2

+ 1 ≤ 2, which implies that

E< 1

u2
+1 (θ2) = θ2 (1) < 1. This implies that E< 1

u1
+1 (θ1) · E< 1

u2
+1 (θ2) = θ1 (1) · θ2 (1) < 1,

and thus a is asymptotically stable. This implies that:

Corollary 1. Any 1
2
-dominant equilibrium is asymptotically stable.

Thus, only in games in which neither equilibrium is 1
2
-dominant (i.e., those in which

u2 < 1 ≤ u1), might it be possible for both pure equilibria to be unstable.

4.3 Global Convergence Results

The following definition of neighboring stationary states will be helpful for stating our

results.

Definition 3. Two stationary states p, p are said to be neighbors if there does not exist

any stationary state p̂ such that p
i

< p̂i < pi.

We first show that the populations always converge to a stationary state.10

10One could present an alternative proof to Proposition 2 that relies, in part, on the Bendixson–Dulac
Theorem (see Theorem 9.A.6 of Sandholm, 2010) to show that there are no closed orbits. However, we
prefer presenting a direct proof due to its simplicity, and because some of its arguments are used later
in the results of Section 5.
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Proposition 2. limt→∞ p (t) converges to a stationary state for any p(0).

Proof. Since the function wi(·) is a polynomial of degree max(supp (θi)) > 1, it follows

that wi (wj (·)) is a polynomial of a finite degree strictly larger than 1. As the stationary

states are characterized by the intersection of the curves p1 = w1(p2) and p2 = w2(p1), we

can conclude that there are a finite number of stationary states. The result now follows

from the following claims whose proofs are presented in Appendix A.6.

Claim 1 (Any trajectory reaches the area between the curves). Either limt→∞ p (t) con-

verges to a stationary state, or there exists t < ∞ such that either w−1
1 (p1 (t)) ≤ p2 (t) ≤

w2 (p1 (t)) or w2 (p1 (t)) ≤ p2 (t) ≤ w−1
1 (p1 (t)).

The intuition for Claim 1 (see Figure 4.1) is that populations starting at an initial

state below (resp., above) the two curves move upward and to the left (resp., downward

and to the right) until reaching the area between the two curves.

Claim 2 (Convergence from the area between the curves to a neighboring stationary

state). Let p (t) be an interior state for some t ≥ 0 and let p, p be neighboring stationary

states with p
i

≤ pi(t) ≤ pi. We have,

1. If p2 (t) ∈
[

w−1
1 (p1 (t)) , w2 (p1 (t))

]

, then limt→∞ p (t) = p, and

2. If p2 (t) ∈
[

w2 (p1 (t)) , w−1
1 (p1 (t))

]

, then limt→∞ p (t) = p.

The intuition for Claim 2 (see Figure 4.1) is that in the area between the two curves

in the interval between p and p, the populations either always move upward and to the

right (in which case they must converge to p), or they always move downward and to the

left (in which case they must converge to p).

Next we show that if any initial interior state converges to one of the pure equilibria,

then this equilibrium is asymptotically stable (as defined in Appendix A.4).

Lemma 1. Assume that p(0) 6= (0, 0) and limt→∞ p (t) = (0, 0); then (0, 0) is asymptot-

ically stable. The same result holds when (1, 1) replaces (0, 0).

Proof. See Appendix A.7.

We now show that the populations converge from almost any initial state to an interior

stationary state if (and essentially only if) the product of the bounded expectation of the
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distribution of sample sizes in each population and the share of agents with sample size

1 in the other population is larger than 1.

Theorem 1. Assume that u2 < 1 ≤ u1 (no 1
2
-dominant equilibrium). Then

1. Global convergence to miscoordination: Assume that

θ1 (1) · E< 1

u2
+1 (θ2) > 1 and θ2 (1) · E≤u1+1 (θ2) > 1.

If p(0) /∈ {(0, 0), (1, 1)}, then limt→∞ p (t) /∈ {(0, 0), (1, 1)}.

2. Local convergence to coordination: Assume that

θ1 (1) · E< 1

u2
+1 (θ2) < 1 or θ2 (1) · E≤u1+1 (θ2) < 1.

Then at least one of the pure equilibria is asymptotically stable.

Proof.

1. Proposition 1 implies that both pure stationary states are unstable. Proposition 2

and Lemma 1 imply that from almost any initial state, the population converges to

an interior stationary state.

2. Proposition 1 implies that at least one of the pure equilibria is asymptotically stable,

which implies that some interior initial states converge to a pure equilibrium.

Theorem 1 shows that global convergence to miscoordination requires heterogeneity

in the sample sizes in each population that includes both agents with a small sample

size of one, and agents with larger samples (but not too large, as they must be below the

bound for which a single observation of a rare action can influence behavior). Specifically,

in each population it is required that the product of (1) the share of agents with a sample

size of 1 and (2) the bounded expected sample size should be sufficiently large.

Observe that the farther the ui-s are from 1, the higher (i.e., less restrictive) the

bounded expected value is. That is, games in which for each population one of the

actions is much riskier than the other action (i.e., for population 2, action a2 is much

riskier than action a1, while for population 1, action a1 is much riskier than action a2)

are more likely have stable miscoordination.
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The following example demonstrates global convergence to miscoordination, and the

fact that the stability of pure states is nonmonotone in the sample sizes.

Example 1 (Nonmonotone Impact of Sample Size). Consider a battle of the sexes game

in which u1 = 5 and u2 = 0.2 and both populations have the same distribution of sample

sizes. Consider 3 distributions of sample sizes, in each of which half of the players in

the population have sample size 1. In the first distribution (left panel of Figure 4.2) the

remaining half of the players have sample size 3, in the second distribution (middle panel)

they have sample size 5, and in the third distribution (right panel of Figure 4.2) they

have sample size 7. Observe that the second distribution satisfies the condition for global

convergence to miscoordination, i.e.,

θ1 (1) · E< 1

u2
+1 (θ2) = θ1 (1) · E<6 (θ2) = θ1 (1) · E (θ2) = 0.5 · 3 > 1

(and the same holds for population 2). Indeed, the middle phase plot shows that the

populations converge from any interior state to the state (0.37, 0.63) with substantial

miscoordination (specifically, the agents miscoordinate and get a payoff of zero in 46%≈
2·0.37·0.63 of the interactions). By contrast, either decreasing the larger sample size from

5 to 2, or increasing it to 7, yields a product θ1 (1) · E< 1

u2
+1 (θ2) that is strictly smaller

than 1 (θ1 (1) ·E (θ2) = 0.5 · 1.5 < 1 in the first case, and θ1 (1) ·E<6 (θ2) = θ1 (1) · θ1 (1) =

0.5 · 0.5 < 1 in the second case). The left and right panels of Figure 4.2 illustrate that in

both cases almost all initial states converge to a pure state. Thus, changing sample sizes

of agents has a nonmonotone impact on the stability of miscoordination.

