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Abstract

This paper develops a computational approach to improve fuzzy clustering and forecasting per-

formance when dealing with endogeneity issues and misspecified dynamics in high dimensional

dynamic data. Hierarchical Bayesian methods are used to structure linear time variations, re-

duce dimensionality, and compute a distance function capturing the most probable set of clusters

among univariate and multivariate time-series. Nonlinearities involved in the procedure look

like permanent shifts and are replaced by coefficient changes. Monte Carlo implementations are

also addressed to compute exact posterior probabilities for each cluster chosen and then mini-

mize the increasing probability of outliers plaguing traditional clustering time-series techniques.

An empirical example highlights the strengths and limitations of the estimating procedure. Dis-

cussions with related works are also displayed.
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1 Introduction

Let a set of linear time-series be serially correlated, it is often desirable to extract their significant

features and then determine groups (or clusters) of similar time-varying data during different periods

from a particular process or from more than one (see, e.g., Keogh and Kasetty (2003), Aghabozorgi

et al. (2015), Kavitha and Punithavalli (2010), Liao (2005), D’Urso and Maharaj (2009), Ramoni

et al. (2002), and Rani and Sikka (2012)). Thus, appropriate distance functions to evaluate simi-

larities and dissimilarities between models become crucial – mainly dealing with high dimensional

dynamic data – and have a significant impact on the clustering algorithms. Their selection may

depend upon the nature of the data and the specificity of the application.

In that context, hierarchical fuzzy clustering holds a relevant competitive position referring to a

data mining technique where similar data are placed into related or homogeneous groups without

advanced knowledge of the groups’ definitions. Moreover, one data object is allowed to be in more

than one cluster to a different degree, and then it is very useful to quantify similarities and dis-

similarities of time-series (see, for instance, Izakian et al. (2013), Izakian and Pedrycz (2014), and

D’Urso and Maharaj (2009)). Fuzzy C-Means (FCM) and Fuzzy C-Medoids (FCMdd) are the two

well-known and representative fuzzy clustering methods, whose objective is to minimize a weighted

sum of distances between data points and cluster centers (see, e.g., Kannan et al. (2012), Keogh

et al. (2001), Izakian et al. (2015), Kaufman and Rousseeuw (2009), and Liao (2005)).

However, high dimensional data and noise problems – e.g., the difficulty in obtaining appropriate

measures or accurately identifying the correct model to represent the data – are characteristics of

most time-series, entailing inconsistent estimates and inaccurate forecasts. Thus, dimensionality

reduction methods are usually used in whole time-series clustering in order to address these issues

and promote forecasting performance by transforming time-series to a lower dimensional space or

by feature extraction (see, e.g., Keogh and Kasetty (2003), Keogh and Ratanamahatana (2005), and

Ghysels et al. (2006)). Nevertheless, there is a trade-off between speed and quality, and all efforts

must be made to obtain a proper balance point between quality and execution time. For instance,

when clustering by dynamics and measuring the distance between multiple time-series, unintuitive

results may be obtained since some distance measures may be highly sensitive to some distortions

in the data. Thus, by using raw time-series, one may cluster time-series which are similar in noise

instead of clustering them based on similarity in shape (see, e.g., Izakian et al. (2015), Keogh and

Ratanamahatana (2005), and Ratanamahatana et al. (2005) (dynamic time warping); and Izakian

et al. (2013), Izakian and Pedrycz (2014), and D’Urso and Maharaj (2009) (Euclidean distance and

weighted Euclidean distance-based approach)).

The method proposed in this paper consists of overtaking these drawbacks in order to improve

fuzzy clustering linear time-series and forecasting performance in either high dimensional univariate

or multivariate model settings. The former are addressed through Auto-Regressive Integrated Mov-

ing Average (ARIMA) processes better fitting with the Bayesian (parametric) hierarchical framework

for describing a wide variety of dynamic data and their correlations (see, e.g., Singh and Mahmoud

(2019), Triacca (2016), Zakaria et al. (2012), and Rakthanmanon et al. (2012)). Multivariate ob-

servations are involved accounting for Structural Panel Vector Auto-Regressive (SPVAR) models in

order to investigate cross-country heterogeneity, interdependence, and commonality among different

high dimensional endogenous factors. The computational approach takes the name of Hierarchical
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Bayesian Fuzzy Clustering (HBFC). Its main thrust is to deal with endogeneity issues and misspeci-

fied dynamics among different time-series and perform accurate forecasting. It would be useful when

studying – for example – multiple macroeconomic–financial data serially correlated among them.

Methodologically, a hierarchical Bayesian approach is applied to estimate the dependency structure

of stationary linear time-series. It usually consists of choosing a class of parametric functions, based

on some a priori information about the field under study, and estimating the unknown parameters

from a set of observations. In this way, the proposed methodology is able to avoid the problem of

making critical dependency assumptions by the possibility of choosing a best model solution (or

suitable set of clusters). Here, best stands for the clustering model providing the most accurate

group of homogeneous time-series – over all (possible) candidate set of clusters – which involves

accurate forecasting performance. Conjugate Informative Proper Mixture (CIPM) priors are used to

discover the most probable set of clusters capturing different unmodelled (or misspecified) dynamics

and interactions among time-varying data. The CIPM priors are an implementation of the conjugate

informative proper priors in Pacifico (2020b) and act as a strong model selection when dealing with

high dimensional model classes, where strong highlights the ability to minimize the probability of

outliers plaguing traditional clustering time-series techniques. Markov Chain Monte Carlo (MCMC)

algorithms and implementations are performed to compute exact posterior probabilities for each

cluster chosen and then address accurate forecasts. However, the investigation of multiple structural

breaks (or change-points) and related nonlinearities are unfeasible due to the state-space structure

supposed for the time-varying data, where volatility changes look like permanent shifts and are re-

placed by coefficient changes.

The contributions of this paper are threefold. First, I build on and implement the Pacifico (2020b)’s

analysis, who develops a robust open Bayesian procedure in two stages for implementing Bayesian

Model Averaging (BMA) and Bayesian Model Selection (BMS) when accounting for dynamics of the

economy in either time-invariant moderate data or time-varying high dimensional multivariate data.

More precisely, I implement the prior specification strategy in a dynamic context in order to make

inference on univariate and multivariate high dimensional settings, and then obtain the best sub-

sets of clusters where the within-group-object similarity is minimized (e.g., because of misspecified

dynamics) and the between-group-object dissimilarity is maximized (e.g., because of endogeneity

issues). Then, the subset with the highest Bayes Factor would correspond to the final solution con-

taining the most suitable subset of clusters quantifying similarities and dissimilarities of time-series.

Finally, because the posterior probability of a partition is the scoring metric, it avoids the problem

of increasing the overall probability of errors that plagues frequentist statistical methods based on

significance tests.

Second, in most partition-based fuzzy clustering time-series techniques, when grouping by dy-

namics and measuring the distance between multiple time-series, highly unintuitive results may be

obtained since some distance measures may be highly sensitive to some distortions in the data.

Thus, by using raw time-series, one may cluster them because similar in noise rather than in shape.

This study overtakes these problems by performing a Robust Weighted Distance (RWD) measure

to group finite sets of ARIMA processes (univariate case) and multicountry dynamics for SPVAR

models (multivariate case). It is robust because the BMS is performed with a set of CIPM priors in

order to discover the most probable set of clusters capturing different dynamics and interconnections

among time-varying data, and weighted because each unlabelled time-series is ’adjusted’, on average,

by own Posterior Model Size (PMS) distribution in order to group dynamic data objects into ’ad
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hoc’ homogenous clusters. They correspond to the sum of Posterior Inclusion Probability between

all grouped time-series according to their membership values.

Third, a MCMC approach is used to move through the model space and the parameter space at the

same time in order to transform time-series to a lower dimensional space and compute exact posterior

probabilities for each cluster chosen. Better evidence-based forecasting is involved in HBFC because

of two main features: the use of a hierarchical Bayes approach with informative mixture priors and

dimensionality reduction. The latter is greatly important in fuzzy clustering time-series analysis

because: (i) it reduces memory requirements as all time-series cannot fit in the main memory; and

(ii) distance calculation among dynamic data is computationally expensive and thus dimensionality

reduction significantly speeds up clustering.

Empirical examples describe the functioning and the performance of the estimating procedure.

More precisely, I build on Pacifico (2020a) and perform an empirical experiment for large time-

varying data (k > 15) on a database of Multiple ARIMA (MARIMA) models, with k denoting the

number of time-series. Then, I address an empirical case-study extending and implementing the

HBFC procedure in high dimensional time-varying multicountry data. A simplified version of the

SPBVAR is accounted for grouping multiple data objects to a wide array of candidate models that

are generated from different series among a pool of advanced European economies.

The outline of this paper is as follows. Section 2 discusses the proposed methodology with related

works. Section 3 introduces the computational approach, the Bayesian inference, and their features.

Section 4 illustrates the dynamic analysis describing prior specification strategy, posterior distribu-

tions, and MCMC algorithms. Section 5 discusses an empirical application for effective clustering of

MARIMA time-series and better forecasts. Section 6 extends the methodology in a high dimensional

multivariate context. The final section contains some concluding remarks.

