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Abstract

We focus on estimation and inference of the ratio of trend slopes between two time series where
the trending behavior of each series can be well approximated by a simple linear time trend. Our
methodological results are motivated by a recent empirical climate literature that seeks to estimate and
test hypotheses about the relative rate of warming in the lower-troposphere relative to surface warming
- the so-called amplification ratio. We analyze the statistical properties of several estimators and test
statistics that are configured to allow serial correlation in the data. The relative merits of the estimators
and test statistics depend on the magnitude of the trend slopes relative to the noise in the data. Based
on asymptotic theory and finite sample evidence, we make specific and concrete recommendations for
practitioners. We apply the recommended estimator and confidence intervals to temperature data from
the 1979-2014 period. We find that amplification ratios typically associated with climate models are
rejected by the observed temperature data confirming and extending the empirical findings of Klotzbach
et al (2009, 2010). Allowing for a structural change at the end of 1998 to account for the so-called
"hiatus" in warming gives results similar to Klotzbach et al (2009, 2010).
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1 Introduction

A time trend refers to systematic behavior of a time series that can be approximated by a function of time.

Often when plotting macroeconomic or climate time series data, one notices a tendency for the series to

increase (or decrease) over time. In some cases it is immediately apparent from the time series plot that

the trend is approximately linear. In the econometrics literature there is a well developed literature on

estimation and robust inference of deterministic trend functions with a focus on the case of the simple linear

trend model. See for example, Canjels and Watson (1997), Vogelsang (1998), ?, Bunzel and Vogelsang (2005),

Harvey, Leybourne and Taylor (2009), and Perron and Yabu (2009).

When analyzing more than one time series with trending behavior, it may be interesting to compare the

trending behavior across series as in Vogelsang and Franses (2005). Empirically, comparisons across trends

are often made in the economic convergence literature where growth rates of gross domestic products (GDPs),

i.e. trend slopes of GDPs, are compared across regions or countries. See for example, Fagerberg (1994), Evans

(1997) and Tomljanovich and Vogelsang (2002). Often empirical work in the economic convergence literature

seeks to determine whether countries or regions have growth rates that are consistent with convergence that

has either occurred or is occurring. However, there is little, if any, focus on estimating and quantifying the

relative speed by which convergence is occurring. An exception is the recent paper by ? where it is argued

that the speed of convergence can be measured, in part, by the ratio of trend slopes.

Estimation and inference regarding trend slope ratios plays an important role in recent work in the

empirical climate literature that documents the relative warming rates between surface temperatures and

lower-troposphere temperatures. See Santer et al (2005), ?Thorne et al (2007), ?Klotzbach et al (2009,

2010), ?Christy et al (2010), ? and the references cited therein. In this literature there is an explicit interest

in estimating the ratio of trend slopes of lower-troposphere and surface temperature series - the so-called

amplification ratio. What is missing from this empirical climate literature are sound statistical methods for

computing confidence intervals for trend slope ratios. In fact, most papers in this literature report estimated

trend slope ratios without reporting standard errors or confidence intervals.

This paper has two goals. First, we develop reliable statistical methods for estimation and inference

of trend slope ratios, and we provide practitioners with concrete recommendations. Because temperature

series are known to have serial correlation, the inference methods we propose are configured to be robust to

serial correlation. Second, we revisit the empirical analysis of Klotzbach et al (2009, 2010) where trend slope

ratios (amplification ratios) were estimated between surface and lower-troposphere temperatures. Klotzbach

et al (2009, 2010) reported estimated amplification ratios but did not provide confidence intervals given

the lack of statistical methodology in this area. The empirical contribution of this paper is to construct

serial correlation robust confidence intervals for amplification ratios using the same temperature series as

used by Klotzbach et al (2009, 2010) but extending the analysis to 2014 (Klotzbach et al (2009, 2010) used

data ending in 2008). Our confidence intervals allow empirical researchers to statistically compare estimated

amplification ratios from observed temperature series with amplification ratios of theoretical climate models

used for projections of future climate scenarios. We also sketch methods for estimation and inference of

amplification ratios when the trend functions are allowed to have a one-time structural change at a given
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date.

With regards to methodology, we are unaware of any papers in the statistics, econometrics or climate

literatures focusing on estimation and inference of trend slope ratios. Our first goal fills that methodological

hole in the literature. We focus on estimation of the ratio of trend slopes between two time series where is it

reasonable to assume that the trending behavior of each series can be well approximated by a simple linear

time trend. We obtain results under the assumption that the stochastic parts of the two time series comprise

a zero mean time series vector that has sufficient stationarity and has dependence that is weak enough so

that scaled partial sums of the vector satisfy a functional central limit theorem (FCLT)1 . We compare two

natural estimators of the trend slope ratio and propose a third bias-corrected estimator. We show how to

use these three estimators to carry out inference about the trend slope ratio. When trend slopes are small

in magnitude relative to the variation in the stochastic components (the trend slopes are small relative to

the noise), we find that inference using any of the three estimators is compromised and could be potentially

misleading. We propose an alternative inference procedure that remains valid when trend slopes are small

or even zero.

We carry out an extensive theoretical analysis of the estimators and inference procedures. Our theoretical

framework explicitly captures the impact of the magnitude of the trend slopes on the estimation and inference

about the trend slope ratio. Our theoretical results are constructive in two important ways. First, the theory

points to one of the three estimators as being preferred in terms of bias. Second, the theory strongly suggests

that our alternative inference procedure is superior under the null and maintains reliable power under the

alternative Finite sample simulations indicate that the predictions made by the asymptotic theory are relevant

in practice. Therefore, we are able to give concrete and specific advice to practitioners on how to estimate

and construct confidence intervals for a ratio of trend slopes.

The remainder of the paper is organized as follows: Section 2 describes the model and analyzes the

asymptotic properties of the three estimators of the trend slope ratio. Section 3 provides some finite sample

evidence on the relative performance of the three estimators. Section 4 investigates inference regarding

the trend slope ratio. We show how to construct heteroskedasticity autocorrelation (HAC) robust tests

using each of the three estimators. We propose an alternative testing approach and show how to compute

confidence intervals for this approach. We derive asymptotic results of the tests under the null and under

local alternatives. The asymptotic theory clearly shows that our alternative testing approach works well

under both the null and local alternatives. Additional finite sample simulation results reported in Section

5 indicate that the predictions of the asymptotic theory are relevant in practice. In Section 6 we make

some practical recommendations for empirical researchers. Section 7 shows how to extend the modelling

to allow a one-time shift in intercept and trend at an unknown date. Section 8 revisits and extends the

empirical analysis of Klotzbach et al (2009, 2010). We find that confidence intervals for amplification ratios

for observed temperature series do not contain amplification ratios that are typical of climate models. Section

9 concludes and proofs are available in a Supplementary Information document.

1The case where the stochastic components have nonstationary unit root behavior is analyzed in ?. There, the empirical
application focuses on convergence of gross domestic product between regions of the United States.
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2 The Model and Estimation

2.1 Statistical Model and Assumptions

Suppose the univariate time series y1t and y2t are given by

y1t = µ1 + β1t+ u1t, (1)

y2t = µ2 + β2t+ u2t, (2)

where u1t and u2t are mean zero covariance stationary processes. Assume that

T−1/2
[rT ]∑

t=1

[
u1t
u2t

]
⇒ ΛW(r) ≡

[
B1(r)
B2(r)

]
, (3)

where r ∈ [0, 1], [rT ] is the integer part of rT and W (r) is a 2 × 1 vector of independent standard Wiener

processes. Λ is not necessarily diagonal allowing for correlation between u1t and u2t. In addition to (3), we

assume that u1t and u2t are ergodic for the first and second moments.

Suppose that β2 6= 0 and we are interested in estimating the parameter

θ =
β1
β2

which is the ratio of trend slopes. Equation (1) can be rewritten so that y1t depends on θ through y2t.

Rearranging (2) gives

t =
1

β2
[y2t − µ2 − u2t] , (4)

and plugging this expression into Equation (1) and then rearranging, we obtain

y1t = (µ1 −
β1
β2
µ2) +

β1
β2
y2t + (u1t −

β1
β2
u2t) = (µ1 − θµ2) + θy2t + (u1t − θu2t).

Defining δ = µ1 − θµ2 and εt (θ) = u1t − θu2t gives the regression model

y1t = δ + θy2t + εt (θ) . (5)

Given the definition of εt (θ), it immediately follows from (3) that

T−1/2
[rT ]∑

t=1

εt (θ)⇒ λθw(r), (6)

where w(r) is a univariate standard Wiener process and λ2θ =
[
1 −θ

]
ΛΛ′

[
1 −θ

]′
is the long run

variance of εt (θ).

2.2 Estimation of the Trend Slope Ratio

Using regression (5), the natural estimator of θ is ordinary least squares (OLS) which is defined as

θ̃ =

(
T∑

t=1

(y2t − y2)
2

)−1 T∑

t=1

(y2t − y2)(y1t − y1), (7)
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where y1 = T
−1

T∑

t=1

y1t and y2 = T
−1

T∑

t=1

y2t. Standard algebra gives the relationship

θ̃ − θ =

(
T∑

t=1

(y2t − y2)
2

)−1 T∑

t=1

(y2t − y2)εt (θ) . (8)

Alternatively, one could estimate θ by the analogy principle by simply replacing β1 and β2 with estimators.

Let β̂1 and β̂2 be the OLS estimators of β1 and β2 based on regressions (1) and (2):

β̂i =

(
T∑

t=1

(t− t)2

)−1 T∑

t=1

(t− t)(yit − yi), i = 1, 2, (9)

where t = T−1
T∑

t=1

t is the sample average of time and define θ̂ = β̂1/β̂2. Simple algebra shows that

θ̂ =
β̂1

β̂2
=

(
T∑

t=1

(t− t)(y2t − y2)

)−1 T∑

t=1

(t− t)(y1t − y1) (10)

which is the instrumental variable (IV) estimator of θ in (5) where t has been used as an instrument for y2t.

Standard algebra gives the relationship

θ̂ − θ =

(
T∑

t=1

(t− t)(y2t − y2)

)−1 T∑

t=1

(t− t)εt (θ) . (11)

2.3 Asymptotic Properties of OLS and IV

We now explore the asymptotic properties of the OLS and IV estimators of θ. The asymptotic behavior

of the estimators depends on the magnitude of the trend slope parameters relative to the variation in the

random components, u1t and u2t, i.e. the noise. The following theorem summarizes the asymptotic behavior

of the estimators for fixed βs and for βs that are modeled as local to zero at rate T−1/2.

Theorem 1 Suppose that (6) holds and β1, β2 are fixed with respect to T . The following hold as T → ∞.