5 Homogeneity and Unstable Miscoordination

In this section, we show that heterogeneity is necessary for stable miscoordination. Specif-

ically, we show that any environment in which all agents in each population have the same

sample size admits at most one interior stationary state, and that this state is unstable.

Auxiliary Results We begin by showing that a stationary state p̂ is asymptotically

stable iff the curve w2 is above the curve w−1
1 in a left neighborhood of p̂, and it is below

the curve w−1
1 in a right neighborhood of p̂.
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Figure 4.2: Illustration of Theorem 1 and Example 1
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The figure illustrates the phase plots for three environments. In each environment, the underly-
ing coordination game is antisymmetric with u1 = 5 and u2 = 0.2, and 50% of the agents in each
population have sample size 1. In the environment illustrated in the left (resp., middle, right)
panel the remaining half of the players in the population have sample size 2 (resp., 5, 7). The
middle panel shows global convergence to the interior state with miscoordination (0.37, .0.63),
while the other two panels show global convergence to one of the pure equilibria.

Lemma 2. Let p̂ be a stationary state. p̂ is asymptotically stable if both of the following

conditions hold:

1. Left neighborhood: If p̂1 > 0 then there exists p
1

∈ (0, p̂1) such that w2 (p1) >

w−1
1 (p1) for any p1 ∈

(

p
1
, p̂1

)

, and

2. Right neighborhood: If p̂1 < 1, then there exists p1 ∈ (p̂1, 1) such that w2 (p1) <

w−1
1 (p1) for any p1 ∈ (p̂1, p1).

Moreover, if either of the above two conditions is not satisfied, then p̂ is unstable.

Proof. See Appendix A.8.

Lemma 2 implies that the neighbor of an asymptotically stable state must be unstable.

Corollary 2. Let p 6= p be two neighboring stationary states. If p is asymptotically

stable, then p is unstable.

Proof. Without loss of generality assume that p
1

< p1. Due to Claim 2, the fact that p

is asymptotically stable implies that w2 (p1) > w−1
1 (p1) for any p1 ∈

(

p
1
, p1

)

which, in

turn implies that p is unstable.
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A Property of Binomial Distributions The main result is implied by a property

of binomial distributions (which may be of independent interest). Recall our notation

of X(k, p) ∼ Bin (k, p) denoting a random variable with a binomial distribution. Define

F k
m (p) ≡ Pr (X (k, p) ≥ m) as the probability of having at least m successes in k trials

when the probability of success in each trial is p. Observe that F k
m (0) = 0, F k

m (1) = 1,

and
(

F k
m

)′

> 0. It is known that F k
m has at most one interior fixed point, i.e.,

Fact 3 (Green, 1983, Theorem 1). Fix arbitrary integers 0 < m ≤ k. Then there is at

most one p ∈ (0, 1) such that F k
m (p) = p.

We extend it by showing that the same is true also for a composition of any two

cumulative binomial distributions, i.e., that F k1

m1
◦ F k2

m2
has at most one interior fixed

point.

Proposition 3. Fix arbitrary integers satisfying 0 < m1 ≤ k1 and 0 < m2 ≤ k2. There

exists at most one p ∈ (0, 1) such that
(

F k1

m1
◦ F k2

m2

)

(p) = p.

The proof, which is detailed in Appendix A.3, shows that F k1

m1
◦ F k2

m2
has at most one

inflection point, which implies that there exists at most one interior fixed point.

Main Result We now present the main result of this section: any environment with

homogeneous sample sizes admits at most one interior stationary state that is unstable.

This implies that almost all initial states converge to one of the pure equilibria.

Theorem 2. Assume that θi ≡ ki > 1 for each i ∈ {1, 2}. There exists at most one

interior stationary state, and this state (if it exists) is unstable.

Proof. The fact that θi ≡ ki > 1 implies that wi (p) = F ki
mi

(p) for some 1 ≤ mi ≤ ki. This

implies that any stationary state p∗ must satisfy
(

F k1

m1
◦ F k2

m2

)

(p∗
1) = p∗

1. Proposition 3

implies that this holds for at most one interior state p̂. Therefore, the stationary state p̂

(if it exists) is a neighbor of both pure stationary states (0, 0) and (1, 1). Proposition 1

and the fact that no agents have sample size of 1 implies that at least one of these pure

states is asymptotically stable. Finally, Corollary 2 implies that p̂ is unstable.
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6 Heterogeneity and Stable Miscoordination

The conditions presented for global convergence to miscoordination in Section 4 are some-

what narrow in the sense of requiring sufficiently many agents with sample size one. In

this section we show that a much broader set of heterogeneous distributions of sample

sizes can induce asymptotically stable states with miscoordination.

Specifically, we show that essentially any distribution of sample sizes that combines

agents with small samples and agents with large samples induces locally stable misco-

ordination if the ui-s are not too close to one. As demonstrated below, this type of

heterogeneity in the sample sizes is plausible in various setups.

Example 2. In housing markets (in which the bargaining situations can be modeled as

hawk-dove coordination games), it is often the case that each population includes two

types of agents: (1) professional real-estate investors, and (2) people who buy/sell houses

only a couple of times during their life. It seems plausible that the real-estate investors

have reliable information on the aggregate behavior (captured in our model by having

large samples), while the remaining agents are likely to have limited, anecdotal evidence

about the aggregate behavior (modeled by having small samples).

Result Recall (Theorem 2) that all interior equilibria are unstable if all agents in each

population have the same size. Our final result shows that, perhaps surprisingly, one

can always add agents with large samples, and obtain an asymptotically stable interior

equilibrium with miscoordination, provided that the ui-s are not too close to one.

We formally define adding agents with large samples as follows. Given two sample

sizes k, k̄ and α ∈ (0, 1), let kαk̄ be the distribution of sample sizes that assigns mass α

to sample size k and mass 1 − α to sample size k̄.

Theorem 3. Fix any pair of sample sizes k1, k2 > 1. Then there exist r, α1, α2 ∈ (0, 1),

such that for any u1, u2 /∈ (r, 1
r
) the environment

(

u,
(

k1α1k̄, k2α2k̄
))

admits an asymp-

totically stable interior state for any sufficiently large k̄.