2 Discussion with Related Works

This study is linked to several strands of the literature in Dynamic Linear Models (DLMs). As

regards Bayesian approaches and tools including MCMC algorithms, closely related works address-

ing forecasting techniques and dynamic modelling are West and Harrison (1999), West et al. (1985),

Cargnoni et al. (1996), Frühwirth-Schnatter (1994), Harrison and West (1991), Durbin and Koopman

(2012), and Prado and West (2010) (normal and generalised linear models); Carlin et al. (1992c),

Carter and Kohn (1994), McCulloch and Tsay (1994), and Pole and West (1990) (linear and non-

linear state-space modelling); and Quintana and West (1987) (multivariate DLMs). Overall, DLMs

provide a probabilistic information on the parameters and observables at any given time in order

to incorporate additional information relevant to the development of the time-series, and include a

parametric (or state-space) estimates and point forecasts by modelling joint distributions and future

values of a time-series. However, they suffer from some basic and – from a practical viewpoint –

highly important drawbacks. For instance, the DLMs focus on a sequential model definition for

time-series which describes how the parameters change in time conditional on existing information.

Thus, if state-space models do not provide good forecasts, they might not be taken too seriously

although offering good descriptions of the data generation process. Moreover, the complexity of

the likelihoods is such as exact inferences about observed relationships (estimations) and further

observations (predictions) are precluded, and then the extent to which they are adequate in any
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particular application is usually unclear. Finally, possible extensions involving issues of endogeneity

and unmodelled dynamics would increase the complexity of the analysis by requiring more special

treatments and extensions (either theoretical or methodological).

Three key features matter concerning the HBFC methodology. First, CIPM prior distributions

used to obtain the most probable set of clusters deal with dynamic interactions and feedback effects

among time-varying data for better forecasts and predictive distributions. Second, the RWD mea-

sure implicit in the procedure acts as a strong model selection and then able to group unmodelled

dynamic data objects into ’ad hoc’ homogenous clusters. Third, exact and consistent posterior dis-

tributions for each subset of clusters are computed by jointly modelling the model space (because of

high dimensional and noise problems) and the parameter space (because of endogeneity issues and

functional forms of misspecification).

This study is also correlated to the literature concerning Bayesian model probabilities and av-

eraging with dynamic data. Some main studies developing Bayesian approaches to forecasting are

Harrison and Stevens (1976), Hoeting et al. (1999), Doan et al. (1992), Giannone et al. (2015),

Huerta and West (1999), and Kleibergen and Paap (2002) (Bayesian forecasting and prior spec-

ification in the selection of the model); Litterman (1986a,b), Gamerman and Migon (1993), and

Prado and West (1997) (forecasting with Bayesian Vector autoregressive models); Albert and Chib

(1993), Kitegawa (1987), McCulloch and Tsay (1993), and Zellner et al. (1991) (Bayesian inference

and prediction in autoregressive time-series); and West (1992a,b) (Bayesian mixture models). In

this context, the forecasting problem is dealt with two separate stages: (i) estimating the current

parameters and observables through a prior specification strategy of the model probabilities accord-

ing to the availability of the data; and (ii) extrapolating this information forward in time to make

inferences and then construct posterior model probabilities. However, under ideal conditions, only

a small neighborhood of model configurations will be consistent with both the observed data and

the domain expertise one encodes in the prior model, resulting in precise inferences and accurate

posterior distributions strongly concentrated along each parameter (identifiability). Under more

realistic conditions, measurements and domain expertise might be much less informative allowing

posterior distributions to stretch across more expansive and complex neighborhoods of the model

configuration space. These intricate uncertainties would complicate not only the utility of these

inferences, but also the ability to quantify them computationally (degeneracy). More precisely, the

degeneracy denotes a qualitative description of how strongly and uniformly a realized likelihood

function or posterior density function concentrates around a single point in the model configuration

space. The more uniformly a realized likelihood function concentrates around a single point, the

more informed inferences about the current parameter values will be.

More recently, similar to this paper, Yao et al. (2018) (linear regressions and mixture models),

McAlinn and West (2019) (univariate time-series), and McAlinn et al. (2020) (multivariate settings)

have discussed and addressed these problems by developing a formal Bayesian framework for synthe-

sizing densities in a dynamic context. They implement Bayesian predictive synthesis in a sequential

and dynamic setting for density forecast combination based on agent opinion analysis theory. Their

extension involves dynamic latent factor models in which sequences of forecast densities define time-

varying priors for inherent latent factor processes linked to the time-series of interest. However, the

standard practice of ’re-normalizing’ latent variables for each period is over-identifying and restric-

tive when addressing a set of lagged dynamic and endogenous variables.

The proposed methodology differ to the previous studies because of: (i) the use of a multidimen-
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sional (or panel data) structural framework for multivariate time-series in order to group similar

time-series distinguishing from homogeneity, interdependency, and commonality; and (ii) the con-

struction of MCMC algorithms in order to obtain a reduced set of homogeneous clusters for better

conditional forecasts dealing with overfitting (or overestimation of effect sizes) and dimensionality

reduction.

Finally, this paper is related to some alternative techniques dealing with high dimensional time-

series such as Harrison and West (1987), Aguilar and West (2000), West (2003), West and Harrison

(1999), and Lopes and West (2004) (dynamic factor models); and De Mol et al. (2008) (sparse mod-

els). Concerning dynamic factor models, they build on informative prior distributions for model

parameters based on a rather informal look at some initial data, and develop MCMC methods of

model fitting and computation in the chosen class of dynamic factor models. However, in high di-

mensional time-varying data, the choice of appropriate f -factor models – where f refers to a specific

number of factors – is not immediate and easily achievable due to the related issues of model uncer-

tainty and specification. More precisely, whether f is too large, MCMC algorithms would not work

well by experiencing convergence difficulties in models. Conversely, choices of f sufficiently small

would overlook important information on time-series distribution falling into issues of endogeneity.

In this study, the optimal number of clusters is chosen by performing a model selection on all possible

model solutions according to similarity in dynamics and components.

On the other hand, sparse models focus on Bayesian regression methods where the setting of pre-

dictors is performed using double-exponential priors (variable selection) instead of Gaussian priors

(variable aggregation). More precisely, under Gaussian case, the posterior distribution generating

coefficients is maximized, implying that all variables in the panel are given non-zero coefficients.

Conversely, under double-exponential case, one would put more mass near zero and in the tails,

allowing those coefficients to be either large or zero. The regressors, as in principal component anal-

ysis, are linear combinations of all variables in the panel. However, further implementations need to

be addressed because the variable selection problem involved in the panel is not clearly interpretable

and developable, mainly in dynamic data where the selected variables tend to change over time im-

plying ’parameter instability’. By construction, the Bayesian approach proposed in this paper avoid

it acting as a strong model selection and then capturing the most probable set of clusters among

time-varying data dealing with issues of model uncertainty and endogeneity.

3 Econometric Model Specification

3.1 Hierarchical Framework and RWD Measure

A stochastic process (xt)t≥−p−d is said to be an ARIMA(p, d, q) if it satisfies the following equa-

tion:

Φ(B)(1 −B)dxt = α+ Θ(B)ǫt ∀t ≥ 0 (1)

The stochastic process xt also writes:
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(

1 −
p
∑

i=1

φiB
i

)

yt = α+

(

1 +
q
∑

j=1

θjB
j

)

ǫt (2)

where yt = ∆dxt = (1 − B)dxt is asymptotically equivalent to an ARMA(p, q) process, B is

the backward shift operator, d = 1, . . . , d̃ refers to higher differentiation order to obtain a sta-

tionary time-series, t = 1, 2, . . . , n denotes time periods, i = 1, 2, . . . , p and j = 1, 2, . . . , q de-

note generic Auto-Regressive (AR) and Moving Average (MA) lag orders, respectively, Φi(B) =

(1 −φ1B−φ2B
2 − . . .−φpB

p) and Θj(B) = (1 + θ1B+ θ2B
2 + . . .+ θqB

q) represent the AR and MA

components, respectively, α refers to a constant term, and ǫt ∼ WN(0, σ2) is a i.i.d. Gaussian white

noise process. Hereafter, unless otherwise specified, I refer to ARIMA model simply as time-series.

In equation (2), two conditions need to be assessed. First, if the roots of φ(B) = 0 and θ(B) = 0

lie outside the unit circle, the process is said to be stationary and invertible, respectively, and thus

there is a unique model corresponding to the likelihood function (see, for instance, Li and McLeod

(1986)). Second, if the stationarity and invertibility conditions hold, the time-series components are

constrained to lie in regions Cp and Cq, respectively, corresponding to the polynomial operator root

conditions. Here, the region Cp · Cq contains allowable values of (φ, θ) which are simple to identify

for p ≤ 2 and q ≤ 2. These identifiability conditions enforce a unique parameterization of the model

in terms of mean (µ), variance (σ2), and the ARMA components.

In Bayesian framework, given a stationary and invertible time-series of the form (2), the region

Cp · Cq determines the ranges of integration for obtaining joint and marginal distributions of the

parameters and evaluating posterior expected values. Generally, Bayesian analysis of these models

ignores this region in order to obtain convenient distributional results for the posterior densities (see,

e.g., Zellner (1983), Carlin et al. (1992b), and Carlin et al. (1992a)). However, when p+ q ≥ 4, with

unknown µ and σ2, such techniques become unfeasible.