Case 1 (large trend slopes): For β1 = β1, β2 = β2,

T 3/2
(
θ̃ − θ

)
⇒

(
β
2

2

∫ 1

0

(
s−

1

2

)2
ds

)−1
β2λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
,

T 3/2
(
θ̂ − θ

)
⇒

(
β2

∫ 1

0

(
s−

1

2

)2
ds

)−1
λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
.

Case 2 (medium trend slopes): For β1 = T
−1/2β1, β2 = T

−1/2β2,

T
(
θ̃ − θ

)
⇒

(
β
2

2

∫ 1

0

(
s−

1

2

)2
ds

)−1 [
β2λθ

∫ 1

0

(
s−

1

2

)
dw(s) + E(u2tεt (θ))

]
∼ N

(
12

β
2

2

E(u2tεt),
12λ2θ

β
2

2

)
,

T
(
θ̂ − θ

)
⇒

(
β2

∫ 1

0

(
s−

1

2

)2
ds

)−1
λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
.
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Theorem 1 makes some interesting predictions about the sampling properties of OLS and IV. When the

trend slopes are fixed, i.e. when the trend slopes are large relative to the noise, OLS and IV converge to the

true value of θ at the rate T 3/2 and are asymptotically normal with equivalent asymptotic variances. The

precision of both estimators improves when there is less noise (λ2θ is smaller) or when the magnitude of the

trend slope parameter for y2t increases (β2 is larger).

When the trend slopes are modeled as local to zero at rate T−1/2, i.e. when trend slopes are medium sized

relative to the noise, asymptotic equivalence of OLS and IV no longer holds. The IV estimator essentially

has the same asymptotic behavior as in the fixed slopes case because the implied approximations are the

same. In contrast, the result for OLS is markedly different in Case 2. While OLS consistently estimates θ

and the asymptotic variance is the same as in Case 1, OLS now has an asymptotic bias that could matter

when trend slopes are medium sized.

The fact that OLS is asymptotically biased in Case 2 is not that surprising because εt(θ) is correlated

with y2t through the correlation
2 between εt(θ) and u2t. In Case 2, the trend slopes are small enough so

that the covariance between u2t and εt(θ) asymptotically affects the OLS estimator. Because E(u2tεt (θ)) =

E(u1tu2t)−θE(u
2
2t), the asymptotic bias will be non-zero unless E(u1tu2t) = θE(u

2
2t) which only happens in

very particular special cases. In general, OLS has an asymptotic bias when trend slopes are medium sized.

Because Theorem 1 explicitly characterizes the bias of OLS, a feasible bias correction is possible.

2.4 Bias Corrected OLS

The approximate bias of OLS suggested by Theorem 1, Case 2 is given by the quantity

bias(θ̃) ≈ T−1

(
β
2

2

∫ 1

0

(
s−

1

2

)2
ds

)−1
E(u2tεt (θ)).

We can estimate β
2

2

∫ 1
0

(
s− 1

2

)2
ds using T−2

∑T
t=1(y2t − y2)

2, and we can estimate E(u2tεt (θ)) using

T−1
∑T

t=1 û2tε̃t where ε̃t are the OLS residuals from regression (5) and û2t are the OLS residuals from

regression (2). This leads to the bias corrected OLS estimator of θ given by

θ̃c = θ̃ − T−1




T−1
T∑

t=1

û2tε̃t

T−2
∑T

t=1(y2t − y2)
2



= θ̃ −

T−1
T∑

t=1

û2tε̃t

T−1
T∑

t=1

(y2t − y2)
2

. (12)

The next theorem gives the asymptotic behavior of the bias corrected OLS estimator for the same cases

covered by Theorem 1.

Theorem 2 Suppose that (6) holds and β1, β2 are fixed with respect to T . The following hold as T → ∞.

Case 1 (large trend slopes): For β1 = β1, β2 = β2,

T 3/2
(
θ̃c − θ

)
⇒

(
β
2

2

∫ 1

0

(
s−

1

2

)2
ds

)−1
β2λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
.

2The fact that IV is not asymptotically biased in Case 2 is also not suprising given that t, the instrument for y2t, is nonrandom
and cannot be correlated with εt(θ).
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Case 2 (medium trend slopes): For β1 = T
−1/2β1, β2 = T

−1/2β2,

T
(
θ̃c − θ

)
⇒

(
β2

∫ 1

0

(
s−

1

2

)2
ds

)−1
λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
.

As Theorem 2 shows, the bias corrected OLS estimator is asymptotically equivalent to the IV estimator for

both large and medium trend slopes.

2.5 Asymptotic Properties of Estimators for Small Trend Slopes

As shown by Theorem 1, the magnitudes of the trend slopes relative to the noise can affect the behavior of

estimators of the trend slope ratio, θ. Intuitively, we know that as the trend slopes become very small in

magnitude, we approach the case where the trend slopes are zero in which case θ is not well defined. While

it is clear that OLS and possibly bias-corrected OLS will have problems when trend slopes are very small, IV

is also expected to have problems in this case. If the trend slopes are very small, then the sample correlation

between t and y2t also becomes very small and t becomes a weak instrument for y2t. It is well known that

weak instruments have important implications for IV estimation (see Staiger and Stock 1997) and estimation

of θ is no exception.

The next two theorems provide asymptotic results for the estimators of θ for trend slopes that are local

to zero at rates T−1 and T−3/2 with the latter case corresponding to trend slopes that are very small relative

to the noise.

Theorem 3 Suppose that (3) and (6) hold and β1, β2 are fixed with respect to T . The following hold as

T →∞. Case 3 (small trend slopes): For β1 = T
−1β1, β2 = T

−1β2,

θ̃ − θ
p
→ <, θ̃c − θ

p
→ <c,

T 1/2(θ̂ − θ)⇒

(
β2

∫ 1

0

(
s−

1

2

)2
ds

)−1
λθ

∫ 1

0

(
s−

1

2

)
dw(s) ∼ N

(
0,
12λ2θ

β
2

2

)
,

where

< =

(
β
2

2

∫ 1

0

(
s−

1

2

)2
ds+ E(u22t)

)−1
E(u2tεt (θ)), <c =

<2E(u22t)

E(u2tεt (θ))
.

Case 4 (very small trend slopes): For β1 = T
−3/2β1, β2 = T

−3/2β2,

θ̃ − θ
p
→
E(u2tεt (θ))

E(u22t)
, θ̃c − θ

p
→
E(u2tεt (θ))

E(u22t)
,

θ̂ − θ ⇒

(
β2

∫ 1

0

(s−
1

2
)2ds+

∫ 1

0

(s−
1

2
)dB2(s)

)−1
λθ

∫ 1

0

(s−
1

2
)dw(s).

Theorem 3 shows that for small trend slopes, OLS and bias-corrected OLS are biased and inconsistent. In

contrast, IV has the same asymptotic behavior as for large and medium trend slopes. When trend slopes are

very small, all three estimators are inconsistent and biased. The IV estimator converges to a ratio of normal

random variables that are correlated with each other because B2(r) is correlated with w(r) as long as u2t is

correlated with εt (θ). Theorem 3 predicts that none of the estimators of θ will work well when trend slopes
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are very small. This is not surprising because it is very difficult to identify the ratio of trend slopes when

the noise dominates the information in the sample regarding the trend slopes themselves.

2.6 Implications (Predictions) of Asymptotics for Finite Samples

Theorems 1-3 make clear predictions about the finite sample behavior of the three estimators of θ. For

large βs the three estimators should have similar bias, variance and sampling properties given that they

are asymptotically equivalent. When βs are of medium size, IV and bias-corrected OLS are asymptotically

equivalent and should have similar behavior compared to the large βs case. In contrast, OLS should exhibit

some finite sample bias in the medium βs case. With small or very small βs, OLS and bias-corrected OLS

are inconsistent and biased. In contrast IV should continue to perform well even with small βs with the main

implication of small βs being less precision given that the asymptotic variance of IV is inversely related to

the magnitude of β2. For very small βs IV is inconsistent and can exhibit substantial variability given that

IV is approximately a ratio of two normal random variables.

For a given sample size and variability of the noise, as the trend slopes decrease from being large to be-

coming very small, we should see the performance of all three estimators deteriorating with OLS deteriorating

quickest followed by bias-corrected OLS followed by IV.

It is interesting to note that none of the asymptotic results in Theorems 1-3 require β1 to be non-zero

and the results hold for β1 = 0 in which case θ = 0 is allowed.

3 Finite Sample Means and Standard Deviations of Estimators

In this section we illustrate the finite sample performance of the estimators via a Monte Carlo simulation

study. For the data generating process (DGP) that we consider, the finite sample behavior of the three

estimators closely follows the predictions suggested by Theorems 1-3.

The following DGP was used. The y1t and y2t variables were generated by models (1) and (2) where the

noise is given by

u1t = 0.4u2t + 0.3u1t−1 + ε1t,

u2t = 0.5u2t−1 + ε2t,

[ε1t, ε2t]
′
∼ i.i.d. N(0, I2), u10 = u20 = 0.

Given that all three estimators are exactly invariant to the values of µ1and µ2, we set µ1 = 0, µ2 = 0 without

loss of generality. We report results for various magnitudes of β1 and β2 where it is almost always the case

that θ = β1/β2 = 2. The exception is when β1 = 0, β2 = 0 in which case θ is not defined. We report results

for T = 50, 100, 200 with 10,000 replications used in all cases.

Given that the bias-corrected OLS estimator uses a bias correction based on the OLS residuals from (5),

we experimented with an iterative procedure for the bias-corrected OLS estimator that improved its finite

sample performance. We first compute θ̃c as given by (12). Then we updated the OLS residuals using θ̃c in

place of θ̃ and recalculated θ̃c. We iterated between updated residuals and bias-correction 100 times.

7



Table 1 reports estimated means and standard deviations of the three estimators across the 10,000

replications. Focusing on the T = 50 case we see that when the trend slopes are large (β2 = 10, 5), the

means and standard deviations of the three estimators are the same and none of the estimators shows any

bias. For medium sized trend slopes (β2 = 2, .2, .15, .1), bias-corrected OLS and IV have the same means and

standard deviations with little bias being present. In contrast, OLS shows bias that increases substantially

as β2 decreases. For all three estimators we see that the standard deviations increase as β2 decreases as

expected. For small and very small trend slopes (β2 = .05, .02, .002), OLS and bias-corrected OLS show

substantial bias. It is difficult to determine whether IV is biased given the very large standard deviation of

IV in this case. Overall, IV has the least bias but IV becomes very imprecise as the trend slopes approach

zero.