Proof idea (see Appendix A.9 for a formal proof). We present one argument for games

with a 1
2
-dominant equilibrium, and another for those without. The arguments are illus-

trated in the phase plots of Figure 6.1.
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1. Games with a 1
2
-dominant equilibrium: Assume that ui > ki for each i. Proposition

1 implies that the risk-dominated equilibrium b is unstable when all agents have

sample size ki. Observe that adding agents with large samples decreases the average

probability of new agents playing ai in state (ǫ1, ǫ2) near b. We choose αi, such that

the share of new agents playing action ai (1) is above ǫj in state (ǫ1, ǫ2), and (2) is

below pj in an interior state p̂ (this is possible because wi(pj)

pj
is decreasing in small

pj-s). This, in turn, implies that there is a stable interior state between b and p̂.

2. Games without a 1
2
-dominant equilibrium: Observe that wki

i (pj) remains the same

for all values of ui that are sufficiently far from one (u1 > k1, u2 < 1
k2

), while the

interior Nash equilibrium pNE
1 (resp., pNE

2 ) converges to 0 (resp., 1) as u1 converges

to infinity (resp., as u2 converges to zero). Thus, for ui-s sufficiently far from 1,

pNE
2 <

w
θ2
2 ( 1

2)
2

. We show that this implies that there must be an unstable stationary

state with p1 < 1
2

and p2 ≃ pNE
2 < 1

2
. By an analogous argument, there is an

unstable stationary state with p1 ≃ pNE
1 > 1

2
and p2 > 1

2
. This implies that

there must be an asymptotically stable interior state between these two unstable

states.

Remark 3. For simplicity, Theorem 3 deals with a heterogeneous population that com-

bines two sample sizes, ki and k̄. The proof’s argument can be adapted in a straightfor-

ward way to populations combining some agents who have arbitrary sample sizes (i.e., an

arbitrary distribution θi replaces the arbitrary ki), and some agents who have sufficiently

large sample sizes (i.e., not necessarily all of the agents with large samples have the same

sample size of k̄).

Non-Payoff-Maximizing Behavior of Agents with Small Samples Observe

the interior stable state is (generically) not a mixed Nash equilibrium. For example, in

the environment illustrated in the left panel of Figure 3 in which ui = 2.5, θi (3) = 40%

and θi (1, 000) = 60% for each population i, the interior stable state is (0.17, 0.17), while

the mixed Nash equilibrium is (0.28, 0.28). This implies that one of the actions is the

unique true best response to the opponent’s behavior (action bi in the example). This

unique best response is played essentially by all agents with a large sample size of 1,000.

By contrast, about 45% of the agents with a small sample size of 3 observe action a−i at

least once in their sample, and play action ai due to an erroneous belief (based on their

24



Figure 6.1: Illustrative Phase Plots for Theorem 3 (Locally Stable Miscoordination)
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The left panel illustrates the symmetric game u1 = u2 = 2.5, where 40% (resp., 60%) of the
agents in each population have sample size 3 (resp., 1,000). The pure risk-dominated equilibrium
(0, 0) is unstable, and its neighbor the interior stationary state with miscoordination (0.18, 0.18)
is asymptotically stable. The right panel illustrates the antisymmetric game u1 = 1

u2
= 5,

where 50% (resp., 50%) of the agents have sample size 2 (resp., 1,000). The mixed Nash

equilibrium of this game is
(

5
6 , 1

6

)

. The environment admits three interior stationary states: two

unstable interior stationary states where one of the coordinates is close to the Nash equilibrium:
(0.6, 0.18) and (0.82, 0.3), and a stable interior stationary state at (0.73, 0.27).

small sample) that the frequency of a−i is at least 1
3
. As a result, the average payoff to

agents with a small sample is only 0.75, which is 8% smaller then the payoff of 0.82 to

agents with a large sample.

This raises the question of why the agents with small samples do not learn to increase

their samples, or why they are not driven out of the population. We suggest two expla-

nations for this. The first is setups like our motivating example of a housing market that

combine both inexperienced players (who have little experience in buying/selling houses)

and experienced players (real-estate investors). In such setups, it seems likely that the

inexperienced agents might have very limited (or costly) access to large samples (and a

continuous inflow of inexperienced traders prevents them from being driven out of the

market). Another reason why some players do not exert effort to increase their sample

sizes is the “the law of small numbers,” which is the commonly believed bias that small

samples well represent large populations (Tversky and Kahneman, 1971).
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7 Comparison with Logit Dynamics

The main candidate in the existing literature to induce stable miscoordination in coor-

dination games is logit dynamics. In this section we numerically demonstrate that (1)

standard logit dynamics with a homogeneous level of noise in each population can induce

stable miscoordination only with high levels of noise that seem implausible, and (2) a

variant of logit dynamics with heterogeneity in the noise level can induce stable miscoor-

dination with substantially lower levels of noise. This suggests that our key insight that

stable miscoordination is induced by heterogeneous noise might hold in various classes of

dynamics, and not only in sampling dynamics.11

Standard (Homogeneous) Logit Dynamics Logit dynamics (introduced in Fuden-

berg and Levine, 1995; see Sandholm, 2010, Section 6.2.3 for a textbook exposition) are

characterized by a single parameter ηi that describes the noise level for each population

i. If player i plays action ai, she will get a payoff of pj · uj. If she plays action bi she will

get a payoff of (1 − pj) · 1. Logit dynamics assume that the probability of revising agents

playing action ai is proportional to e
Payoff of ai

η . Specifically, logit dynamics are given by

wi (pj) ≡ wi (p) =
e

pj ·uj

ηi

e
1−pj

ηi
+

e
pj ·uj

ηi

. (7.1)

Trivially, logit dynamics can induce substantial miscoordination by having high values

of noise. The interesting question is whether stable miscoordination can be supported

by a low level of noise. Our numerical analysis suggests that the answer is negative. In

what follows we demonstrate that this is indeed the case. For example, when we revisit

the the two examples of Figure 6.1 (u1 = u2 = 2.5 and u1 = 1
u2

= 5), then the minimal

level of noise that is required to sustain an asymptotically stable interior state in which

each action is played with a probability of at least 10% is η = 1 (see the left panel of

Figure 7.1 for an illustration of the case of u1 = u2 = 2.5). Such a high level of noise

implies that 27% of the revising agents make the obvious mistake of playing ai when

facing a population in which almost everyone plays bj; by contrast, this obvious mistake

is never made under action-sampling dynamics. Moreover, the average expected payoff

11Preliminary calculations suggest that this insight holds also under best experienced payoff dynamics
(see, e.g., Sethi, 2000) and under dynamics induced by representative sampling à la Danenberg and
Spiegler (2022).
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obtained by revising agents who follow logit dynamics against an opponent population in

which the share of agents playing action ai is distributed uniformly is 85% (resp., 71%) of

the maximal payoff that can be obtained by payoff-maximizing agents in the first (resp.,

second) environment with u1 = u2 = 2.5 (resp., u1 = 1
u2

= 5). By contrast, this average

expected payoff is 98% (resp., 95%) of the maximal payoff under the sampling dynamics.