Let k = 1, 2, . . . ,m denote linear time-series, I define an mν · 1 vector δkt = vec(γk,t) contain-

ing (stacked) all AR and MA components for each time-series for a given ν, with ν = i + j,

γk,t = (φ
′

i1,t, φ
′

i2,t, . . . , φ
′

im,t, θ
′

j1,t, θ
′

j2,t, . . . , θ
′

jm,t)
′

, and δt = (δ
′

1t, δ
′

2t, . . . , δ
′

mt)
′

denoting the time-varying

parameters, stacked for k, for each time-series. With these specifications, I can extend equation (2)

to MARIMA models using a simultaneous-equation form:

yt = ẋtδt + ǫ̃t (3)

where ẋt = (Ik ⊗ x̃t) contains all lagged yt’s and random disturbances within the MARIMA pro-

cesses, with x̃t = (y
′

1,t−i, y
′

2,t−i, . . . , y
′

m,t−i, ǫ
′

1,t−j, ǫ
′

2,t−j, . . . , ǫ
′

m,t−j)
′

being a 1 · mν vector, and yt =

(y
′

1,t, y
′

2,t, . . . , y
′

m,t)
′

and ǫ̃t = (ǫ
′

1,t, ǫ
′

2,t, . . . , ǫ
′

m,t)
′

are m · 1 vectors containing variables of interest and

random white noises for each k.

In hierarchical models, many problems involve multiple parameters which can be regarded as re-

lated in some way by the structure of the problem. A joint probability model for those parameters

should reflect their mutual dependence. Typically, the dependence can be summarized by viewing

these parameters as a sample from a common population distribution. Thus, the problem can be

modelled hierarchically, with observable outcomes (yt) created conditionally on the unknown param-

eters (φ, θ, µ, σ2), which themselves are assigned a joint distribution in terms of further (possibly

common) parameters, called hyperparameters. In addition, ’common’ parameters would change
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meaning from one model to another, so that prior distributions must change in a corresponding fash-

ion. This hierarchical thinking may play an important role in developing computational strategies.

Given a set of k time-series, a partitioning method constructs τ partitions of the dynamic ob-

ject data, where each partition represents a cluster containing at least one object and τ ≤ k. Let

{Mk, k ∈ K,Mk ∈ M} be a countable collection of k time-series, where Mk contains the vector of the

unknown parameters δt, {∆k, δk,t ∈ ∆k,∆k ∈ ∆} be the set of all possible values for the parameters

of model Mk, and f(Mk) be the prior probability of model Mk, the Posterior Model Probability

(PMP) is given by:

f(Mk|y) =
f(Mk) · f(y|Mk)

∑

Mk∈M f(Mk) · f(y|Mk)
with Mk ∈ M (4)

where f(yt|Mk) is the marginal likelihood corresponding to f(yt|Mk) =
∫

f(yt|Mk, δt) ·f(δt|Mk, yt)dδt

and f(δt|Mk, yt) is the conditional prior distribution of δt. The conditional likelihood is obtained

from the factorization:

f(yt|δt) = f(y1|δt)f(y2|y1, δt) · · · f(yn|y1, y2, . . . , yn−1, δt) =

=
(

2πσ2
)− n

2

· exp

{

−
1

2σ2
·
∑

t=1

n(yt − µt)
2

}

(5)

where

µt =











∑p
i=1 δ−θj,t

yt−i −
∑p

i=1 δ−θj,t
(yt−i − µt−i) −

∑q
j=1 δ−φi,t

ǫt−j for t = 2, . . . , q
∑p

i=1 δ−θj,t
yt−i −

∑p
i=1 δ−θj,t

(yt−i − µt−i) for t = q + 1, . . . , n
(6)

where δ−θj,t
and δ−φi,t

are the time-series components excluding MA and AR lag orders, respectively.

Finally, the natural parameter space and model space for (Mk, δt) are, respectively:

∆ = ∪
Mk∈M

{Mk} · ∆k (7)

M = ∪
k∈K

{k} ·Mk (8)

When the size of the set of possible model solutions M is high dimensional, the calculation of

the integral f(yt|Mk) becomes unfeasible. Thus, a MCMC method is required in order to generate

observations from the joint posterior distribution f(Mk, δt|yt) of (Mk, δt) for estimating f(Mk|yt) and

f(δt|Mk, yt).

The main thrust of the HBFC procedure is to find the set of clusters that gives the best fuzzy

partition and then assign each linear time-series to one or more homogeneous clusters dealing with

endogeneity issues and model misspecification problems. Here, a fuzzy partition denotes an assign-

ment of Markov Chains (MCs) to cluster such that each time-series is grouped on the basis of their

components and unmodelled dynamics. In addition, the task of clustering MCs are treated as a BMS
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problem. More precisely, the selected model is the most probable way of partitioning MCs according

to their similarity, given the dynamic data. I use the PMP in (4) of the fuzzy partition as a scoring

metric and I select the model with maximum PMP. Formally, it is done by regarding a fuzzy partition

as a hidden discrete variable W . Each state Wτ of W represents a cluster of time-series and thus

determines a transition matrix. Each fuzzy partition identifies a clustering model Mτ , with p(Mτ )

being its prior probability. The directed link from the node W and the node containing the MCs

represents the dependence of the transition matrix yt|yt−l, with l denoting the number of states of

W . The latter is unknown, but the number ρ of available MCs imposes an upper bound, as l ≤ ρ.

Given the model in equation (3), the full model class set is:

F =

{

Mk : Mk ⊂ F ,Mk ∈ M, k ∈ K, α+
p
∑

i=1

φiyk,t−i +
q
∑

j=1

θjǫk,t−j + ǫk,t

}

(9)

where M = [{k} ·Mk] represents the natural model space for each t.

By Bayes’ Theorem, the posterior probability of Mτ , given the sample F , is:

π(Mτ |F) =
π(Mτ ) · π(F|Mτ )

π(F)
(10)

where, by construction, Mτ < Mk, τ ≤ k, {1 ≤ τ ≤ k}.

The quantity π(F) is the marginal probability of the dynamic data and constant over time since

all models are compared over the same data objects. In addition, since I consider informative proper

priors, all models are a priori equally likely and thus the comparison can be based on the marginal

likelihood π(F|Mτ ), which is a measure of how likely the dynamic data are if a clustering model Mτ

is true. This quantity can be computed from the marginal distribution of W and the conditional

distribution of yt|yt−l. In this context, Wτ would correspond to the cluster membership (see, for

instance, Cooper and Herskovits (1992)). The exact and final solution will correspond to one of the

submodels Mτ with higher natural log Bayes Factor (lBF):

lBFτ,k = log

{

π(Mτ |Yt = yt)

π(Mk|Yt = yt)

}

(11)

where τ ≤ k. In this procedure, the lBF would also be called the log weighted likelihood ratio factor

of Mτ to Mk with the priors being the weighting functions. The corresponding scale of evidence1

is:







































0.00 < lBFτ,k < 4.99 no evidence for submodel Mτ

5.00 < lBFτ,k < 9.99 moderate evidence for submodel Mτ

10.00 < lBFτ,k < 14.99 strong evidence for submodel Mτ

lBFτ,k ≥ 15.00 very strong evidence for submodel Mτ

(12)

Finally, to complete the HBFC method, I need to evaluate all possible partitions and return the one

with the highest posterior probability. Since the number of possible partitions grows exponentially

1It is a generalization of Kass and Raftery (1995).
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with the number of MCs, a heuristic method is required to make the search feasible. I use a measure

of similarity between estimated transition probability matrices (ŷt|ŷt−l) to guide the search process.

The resulting algorithm is called robust weighted distance (RWD) measure. The algorithm performs

a bottom-up search by recursively merging the closest MCs, denoting either a cluster or a single

time-series, and evaluating whether the resulting model is more probable than the model where

these MCs are kept distinct. The similarity measure that guides the process can be any distance

between probability distributions.

Let Qk1
and Qk2

be matrices of transition probabilities between distinct MCs among time-series,

and qk1,ls and qk2,ls be the probabilities of the transition l → s in Qk1
and Qk2

, the RWD from Qk1

to Qk2
is:

Drwd

(

Qc
k1

||Qc
k2

)

=
J
∑

s=1

ω̄c
s

D(qc
k1,l, q

c
k2,l)

J
(13)

where ω̄c is the PMS distribution, on average, between the probabilities qc
k1

and qc
k2

designed in the

clustering procedure and obtained by the estimated transition probability matrices, with c denoting

the optimal number of clusters according to BMS procedure.

The distance in equation (13) is an implemented version of the symmetric Kullback-Leibler dis-

tance2. More precisely, since each of the two matrices (Qc
k1

and Qc
k2

) is a collection of J probability

distributions and rows with the same index are probability distributions conditional on the same

event, the measure of similarity that RWD uses is an average of their own PMS distribution between

corresponding rows. In addition, the distance in (13) is zero when Qc
k1

= Qc
k2

, and greater than

zero otherwise. The main thrust behind the RWD measure is that merging more similar MCs, more

probable homogeneous models (Mτ ) shoul be found sooner and the conditional likelihood in (5) used

as a scoring metric by the algorithm should increase.