Results for the cases of T = 100, 200 are similar to the T = 50 case. The only difference is that the bias

of OLS and bias-corrected OLS increases more slowly as β2 decreases. With T = 200, bias-corrected OLS

and IV have the same means and standard deviations for β2 as small as 0.02.

The results for β1 = 0, β2 = 0 at first may look surprising but make sense upon deeper inspection. The

OLS estimator is no longer estimating θ which is not defined. Instead, OLS is estimating the population

quantity E(u2tεt (θ))/E(u
2
2t) which is very close to 0.469 in our DGP. Bias-corrected OLS is attempting to

correct the wrong bias and the IV estimator is based on an instrument that has zero correlation with y2t. In

fact, the estimators are behaving as expected when the trend slopes are zero.

Overall, the finite sample means and variances exhibit patterns as predicted by the asymptotic theory.

IV and bias-corrected OLS work equally well for large, medium and somewhat small trend slopes. As trend

slopes become very small, none of the estimators are very good and this is to be expected given that the

data has relatively little information about the trend slope ratio when trend slopes are small relative to the

noise and/or the sample size is small.

4 Inference

In this section we analyze test statistics for testing simple hypotheses about θ. Suppose we are interested in

testing the null hypothesis

H0 : θ = θ0, (13)

against the alternative hypothesis

H1 : θ = θ1 6= θ0.

It is straightforward to construct HAC robust statistics using the three estimators of θ as

tOLS =
(θ̃ − θ0)√√√√λ̃2θ

[
T∑

t=1

(y2t − y2)
2

]−1 , (14)

tBC =
(θ̃c − θ0)√√√√λ̃2θc

[
T∑

t=1

(y2t − y2)
2

]−1 , (15)
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tIV =
(θ̂ − θ0)√√√√λ̂2θ

[
T∑

t=1

(t− t)(y2t − y2)

]−2 T∑

t=1

(t− t)2

, (16)

where the estimated long run variance estimators are given by

λ̃2θ = γ̃0 + 2

T−1∑

j=1

k

(
j

M

)
γ̃j , γ̃j = T

−1
T∑

t=j+1

ε̃tε̃t−j ,

λ̃2θc = γ̃
c
0 + 2

T−1∑

j=1

k

(
j

M

)
γ̃cj , γ̃cj = T

−1
T∑

t=j+1

(
ε̃ct − ε̃

c
)(
ε̃ct−j − ε̃

c
)
,

λ̂2θ = γ̂0 + 2

T−1∑

j=1

k

(
j

M

)
γ̂j , γ̂j = T

−1
T∑

t=j+1

ε̂tε̂t−j ,

with ε̃t = y1t − δ̃ − θ̃y2t being the OLS residuals from (5), ε̃ct = y1t − δ̃ − θ̃
cy2t being the bias-corrected OLS

residuals, and ε̂t = y1t − δ̂ − θ̂y2t being the IV residuals from (5). Because

ε̃ct = y1t − δ̃ − θ̃y2t −
(
θ̃c − θ̃

)
y2t = ε̃t −

(
θ̃c − θ̃

)
y2t,

the bias-corrected OLS residuals do not sum to zero. Therefore, we construct λ̃2θc using ε̃
c
t − ε̃

c where

ε̃c = T−1
T∑

t=1

ε̃ct , i.e. we demean ε̃
c
t before computing λ̃

2
θc. The long run variance estimators are constructed

using the kernel weighting function k(x) and M is the bandwidth tuning parameter.

4.1 Linear in Slopes Approach

Because all three estimators of θ deteriorate as the trend slopes approach zero, we consider a fourth test

statistic that is exactly invariant to the true values of the slope parameters under H0. Given the null value

of θ0, H0 and H1 can be written in terms of the trend slopes as

H0 :
β1
β2
= θ0, H1 :

β1
β2
= θ1

which is a nonlinear restriction on the trend slopes. Obviously, the restrictions implied by these hypotheses

can be written as linear functions of β1 and β2 as

H0 : β1 − β2θ0 = 0,

H1 : β1 − β2θ0 = β2θ1 − β2θ0 = β2 (θ1 − θ0) 6= 0.

Given θ0, define the univariate time series

zt (θ0) = y1t − θ0y2t,

where it follows from (1) and (2) that

zt (θ0) = π0(θ0) + π1(θ0)t+ εt (θ0) , (17)

9



where π0(θ0) = µ1 − θ0µ2, π1(θ0) = β1 − θ0β2 and εt (θ0) = u1t − θ0u2t.

Under H0 it follows that π1(θ0) = 0 whereas under H1 it follows that π1(θ0) = β2 (θ1 − θ0) 6= 0. We

can test the original null hypothesis given by (13) by testing H0 : π1(θ0) = 0 in (17) against the alternative

H1 : π1(θ0) 6= 0 using the following t-statistic:

tθ0 =
π̂1(θ0)√√√√λ̂2θ0

(
T∑

t=1

(t− t)2

)−1 , (18)

where

π̂1(θ0) =

(
T∑

t=1

(t− t)2

)−1 T∑

t=1

(t− t) (zt (θ0)− z (θ0)) ,

λ̂2θ0 = γ̂
θ0
0 + 2

T−1∑

j=1

k

(
j

M

)
γ̂θ0j , γ̂θ0j = T−1

T∑

t=j+1

ε̂t (θ0) ε̂t−j (θ0) ,

ε̂t (θ0) = zt (θ0)− z (θ0)− π̂1 (θ0)
(
t− t

)
.

Note that π̂1(θ0) is simply the OLS estimator of π1(θ0) from (17) and ε̂t (θ0) are the corresponding OLS

residuals. Note that when λ̂2θ0 is constructed using the Bartlett kernel with M = T , t2θ0 is identical to one of

the F -statistics proposed by Vogelsang and Franses (2005).

4.2 Confidence Intervals Using tθ0

Confidence intervals for θ can be constructed by finding the values of θ0 such that

|tθ0 | ≤ cvα/2 (19)

where cvα/2 is the two-tail critical value for significance level α. Because both π̂1 and λ̂
2
θ0
are functions of

θ0, finding the values of θ0 that result in a non-rejection, i.e. satisfy (19), is equivalent to finding the roots of

a particular second-order polynomial. Depending on whether the roots are real or complex, the confidence

interval for θ0 can be a closed interval on the real line, the complement of an open interval on the real line,

or the entire real itself.

The form of the confidence interval depends on the magnitudes of the trend slopes relative to the noise

as we now explain. Let

Ω̂ = Γ̂0 +

T−1∑

j=1

k

(
j

M

)
(Γ̂j + Γ̂

′
j)

where

Γ̂j = T
−1

T∑

t=j+1

ûtû
′
t−j , ût = [u1t, u2t]

′
.

Partition Ω̂ as

Ω̂ ≡

[
Ω̂11 Ω̂12
Ω̂21 Ω̂22

]
.
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It is easy to show that

π̂1(θ0) = β̂1 − θ0β̂2,

and

λ̂2θ0 = Ω̂11 − 2θ0Ω̂12 + θ
2
0Ω̂22,

allowing us to write (19) as
∣∣∣β̂1 − θ0β̂2

∣∣∣
√√√√(Ω̂11 − 2θ0Ω̂12 + θ20Ω̂22

)( T∑

t=1

(t− t)2

)−1 ≤ cvα/2,

or equivalently (
β̂1 − θ0β̂2

)2

(
Ω̂11 − 2θ0Ω̂12 + θ20Ω̂22

)( T∑

t=1

(t− t)2

)−1 ≤ cv
2
α/2. (20)

The inequality given by (20) can be rewritten as

c2θ
2
0 + c1θ0 + c0 ≤ 0, (21)

where

c2 = β̂
2
2 −ΨΩ̂22, c1 = −2(β̂1β̂2 −ΨΩ̂12), c0 = β̂

2
1 −ΨΩ̂11, Ψ = cv

2
α/2

(
T∑

t=1

(t− t)2

)−1
.

The values of θ0 that solve (21) depend on the roots of the polynomial p(θ0) = c2θ
2
0 + c1θ0 + c0. Let r1 and

r2 denote the roots of p(θ0) and when r1 and r2 are real, order the roots so that r1 ≤ r2. There are three

potential shapes for the confidence interval for θ0:

Case 1: Suppose that c2 > 0 and c
2
1 − 4c2c0 ≥ 0. In this case, the roots are real and p(θ0) opens upwards. The

confidence interval is the values of θ0 between the two roots, i.e. θ0 ∈ [r1, r2]. The inequality c2 > 0 is

equivalent to the inequality

β̂22

Ω̂22

(
T∑

t=1

(t− t)2

)−1 > cv
2
α/2. (22)

Notice that the left hand side of (22) is simply the square of the HAC robust t-statistic for testing that

the trend slope of y2t is zero. Inequality (22) holds if the trend slope of y2t is statistically different

from zero at the α level. This occurs when the trend slope for y2 is large relative to the variation in

u2t. Mechanically, c2 will be positive when the t-statistic for testing that β2 = 0 is large in magnitude.

Although not obvious, if c2 > 0, it is impossible for c
2
1 − 4c2c0 < 0 to hold. In this case p(θ0) opens

upward and has its vertex above zero and the roots are complex; therefore, there are no solutions to

(21) and the confidence interval would be empty. This case is impossible because the confidence interval

cannot be empty because θ0 = θ̂ = β̂1/β̂2 is always contained in the interval given that β̂1 − θ̂β̂2 = 0

in which case (20) must hold (equivalently (21) must hold).
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Case 2: Suppose that c2 < 0 and c
2
1 − 4c2c0 > 0. In this case, p(θ0) has two real roots and opens downwards

and the confidence interval is the values of θ0 not between the two roots. In this case the confidence

interval is the union of two disjoint sets and is given by θ0 ∈ (−∞, r1]∪ [r2,∞). With c2 < 0 a sufficient

condition for c21−4c2c0 > 0 is c0 > 0 which occurs if the trend slope of y1t is statistically different from

zero at the α level.

Case 3: Suppose that c2 < 0 and c
2
1 − 4c2c0 ≤ 0. In this case, p(θ0) opens downward and has a vertex at or

below zero. The entire p(θ0) function lies at or below zero and the confidence interval is the entire real

line: θ0 ∈ (−∞,∞). A necessary condition for Case 3 is c0 ≤ 0 in which case neither y1t nor y2t have

statistically significant trend slopes.

Although it is a zero probability event, should c2 = 0 then the confidence interval will take the form of either

θ0 ∈ (−∞,−c0/c1] when c1 > 0 or θ0 ∈ [−c0/c1,∞) when c1 < 0.