Thus, stable cooperation can be supported by standard (homogeneous) logit dynamics

only when the agents have high levels of noise.

Figure 7.1: Supporting Stable Coordination with Heterogeneous Logit Dynamics
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The figure revisits the symmetric game presented in the left panel of Figure 6.1 in which u1 =
u2 = 2.5. The left panel shows the phase plot of the minimal homogeneous level of noise, ηi = 1,
that sustains an asymptotically stable state in which each action is played with a probability of
at least 10%. The right panel shows the phase plot of a heterogeneous variant of logit dynamics
in which 55% of the the agents in each population have a moderate level of noise ηi = 0.55 and
45% have a small level of noise ηi = 0.01.

Heterogeneous Logit Dynamics Next, consider a variant of logit dynamics in which

there is heterogeneity in the level of noise for agents in each population. Specifically, in a

population in which there are n groups, the size of the l-th group is µl
i and its members

have a noise level of ηl
i, the heterogeneous logit dynamics are given by

wi (pj) ≡ wi (p) =
∑

l

µl
i · e

pj ·uj

ηl
i

e

1−pj

ηl
i

+
e

pj ·uj

ηl
i

. (7.2)

The numerical calculations demonstrate that heterogeneous noise levels can induce asymp-

totically stable miscoordination with relatively low levels of noise. Specifically, in both
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of the above examples (u1 = u2 = 2.5, which is illustrated in the right panel of Figure

7.1, and u1 = 1
u2

= 5), populations in which 55% of the agents have a moderate level of

noise (i.e., η = 0.55) and 45% have a small level of noise (i.e., η = 0.01) induce asymp-

totically stable states with miscoordination ((0.21, 0.21) in the right panel of Figure 7.1).

Given these heterogeneous levels of noise, only 8% of the agents make the mistake of

playing action ai when facing a population in which everyone plays aj, and the average

expected payoff obtained by playing against opponent populations in which the share of

agents playing action ai is distributed uniformly is 96% (resp., 89%) of the maximal pay-

off that can be obtained by payoff-maximizing revising agents in the environment with

u1 = u2 = 2.5 (resp., u1 = 1
u2

= 5).

8 Conclusion

The conventional wisdom, which is supported by key results in evolutionary game theory,

is that only pure (coordinated) outcomes are reasonable long-run predictions of behavior

in coordination games. By contrast, we show that plausible learning dynamics, in which

new agents rely on samples to estimate and best respond to the behavior of the opponents’

population, can induce stable miscoordination. This happens if there is heterogeneity in

the sample sizes: some agents have accurate information based on large samples of the

opponents’ aggregate behavior, while other agents rely on anecdotal evidence induced by

small samples. We further show that stable miscoordination holds under a broad set of

heterogeneous distributions of sample sizes, if for each player one of the actions in the

underlying game is q-dominant for a sufficiently small q.

Although our analytical results focus on the specific family of sampling dynamics,

the numerical results for logit dynamics suggest that qualitatively similar results are

likely to hold under other learning dynamics, i.e., heterogeneous noise levels can induce

stable miscoordination. Such heterogeneity is plausible in many applications, such as

bargaining in housing markets, where some participants are professional investors, while

other participants are inexperienced. The predictions of our model can be experimentally

tested, as outlined Section 2.
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Table 3: Normalization of General Two-Action Coordination Games
Original Representation Standard Representation

a2 b2

⇒

a2 b2

a1 u11
v11

u12
v12 a1 u11−u21

u22−u12

v11−v12
v22−v21 0

0

b1 u21
v21

u22
v22 b1 0

0
1

1

u11 > u21, u22 > u12, v11 > v12, v22 > v21

A Appendix

A.1 Standard Representation of General Coordination Games

In this subsection we explain why the two-parameter standard representation (Table 2)

captures w.l.o.g. any two-action coordination game (in line with Harsanyi and Selten’s

(Harsanyi and Selten) Axiom 2 of best-reply invariance).

The most general definition of a two-action coordination game is a game that admits

two strict Nash equilibria. By relabeling the actions of player 1, we can assume w.l.o.g.

that these two pure equilibria are (a1, a2) and (b1, b2) (i.e., if the two pure equilibria are

(a1, b2) and (b1, a2), then we switch the labels of player 1’s actions: a1↔b1). This implies

that the left panel of Table 3 shows a parametric representation of all coordination games.

Sampling dynamics (as defined in 3.1 and A.1) depend only on the differences be-

tween the payoffs a player can get by playing different actions (the same property holds

for best-response dynamics and logit dynamics, which implies that the sets of Nash equi-

libria, quantal response equilibria, and evolutionary stable strategies depend only on these

differences).12 These differences are invariant to subtracting a constant from all the pay-

offs of a player while fixing the opponent’s action (e.g., subtracting u21 from all of Player

1’s first-column payoffs). Moreover, sampling dynamics (as well as all the other dynamics

and solution concepts mentioned above) are invariant to dividing all of a player’s payoff

by a positive constant (which preserves the vN–M utility). The left matrix in Table 3

is reduced to the right matrix by the following steps (none of which affect the sampling

dynamics):

12A notable exception is best experienced payoff dynamics (see, e.g., Osborne and Rubinstein, 1998;
Cárdenas, Mantilla, and Sethi, 2015; Mantilla, Sethi, and Cárdenas, 2018; Sandholm, Izquierdo, and
Izquierdo, 2019, 2020; Sethi, 2021; Arigapudi, Heller, and Milchtaich, 2021), where the dynamics depend
directly on the payoffs, and not only on payoff differences.
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1. Three changes to Player 1’s payoffs: (I) subtracting u21 from Player 1’s payoffs in

her first column, (II) subtracting u12 from Player 1’s payoffs in her second column,

and (III) dividing Player 1’s payoff by u22−u12; and

2. Three changes to Player 2’s payoffs: (I) subtracting v12 from Player 1’s payoffs in

her first row, (II) subtracting v21 from Player 1’s payoffs in her first row, and (III)

dividing Player 1’s payoff by v22 − v21.