3.2 Bayesian Inference and Variable Selection Problem

The BMA procedure entails estimating the time-varying parameters δt to find the best subset that

contains the fuzzy partitions of dynamic data objects. However, the variable selection problem arises

because, in equation (3), dynamic feedback and interactions among time-series are possible. Thus,

even if these features would ensure better and more accurate forecasts, it is very costly making the

number of coefficients of (3) very large. Indeed, they are increased by [mν] factors. Moreover, because

the coefficient vectors in δt vary in different time periods for each time-series, in high dimensional case

(more coefficients than data), it is impossible to eliminate δt. To avoid the curse of dimensionality,

I implement the framework in Pacifico (2020b) by adapting it in a time-varying context. More

precisely, the variable selection problem is addressed by assuming δt to have the following factor

structure:

δt =
c̄
∑

c=1

Dc · βct,k + ut with ut ∼ N(0,Σu) (14)

2It is a well-known statistical indicator useful in evaluating the similarity of time-series represented by their Markov
chains. See, for instance, Do and Vetterli (2002).
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where c̄ denotes the maximum number of clusters, with c̄ ≪ m and dim(βct,k) ≪ dim(δt) by con-

struction, Dc = [d1, d2, . . . , dc̄] is an mν · c conformable matrix with elements equal to zero (absence

of k−th time-series in the c−th cluster) and one (presence of k−th time-series in the c−th cluster),

ut is a mν · 1 vector of unmodelled variations among time-series present in δt, and Σu = σ2
ǫ ⊗V , with

σ2
ǫ = diag(ǫ2′

1t, ǫ
2′

2t, . . . , ǫ
2′

mt) denoting the variance of the vector ǫ̃ that includes stochastic volatility

terms and V = (σ2 · Imν).

In this framework, endogeneity issues and functional forms of misspecification are absorbed in the

(mc · 1) time-varying coefficient vectors βct (stacked for k). They are observable smooth linear func-

tions of the lagged variables and then easily estimable without loss of efficiency and accuracy. The

correct choice of clusters across and within series is obtained through the RWD measure by assigning

a membership value in the range [0, 1] to all clusters. The generalization from the set {0, 1} to the

interval [0, 1] is called fuzzification, where the c = m case would mean that each time-series

has been assigned to its own cluster (no homogeneity among time-series). Let the framework be

dynamic, either the clustering membership or MARMA components change dynamically over time

and are modelled via Bayesian inference.

The idea is to shrink δt to a much smaller dimensional vector βct, with βct = (β
′

1t,k, β
′

2t,k, . . . , β
′

c̄t,k)
′

,

containing all the univariate linear regression coefficients stacked into a vector. In this way, fur-

ther investigations can be performed (e.g., linear dependencies, dynamic feedback effects, business

cycles, interactions). Finally, the fuzzification and factorization of δt become exact as long as

σ2 converges to zero. In equation (14), all factors are permitted to be time-varying, and the com-

putational costs involved in using that specification are moderate since the high dimensionality is

avoided via Bayesian inference and MCMC implementations. For instance, Kalman-Filter technique

is used to get appropriate posterior distributions for time-varying coefficients βct. According to (14),

the equation (3) can be written as:

yt = ẋt





c̄
∑

c=1

Dcβct + ut



+ ǫ̃t ≡ χctβct + ηt (15)

where χct ≡ ẋtDc is an m · c matrix that stacks all time-varying coefficients (βct) and their possible

interactions among MARIMA processes, with χt = diag(χ
′

1t,k, χ
′

2t,k, . . . , χ
′

c̄t,k), and ηt ≡ ẋtut + ǫ̃t ∼

N(0, σ2
ǫ ⊗ Σu). If the fuzzification and factorization are exact, the covariance matrix of ηt is

homoskedastic, the variance in error terms is allowed to be time-variant, and volatility changes are

replaced by coefficient changes. The equation (15) takes the name of Seemingly Unrelated Regression

(SUR) model.

To complete the specification, I suppose the following state-space structure for the time-varying

regression coefficients:

βct = βct−1 + υ with υ ∼ N(0,Συ) (16)

where βct = (β1t,k, β2t,k, . . .)
′

, Συ = diag(Σ̃1t, Σ̃2t, . . . , Σ̃c̄t) is a block diagonal matrix, and Σ̃ct =

(s̃ct · Imν), where s̃ct is an unknown indicator managing the stringent conditions of the time-varying

parameters under the factorization (14) in order to make this latter estimable. The random-walk

assumption in (16) is very common in the time-varying literature and has the advantage of focusing
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on permanent shifts (e.g., unmodelled dynamics in a given time period) and reducing the number of

parameters in the estimation procedure. The errors ǫ̃t and ut are mutually independent.

3.3 Model Features

To illustrate the conformation of the time-varying vectors and conformable matrices in (15), I suppose

there are m = 3 time-series following ARIMA(2, 1, 1) processes, and the optimal number of clusters is

c̄ = 2, with the first two series belonging to cluster 1 and the third one to cluster 2. For convenience,

I suppose no intercept. Thus, the MARIMA models grouped in (3) assume the form:

y1t = φ1,1y1,t−1 + φ2,1y1,t−2 + θ1,1ǫ1,t−1 + ǫ1,t

y2t = φ1,2y2,t−1 + φ2,2y2,t−2 + θ1,2ǫ2,t−1 + ǫ2,t

y3t = φ1,3y3,t−1 + φ2,3y3,t−2 + θ1,3ǫ3,t−1 + ǫ3,t

(17)

Let δt =
(

vec(Φ
′

(B)), vec(Θ
′

(B))
)

be the 9 · 1 vector containing – stacked into columns – the AR

and MA components for each time-series, and let x̃t = (y
′

1,t−1, y
′

2,t−1, y
′

3,t−1, y
′

1,t−2, y
′

2,t−2, y
′

3,t−2, ǫ
′

1,t−1,

ǫ
′

2,t−1, ǫ
′

3,t−1)
′

be the 1 · 9 vector containing all lagged yt’s and white noises within the MARIMA

models in (17), the factorization is:

δt =
2
∑

c=1

Dcβct,k + ut (18)

where ut is a 9 × 1 vector capturing unaccounted features, γk,t is a 9 × 1 vector containing (stacked)

all AR and MA components for each time-series given ν, and, stacking for k, βct = (β
′

1t, β
′

2t) is a

6 · 1 vector containing all time-varying coefficient vectors (φi, θj) to be estimated. More precisely,

the factors β1t = (β1t,1, β1t,2, β1t,3) and β2t = (β2t,1, β2t,2, β2t,3) are m ·Mc mutually orthogonal vectors

capturing unmodelled dynamics in δt among time-series belonging to the first and the secon cluster,

respectively, where Mc = (Mc1,Mc2) denotes the best set of assigned clusters.

Letting i1 = (1, 1, 1)
′

and i2 = (0, 0, 0)
′

, the factorization in (18) can be rewritten as:

δt
(9·1)

=
(

i1 i2

i1 i2

i2 i1

)

(9·2)

·
(

β1t

β2t

)

(6·1)

+ ut
(9·1)

(19)

Thus, following some arrangements, the SUR model is:

(

y1,t
y2,t
y3,t

)

(3·1)

=
(

χ1t,1 0
χ1t,2 0

0 χ2t,3

)

(3·2)

·











β1t,1

β1t,2

β1t,3

β2t,1

β2t,2

β2t,3











(6·1)

+ ηt
(3·1)

(20)
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where χ1t = (χ1t,1, χ1t,2, 0) and χ2t = (0, 0, χ2t,3) are observable specific indicators for yt capturing

dynamics and potential interactions among ARIMA processes assigned to clusters 1 and 2, with

χ1t,1 =
∑

k y1kt−i and χ1t,2 =
∑

k y2kt−i.