While the confidence intervals constructed using tθ0 can be wide when the trend slopes are small and

there is no guarantee that these confidence intervals will contain the OLS or bias-corrected OLS estimators

of θ, tθ0 has a major advantage over the other t-statistics. Recall that we can write tθ0 as

tθ0 =
β̂1 − θ0β̂2√√√√(Ω̂11 − 2θ0Ω̂12 + θ20Ω̂22

)( T∑

t=1

(t− t)2

)−1 .

The denominator is a function û1t and û2t each of which are exactly invariant to the true values of β1 and

β2. When H0 is true, it follows that β1 − β2θ0 = 0 and we can write the numerator of tθ0 as

β̂1 − θ0β̂2 = β̂1 − θ0β̂2 − (β1 − β2θ0) =
(
β̂1 − β1

)
− θ0

(
β̂2 − β2

)
.

Because β̂1−β1 and β̂2−β2 are only functions of t and u1t, u2t, the numerator of tθ0 is also exactly invariant

to the true values of β1 and β2. Therefore, the null distribution of tθ0 is exactly invariant to the true values

of β1 and β2 including the case where both trend slopes are zero. In contrast, the other t-statistics have

null distributions that depend on the magnitudes of β1 and β2. Because of its exact invariance to β1 and β2

under the null, tθ0 will deliver much more robust inference (with respect to the magnitudes of β1 and β2)

than the other t-statistics.

4.3 Asymptotic Results for t-statistics

In this section we provide asymptotic limits of the four t-statistics described in the previous sub-section. We

derive asymptotic limits under alternatives that are local to the null given by (13). Suppose that β2 = T
−κβ2.

Then the alternative value of θ1 is modeled local to θ0 as

θ1 = θ0 + T
−3/2+κθ∆. (23)

The parameter θ∆ measures the magnitude of the departure from the null under the local alternative.

Obviously, asymptotic null distributions are obtained by setting θ∆ = 0.

12



Recall that tθ0 is constructed using π̂1(θ0) from (17). Under the local alternative (23), it follows that

π1(θ0) = β2 (θ1 − θ0) = β2T
−3/2+κθ∆ = T

−κβ2T
−3/2+κθ∆ = T

−3/2β2θ∆, (24)

regardless of the value of κ. Therefore, the limit of tθ0 is invariant to the asymptotic nesting used for β2

under both the null and local alternative for θ.

We derive the limits of the various HAC estimators using fixed-b theory following Bunzel and Vogelsang

(2005). Fixed-b theory obtains asymptotic results for the long run variance estimators by treating the

bandwidth M , as a fixed proportion of the sample size. In other words, asymptotic results are obtained for

M = bT where b ∈ (0, 1]. Recent theoretical work in econometrics and statistics has shown that the fixed-b

approach, or more generally the fixed-smoothing approach, leads to asymptotic results for HAC robust test

statistics that are more accurate than what has been obtained using more traditional asymptotic theory. See

Jansson (2004), Kiefer and Vogelsang (2005), Sun, Phillips and Jin (2008), ? and ?.

The form of the fixed-b limits depends on the type of kernel function used to compute the HAC estimator.

We follow Bunzel and Vogelsang (2005) and use the following definitions.

Definition 1 A kernel is labelled Type 1 if k (x) is twice continuously differentiable everywhere and as a

Type 2 kernel if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is twice continuously differentiable

everywhere except at |x| = 1.

We also consider the Bartlett kernel which is neither Type 1 or 2. The fixed-b limiting distributions are

expressed in terms of the following stochastic functions.

Definition 2 Let Q(r) be a generic stochastic process. Define the random variable Pb(Q(r)) as

Pb(Q(r)) =





∫ 1
0

∫ 1
0
−k∗′′ (r − s)Q(r)Q(s)drds if k (x) is Type 1

∫ ∫
|r−s|<b

−k∗′′ (r − s)Q (r)Q (s) drds

+2k∗′− (b)
∫ 1−b
0

Q (r + b)Q (r) dr if k (x) is Type 2

2
b

∫ 1
0
Q (r)

2
dr − 2

b

∫ 1−b
0

Q (r + b)Q (r) dr if k (x) is Bartlett

where k∗(x) = k
(
x
b

)
and k∗

′

− is the first derivative of k∗ from below.

The following theorems summarize the asymptotic limits of the t-statistics for testing (13) when the

alternative is given by (23).

Theorem 4 (Large Trend Slopes) Suppose that (6) holds. Let M = bT where b ∈ (0, 1] is fixed. Let β1 = β1,

β2 = β2 where β1, β2 are fixed with respect to T , and let θ1 = θ0 + T
−3/2θ∆. Then as T →∞,

tOLS , tBC , tIV ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ1Pb(Q(r))

,

tθ0 ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ0Pb(Q(r))

,
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where Z ∼ N(0, 1), Q(r) = w̃(r)− 12L(r)
∫ 1
0

(
s− 1

2

)
dw(s), w̃(r) = w(r)− rw(1), L(r) =

∫ r
0

(
s− 1

2

)
ds and

Z and Q(r) are independent.

Theorem 5 (Medium Trend Slopes): Suppose that (6) holds. Let M = bT where b ∈ (0, 1] is fixed. Let

β1 = T−1/2β1, β2 = T−1/2β2 where β1, β2 are fixed with respect to T , and let θ1 = θ0 + T
−1θ∆. Then as

T →∞,

tOLS ⇒
Z√

Pb(H1(r))
+
12β

−1

2 E(u2tεt (θ))√
12λ2θ1Pb(H1(r))

+
β2θ∆√

12λ2θ1Pb(H1(r))
,

tBC , tIV ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ1Pb(Q(r))

,

tθ0 ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ0Pb(Q(r))

,

where H1(r) = Q(r)− 12
(
λθ1β2

)−1
L(r) · E(u2tεt (θ)).

Theorem 6 (Small Trend Slopes): Suppose that (6) holds. Let M = bT where b ∈ (0, 1] is fixed. Let

β1 = T−1β1, β2 = T−1β2 where β1, β2 are fixed with respect to T , and let θ1 = θ0 + T
−1/2θ∆. Then as

T →∞,

tOLS , tBC
d
→

1√
β
2

2Pb (L(r))
(
β
2

2

∫ 1
0
(s− 1

2 )
2ds+ E (u22t)

)−1 ,

tIV ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ1Pb(Q(r))

,

tθ0 ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ0Pb(Q(r))

.

Theorem 7 (Very Small Trend Slopes): Suppose that (3) and (6) hold. Let M = bT where b ∈ (0, 1] is

fixed. Let β1 = T
−3/2β1, β2 = T

−3/2β2 where β1, β2 are fixed with respect to T , and let θ1 = θ0 + θ∆. Then

as T →∞,

T−1/2tOLS , T
−1/2tBC =

(
E(u22t)

)−1
E(u2tεt(θ)) + θ∆√

Pb (H2(r)) [E (u22t)]
−1

,

tIV ⇒

∫ 1
0
(s− 1

2 )dw(s) +
(
β2
∫ 1
0
(s− 1

2 )
2ds+

∫ 1
0
(s− 1

2 )dB2(s)
)
λ−1θ θ∆

√
Pb (H3(r))

∫ 1
0
(s− 1

2 )
2ds

,

tθ0 ⇒
Z√

Pb(Q(r))
+

β2θ∆√
12λ2θ0Pb(Q(r))

,
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where

H2(r) = w̃(r)−

(
β2

∫ 1

0

(s−
1

2
)2ds+

∫ 1

0

(s−
1

2
)dB2(s)

)−1 ∫ 1

0

(s−
1

2
)dw(s)

(
β2L(r) + B̃2(r)

)
,

H3(r) = w̃(r)− 12
(
β2L(r) + B̃2(r)

)(
β2 + 12

∫ 1

0

(
s−

1

2

)
dB2(s)

)−1 ∫ 1

0

(
s−

1

2

)
dw(s),

and B̃2(r) = B2(r)− rB2(1).

Some interesting results and predictions about the finite sample behavior of the t-statistics are given by

the Theorems 4-7. First consider the limiting null distributions that are obtained when θ∆ = 0. For large

trend slopes, all four t-statistics have the same asymptotic null limit and the limiting random variable is

the same fixed-b limit obtained by Bunzel and Vogelsang (2005) for inference regarding the trend slope in a

simple linear trend model with stationary errors. Therefore, fixed-b critical values are available from Bunzel

and Vogelsang (2005). As the trend slopes become smaller relative to the noise, differences among the t-

statistics emerge. As anticipated, tθ0 has the same limiting null distribution regardless of the magnitudes of

the trend slopes. Except for very small trend slopes, tIV has the same limiting null distribution as tθ0 . The

bias in OLS affects the null limit of tOLS for medium, small and very small trend slopes. The bias correction

helps for medium trend slopes in which case tBC has the same null limit as tIV and tθ0 . For small and very

small trend slopes the bias correction no longer works effectively and tBC has the same limit as tOLS . Both

tests will tend to over-reject under the null when trend slopes are very small given that they diverge with

the sample size.

In terms of finite sample null behavior, the asymptotic theory predicts that tOLS and tBC will only work

well when trend slopes are relatively large whereas tIV should work well except when trend slopes are very

small. The most reliable test in terms of robustness to magnitudes of trend slopes under the null should be

tθ0 .

Under the alternative θ∆ 6= 0 and the t-statistics have additional terms in their limits that push the

distributions away from the null distributions giving the tests power. When trend slopes are large, all four

t-statistics have the same limiting distributions with the only difference being that tθ0 depends on λ
2
θ0
rather

than λ2θ1 as for the other t-statistics. In general we cannot rank λ
2
θ0
and λ2θ1 as any difference depends on

the joint serial correlation structure of u1t and u2t. Unless λ
2
θ0
and λ2θ1 are nontrivially different, we would

expect power of the tests to be similar in the large trend slope cases. As the trend slopes become smaller,

power of tOLS and tBC becomes meaningless given that the statistics have poor behavior under the null.

In Theorem 6, the limits of tOLS and tBC do not depend on θ∆ which suggests that power will very low

when trend slopes are small. In Theorem 7, tOLS and tBC diverge with the sample size which suggests large

rejections with very small trend slopes. In contrast power of tIV should be similar to tθ0 except when trend

slopes are very small. As in the case of null behavior, the asymptotic theory predicts that tθ0 should have

power that is most robust to the magnitudes of the trend slopes.

One thing to keep in mind regarding the limit of tθ0 in Theorems 4-7 is that while the limit under the

alternative is the same in each case, the relevant values of θ∆ are farther away from the null in the case of

smaller trend slopes compared to the case of larger trend slopes. Therefore, θ1 needs to be much farther
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away from θ0 in the case of small trend slopes than for the case of large trend slopes for power of tθ0 to be

the same in both cases. In other words, for a given value of θ1, power of tθ0 decreases as the trend slopes

become smaller. This relationship between power and magnitudes of the trend slopes can be seen clearly

in Theorem 4 where we can see that as β2 → 0 the limiting distribution under the local alternative for θ

approaches the null distribution and power decreases.