Observe that the assumption that u1 = u11−u21

u22−u12
≥ 1 in the standard representation of

Table 2 is w.l.o.g.. If u11−u21

u22−u12
< 1, then we can multiply all of Player 1’s payoffs by u22−u12

u11−u21

and all of Player 2’s payoffs by v22−v21

v11−v12
, relabel the actions ai ↔ bi for both players, and

obtain a standard representation as in Table 2 in which u1 ≥ 1.

Example 3 (Hawk-Dove Games). Consider a hawk-dove (aka, chicken) game, which can

be interpreted as a game of bargaining over the price of an asset (e.g., a house) between

a buyer and a seller. Each player can either insist on a more favorable price (“hawk”) or

agree to a less favorable price in order to close the deal (“dove”). The left panel of Table

4 shows the payoffs of a hawk-dove game. Two doves agree on an equally favorable price

(which gives both players a relatively high payoff normalized to one). A hawk obtains

a favorable price when matched with a dove (which increases the payoff to the hawk by

g ∈ (0, 1), while reducing the dove’s payoff by l ∈ (0, 1)), but faces a high probability of

bargaining failure when matched with another hawk (which would yield a low payoff of

zero to both hawks).

Observe that a hawk-dove game can be transformed to our standard representation

of a coordination game (the right panel of Table 4) as follows: (1) relabel the actions of

player 1 such that a1 = d1 and b1 = h1 (while keeping the actions of Player 2 as a2 = h2

and b2 = d2), (2) subtract a payoff of 1 from Player 1’s payoffs in her second column and

from Player 2’s payoffs in her first column, and (3) divide all the payoffs of Player 1 by

g, and all payoffs of Player 2 by 1 − l. Observe that the induced standard representation

is antisymmetric, i.e., u1 = 1−l
g

= 1
u2

.

A.2 One-Population Dynamics

In the main text, we derived results for general coordination games under two-population

dynamics. In this appendix, we show that analogous results hold for symmetric coordi-
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Table 4: Normalization of Hawk-Dove Games (g, l ∈ (0, 1))
Original Representation Standard Representation

h2 d2

⇒

a2 = h2 b2 = d2

h1 0
0

1+g
1−l a1 = d1 1−l

g

g

1−l 0
0

d1 1−l
1+g

1
1

b1 = h1 0
0

1
1

nation games under one-population dynamics.

Adapted Definitions An environment ((u1, u2), (θ1, θ2)) is symmetric if u1 = u2 and

θ1 = θ2. As we focus on symmetric environments here, we omit the subscript i referring to

the population from the parameters ui, θi, the actions ai, bi, and the sampling dynamics

wi. Thus, a symmetric environment is denoted by (u, θ), where u is the payoff to each

player when coordinating on a, and θ is the distribution of sample size of each player.

Under one-population dynamics, the state is denoted by a single number p ∈ (0, 1)

that describes the share of players who play action a in the population. At each time

t, a constant flow (normalized to one) of agents die, and are replaced by new agents.

The sample sizes of the new agents are distributed according to θ. Each k-agent (a new

agent with sample size k) randomly and independently samples k players and observes

the actions that they played. Thus, the one-dimensional sampling dynamics is given by

ṗ = w(p) − p, where

w (p) =
∑

k∈supp(θ)

θ(k) · Pr

(

X (k, p) ≥ k

u + 1

)

. (A.1)

In the above equation, X(k, p) denotes a binomial random variable with parameters k

and p. Analogous arguments to those presented in Appendix A.1 imply that any sym-

metric coordination game can be normalized w.l.o.g. to the standard form with a single

parameter u.13

13Under one-population dynamics it is important that the strict equilibria are obtained by both players
playing the same action (i.e., being on the main diagonal of the payoff matrix), as one cannot relabel
the actions of only one of the players in the game without breaking the symmetry. Thus, under one-
population dynamics, hawk-dove games (in which the pure equilibria are off the main diagonal) are no
longer coordination games (by contrast, they are asymmetric coordination games under two-population
dynamics). As demonstrated in Herold and Kuzmics (2020), introducing pre-play cheap-talk can induce
some hawk-dove games to essentially be coordination games also in one-population dynamics.
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Adaptation of Results We next show that in symmetric coordination games, the set

of stationary states and the set of asymptotically stable stationary states coincide under

the one-population dynamics and the two-population dynamics. This implies that all

our main-text results hold also for one-population dynamics in symmetric coordination

games.

We first show that the sets of stationary states coincide in both sets of dynamics.

Proposition 4. Let (u, θ) be a symmetric environment. State (p1, p2) is stationary under

two-population dynamics iff the state is symmetric (i.e., p ≡ p1 = p2), and p is stationary

under one-population dynamics.

Proof. Assume that (p1, p2) is a stationary state under two-population dynamics. Assume

to the contrary that p1 6= p2. w.l.o.g., assume that p1 < p2. The fact that w is strictly

increasing implies that p2 = w(p1) < w(p2) = p1, and we get a contradiction. Thus,

we know that all stationary states under two-population dynamics are symmetric (i.e.,

of the form (p, p) in symmetric environments). Observe that a symmetric state (p, p)

is stationary under two-population dynamics iff p is stationary under one-population

dynamics, because stationarity under both dynamics is characterized by the equation

p = w(p).

The fact that one-population dynamics are one-dimensional implies the following sim-

ple and well-known fact:

Fact 4. Stationary state p is asymptotically stable under one-population dynamics iff both

of the following conditions hold:

1. If p > 0, then w(p) > p in a left neighborhood of p.

2. If p < 1, then w(p) < p in a right neighborhood of p.

We conclude this section by showing that the sets of asymptotically stable states

coincide under both one-population dynamics and two-population dynamics. Fact 4 and

Propositions 4–5 are illustrated in Figure A.1.

Proposition 5. Let (u, θ) be a symmetric environment. State (p1, p2) is asymptotically

stable under two-population dynamics iff the state is symmetric (i.e., p ≡ p1 = p2), and

p is asymptotically stable under one-population dynamics.
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Figure A.1: Illustration of Equivalence Results for One- and Two-Population Dynamics
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The figure illustrates the phase plots of three symmetric environments for two-population dy-
namics (upper panels) and the corresponding one-population dynamics (lower panels). Notice
that the phase plots of one-population dynamics are similar to the part of phase plots of the
corresponding two-population dynamics along the main diagonal (marked with red arrows). In
all environments u = 2.4. In the left panels all agents have sample size k = 3, in the middle
panels all agents have sample size 7, and in the right panels 40% of the agents have sample size
3, and 60% have sample size 1000. Observe that in all cases, the dynamic predictions under
both one-population dynamics and two-population dynamics are the same.