4 Dynamic Analysis

4.1 Prior Specification Strategy

Before specifying prior setups and assumptions, I recall the state-space structure in which the Kalman

Filter is employed:

yt =
(

ẋt ·Gc

)

βct + ηt

(

’Measurement Equation’
)

(21)

βct = βct−1 + υ
(

’State-Transition Equation’
)

(22)

Supposing exact fuzzification and factorization in (14), I need to define prior moments on

ψ0 = (σ2
ǫ , s̃c0, βct), where ψ0 is a vector collecting the prior densities. Since their appropriate values

are unknown, one can hierarchically model the uncertainty underlying variable selection through

CIPM priors:

π(σ2
ǫ , s̃c0, βct|yt) = π(σ2

ǫ |yt) ·
∏

c

π(s̃c0|yt) · π(βct|σ
2
ǫ , yt) (23)

Nevertheless, βct and σ2
ǫ are not independent of one another. General priors that do not involve

the restrictions inherent in (23) are the independent normal-Wishart and the independent inverted

Gamma distributions (see, for instance, Chib and Greenberg (1995, 1996)). They are common choices

to estimate parametric SUR models – as with (15) – by allowing cross-equation independence of the

coefficient distributions and remove the dependence of βct and σ2
ǫ . Thus, the CIPM priors involved

in (23) can be written as:

π(βct|yt) = N
(

β̄t|t, Rt|t

)

(24)

π(σ2
ǫ |yt) = iW

(

̟, ζ
)

(25)

π(s̃c0|yt) = IG
{

ϕ0

2
,
ω0

2

}

(26)

All hyperparameters are known. More precisely, they are treated as fixed and are either obtained

from the data to tune the prior to the specific applications (such as ̟ and ϕ0) or selected a priori to

produce relatively loose priors (such as ζ and ω0). The hyperparameters β̄t|t and Rt|t are obtained by

running the conditional posterior distribution of (βct|yt) given the state-space structure in equations

(21) and (22).
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4.2 Posterior Distributions and MCMC Algorithms

The posterior distributions for ψ = (σ2
ǫ , s̃ct, {βct}

T
t=1) are obtained by combining the prior with the

conditional likelihood in (5). The resulting function is then proportional to:

L
(

yT |ψ
)

∝
(

σ2
ǫ

)
n
2

· exp

{

−
1

2σ2
ǫ

[

Σt

(

yt − (ẋtG)βct

)′
]

·

[

Σt

(

yt − (ẋtG)βct

)

]}

(27)

where yT = (y1, . . . , yT ) denotes the data and ψ refers to the unknowns whose joint distribution needs

to be found. However, the analytical computation of posterior distributions (ψ|yT ) is unfeasible. In

this study, the Kalman-Filter technique is used through MCMC algorithms to generate a random

trajectory for {βct}. More precisely, for the conditional posterior distribution of (β11, . . . , βc̄T |yT ),

the forward recursions for posterior means and the covariance matrix are, respectively:

β̄t|t = β̄t−1|t−1 +
[(

yt − (ẋtD)
′

β̄t−1|t−1

)

· P−1
t|t−1

]

(28)

Rt|t =
[

Imν −
(

P−1
t|t−1 · (ẋtD)

′

)]

· (Rt−1|t−1) (29)

with

Pt|t−1 =
[

(ẋtD)
′

·Rt−1|t−1 · (ẋtD)
]

+ σ2
ǫ (30)

Thus, the marginal distributions of βct can be computed by averaging over draws in the nuisance

dimensions, and the Kalman filter backward can be run to characterise posterior distributions for

ψ:

π(βct|βct−1, y
T ,F−p−d) = N(β̄t|t+h, Rt|t+h) (31)

with

β̄t|t+h =
(

R−1
t|t+h · β̄t|t

)

+

[

T
∑

t=1

(ẋtD)
′

· (σ2
ǫ )−1 · (ẋtD)

]

(32)

Rt|t+h =
[

Imν −
(

Rt|t ·R−1
t+h|t

)]

· (Rt|t) (33)

where β̄t|t+h andRt|t+h are smoothed h-period-ahead forecasts of βct and variance-covariance matrix of

the forecast error, respectively, and F−p−d refers to the information on the parameters and observables

at time (−p− d).

Finally, the other posterior distributions can be defined as:

π(σ2
ǫ |yt) = iW

(

ˆ̟ , ζ̂
)

(34)
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π(s̃ct|yt) = IG
{

ϕs̃

2
,
ωs̃

2

}

(35)

where ˆ̟ = ̟ + n and ϕs̃ = ϕ0 + mν are arbitrary degrees of freedom, and ζ̂ = ζ +
∑

t u
′

tut and

ωs̃ = ω0 +
∑

t(βct − βct−1)
−1 · (βct − βct−1) are arbitrary scale parameters. In this study, ̟ ∼= n ·Mc,

ϕ0
∼= 0.1 · exp(Mc), ζ ∼= 1.0, and ω0

∼= 0.01.

5 Empirical Example

The empirical application consists of measuring the distance between MARIMA time-series in a high

dimensional context (k > 15). Its main thrust is to highlight performance and limitations of the

proposed method. More precisely, I build on Pacifico (2020a) by clustering the productivity – in

terms of real GDP per capita in logarithmic form – for 20 country-specific models, including the

United States. They are so split: 12 European advanced economies such as Austria (AT ), Belgium

(BE), Finland (FI ), France (FR), Germany (DE), Greece (GR), Ireland (IE), Italy (IT ), Netherlands

(NL), Portugal (PT ), Slovenia (SL), and Spain (ES); and 7 European emerging economies such as

Czech Republic (CZ ), Hungary (HU ), Poland (PO), Slovak Republic (SK ), Estonia (EE), Latvia

(LV ), and Lithuania (LT ). The estimation sample covers the period from March, 1995 to December,

2018 (T = 96). All the k series are expressed in quarters3 and seasonally adjusted. All data points

are obtained from the Eurostat and OECD database. The methodology supports FCM clustering

algorithm using weighted averages of the data, but close results are obtained accounting for FCMdd

clustering as well. The only difference resides in higher membership values assigned to every clusters

because of selecting their centers by some of the existing data points (medoids). Thus, it implies

that the PMS distribution – corresponding to the parameter ω̄c in (13) – would be stretched across

more expansive and complex neighborhoods of the model configuration space.

Let a process y = {yit ; i ∈ N , t ∈ T } admit the following time-series representation:

xt − φ1xt−1 − . . .− φpxt−p = ǫt + θ1ǫt−1 + . . .+ θqǫt−q with ǫt ∼ WN(0, σ2) (36)

Stated the series to be not stationary over time, a common model building strategy is to select the

exact differentiation order and thus plausible values of AR (p) and MA (q) lag orders on statistics

calculated from the data. In this context, I estimate 20 differenced time-series with appropriate

lag lengths in AR and then MA components according to the Bayesian inference. More precisely,

l run multiple random trajectories for any time-varying coefficient vector (βct) up to find the exact

fuzzification and factorization in (14). The RWD measure is computed by assigning a member-

ship value in the range [0, 1] in order to obtain the optimal number of clusters grouping the MARIMA

time-series.

The maximum differencing order to test stationarity sets 3, and higher PMS (2.99) and lBF (16.21)

among series are obtained by performing a HBFC procedure with a maximum of three clusters (c = 3)

and 100, 000 iterations per each random start4. The associated computational costs are minimized,

ensuring consistent posterior estimates and dimension reduction. The clusters are so split: (i) CZ,

3The proposed methodology would also perform well using different time periods (e.g., dailies and monthlies data).
4According to 100 and 1, 000 iterations, the corresponding PMS/lBF are 1.05/5.57 and 2.50/6.71, respectively.
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FR, DE, HU, IT, PO, and US; (ii) EE, LV, LT, SK, and SL; and (iii) AT, BE, FI, GR, IE, NL, PT,

and ES. Table 1 shows membership values and clusters for each time-series.

These findings address three important issues. First, when accounting for dynamics of the econ-

omy, an accurate BMA strategy is required in order to group time-varying data objects into more

probable homogenous clusters (Mτ ). Second, the use of conjugate hierarchical informative priors in

fuzzy clustering algorithms is able to highlight similarity/dissimilarity among series dealing with un-

observed cross-country homogeneity/heterogeneity, and thus group them in ’ad hoc’ clusters. Third,

given the BMA strategy implied in the HBFC procedure, the Conditional Posterior Sign (CPS) can

be computed in order to observe how the GDP time-series for each country evolve over time. It

refers to the posterior probability of a coefficient expected value conditional on inclusion. Positive

and negative effects on GDP matter whether it is close to 1 and 0, respectively. The CPS is ob-

tained by the Posterior Inclusion Probabilities, corresponding to the sum of PMPs between all series

according to their membership values. In a context of economic dynamic interactions, let the CPSs

be exactly equal to 1 or 0, the performance of the estimating procedure is highlighted by carefully

addressing endogeneity issues and misspecified dynamics. Thus, it would be interesting to extend

the fuzzy clustering analysis in a multivariate context (Section 6).

Table 1: Membership Values and Clusters

Country MEMB1 MEMB2 MEMB3 Cluster CPS MEMB-FCMdd
AT 0.02 0.00 0.98 3 1.00 1.00
BE 0.01 0.01 0.98 3 1.00 0.99
CZ 1.00 0.00 0.00 1 0.00 1.00
EE 0.01 0.95 0.04 2 0.00 0.96
FI 0.02 0.04 0.94 3 0.00 0.95
FR 0.87 0.02 0.11 1 1.00 0.89
DE 0.96 0.01 0.03 1 1.00 0.97
GR 0.02 0.03 0.95 3 0.00 0.96
HU 0.82 0.05 0.13 1 0.00 0.84
IE 0.03 0.06 0.91 3 1.00 0.93
IT 0.76 0.03 0.21 1 0.01 0.78
LV 0.01 0.97 0.02 2 1.00 0.97
LT 0.00 0.99 0.01 2 0.00 1.00
NL 0.15 0.04 0.81 3 0.99 0.82
PO 0.57 0.05 0.38 1 0.93 0.58
PT 0.02 0.06 0.92 3 1.01 0.94
SK 0.03 0.74 0.23 2 1.00 0.79
SL 0.00 0.98 0.02 2 0.00 0.98
ES 0.41 0.06 0.53 3 0.99 0.55
US 0.87 0.04 0.09 1 1.00 0.87

The Table is so split: the first column refers to the countries; the following
three columns display the membership values; the fifth column displays the
corresponding cluster membership; the sixth column shows the CPSs; and
the seventh column displays the membership value according to the FCMdd.