5 Finite Sample Null Rejection Probabilities and Power

Using the same DGP as used in Section 3 we simulated finite sample null rejection probabilities and power

of the four t-statistics. Table 2 reports null rejection probabilities for 5% nominal level tests for testing

H0 : θ = θ0 = 2 against the two-sided alternative H1 : θ 6= 2. Results are reported for the same values

of β1, β2 as used in Table 1 for T = 50, 100, 200 and 10, 000 replications are used in all cases. The HAC

estimators are implemented using the Daniell kernel. Results for three bandwidth sample size ratios are

provided: b = 0.1, 0.5, 1.0. For a given sample size, T , we use the bandwidth M = bT for each of the three

values of b. We compute empirical rejections using fixed-b asymptotic critical values using the critical value

function

cv0.025(b) = 1.9659 + 4.0603b+ 11.6626b
2 + 34.8269b3 − 13.9506b4 + 3.2669b5, (25)

as given by Bunzel and Vogelsang (2005) for the Daniell kernel.

The patterns in the empirical null rejections closely match the predictions of the asymptotic results. When

the trend slopes are large, β1 ≥ 4, β2 ≥ 2, null rejections are the essentially the same for all t-statistics and

are close to 0.05 even when T = 50. This is true for nearly all three bandwidth choices which illustrates the

effectiveness of the fixed-b critical values. The exception is b = 0.1 where there are some mild over-rejections.

It is well known that small bandwidths can lead to over-rejection problems when serial correlation is positive

and the sample size is relatively small. For medium sized trend slopes, 0.1 ≤ β1 ≤ 0.4, 0.05 ≤ β2 ≤ 0.2, tOLS

begins to show over-rejection problems that become very severe as the trend slopes decrease in magnitude.

The bias-corrected OLS t-statistic, tBC , is less subject to over-rejection problems especially when T is not

small, although for T = 50, tBC shows nontrivial over-rejection problems. In contrast both tIV and tθ0 have

null rejections close to 0.05 for medium sized trend slopes. When the trend slopes are small or very small,

β1 ≤ 0.04, β2 ≤ 0.02, the tOLS and tBC statistics have severe over-rejection problems and can reject 100% of

the time. While tIV has less over-rejection problems in this case, the over-rejections are nontrivial and are

problematic. In contrast, tθ0 has null rejections that are close to 0.05 regardless of the magnitudes of β1, β2

including the case of β1 = β2 = 0. In fact, the rejections are identical for tθ0 across values of β1, β2. This is

because tθ0 is exactly invariant to the values of β1, β2. It is clear in terms of null rejection probabilities that

tθ0 is the preferred test statistic.

Given that tθ0 is the preferred statistic in terms of size, we computed for each of the parameter configura-

tions in Table 2 the proportions of replications that lead to the three possible shapes of confidence intervals

obtained by inverting tθ0 . Table 3 gives these results. For large trend slopes Case 1 occurs 100% of the time.

As the trend slopes decrease in magnitude, Case 2 occurs some of the time and as the trend slopes decrease

further, Case 3 can occur frequently if the trend slopes are very small. As T increases, the likelihood of Case
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1 increases for all trend slope magnitudes. The relative frequencies of the three cases also depends on the

bandwidth but the relationship appears complicated. This is not surprising given the complex manner in

which the bandwidth affects the null distribution of tθ0 . Overall, unless trend slopes are small or very small,

Case 1 is the most likely confidence interval shape.

While tθ0 is the preferred test in terms of size, how do the t-statistics compare in terms of power? Table

4 reports power results for a subset of the grid of β2 as used in Tables 2,3. For a given value of β2, we

specify a grid of nine equally spaced values for θ in the range θ0 ± 0.04/β2 where θ0 = 2 is the null value.

By construction β1 = θβ2 in all cases. Given the way we define the grid for θ, we ensure that β2θ∆ is the

same for all values of β2. Results are reported for T = 100. Results for other values of T are qualitatively

similar and are omitted.

As in Tables 2 and 3, we report results for b = 0.5, 1.0. Rather than reporting results for b = 0.1, we report

results using the data dependent bandwidth formula for M using the approach of Andrews (1991) which

seeks a bandwidth that minimizes the approximate mean square error of the long run variance estimator3 .

We label the corresponding value of b as bA91 and we continue to use fixed-b critical values. Looking at null

rejections in Table 4 (in bold), we see that rejections are about 0.070 for large and medium trend slopes

when using b = bA91. In contrast, Table 2 has null rejections equal to 0.054 when using b = 0.1. The

reason that over-rejections emerge when using b = bA91 is because bA91 tends to be smaller than 0.1; bA91 is

approximately equal to 0.05 on average across the replications. If one were to appeal to consistency of the

long run variance estimators when using the Andrews (1991) bandwidth rule and use N(0, 1) critical values

for the t-statistics, null rejections would increase to 0.098. Using fixed-b critical values reduces over-rejection

problems under the null because serial correlation is positive. Notice that as b→ 0, the critical value function

approaches the N(0, 1) critical value. For very small bandwidths the fixed-b approach and the traditional

approach to asymptotics coincide.

The non-bold entries in Table 4 are empirical power. The patterns in power, are what one would expect

given the local asymptotic limiting distributions. For large trend slopes (β2 = 10, 2), power of the four

tests is essentially the same as predicted by Theorem 4. As the bandwidth increases, power of all the tests

decreases. This inverse relationship between power and bandwidth is well known in the fixed-b literature

(see Kiefer and Vogelsang 2005).

For medium sized trend slopes (β2 = 0.2) noticeable differences in power begin to emerge with tOLS

having substantially lower power than the other tests for θ > 2. This lower power occurs even though tOLS

substantially over-rejects under the null when a small bandwidth is used (b = bA91). With larger bandwidths,

tOLS severely under-rejects under the null and has no power. Both tBC and tIV have good power that is

somewhat lower than tθ0 for θ > 2 but higher for θ < 2. These power patterns are predicted by Theorem 5

because of differences between λ2θ0 and λ
2
θ1
. For β2 = 0.2, one can show that λ

2
θ1
is an increasing function in

θ1 over the range θ ∈ [1.8, 2.2] in our DGP. Therefore, when θ1 > 2, it follow that λ
2
θ0
< λ2θ1 leading to tθ0

having higher power. The opposite is true when θ1 < 2. In general the statistics cannot be ranked in terms

3The approach of Andrews (1991) requires the user to choose an approximate model of serial correlation for the purposes
of bandwidth choice. Following common practice in the econometrics literature, we used an autoregressive model with one lag
(AR(1)) as the approximating model.
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of power because of this dependence on θ1.

For small and very small trend slopes (β2 = 0.1, 0.005), both tOLS and tBC are distorted under the null

with severe over-rejections although tOLS severely under-rejects with large bandwidths (b = 0.5, 1.0) when

β2 = 0.1. While tIV is less size distorted than tOLS and tBC , it can have very low power for values of θ1

that are far from the null value of 2. In contrast tθ0 continues to have excellent size and good power
4 .

In summary, the patterns in the finite sample simulations are consistent with the predictions of Theorems

4-7. Overall tθ0 is the recommended statistic given its superior behavior under the null and its reliable power

under the alternative.

6 Practical Recommendations

For point estimation, we recommend the IV estimator, i.e. the ratio of OLS trend slope estimators, given its

relative robustness to the magnitude of the trend slopes. OLS and bias-corrected OLS are not recommended

given that they can become severely biased for small to very small trend slopes. For inference, we strongly

recommend the tθ0 statistic given its superior behavior under the null and reliable power that is robust to

the magnitude of the trend slopes. Good empirical practice is to report the IV estimator, θ̂, along with the

confidence interval constructed by inverting tθ0 . Because this confidence interval must contain θ̂, situations

are avoided where the recommended point estimator lies outside the recommended confidence interval.

For confidence interval construction, there is also the practical need to choose a kernel and bandwidth

and the Andrews (1991) approach is widely used. We do not explore this choice here from a theoretical

perspective but encourage empirical researchers to use the fixed-b critical values provided by Bunzel and

Vogelsang (2005) once a kernel and bandwidth have been chosen. Some practical suggestions on bandwidth

choice are given in the empirical application.

7 Allowing for Structural Change

In the empirical application we report results that allow for a one-time structural change in the trend

functions in each of the two time series. While a detailed analysis of trend ratio estimation and inference in

the presence of structural change in the trend function is beyond the scope of this paper, we can sufficiently

sketch the theory for the tθ0 statistic for use in the empirical application.

Suppose we extend (1) and (2) to allow a shift in the intercept and trend slope at some time, TB , as

y1t = µ1 + β
(1)
1 t+ ϕ1DUt + φ1DT

∗
t + u1t,

y2t = µ2 + β
(1)
2 t+ ϕ2DUt + φ2DT

∗
t + u2t,

where DUt = 1 if t > TB and 0 otherwise and DT ∗t = (t − TB)DUt. For t ≤ TB , the trend slopes are

given by β
(1)
1 and β

(1)
2 whereas for t > TB , the trend slopes are given by β

(1)
1 + φ1 and β

(1)
2 + φ2. Letting

β
(2)
1 = β

(1)
1 + φ1 and β

(2)
2 = β

(1)
2 + φ2, we can reparameterize the trend functions as

y1t = µ1 + β
(1)
1 (t−DT ∗T ) + ϕ1DUt + β

(2)
1 DT ∗t + u1t, (26)

4Some readers may notice that for a given bandwidth, power of tθ0 is the same regardless of the value of β2. This occurs
because we have configured the grids for θ so that β2(θ1 − θ0) = β2(θ1 − 2) is the same across values of β2.
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y2t = µ2 + β
(1)
2 (t−DT ∗T ) + ϕ2DUt + β

(2)
2 DT ∗t + u2t, (27)

where β
(1)
1 and β

(1)
2 are the trend slopes up to date TB and β

(2)
1 and β

(2)
2 are trend slopes after date TB .

The trend ratios are defined as θ(1) and θ(2) and can be estimated using ratios of the OLS estimators:

θ̂(1) = β̂
(1)
1 /β̂

(1)
2 and θ̂(2) = β̂

(2)
1 /β̂

(2)
2 .

Inference about θ(1) and θ(2) can be conducted using θ̂(1)and θ̂(2) using the linear in slopes approach.