Proof. From Proposition 4, it follows that all asymptotically stable states under two-

population dynamics are symmetric. The strict monotonicity of w implies that state p

satisfies conditions (1) and (2) in Fact 4 iff the symmetric state (p, p) satisfies conditions

(1) and (2) in Lemma 2. This, in turn, implies that state p is asymptotically stable under

one-population dynamics iff the symmetric state (p, p) is asymptotically stable under

two-population dynamics.

A.3 General Result for Binomial Distributions

Recall our notation of X(k, p) ∼ Bin (k, p) denoting a random variable with binomial

distribution, and of the function F k
m (p) ≡ Pr (X (k, p) ≥ m).

Proposition. 3 Fix arbitrary integers satisfying 0 < m1 ≤ k1 and 0 < m2 ≤ k2. There

exists at most one p ∈ (0, 1) such that
(

F k1

m1
◦ F k2

m2

)

(p) = p.

Proof. Let wi (p) ≡ F ki
mi

(p) for each i ∈ {1, 2}, F (p) ≡
(

F k1

m1
◦ F k2

m2

)

(p) ≡ (w1 ◦ w2) (p) ,

and G (p) = F (p) − p. In what follows we show that the function G(·) has at most one

p ∈ (0, 1) such that G (p) = 0, which proves the result.

We have G (0) = G (1) = 0. Assume to the contrary that there exist two different
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interior points 0 < p < p < 1 such that G
(

p
)

= G (p). Then G equals zero at four points

in the interval [0, 1]. By Rolle’s theorem, this implies that G′ is equal to zero in at least

three points in the interval (0, 1) , which further implies that G′′ is equal to zero in at

least two interior points in the interval (0, 1). Observe that G′′ ≡ F ′′. Thus, in order to

obtain a contradiction we have to show that F ′′ (p) = 0 in at most one interior point.

Recall that (see, e.g., Green, 1983, Eq. (5)):

w′
i (p) = mi







ki

mi





 pmi−1 (1 − p)ki−mi ⇒ w′′
i (p)

w′
i (p)

=
mi − 1

p
− ki − mi

1 − p
. (A.2)

For p ∈ (0, 1), using Eq. (A.2), we compute as follows:

F ′ (p) = w′
1 (w2 (p)) w′

2 (p)

F ′′ (p) = w′′
1 (w2 (p)) (w′

2 (p))
2

+ w′
1 (w2 (p)) w′′

2 (p)

= w′
1 (w2 (p)) w′

2 (p)

[(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

w′
2 (p) +

m2 − 1

p
− k2 − m2

1 − p

]

.

The fact that each wi (p) is strictly increasing implies that F ′′ (p) = 0 iff

(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

w′
2 (p) =

k2 − m2

1 − p
− m2 − 1

p
⇔

m2







k2

m2







(

m1 − 1

w2 (p)
− k1 − m1

1 − w2 (p)

)

pm2−1 (1 − p)k2−m2 =
k2 − m2

1 − p
− m2 − 1

p
⇔

m2





k2

m2





















(m1 − 1) pm2 (1 − p)
k2−m2

∑k2

l=m2





k2

l



 pl (1 − p)
k2−l

− (k1 − m1) pm2 (1 − p)
k2−m2

∑m2−1

l=0





k2

l



 pl (1 − p)
k2−l

















1

p
=

k2 − m2

1 − p
−m2 − 1

p
⇔

m2







k2

m2





























(m1 − 1)

∑k2

l=m2







k2

l







(

p

1−p

)l−m2

− k1 − m1

∑m2−1
l=0







k2

l







(

1−p

p

)m2−l























1

p
=

k2 − m2

1 − p
−m2 − 1

p

One could verify that the left-hand side of the above equation is strictly decreasing and

the right-hand side is strictly increasing in p. Therefore, there can be at most one point
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p∗ ∈ (0, 1) where F ′′(p∗) = 0. This completes the proof.

A.4 Standard Definitions of Dynamic Stability

For completeness, we present in this appendix the standard definitions of dynamic sta-

bility that are used in the paper (see, e.g., Weibull, 1997, Chapter 5).

A state is said to be stationary if it is a rest point of the dynamics.

Definition 4. State p∗ ∈ [0, 1]2 is a stationary state if wi (p∗) = p∗
i for each i ∈ {1, 2}.

Let E (w) denote the set of stationary states of w, i.e., E (w) = {p∗|wi (p∗) = p∗
i }.

Under monotone dynamics, an interior (mixed) state p∗ ∈ (0, 1)2 is a stationary state iff

it is a Nash equilibrium (Weibull, 1997, Prop. 4.7). By contrast, under nonmonotone

dynamics (such as the sampling dynamics analyzed below) the two notions differ.

A state p∗ is Lyapunov stable if a population beginning near p∗ stays close to it.

p∗ is asymptotically stable if it is Lyapunov stable and, in addition, nearby populations

eventually converge to it. A state is unstable if it is not Lyapunov stable. It is well

known (see, e.g., Weibull, 1997, Section 6.4) that every Lyapunov stable state must be a

stationary state. Formally:

Definition 5. A stationary state p∗ ∈ [0, 1]2 is Lyapunov stable if for every neighborhood

U of p∗ there is a neighborhood V ⊆ U of p∗ such that if the initial state p (0) ∈ V , then

p (t) ∈ U for all t > 0. A state is unstable if it is not Lyapunov stable.

Definition 6. A stationary state p∗ ∈ [0, 1]2 is asymptotically stable (or locally stable) if

it is Lyapunov stable and there is some neighborhood U of p∗ such that all trajectories

initially in U converge to p∗, i.e., p (0) ∈ U implies limt→∞ p (t) = p∗.