The previous results are better highlighted graphically (Figure 1). Indeed, the first cluster shows

consistent similarity over time among US and some European advanced (FR, DE, and IT) and

emerging (CZ, HU, and PO) economies (plot 1a), although with different levels of productivity

(omitted factors). The second cluster corresponds to Baltic and other two Central-Eastern European

countries (plot 1b), displaying more persistent divergence with some common behaviors (unobserved
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heterogeneity). The last cluster accounts for West European countries (plot 1c), showing stringent

interdependency with higher divergence in terms of economic productivity and structure (misspecified

dynamics). These findings confirm the efficacy of the HBFC procedure when grouping multiple

dynamic processes, but limited to linear univariate settings.

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

Figure 1: The real GDP per capita series are drawn and grouped among 20 country-specific mod-
els, spanning the period 1995q1 to 2018q4. The Y and X axis represent the series and sampling
distribution in quarters, respectively.

In Table 2, I compare the stimating performance of the HBFC procedure with three related distance

measures for effective clustering of MARIMA time-series: (i) the most popular multidimensional scal-

ing method such as Weighted Euclidean Distance (WED)5; (ii) Discrete Wavelet Transform (DWT)6;

and (iii) Discrete Fourier Transform (DFT)7. Here, some considerations are in order. These clus-

tering approaches would be classified as ’structural level’ similarity measures, based on global and

high level structure and used for long-length time-series data. More precisely, the WED depends on

the combination of the weights used and the model parameters. Thus, it tends to be more sensi-

tive to the position of the AR coefficients. The DWT technique has the advantage of representing

time-series as multi-resolution. Additionally, the location of time and frequency can be gained by

means of the time-frequency localization8. The DFT uses the Euclidean distance between time-series

of equal length as the measure of their similarity. Then, it reduces their sequences into points in

low-dimensional space. The approach tends to improve upon the measurement of similarity between

time-series since the effects of high frequency components – which usually correspond to noise prob-

lems – are discarded.

The main thrust of this example is to highlight that RWD measure gets the highest cluster similar-

ity metric than the other related methods by dealing with either model uncertainty and overfitting

(implied in Bayesian framework) or endogeneity issues and misspecified dynamics (implied in the

5See, e.g., Horan (1969) and Carroll and Chang (1970).
6See, e.g., Struzik and Sibes (1999).
7See, e.g., Agrawal et al. (1993).
8It refers to the property of a function which minimizes the spreads or the variance in time and frequency domains.
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BMA strategy) when clustering linear dynamic data. Every related approaches would perform well

by choosing two clusters: emerging economies and advanced countries including US. By running the

lBF in (11) between the submodels Mτ and the ones related to the alternative approaches (M∗)
9, I

find moderate support with DWT and DFT measures, and strong evidence with WED measure by

supporting unequal size time-series in fuzzy clustering.

Table 2: Performance Comparison

Distance Measure Cluster CSM lBF Evidence
RWD 3 9.61 - -
WED 2 8.45 11.07 strong
DWT 2 6.71 7.47 moderate
DFT 2 6.01 8.60 moderate

The Table is so split: the first column refers to the dis-
tance measures; the second column displays the optimal
number of clusters; the third column accounts for Clus-
ter Similarity Metric; and the last two columns refer
to the log Bayes Factor and the corresponding scale of
evidence, respectively.

Finally, in Figure 2, I draw density forecast combinations between MARIMA time-series, spanning

the period 1995q1 to 2021q1. They correspond to the projections of every subsequences drawn in

the sample, according to the three clusters identified in Figure 1. The yellow and red curves denote

the 95% confidence bands, and the blue and purple curves denote the conditional10 and uncondi-

tional11 projection of outcomes yt for each time period t, respectively. Here, the outcomes absorb

the conditional forecasts computed for a time frame of 9 quarters (2 years and a quarter) in order to

also address potential findings concerning the impact of triggering events (e.g., the Great Recession

and the ongoing pandemic crisis on the global economy). The natural conjugate prior refers to two

subsamples: 2006q1–2009q1 and 2009q2–2018q4 in order to investigate (potential) macroeconomic–

financial linkages.

The results emphasize the findings obtained in Table 1 and Figure 1. (i) Conditional projections

lie in the confidence interval; conversely, unconditional projections tend to diverge over time. Thus,

when studying time-varying (economic) factors, structural time variations and dynamic feedback

have to be accounted for. (ii) Density forecasts in cluster 1 (top-plot) tend to show a similar evolu-

tion to the ones according to cluster 2 (middle-plot) because of not directly observed cross-country

interdependencies (e.g., similar dynamics, co-movements, economic structure). (iii) Density fore-

casts in cluster 3 (bottom-plot) tend to display larger divergences (in terms of projections) because

of potential functional forms of misspecification (e.g., economic dynamic interactions among ad-

vanced economies in driving the transmission of unexpected shocks on the productivity). (iv) Most

positive projections in clusters 1 and 2 higlight the accuracy of the methodology by dealing with

endogeneity issues. For instance, developed countries tend to be net senders because of consistent

interdependencies and – in turn – emerging economies because of stringent economic–institutional

9Here, the submodels would correspond to the subsequences – grouped in two clusters – between time-series having
maximum similarity with other objects within that group and minimum similarity with objects in other groups.

10Generally, the conditional projection in density forecasts is the one that the model would have obtained over the
same period conditionally on the actual path of unexpected dynamics for that period.

11Generally, the unconditional projection in density forecasts is the one that the model would obtain for output
growth for that period only on the basis of historical information, and it is consistent with a model-based forecast
path for the other variables.
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implications (see, e.g., Pacifico (2020a)). Thus, the need for forecasters and policymakers to ex-

tend the methodology in a multivariate context and improve the analysis constructing appropriate

multicountry VAR and panel VAR models.
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Figure 2: The plot draws density forecast combinations for real GDP per capita series among 20
country-specific models, spanning the period 1995q1 to 2021q1. It accounts for clustering models Mτ

according to the three clusters identified through the HBFC procedure. The Y and X axis represent
the projections (blue line) and sampling distribution in quarters (purple line), respectively. They cor-
respond to conditional (blue line) and unconditional (purple line) projections of every subsequences
drawn in the sample.

6 HBFC Procedure in a Multivariate Case

In this section, the proposed methodology is extended to panel VAR models in order to test the

estimating performance of the HBFC procedure in high dimensional time-varying multicountry set-

tings. The empirical application builds on Pacifico (2020a) and focuses on a simplified version of

the SPBVAR accounting for the 20 country-specific models. It involves the productivity (prod) – in

terms of real GDP per capita in logarithmic form – and four additional endogenous variables: general

government spending (gov) and gross fixed capital formation (gfcf) describing real economy; and

general government debt (debt) and current account balance (curr) denoting the financial dimension.

The aim of this analysis is to jointly cluster different country- and variable-specific models in order

to identify possible homogeneity, commonality, and interdependence among countries and sectors by

dealing with endogeneity issues and misspecified dynamics.

The simplified version of the time-varying SPBVAR takes the form:

Y m̈
i,t = Am̈

it,j(L)Y m̈
i,t−1 + ε̈m̈

it (37)

where i, j = 1, 2, . . . , 20 are country indices, t = 1, 2, . . . , T denotes time, m̈ = 1, . . . , 6 denotes the
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set of endogenous variables, Ait,j is a [(20 · 6) · (20 · 6)] matrix of real and financial variables for each

pair of countries (i, j) for a given m̈, Yi,t−1 is a [(20 · 6) · 1] vector of lagged variables of interest

accounting for real and financial dimensions for each i for a given m̈, and ε̈it ∼ i.i.d.N(0, Σ̈) is an

[(20 · 6) · 1] vector of disturbance terms. For convenience, I suppose one lag and no intercept.

The estimation sample covers the period from March 1995 to December 2019 and amounts –

without restrictions – to 26, 000 regression parameters (260 coefficients and 100 equations). According

to the BMA strategy implied in the HBFC procedure, there are 2120 possible model solutions. Thus,

MCMC algorithms need to be improved in order to select Mτ̈ submodels, with Mτ̈ denoting the

best subset of clusters involved in the multivariate analysis. Indeed, the number of coefficients is

increased by NM̈ factors, with M̈ denoting the set of the lagged endogenous variables accounted

for. Thus, in order to apply the specifications underlying the HBFC procedure (Section 3), I need

to express the time-varying SPBVAR in (37) in terms of a multivariate normal distribution:

Yt = (INM̈ ⊗ Ẍt)δ̈t + Ët (38)

where Yt = (Y m̈′

1t , . . . , Y
m̈′

Nt )
′

is an [(20 · 6) · 1] vector containing the set of real and financial variables

for each i for a given m̈, Ẍt = (Y
′m̈

i,t−1, Y
′m̈

i,t−2, . . . , Y
′m̈

i,t−l)
′

is an 1 · k̈ vector containing all lagged variables

for each i, with k̈ = NM̈ be the number of all matrix coefficients in each equation of the model

(37) for each pair of countries (i, j), δ̈k̈
it,j = vec(γ̈k̈

it,j) is an NM̈k̈ · 1 vector containing all columns

stacked into a vector, with γ̈k̈
it,j = (A1′

it,j, A
2′

it,j, . . . , A
M̈ ′

it,j)
′

and δ̈t = (δ̈
′

1t, δ̈
′

2t, . . . , δ̈
′

Nt)
′

denoting the

time-varying coefficient vectors, stacked for i, for each country–variable pair, and Ët = (ε̈
′

1t, . . . , ε̈
′

Nt)
′

is an [(20 · 6) · 1] vector containing the random disturbances of the model. In model (38) there is no

subscript i since all lagged variables in the system are stacked in Ẍt.