Confidence intervals can be computed as the values of θ
(i)
0 , i = 1, 2, such that

(
β̂
(i)
1 − θ

(i)
0 β̂

(i)
2

)2

(
Ω̂11 − 2θ

(i)
0 Ω̂12 +

(
θ
(i)
0

)2
Ω̂22

)( T∑

t=1

g̃2t

)−1 ≤ cv
2
α/2,

where Ω̂ is now computed using the OLS residuals from (26) and (27) and g̃t are the OLS residuals from

the regression of i) (t−DT ∗t ) on 1, DUt, DT
∗
t for θ

(1)
0 and ii) DT ∗t on 1, t−DT

∗
t , DUt for θ

(2)
0 . From results

in Bunzel and Vogelsang (2005) it follows that the fixed-b critical values depend on the functions of time

included in the model which in turn depend on the date of the structural change. When we add the intercept

and slope shift regressors to the models for y1t and y2t, fixed-b critical values must be adjusted to reflect

these additional regressors. Details of the fixed-b critical values used for the case of structural change are

given in the next section.

An alternative to using (26) and (27) to allow for different trend slopes (and intercepts) before and after

the date TB , would be to carry out analysis using subsamples of the time series. The advantage of (26) and

(27) is that the full time span of the data is used to estimate the variance parameters needed to compute

confidence intervals. As long as the correlation structure of the random components, u1t and u2t, does

not have structural change, using (26) and (27) should lead to more powerful inference (tighter confidence

intervals) than pure subsample analysis.

8 Empirical Application

Recent papers in the empirical climate literature have investigated apparent differences in temperature trends

in surface temperature data and temperature trends in lower-troposphere data. See for example Santer et al

(2005), ?Thorne et al (2007), ?Klotzbach et al (2009, 2010), ?Christy et al (2010), ?. An important quantity

in these investigations is the so-called amplification ratio which is simply the ratio of temperature trends in

the lower-troposphere to temperature trends at the surface. In terms of the statistical model in this paper,

if we let y1t denote a lower-troposphere temperature series and y2t denote a surface temperature series, then

θ = β1/β2 is the amplification ratio. While estimated amplification ratios are routinely reported, confidence

intervals are not usually provided. For example, Table 1 of Klotzbach et al (2009) reports θ̂ values but does

not provide confidence intervals.

We revisit the Klotzbach et al (2009) analysis and report confidence intervals for estimated amplification

ratios using our recommended linear in slopes approach by inverting the tθ0 statistic. We examine the same

sample period of 1979-2008 as in Klotzbach et al (2009) and we also include results using more recent and
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updated data from the 1979-2014 period5 . In addition, for the 1979-2014 sample we allow for structural

change in the trend functions at the end of 1998 to accommodate the possibility that trend slopes are lower

after 1998, i.e. the "pause" or "hiatus" in warming that has been vigorously debated in recent years. We

report estimated amplification ratios and confidence intervals for the subperiods 1979-1998 and 1999-2014

using (26) and (27).

The data set used in our analysis includes surface temperatures from two sources and satellite lower-

troposphere temperatures also from two sources. The sources for the surface data are the National Climate

Data Center (NCDC) and the Hadley Centre (HADC). The sources for the satellite series are the University

of Alabama Huntsville (UAH) and Remote Sensing Systems (RSS). For each of the four sources three

temperature series are examined: i) a land series, ii) an ocean series and iii) a land+ocean (global) series.

All temperature series are monthly and additional details on the data and their sources can be found in

Klotzbach et al (2009).

A referee asked whether it is reasonable to assume that the temperature data used here is stationary

around trends. The literature on amplification ratio estimation treats the temperature data as trend sta-

tionary based on the view that unit roots in temperature data does not make sense on physical grounds.

Regardless, it is useful to provide some formal statistical evidence regarding unit roots in the temperature

data used here. The augmented Dickey-Fuller generalized least squares (ADF-GLS) unit root tests of Elliott,

Rothenberg and Stock (1996) and Perron and Rodriguez (2003) were applied to the individual temperature

series for the 1979-2014 case. In the case where the trend function is modeled as linear with no breaks, the

ADF-GLS statistics range from -3.44 to -6.89 with 5% and 1% critical values of -2.89 and -3.48. When a

single break in trend at an unknown date is permitted, the infimum ADF-GLS statistics range from -4.58 to

—8.61 with 5% and 1% critical values of -3.91 and -4.49. Unit roots are rejected at the 1% level in nearly all

cases so there is strong evidence supporting trend stationarity of the temperature series6 .

Plots of the data for the 1979-2014 time period are given in Figures 1-3. While temperatures appear to

be increasing, it is not easy to see the relative rates of warming between the troposphere and surface series.

Formal statistical analysis is clearly needed to learn about amplification ratios.

When constructing confidence intervals for either trend slope parameters or trend ratios (amplification

ratios), we implemented the relevant long run variance estimator using the Daniell kernel as was done in the

Monte Carlo simulations. We used the data dependent bandwidth formula of Andrews (1991), b = bA91, in

conjunction with fixed-b critical values computed using (25). The values of bA91 ranged from approximately

0.02 to 0.1 across the various series. As a robustness check, confidence intervals for amplification ratios are

also reported using the Bartlett kernel with M = T (b = 1) following Vogelsang and Franses (2005) and

McKitrick and Vogelsang (2014). We use the label VF-MV for the Bartlett case and the relevant right tail

2.5% critical value is 6.482 (see the entry for t∗2 in Table 1 of Vogelsang and Franses 2005).

For the case where we allow for a possible intercept shift and slope shift at the end of 1998, (25) is no

longer valid because the critical values depend on the presence of the intercept and trend slope regressors

5We are grateful to Phil Klotzbach for providing us with the data.
6These findings are consistent with ? where unit roots were rejected in global temperature series using annual data from

1850-2010.
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included in the model. Furthermore, the critical values also depend on the timing of the structural change

through the ratio of the number of observations before the structural change relative to the sample size:

τB = TB/T . In the application for the 1979-2014 sample we have 20 years of monthly data up to the end

of 1998 with 36 years of monthly data in total. Therefore, τB = 240/432 = 0.556. In this case the fixed-b

critical values for the Daniell kernel are given by the function

cv0.025(b) = 1.9600− 1.2196b+ 57.0925b
2 + 251.8196b3 − 391.8571b4 + 190.8516b5, (28)

where the coefficients implicitly depend on the dummy variables being included in the model. Similarly, the

2.5% right tail critical value for VF-MV depends on the presence of the dummy variables and is equal to

8.422 when τB = 0.556.

Table 5 reports OLS estimates of linear trend slopes for the individual temperature series. Estimated

trend slopes are scaled to be in degrees Celsius per decade. Confidence intervals are calculated using the

formula

β̂ ± se(β̂) · cv0.025(b).

In the cases without structural change, β̂ is the OLS trend slope estimator from a regression with an intercept

and linear trend, cv0.025(b) is given by (25) and

se(β̂) =

√√√√√


γ̂0 + 2

T−1∑

j=1

k

(
j

M

)
γ̂j



(

T∑

t=1

(t− t)2

)−1

where γ̂j = T
−1

T∑

t=j+1

ûtût−j and ût are the OLS residuals from the regression of the temperature series on

an intercept and time. For the case of structural change, the relevant trend slopes are estimated using (26)

and (27) with TB = 240 and cv0.025(b) is given by (28). The standard error formula changes to

se(β̂) =

√√√√√


γ̂0 + 2

T−1∑

j=1

k

(
j

M

)
γ̂j



(

T∑

t=1

g̃2t

)−1

where γ̂j is computed using the OLS residuals from regressions (26) and (27) and the computation of g̃t is

described previously.

For the 1979-2008 time span the point estimates and confidence intervals in Table 5 are similar to the

results reported by Klotzbach et al (2009) in their Table 1. The results are not identical because the data

over the 1979-2008 period has changed due to adjustments. Using the extended data to 2014 gives similar

results. All temperature series have positive trend slopes that are statistically significant at the 5% level.

Most series exhibit less warming over the 1979-2014 period relative to the 1979-2008 period.

When we allow for structural change at the end of 1998, we see that estimated trend slopes tend to

be larger in the 1979-1998 subperiod and smaller in the 1998-2014 subperiod. The RSS series has very

small estimated trend slopes for the 1999-2014 subperiod. Confidence intervals are generally wider in the
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subsamples and often contain zero. Wider confidence intervals reflect reduced precision in the estimation of

trend slopes because of the smaller number of observations within subperiods.

For illustrative purposes Table 6 reports estimated amplification ratios (ratios of trend slopes) using the

OLS estimator which is not recommended by our analysis because of the potential for bias when trend slopes

are not large. The top panel of Table 6 reports estimated amplification ratios with troposphere series in the

numerator. The bottom panels flips things and places the troposphere series in the denominator. For the

case of the combined land-ocean series, the estimated amplification ratios are less than one regardless as to

whether the troposphere series are in the numerator or denominator. The troposphere series have smaller

trend slopes and when the troposphere series is y2t, θ̃ is coming from a regression with a relatively small

value of β2. Recall from Theorem 1, Case 2, that θ̃ is biased when β2 is not large and the magnitude of the

bias is inversely related to β2. Therefore, θ̃ can be less than one for both ratios because in the case where

the troposphere variable is on the right hand side, there is substantial downward bias in θ̃. Table 6 nicely

illustrates the pitfalls of using θ̃ to estimate trend ratios.

Results using our recommended estimator θ̂, the ratio of the trends slope estimators, are given in Table

7. This was the estimator used by Klotzbach et al (2009). We only report troposphere/surface amplification

ratios because surface/troposphere ratios are exactly the reciprocals of the numbers reported in Table 7. For

the full samples, we see that, except for the UAH/NCDC ratio for the ocean data from the 1979-2014 time

span, the values of θ̂ are less than one indicating less warming in the lower-troposphere than at the surface.

When we allow for structural change after 1998, we see similar amplification ratios from 1979-1998. For the

1999-2014 period, the amplification ratios are very different and depend on whether the UAH or RSS series

is used for the troposphere.

While the θ̂ values generally suggest slower warming in the troposphere than at the surface, it is important

to calculate confidence intervals for θ̂ so that sampling variability of θ̂ can be taken into account when

comparing θ̂ values with amplification ratios suggested by climate models. Table 8 reports 95% confidence

intervals using our recommended linear in slopes approach. Over land, the confidence intervals are below

one for both the 1979-2008 and 1979-2014 samples indicating less warming in the troposphere relative to the

surface. Over the entire globe (land+ocean), the confidence intervals are also below one in three of four cases

for the 1979-2014 data. Over the oceans, the confidence intervals include values greater than one. Results

are similar using the Daniell kernel and VF-MV although VF-MV tends to give slightly wider confidence

intervals. Wider confidence intervals are to be expected given the more conservative nature of the VF-MV

approach because of the large bandwidth being used.