A.5 Proof of Proposition 1 (Stability of Pure States)

We are interested in deriving conditions for the stability of pure stationary states. In

what follows, we compute the Jacobian of sampling dynamics in the pure state a = (0, 0)

(resp., b = (1, 1)). For this, we consider a slightly perturbed state with a “very small”

ǫi share of agents playing bi (resp., ai) in population i. By “very small,” we mean that

higher-order terms of ǫi and ǫj are neglected.
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Consider a new agent in population i who has a sample size of ki. Action bi (resp., ai)

has a weakly (resp., strictly) higher mean payoff against a sample size of ki iff (neglecting

rare events of having multiple bj-s (resp., aj-s) in the sample): (1) the sample includes the

opponent’s action bj (resp., aj), and (2) ki < 1
ui

+ 1 (resp., ki ≤ ui + 1). The probability

of (1) is ki · ǫj +o(ǫj), where o(ǫj) denotes terms that are sublinear in ǫj, and, thus, it will

not affect the Jacobian as ǫj → 0. This implies that the probability that a new agent in

population i (with a random sample size distributed according to θi) who has a higher

mean payoff for action bi (resp., ai) against her sample is wi(1−ǫj) = ǫj ·E< 1

ui
+1 (θi)+o(ǫj)

(resp., wi(ǫj) = ǫj ·E≤ui+1 (θi)+o(ǫj) ). Therefore, the sampling dynamics at (ǫ1, ǫ2) (resp.,

(1 − ǫ1, 1 − ǫ2)) can be written as follows (ignoring the higher-order terms of ǫ1 and ǫ2):

ǫ̇i = ǫj · E< 1

ui
+1 (θi) − ǫi (resp., ǫ̇i = ǫi − ǫj · E≤ui+1 (θi)). (A.3)

Define: aθi
= E< 1

ui
+1 (θi) (resp., bθi

= E≤ui+1 (θi)). The Jacobian of the above system of

Equations (A.3) is then given by Ja =







−1 aθ1

aθ2
−1





 (resp., Ja =







1 −bθ1

−bθ2
1





). The

eigenvalues of Ja (resp., Jb) are −1 − √
aθ1

aθ2
and −1 +

√
aθ1

aθ2
(resp., −1 −

√

bθ1
bθ2

and

−1 +
√

bθ1
bθ2

). Observe that: (1) if aθ1
aθ2

< 1 (resp., bθ1
bθ2

>1) then both eigenvalues are

negative, which implies that the pure state a (resp., b) is asymptotically stable, and (2)

if aθ1
aθ2

> 1 (resp., bθ1
bθ2

>1) then one of the eigenvalues is positive, which implies that

this state is unstable (see, e.g., Perko, 2013, Theorems 1 and 2 in Section 2.9).

A.6 Proof of Proposition 2

A.6.1 Proof of Claim 1 (Reaching the Area between the Curves)

We say that state p is above (resp., below) curve w2(p1) if p2 > w2(p1) (resp., (p2 <

w2(p1)). Similarly, we say that state p is to the right (resp., left) of the curve w1(p2)

if p1 > w1(p2) (resp., p1 < w1(p2)). We say that the state p is on the curve wi(pj) if

pi = wi(pj). Due to the fact that the two curves are strictly increasing, we identify the

notion of being above a curve and being to the left of the curve, and similarly we identify

the notion of being below a curve and being to the right of the curve. The states on the

curve w2(p1) (resp., w1(p2)) are characterized by having ṗ2 = 0 (resp., ṗ1 = 0). Observe

that ṗ2 > 0 (resp., ṗ2 < 0) in any state p above and to the left (resp., below and to the
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right) of the curve w2(p1). Similarly, ṗ1 > 0 (resp., ṗ1 < 0) in any state p above and to

the left (resp., below and to the right) of the curve w1(p2).

Any state p ∈ [0, 1] can be classified in one of 9 = 3 · 3 classes, depending on its

relative location with respect to the two curves, i.e., whether p is below, above, or on

each of the two curves wi(pj). If state p is on (resp., above, below) the curve w2(p1),

then ṗ2 is zero (resp., negative, positive). Similarly, if state p is on (resp., above, below)

the curve w1(p2), then ṗ1 is zero (resp., positive, negative). In particular, any state p

that is above (resp., below) both curves must satisfy ṗ1 > 0 > ṗ2. This implies that

any trajectory that begins above (resp., below) both curves must always move downward

and to the right. This (together with the fact that ṗ (t) = (0, 0) only in the intersections

of the two curves) implies that the trajectory must either converge to a stationary state

(i.e., an intersection of the two curves), or cross one of the curves, and reach a state p (t)

that satisfies either w−1
1 (p1 (t)) ≤ p2 (t) ≤ w2 (p1 (t)) or w2 (p1 (t)) ≤ p1 (t) ≤ w−1

1 (p1 (t)).

A.6.2 Proof of Claim 2 (Convergence to Stationary States)

We first show why we can assume w.l.o.g. that p (t) is strictly between the two curves.

If p (t) crosses one of the curves and is strictly above (resp., below) the remaining curve,

then the dynamics must take the populations to a state that is strictly below one of the

curves and strictly above the remaining curve. This is so because on the crossing point

one of the ṗi-s is zero and the remaining derivative ṗj is negative (resp., positive), which

implies that the dynamics take the trajectory below and to the right (resp., above and

to the left) of the curve that was crossed.

Next assume that pi (t) ∈
(

w−1
1 (p1 (t)) , w2 (p1 (t))

)

(resp., pi (t) ∈
(

w2 (p1 (t)) , w−1
1 (p1 (t))

)

.

By the classification presented in the proof of Claim 1, the trajectory must move upward

and to the right, i.e., ṗ1, ṗ2 > 0 (resp., downward and to the left, i.e., ṗ1, ṗ2 < 0). This

implies that the trajectory must cross one of the curves. The crossing point cannot be

only on the curve of w2(p1) (resp., w1(p2)), because at such a point the trajectory moves

horizontally to the left (vertically upward), which implies that it must cross the lower

(resp., higher) curve w2(p1) (resp.,w1(p2)) from the left side (resp., from below), and we

get a contradiction. This implies that the crossing point must be the closest intersection

points of the two curves to the right (resp., left) of pi (t), namely, p (resp., p).
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A.7 Proof of Lemma 1 (Convergence to Pure States)

If p is below (resp., above) both curves, then by the classification presented in the proof

of Claim 1 it must be that ṗ2 > 0 (resp., ṗ1 > 0), which implies that convergence to

(0,0) is possible only if the trajectory passes through a state that is strictly between the

two curves, and that the closest intersection point of the two curves to the left of this

state is (0,0). By the classification presented in the proof of Claim 2 it must be that

the curve of w2(p1) is strictly below the curve of w1(p2) in a right neighborhood of (0,0),

which implies that (0,0) is asymptotically stable because any sufficiently close initial state

would converge to (0,0).