In this study, the implementation is addressed to the thrust of the HBFC procedure in merging

more similar MCs and thus identifying – as fast as possible – more probable homogeneous submodels

Mτ̈ among Mk̈, with Mk̈ denoting all possible linear model solutions involved in the multivariate

analysis. More precisely, the coefficient vectors in δ̈t represent all the model solutions counted in the

natural model space M (equation (8)), and each factor would correspond to a clustering model Mτ̈

identifying a distinct cluster of (potential) combination of the series m̈. Thus, I adapt the framework

in Pacifico (2020a) and assume δ̈t has the following factor structure:

δ̈t =
¨̄c
∑

c̈=1

G̈c̈ · βc̈t + üt with üt ∼ N(0,Σü) (39)

where c̈ denotes the maximum number of clusters according to the multivariate analysis, with c̈ ≪

NM̈k̈ and dim(βc̈t) ≪ dim(δ̈t) by construction, G̈c̈ = [G̈1, G̈2, . . . , G̈¨̄c] are NM̈k̈ ·1 matrices obtained

by multiplying the matrix coefficients (γ̈k̈
it,j) stacked in the vector δ̈t by conformable matrices D̈¨̄c with

elements equal to zero and one, üt is an NM̈k̈ · 1 vector of unmodelled variations present in δ̈t, and

Σü = Σë ⊗ V̈ , where Σë is the covariance matrix of the vector Ët and V̈ = (σ2Ik̈) as in Kadiyala and

Karlsson (1997). The vector βc̈t = (β
′

1t, β
′

2t, . . . , β
′

¨̄ct
)

′

denotes the adjusted auxiliary indicator defined

in Section 3.2 and contains all time-varying regression coefficients stacked into a vector.

Let the factorization be exact (σ2 → 0), the reduced-form SPBVAR model in equation (38) can

be transformed into a Structural Normal Linear Regression (SNLR) model12 written as

12It is similar to the SUR model described in (15).
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Yt = ¨̃Xt





¨̄c
∑

c̈=1

G̈c̈βc̈t + üt



+ Ët ≡ χ̈c̈tβc̈t + η̈t with ¨̃Xt =
(

INM̈ ⊗ Ẍt

)

(40)

where ¨̃Xt contains all the lagged series in the system by construction, χ̈c̈t ≡ ¨̃XtG̈c̈t is an NM̈ ·1 matrix

that stacks all coefficients of the system, and η̈t ≡ ¨̃Xtüt+Ët ∼ N(0, σt ·Σü), with σt = (IN +σ2 ¨̃X
′

tG̈c̈t).

Finally, to apply conjugate hierarchical informative priors and MCMC integrations, I adapt the

same state-space structure for βc̈t as with (16):

βc̈t = βc̈t−1 + ϋt with ϋt ∼ N(0,Σϋ) (41)

where βc̈t = (β1t, β2t, . . .)
′

, Σϋ = diag( ¨̃Σ1t,
¨̃Σ2t, . . . ,

¨̃Σ¨̄ct) is a block diagonal matrix, and ¨̃Σc̈t = (¨̃sc̈t ·

Ik̈), where ¨̃sc̈t controls the tightness (stringent conditions) of the factorization of the time-varying

parameters (βc̈t) in order to make them estimable. The errors Ët, üt, and ϋt are mutually independent.

Supposing exact factorization, the new prior moments are ψ̈0 = (Σë, ¨̃sc̈0, βc̈t) and the CIPM priors

become:

π(βc̈t|Y
T ) = N

(

¨̄βt|t, R̈t|t

)

(42)

π(Σ−1
ë |Y T ) = iW

(

z1, β1

)

(43)

π(¨̃sc̈0|Y
T ) = IG

{

ϕ̈0

2
,
ω̈0

2

}

(44)

The posterior distributions for ψ̈ = (Σë, ¨̃sc̈t, {βc̈t}
T
t=1) are obtained by combining the above adjusted

priors and conditional likelihood.

L
(

Y T |ψ̈
)

∝
(

Σ
T
2

ë

)

· exp

{

−
1

2

[

T
∑

t=1

(

Yt − ( ¨̃XtG̈)βc̈t

)′
]

· Σ−1
ë ·

[

T
∑

t=1

(

Yt − ( ¨̃XtG̈)βc̈t

)

]}

(45)

The forward recursions for posterior means and the covariance matrix for {βc̈t} are, respec-

tively:

¨̄βt|t = ¨̄βt−1|t−1 +
[

R̈t−1|t−1(
¨̃XtG̈)P̈−1

t|t−1

][

Yt − ( ¨̃XtG̈)
′ ¨̄βt−1|t−1

]

(46)

R̈t|t =
[

Ik̈ −
(

R̈t−1|t−1(
¨̃XtG̈)P̈−1

t|t−1(
¨̃XtG̈)

′

)]

· R̈t−1|t−1 (47)

with

P̈t|t−1 =
[

( ¨̃XtG̈)
′

R̈t−1|t−1(
¨̃XtG̈)

]

+ Σë (48)

Thus, the posterior distributions for ψ̈ are so computed:
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π(βc̈t|βc̈t−1, Y
T , ψ̈−βc̈t

) = N( ¨̄βt|t+h, R̈t|t+h) (49)

where

¨̄βt|t+h = R̃t|t+h ·

[

(

R̈−1
t|t+h · ¨̄βt|t

)

+

(

T
∑

t=1

( ¨̃XtG̈)
′

Σ−1
ë ( ¨̃XtG̈)

)]

(50)

R̈t|t+h =
[

Ik̈ −
(

R̈t|t · R̈−1
t+h|t

)]

· (R̈t|t) (51)

with

R̃t|t+h =

[

R̈−1
t|t+h +

(

T
∑

t=1

( ¨̃XtG̈)
′

Σ−1
ë ( ¨̃XtG̈)

)]−1

(52)

Finally, the multicountry HBFC procedure is completed by defining the other posterior distribu-

tions as:

π(Σë|Y
T , ψ̈−Σë

) = iW
(

ẑ1, β̂1

)

(53)

π(¨̃sc̈t|Y
T , ψ̈−¨̃sc̈t

) = IG
{

ϕ̈t

2
,
ω̈t

2

}

(54)

where ẑ1 = z1 + T and ϕ̈t = ϕ̈0 + k̈ are arbitrary degrees of freedom, and β̂1 = β1 +
∑

t u
′

tut and

ω̈t = ω̈0 +
∑

t(β
c̈
t − β c̈

t−1)
−1 · (β c̈

t − β c̈
t−1) are arbitrary scale parameters, with β c̈

t denoting the c̈th

subvector of βc̈t. In this study, z1
∼= N · (M̈ + M̈c̈), ϕ̈0

∼= 0.1 · exp(M̈ + M̈c̈), β1
∼= 1.0, and ω̈0

∼= 0.1,

where M̈c̈ denotes the best subset of clusters according to the multivariate analysis.

Given the above specifications, I am able to discriminate among all series in Mk̈ by directly

choosing a pool of best submodels (Mτ̈ ) that contain the only regression parameters with higher

posterior means (β̂c̈t’s) and different from zero. Thus, I can jointly deal with overestimation of effect

sizes (or individual contributions) and model uncertainty (implied in the procedure) without loss of

estimator efficiency. The log Bayes Factor in (11) is computed as:

lBFk̈,τ̈ = log

(

L(YT |Mk̈)

L(YT |Mτ̈ )

)

(55)

where YT denotes the data and L(YT |Mk̈) refers to the (conditional) likelihood function conducted on

submodels Mτ̈ by MCs implementations. Support for discovering the most probable set of clusters

capturing different dynamics and interconnections among time-varying data is obtained by comparing

the marginal likelihoods of the unrestricted models (Mk̈) and a vector of the submodels (Mτ̈ ).

Let Qim̈ and Qjm̈ be matrices of transition probabilities between distinct MCs among countries

and sectors, and qim̈,ls and qjm̈,ls be the probabilities of the transition l → s in Qim̈ and Qjm̈, the

RWD from Qim̈ to Qjm̈ is:



23

Drwd

(

Qc̈
im̈||Qc̈

jm̈

)

=
J
∑

s=1

¨̄ωc̈
s

D(qc̈
im̈,l, q

c̈
jm̈,l)

J
(56)

where D(qc̈
im̈,l, q

c̈
jm̈,l) =

[d(qc̈
im̈,l

,qc̈
jm̈,l

)+d(qc̈
jm̈,l

,qc̈
im̈,l

)]

2
and ¨̄ωc̈ is the PMS distribution, on average, between

the probabilities qc̈
im̈,l and qc̈

jm̈,l.