Confidence intervals that allow structural change after 1998 are, for the period 1979-1998, qualitatively

similar but wider than the confidence intervals obtained with the full samples when structural change is not

included in the model. For the 1999-2014 period, confidence intervals are very different and we see examples

of cases 2 and 3 described in Section 4.2. The possibility of disjoint confidence intervals (case 2) or the entire

real line (case 3) depends on whether the series in the denominator has a trend slope that is statistically

significant. In Table 5 we saw that the surface series has cases where the null of a zero trend slope cannot

be rejected. When that happens, cases 2 and 3 can be obtained for confidence intervals for the amplification
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ratios. In general, the confidence intervals for 1999-2014 are very wide because estimated trend slopes are

smaller after 1998. The 1999-2014 results nicely illustrate the difficulty in precisely estimating a ratio of

trend slopes when trend slopes are small.

The confidence intervals in Table 8 can be used to test whether an amplification ratio of a climate model

is consistent with the data. For example, Klotzbach et al (2009) tested the null hypothesis, H0 : θ = 1.2.

Except for the UAH/NCDC ratio, this null value falls outside of the confidence intervals and the hypothesis

is rejected for both the 1979-2008 and 1979-2014 time periods. Klotzbach et al (2009) were criticized for

testing the same null value of 1.2 over both land and oceans. In response to this criticism, Klotzbach et al

(2010) tested a null amplification ratio of 1.1 over land and 1.6 over the oceans. In all cases for observed

land temperature series for 1979-2008 and 1979-2014, 1.1 falls outside of the confidence intervals. Likewise,

for all ocean temperature series for 1979-2008 and 1979-2014, 1.6 falls outside of the confidence intervals.

Table 8 confirms the original findings of Klotzbach et al (2010) and shows that their findings continues to

hold with data updated to 2014.

When we allow for structural change after 1998, results similar to Klotzbach et al (2009,2010) generally

hold for 1979-1998. For 1999-2014, the confidence intervals are usually either not informative (the entire

real) or are disjoint. Interestingly, for the RSS ratios the null hypothesis of 1.1 is rejected for the land series

and the null hypothesis of 1.6 is rejected in three of four cases for the ocean series. For the RSS ratios, the

results are similar to Klotzbach et al (2009,2010).

It is important to understand how Klotzbach et al (2009,2010) carried out their tests and how their

approach is related to the confidence intervals being used here. Klotzbach et al (2009,2010) used the linear

in slopes approach, i.e. the tθ0 statistic. However, they used a parametric estimator of the long run variance

based on an AR(1) model for serial correlation in the temperature series. In contrast, we are using a

nonparametric kernel based estimator of the long run variance and an associated critical value that depends

on the kernel and the bandwidth. Our approach allows for more general forms of serial correlation and

uses critical values that are known to reduce finite sample type 1 error distortions. In addition, by reporting

confidence intervals for amplification ratios of observed temperature series, we allow the reader to immediately

and easily test whether a particular null hypothesis about an amplification ratio can or cannot be rejected

by the data. There is no need for us to take a stand on what are the interesting, relevant or important null

hypotheses to test regarding amplification ratios.

9 Conclusion

In this paper we analyze estimation and inference of the ratio of trend slopes of two time series with linear

deterministic trend functions. We consider three estimators of the trend slope ratio: OLS, bias-corrected

OLS, and IV. Asymptotic theory indicates that when the magnitude of the trend slopes are large relative

to the noise in the series, the three estimators are approximately unbiased and have essentially equivalent

sampling distributions. For small trend slopes, the IV estimator tends to remain unbiased whereas OLS and

bias-corrected OLS can have substantial bias. For very small trend slopes all three estimators become poor

estimators of the trend slopes ratio.
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We analyze four t-statistics for testing hypotheses about the trend slopes ratio. We consider t-statistics

based on each of the three estimators of the trend slopes ratio and we propose a fourth t-statistic based on

an alternative testing approach. Asymptotic theory indicates that the alternative test dominates the other

three tests in terms of size and has reliable power that is robust to the magnitudes of the trend slopes.

Finite sample simulations show that the predictions of the asymptotic theory tend to hold in practice.

Based on the asymptotic theory and finite sample evidence we recommend that the IV estimator be used to

estimate the trend slopes ratio and that confidence intervals be computed using our alternative test statistic.

A nice property of our recommendation is that the IV estimator is always contained in the confidence interval

even though the confidence interval is not constructed using the IV estimator itself.

We carried out an empirical analysis of amplification ratios in warming trends in the lower-troposphere

relative to the surface. Using the same temperature series as Klotzbach et al (2009,2010) but extended

to 2014, we find that estimated amplification ratios tend be less than one. Using our recommended linear

in slopes confidence intervals for the temperature based amplification ratios, we confirm the findings of

Klotzbach et al (2010) that amplification ratios of 1.1 and 1.6 are rejected at the 5% level over land and

oceans respectively using data from 1979-2008. Our results also show that these findings continue to hold

using data from 1979-2014. If structural change is allowed at the end of 1998 to accommodate the "pause"

or "hiatus" in warming since 1999, inference regarding amplification ratios within sub-periods is less sharp

but is generally consistent with the findings of Klotzbach et al (2009,2010).
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Table 1: Finite Sample Means and Standard Deviations
10,000 Replications, θ = 2.

Mean Standard Deviation
T β1 β2 OLS OLSBC IV OLS OLSBC IV
50 20 10 2.000 2.000 2.000 0.003 0.003 0.003

10 5 2.000 2.000 2.000 0.006 0.006 0.006
4 2 1.998 2.000 2.000 0.015 0.015 0.015
.4 .2 1.816 2.014 2.014 0.117 0.156 0.156
.3 .15 1.697 2.024 2.024 0.132 0.214 0.214
.2 .1 1.441 2.058 2.058 0.145 0.353 0.353
.1 .05 0.911 2.242 2.288 0.185 1.051 14.117
.04 .02 0.553 1.409 1.897 0.175 1.454 75.360
.004 .002 0.463 0.544 1.931 0.155 0.860 191.451
0 0 0.462 0.534 2.114 0.155 0.840 160.777

100 20 10 2.000 2.000 2.000 0.001 0.001 0.001
10 5 2.000 2.000 2.000 0.002 0.002 0.002
4 2 1.999 2.000 2.000 0.005 0.005 0.005
.4 .2 1.946 2.002 2.002 0.050 0.054 0.054
.3 .15 1.906 2.003 2.003 0.063 0.073 0.073
.2 .1 1.802 2.007 2.007 0.082 0.110 0.110
.1 .05 1.422 2.028 2.028 0.102 0.232 0.232
.04 .02 0.778 2.192 2.205 0.130 0.799 3.965
.004 .002 0.469 0.602 0.263 0.110 0.719 73.150
0 0 0.465 0.528 0.631 0.109 0.619 89.149

200 20 10 2.000 2.000 2.000 0.000 0.000 0.000
10 5 2.000 2.000 2.000 0.001 0.001 0.001
4 2 2.000 2.000 2.000 0.002 0.002 0.002
.4 .2 1.985 2.000 2.000 0.019 0.019 0.019
.3 .15 1.974 2.000 2.000 0.025 0.025 0.025
.2 .1 1.944 2.001 2.001 0.035 0.038 0.038
.1 .05 1.796 2.003 2.003 0.058 0.077 0.077
.04 .02 1.244 2.021 2.021 0.074 0.201 0.201
.004 .002 0.484 0.968 1.644 0.078 0.731 88.359
0 0 0.469 0.517 0.862 0.076 0.437 50.018

Note: OLS, OLSBC and IV denote the estimators given by (7), (10), and
(12) respectively.
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Table 2: Empirical Null Rejection Probabilities, 5% Nominal Level, 10,000 Replications.
H0 : θ = θ0 = 2, H1 : θ 6= 2.

b = 0.1 b = 0.5 b = 1.0
T β1 β2 tOLS tBC tIV tθ0 tOLS tBC tIV tθ0 tOLS tBC tIV tθ0
50 20 10 .065 .065 .065 .065 .050 .051 .051 .051 .049 .053 .053 .053

10 5 .065 .065 .065 .065 .049 .051 .051 .051 .038 .053 .053 .053
4 2 .066 .065 .065 .065 .043 .051 .051 .051 .010 .053 .053 .053
.4 .2 .236 .075 .059 .065 .001 .056 .050 .051 .000 .055 .050 .053
.3 .15 .356 .087 .059 .065 .001 .062 .050 .051 .000 .059 .049 .053
.2 .1 .610 .119 .061 .065 .001 .075 .049 .051 .000 .071 .049 .053
.1 .05 .981 .261 .082 .065 .004 .131 .052 .051 .000 .122 .051 .053
.04 .02 1.00 .538 .138 .065 .203 .340 .079 .051 .031 .250 .074 .053
.004 .002 1.00 .874 .232 .065 .708 .719 .129 .051 .258 .546 .116 .053
0 0 1.00 .882 .231 .065 .721 .730 .132 .051 .262 .552 .118 .053

100 20 10 .054 .054 .054 .054 .054 .053 .053 .053 .049 .052 .052 .052
10 5 .054 .054 .054 .054 .054 .053 .053 .053 .042 .052 .052 .052
4 2 .054 .054 .054 .054 .047 .053 .053 .053 .018 .052 .052 .052
.4 .2 .140 .057 .054 .054 .001 .055 .054 .053 .000 .054 .052 .052
.3 .15 .198 .059 .054 .054 .000 .056 .054 .053 .000 .055 .053 .052
.2 .1 .341 .067 .053 .054 .000 .060 .054 .053 .000 .059 .052 .052
.1 .05 .811 .106 .055 .054 .000 .080 .053 .053 .000 .076 .054 .052
.04 .02 1.00 .334 .072 .054 .001 .183 .054 .053 .000 .161 .056 .052
.004 .002 1.00 .908 .211 .054 .855 .807 .121 .053 .356 .627 .109 .052
0 0 1.00 .947 .226 .054 .908 .856 .124 .053 .412 .679 .114 .052

200 20 10 .047 .047 .047 .047 .046 .045 .045 .045 .050 .049 .049 .049
10 5 .047 .047 .047 .047 .045 .045 .045 .045 .046 .049 .049 .049
4 2 .046 .047 .047 .047 .044 .045 .045 .045 .027 .049 .049 .049
.4 .2 .090 .048 .046 .047 .001 .046 .045 .045 .000 .049 .049 .049
.3 .15 .121 .048 .047 .047 .000 .046 .046 .045 .000 .049 .049 .049
.2 .1 .197 .050 .046 .047 .000 .047 .046 .045 .000 .050 .049 .049
.1 .05 .504 .061 .047 .047 .000 .053 .046 .045 .000 .056 .049 .049
.04 .02 .995 .135 .049 .047 .000 .087 .047 .045 .000 .087 .050 .049
.004 .002 1.00 .846 .149 .047 .818 .680 .092 .045 .183 .453 .080 .049
0 0 1.00 .991 .216 .047 .989 .953 .122 .045 .605 .789 .113 .049