A.8 Proof of Lemma 2

Assume that Conditions (1) and (2) hold. Let p 6= p̂ be any sufficiently close state. By

Claim 1 any trajectory beginning at p will enter one of the two areas between the two

curves on either side of p̂. By Claim 2, Condition (1) (resp., (2)) implies convergence to

p̂ if the trajectory has entered the area between the curves to the left (resp., right) of p̂.

This implies that any trajectory that starts sufficiently close to p̂ must converge to p̂,

and, thus, p̂ is asymptotically stable.

Next assume that p̂1 > 0 and Condition (1) (resp., p̂1 < 1 and Condition (2)) is

not satisfied. This implies that w2 (p1) < w−1
1 (p1) (resp., w2 (p1) > w−1

1 (p1)) for any

p1 that is sufficiently close to p̂1 from the left (resp., right). By Claim 2, this implies

that a trajectory starting at (p1, p2) with p1 sufficiently close to p̂1 from the left (resp.,

right) and with p2 ∈
(

w2 (p1) , w−1
1 (p1)

)

(resp., p2 ∈
(

w−1
1 (p1) , w2 (p1)

)

) converges to the

neighboring stationary point on the left (resp., right) side of p̂. Thus, p̂ is unstable.

A.9 Proof of Theorem 3 (Stability of Miscoordination)

Let wki
i (pj) (resp., wθi

i (pj)) denote the sampling dynamics induced by an agent with

sample size ki (resp., agents with the distribution θi).

1. Fix any r < min
(

1
k1

, 1
k2

)

. Assume that ui > 1
r

for each i (which implies that

ui > ki). Observe that

wki
i (pj) = Pr (X (ki, pj) ≥ 1) = 1 − (1 − pj)

ki = kipj −







ki

2





 (pj)
2 + O

(

(pj)
3
)

.
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Fix a sufficiently small ǫ > 0. Let p̂1 ∈
(

0, pNE
1 − ǫ

)

be sufficiently small such

that the term O
(

(pj)
3
)

< ǫ is negligible for any pj < p̂1. For each i ∈ {1, 2}, let

αi ∈ (0, 1) be such that: (1) αiki > 1 and (2) αi





ki −







ki

2





 pj





 < 1 − 2ǫ. This

implies that wki
i (pj) > pj

αi
in a right neighborhood of zero, and wki

i (pj) < pj

αi
in a left

neighborhood of p̂1. Observe that limk→∞ wk
2 (p̂1) = 0 and limk→∞

(

wk
1

)−1
(p̂1) =

pNE
2 . This implies that there exists k sufficiently large such that wk

2 (p̂1) < ǫ and
(

wk
1

)−1
(p̂1) > pNE

2 − ǫ > p̂1. Observe that wkiαik
i (pj) > pj in a right neighbor-

hood of zero, and wkiαik
i (pj) < pj in a left neighborhood of p̂1. This, in turn,

implies that wk2α2k
2 (p1) > p1 >

(

wk2α2k
1

)−1
(p1) in a right neighborhood of zero, and

wk2α2k
2 (p1) < p1 <

(

wk1α1k
1

)−1
(p1) in a left neighborhood of p̂1. Thus, there exists

a stationary state p̃ that satisfies 0 < p̃1 < p̂1 < 1, and wkiαik
2 (p1) >

(

wkiαik
1

)−1
(p1)

(resp., wkiαik
2 (p1) <

(

wkiαik
1

)−1
(p1)) in a left (resp., right) neighborhood of p̃1. This

implies, by Claim 2, that p̃ is asymptotically stable. The argument in this case is

illustrated in the left panel of Figure 6.1.

2. Observe that

wk1

1 (p2) = Pr (a new agent in population 1 has at least one a2 in her sample)

is the same for all values of u1 > k1, and, similarly,

wk2

2 (p1) = Pr (a new agent in population 2 has no b1-s in the sample)

is the same for all values of u2 < 1
k2

. Fix a sufficiently small ǫ > 0. Let ū1 > k1, ū2 <

1
k2

be payoffs satisfying pNE
2 = 1

1+ū1
<

w
k2
2 ( 1

2)
2

−ǫ and 1−pNE
1 = ū2

1+ū2
<

1−w
k1
1 ( 1

2)
2

−ǫ.

Let r = min
(

1
1+ū1

, ū2

1+ū2

)

. Fix any payoff profile u1 > 1
r

and u2 < r. Let k be suffi-

ciently large such that wk
i

(

pNE
j − ǫ

)

< ǫ, wk
i

(

pNE
j + ǫ

)

> 1− ǫ. In what follows, we

show that the environment
(

(u1, u2), (k1
1
2
k̄, k2

1
2
k̄)
)

admits an asymptotically stable

interior state (i.e., we let α1 = α2 = 1
2
).

By Proposition 1, the two pure equilibria are asymptotically stable and w
k2

1

2
k̄

2 (p1) <
(

w
k1

1

2
k̄

1

)−1

(p1) (resp., w
k2

1

2
k̄

2 (p1) >
(

w
k1

1

2
k̄

1

)−1

(p1)) in a right (resp., left) neighbor-

hood of zero (resp., one). Next observe that w
k2

1

2
k̄

2

(

1
2

)

> 1
2
wk2

2

(

1
2

)

> p2
NE + ǫ >
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(

w
k1

1

2
k̄

1

)−1 (
1
2

)

, which implies that there is an (unstable) interior stationary state p̂

that satisfies: (1) p̂1 < 0.5, (2) p2
NE − ǫ < p̂2 < p2

NE + ǫ < 0.5, and (3) w
k2

1

2
k̄

2 (p1) >
(

w
k1

1

2
k̄

1

)−1

(p1) in a right neighborhood of p̂1. By an analogous argument, there

is also an (unstable) interior stationary state p̃ that satisfies: (1) p̃2 > 0.5, (2)

pNE
1 − ǫ < p̃1 < pNE

1 + ǫ < 0.5, and (3) w
k2

1

2
k̄

2 (p1) <
(

w
k1

1

2
k̄

1

)−1

(p1) in a left neigh-

borhood of p̃1. This implies that must be an interior stationary state p̀ between p̂

and p̃ such that w
k2

1

2
k̄

2 (p1) >
(

w
k1

1

2
k̄

1

)−1

(p1) (resp., w
k2

1

2
k̄

2 (p1) >
(

w
k1

1

2
k̄

1

)−1

(p1))

in a left (resp., right) neighborhood of p̀. Finally, Claim 2 implies that p̀ is asymp-

totically stable.
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