6.1 Empirical Results

The optimal convergence is obtained with a maximum of three clusters (c = 3) and 1, 000 iterations

per each random start, corresponding to the highest PMS/lBF: 2.89/16.70 about prod; 1.89/16.35

about gov; 1.82/15.97 about gfcf ; 1.99/15.95 about debt; and 1.98/15.93 about curr. Increasing

the number of iterations, the procedure would perform better, but with larger computational costs.

To avoid that trade-off, the estimating procedure may be improved by supposing – for example – a

less stringent state-space structure in order to not only allow for time-varying shifts, but also deal

with (potential) nonlinearities (e.g., volatility issues). In this way, alternative MCMC integrations

would also matter improving the number of iterations with low computational costs. For instance,

Markov-Switching mixed-frequency Bayesian processes are able to model covariance matrices of

country-specific Markov chains, mainly when transition probabilities differ among time-varying data

(see, e.g., Casarin et al. (2018)).

Furthermore, I compare the estimating performance of the HBFC procedure with a data analysis

technique widely used to measure time-series similarity in multivariate analysis: the Principal Com-

ponent Analysis (PCA)13. Its particular feature is the main tendency of observing data compactly

and thus the ability to be used as a method to follow up a clue when any significant structure in

the data is not obvious. However, when the data do not have a structure that PCA can capture,

satisfactory results cannot be obtained due to the uniformity of the data structure and thus any

significant and accumulated proportion for the principal components cannot be found. Indeed, it

finds two maximum clusters: (i) real economy and (ii) financial sector.

In Figure 3, the clustering plots are drawn. I dropped the prod showing similar results compared

to the univariate case-study. Three main considerations are in order. First, a relevant common

component matters more in the real economy, but with stronger heterogeneity among series between

clusters (Figures 3a and 3b). Second, larger cross-country homogeneity and interdependency matter

among financial variables within and between clusters, respectively (Figures 3c and 3d). The for-

mer would be larger among Baltic and other emerging countries (clusters 1 and 2); while stringent

interdependency – even if with stronger divergences – concerns mainly advanced economies (clus-

ters 2 and 3). Third, the factorization and fuzzification implied in the HBFC procedure are

exact highlighting three main area-specific common groups: (i) Baltic European countries and other

emerging economies (such as PO and SK) because of misspecified dynamics (e.g., commonality due

to stringent financial exposures with advanced countries); (ii) Central-Eastern European countries

and some advanced economies (such as IE, NL, and PT) because of unobserved heterogeneity (e.g.,

divergent responses to a common unexpected shock); and (iii) Western European countries and US

because of hidden factors (e.g., strong economic–institutional linkages). Concerning ES, it would

tend to belong to either the first or third group due to large trade exposures (see, for instance,

13See, e.g., Gavrilov et al. (2000).
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Pacifico (2020a)).

These findings are robust and consistent with the more recent business cycle literature, which

recognizes the importance of dealing with noise and high dimensional problems when quantifying

similarities/dissimilarities among dynamic data (see, for instance, Izakian et al. (2013), Ratanama-

hatana et al. (2005), Ramoni et al. (2002), McAlinn et al. (2020), and Kaufman and Rousseeuw

(2009)).
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(d) Current Account Balance

Figure 3: Clusters for both real (plots a and b) and financial (plots c and d) variables are drawn among
20 country-specific models, spanning the period 1995q1 to 2018q4. The Y and X axis represent the
series and sampling distribution in quarters, respectively.

Finally, in Figure 4, I draw density forecast combinations for real GDP per capita series dealing

with both real and financial variables for the three country-specific common groups, spanning the

period 1995q1 to 2021q1. The findings can be summarized in four main results. (i) Larger hetero-

geneity matters in the first two groups mainly concerning emerging economies (top- and middle-plot).

(ii) There are stronger cross-country interdependencies among advanced economies showing simi-

lar dynamics over time (bottom-plot). (iii) Stringent interlinkages between Central-Eastern and

Western countries seemingly absorbe an unexpected shock because of net senders in their financial
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dimension (middle-plot). Then, the relevant common component in real economy would affect eco-

nomic dynamics through unobserved transmission channels, negatively during triggering events (e.g.,

the global financial crisis). (iv) An increasing degree of divergence matters among countries during

the ongoing pandemic crisis, mainly among emerging economies showing slower economic recovery.

Thus, the HBFC procedure would be able to extract significant features of multivariate time-series

and thus obtain related or homogeneous clusters without avdanced knowledge of the data.
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Figure 4: Density forecast combinations for real GDP per capita series are drawn accounting for
both real and financial variables. It deals with the three country-specific common groups, spanning
the period 1995q1 to 2021q1. The Y and X axis represent the projections and sampling distribution
in quarters, respectively.

7 Simulated Example

I perform fuzzy clustering on a database of ARIMA(1,1,1) time-series and analyze the results. More

precisely, I generate four groups (A, B, C, and D), each with k = 75 ARIMA(1,1,1) time-series,

where t = 1, 2, . . . , 200 and the parameter vectors (φ, θ) are uniformly distributed in the ranges

[(1.30, 0.30) ± 0.01], [(1.34, 0.34) ± 0.01], [(1.60, 0.60) ± 0.01], and [(1.64, 0.64) ± 0.01], respectively.

The white noise ǫt used has mean zero and variance 0.01. All simulated time-series are stationary,

invertible, and integrated of order one, ARIMA(1, 1, 1) ∼ I(1). I construct 10 collections from these

series and run fuzzy clustering on every groups. Collections 1 − 5 have been built by selecting 15

time-series, each from groups A and B. Similarly, collections 6 − 10 have been built by selecting 15

time-series, each from groups C and D (Figure 5).
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(a) Groups A and B (b) Groups C and D

Figure 5: Simulated MARIMA(1,1,1) models are drawn from the groups A, B, C, and D, with
k = 75 and t = 200. The Y and X axis represent the series and sampling time, respectively.

According to Bayesian inference, higher PMP distribution and log Bayes Factor among MARIMA

series are obtained by performing a HBFC procedure with three clusters (c = 3) and 100,000 itera-

tions for each random start.

In Table 3, I compare the cluster similarity metric – obtained using RWD measure – with the

three related similarity measures: (i) Weighted Euclidean Distance (WED); (ii) Discrete Wavelet

Transform (DWT); and (iii) Discrete Fourier Transform (DFT). The highest cluster similarity met-

ric is found for the RWD measure (close to 1), providing an accurate clustering for all of the

MARIMA(1,1,1) collections.

Table 3: Cluster Similarity Metric

Collection RWD WED DWT DFT
1 9.82 8.127 4.76 5.20
2 9.78 8.21 4.49 5.63
3 9.81 8.47 5.01 5.83
4 9.54 8.17 4.85 5.51
5 9.65 8.35 4.83 5.48
6 9.56 8.41 4.60 5.38
7 9.83 8.33 4.83 5.91
8 9.72 8.22 5.02 5.83
9 9.75 8.80 5.25 5.45
10 9.93 8.46 5.15 5.74

lBF - 8.71 5.57 5.83
Evidence - strong moderate moderate

The Table shows the cluster similarity metric for
five different distance measures. The last two
columns refer to the log Bayes Factor and the cor-
responding scale of evidence, respectively.
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In Figure 6, I draw the clustering plots accounting for all of the 10 collections from MARIMA(1,1,1)

models. All the grouped series show lowly average dissimilarity within a cluster and highly strong

dissimilarity between clusters. Thus, the three clusters are well defined and separated. In addition,

given the BMA implied in the HBFC procedure, dynamics between series are well highlighted and

clustered.

(a) Collection 1 (b) Collection 2

(c) Collection 3 (d) Collection 4

(e) Collection 5 (f) Collection 6

(g) Collection 7 (h) Collection 8

(i) Collection 9 (j) Collection 10

Figure 6: Clustering plots accounting for all of the 10 collections from MARIMA(1,1,1) models are
drawn. Collections 1 − 5 have been built by selecting 15 time-series, each from groups A and B.
Collections 6 − 10 have been built by selecting 15 time-series, each from groups C and D. The Y
and X axis represent the series and sampling time, respectively.
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8 Concluding Remarks

The paper develops a computational approach to improve hierarchical fuzzy clustering time-series

analysis and forecasting performance in high dimensional dynamic data when dealing with endo-

geneity issues and misspecified dynamics. The main thrust of the proposed procedure is the use of

conjugate hierarchical informative proper priors in order to discover the most probable set of clusters

capturing different dynamics and interconnections among linear time-varying data. Full posterior

distributions for effective clustering univariate and multivariate time-series are obtained by MCMC

implementations in order to avoid the problem of increasing the overall probability of errors that

plagues classical statistical methods based on significance tests. Bayesian methods are used to reduce

the dimensionality of the model acting as a strong variable selection.

In this study, empirical examples describe the estimating procedure and forecasting performance.

More precisely, an empirical application for high dimensional time-varying data on a database of

multiple ARIMA time-series is accounted for. Then, the methodology is extended in a multivariate

context in order to improve the variable selection procedure for clustering time-series to a wide array

of candidate models.
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