Note: The formulas tOLS , tBC , tIV , and tθ0 are given by (14), (15), (16) and (18) respectively.
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Table 3: Finite Sample Proportions of Confidence Interval Shapes Based on tθ0 .
5% Nominal Level, 10,000 Replications, H0 : θ = θ0 = 2, H1 : θ 6= 2.

b = 0.1 b = 0.5 b = 1.0
T β1 β2 Case1 Case2 Case3 Case1 Case2 Case3 Case1 Case2 Case3
50 20 10 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000

10 5 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
4 2 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.4 .2 1.000 .000 .000 .987 .013 .000 .922 .078 .000
.3 .15 1.000 .000 .000 .928 .072 .000 .812 .187 .000
.2 .1 .999 .001 .000 .744 .255 .001 .612 .384 .004
.1 .05 .723 .277 .000 .339 .605 .056 .293 .650 .057
.02 .01 .202 .514 .284 .109 .517 .374 .104 .610 .287
.002 .001 .071 .131 .799 .053 .270 .677 .053 .378 .569
0 0 .066 .127 .806 .051 .271 .678 .052 .376 .572

100 20 10 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
10 5 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
4 2 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.4 .2 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.3 .15 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.2 .1 1.000 .000 .000 .999 .001 .000 .986 .014 .000
.1 .05 1.000 .000 .000 .897 .103 .000 .772 .227 .001
.02 .01 .761 .239 .000 .386 .574 .040 .332 .623 .045
.002 .001 .063 .165 .772 .053 .304 .643 .055 .404 .541
0 0 .053 .122 .825 .050 .279 .671 .051 .382 .567

200 20 10 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
10 5 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
4 2 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.4 .2 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.3 .15 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.2 .1 1.000 .000 .000 1.000 .000 .000 1.000 .000 .000
.1 .05 1.000 .000 .000 1.000 .000 .000 .999 .001 .000
.02 .01 1.000 .000 .000 .931 .069 .000 .819 .181 .000
.002 .001 .113 .412 .475 .085 .449 .467 .081 .547 .372
0 0 .043 .120 .837 .046 .274 .680 .051 .376 .573

Notes: Case 1 is θ0 ∈ [r1, r2], Case 2 is θ0 ∈ (−∞, r1] ∪ [r2,∞) and Case 3 is θ0 ∈ (−∞,∞).
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Table 4: Finite Sample Power, 5% Nominal Level, T = 100, Two-sided Tests.
10,000 Replications, H0 : θ = θ0 = 2, H1 : θ = θ1, β1 = θ1β2.

b = bA91 b = 0.5 b = 1.0
β2 θ1 tOLS tBC tIV tθ0 tOLS tBC tIV tθ0 tOLS tBC tIV tθ0
10 1.996 .953 .951 .951 .951 .509 .506 .506 .505 .420 .422 .422 .421

1.997 .796 .788 .788 .787 .357 .354 .354 .353 .300 .301 .301 .300
1.998 .487 .477 .477 .477 .201 .198 .198 .198 .182 .181 .181 .180
1.999 .183 .179 .179 .179 .093 .092 .092 .092 .087 .089 .089 .089
2.000 .072 .070 .070 .070 .054 .053 .053 .053 .049 .052 .052 .052
2.001 .176 .180 .180 .181 .090 .093 .093 .093 .082 .085 .085 .085
2.002 .468 .478 .478 .478 .200 .205 .205 .205 .173 .180 .180 .180
2.003 .780 .787 .787 .787 .346 .350 .350 .351 .295 .300 .300 .300
2.004 .949 .951 .951 .951 .500 .503 .503 .504 .413 .419 .419 .419

2 1.980 .960 .952 .952 .951 .516 .511 .511 .505 .360 .426 .426 .421
1.985 .818 .791 .791 .787 .364 .357 .357 .353 .234 .304 .304 .300
1.990 .522 .481 .481 .477 .209 .199 .199 .198 .121 .183 .183 .180
1.995 .202 .181 .181 .179 .094 .092 .092 .092 .046 .090 .090 .089
2.000 .075 .071 .071 .070 .047 .053 .053 .053 .018 .052 .052 .052
2.005 .157 .179 .179 .181 .072 .092 .092 .093 .034 .085 .085 .085
2.010 .433 .474 .474 .478 .176 .203 .203 .205 .092 .179 .179 .180
2.015 .752 .784 .784 .787 .321 .345 .345 .351 .195 .297 .297 .300
2.020 .938 .950 .950 .951 .470 .499 .499 .504 .320 .416 .416 .419

.2 1.80 .997 .964 .962 .951 .202 .584 .573 .505 .000 .482 .475 .421
1.85 .971 .828 .819 .787 .082 .407 .399 .353 .000 .341 .334 .300
1.90 .836 .530 .519 .477 .023 .229 .223 .198 .000 .204 .200 .180
1.95 .533 .205 .198 .179 .005 .102 .098 .092 .000 .098 .095 .089
2.00 .198 .076 .073 .070 .001 .055 .054 .053 .000 .054 .052 .052
2.05 .058 .165 .156 .181 .000 .086 .084 .093 .000 .081 .079 .085
2.10 .117 .446 .432 .478 .000 .188 .181 .205 .000 .171 .166 .180
2.15 .346 .763 .749 .787 .000 .317 .310 .351 .000 .278 .271 .300
2.20 .658 .939 .935 .951 .003 .451 .442 .504 .000 .381 .372 .419

.1 1.6 1.00 .979 .970 .951 .064 .682 .641 .505 .000 .563 .532 .421
1.7 .999 .872 .847 .787 .014 .479 .446 .353 .000 .400 .371 .300
1.8 .977 .596 .553 .477 .003 .271 .248 .198 .000 .238 .220 .180
1.9 .842 .248 .218 .179 .000 .120 .109 .092 .000 .112 .102 .089
2.0 .513 .089 .071 .070 .000 .060 .054 .053 .000 .059 .052 .052
2.1 .173 .167 .132 .181 .000 .087 .077 .093 .000 .083 .072 .085
2.2 .033 .442 .382 .478 .000 .183 .162 .205 .000 .165 .149 .180
2.3 .044 .755 .702 .787 .000 .302 .274 .351 .000 .265 .241 .300
2.4 .173 .936 .913 .951 .000 .426 .386 .504 .000 .353 .330 .419

.005 -6 1.00 .965 .256 .951 .000 .703 .132 .505 .000 .490 .119 .421
-4 1.00 .938 .289 .787 .020 .713 .154 .353 .000 .512 .138 .300
-2 1.00 .901 .354 .477 .328 .759 .189 .198 .038 .573 .170 .180
0 1.00 .965 .394 .179 .891 .891 .206 .092 .387 .736 .180 .089
2 1.00 .782 .198 .070 .614 .595 .098 .053 .150 .426 .085 .052
4 1.00 .629 .044 .181 .058 .312 .029 .093 .002 .181 .029 .085
6 1.00 .812 .019 .478 .000 .364 .022 .205 .000 .211 .026 .180
8 .997 .926 .015 .787 .000 .438 .028 .351 .000 .267 .031 .300
10 .889 .962 .015 .951 .000 .490 .035 .504 .000 .304 .038 .419

Note: The formulas tOLS , tBC , tIV , and tθ0 are given by (14), (15), (16) and (18) respectively.
Bold entries are null rejection probabilities.
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Table 5: Estimated Trend Slopes of Individual Temperature Series
Degrees Celsius per Decade, Klotzbach et al Data

Land+Ocean Land Ocean

1979-2008 β̂ β̂ β̂
NCDC .164 [.128, .201] .289 [.224, .355] .117 [.073, .161]
HADC .176 [.135, .217] .290 [.231, .349] .134 [.095, .174]
UAH .134 [.060, .208] .178 [.102, .254] .109 [.042, .175]
RSS .142 [.072, .211] .205 [.131, .278] .111 [.048, .174]

1979-2014 β̂ β̂ β̂
NCDC .148 [.120, .175] .259 [.212, .306] .106 [.073, .138]
HADC .158 [.127, .188] .255 [.212, .298] .125 [.095, .154]
UAH .133 [.081, .186] .180 [.126, .234] .107 [.058, .155]
RSS .122 [.071, .174] .166 [.110, .223] .101 [.054, .147]

1979-1998 β̂ β̂ β̂
NCDC .157 [.094, .221] .247 [.137, .358] .123 [.046, .200]
HADC .169 [.097, .251] .249 [.148, .349] .139 [.070, .207]
UAH .112 [-.017, .241] .139 [.008, .269] .098 [-.021, .217]
RSS .153 [.031, .275] .207 [.079, .336] .127 [.016, .238]

1999-2014 β̂ β̂ β̂
NCDC .084 [-.005, .172] .144 [-.011, .299] .061 [-.047, .168]
HADC .091 [-.009, .192] .136 [-.005, .276] .083 [-.013, .180]
UAH .122 [-.059, .302] .180 [-.002, .362] .088 [-.078, .255]
RSS .028 [-.142, .198] -.001 [-.181, .179] .041 [-.114, .196]

Note: 95% confidence intervals in brackets using Daniell k(x) function
with Andrews (1991) data dependent bandwidth. Results for 1979-1998
and 1999-2014 are obtained using the full 1979-2014 sample and allowing
for a shift in intercept and trend slope at the end of 1998.

Table 6: Estimated Amplification Ratios using θ̃: Klotzbach et al Data

Land+Ocean Land Ocean
Troposphere/Surface 1979-2008 1979-2014 1979-2008 1979-2014 1979-2008 1979-2014

UAH/NCDC .910 .934 .563 .583 1.126 1.133
RSS/NCDC .945 .912 .644 .623 1.106 1.067
UAH/HADC .854 .883 .682 .708 .946 .941
RSS/HADC .887 .862 .769 .745 .935 .889

Surface/Troposphere 1979-2008 1979-2014 1979-2008 1979-2014 1979-2008 1979-2014
NCDC/UAH .707 .713 1.082 1.061 .522 .545
NCDC/RSS .735 .752 1.127 1.127 .527 .552
HADC/UAH .755 .762 .991 .980 .587 .626
HADC/RSS .785 .804 1.018 1.024 .596 .636

Note: θ̃ is the OLS estimator of θ from regression (5).
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Table 7: Estimated Amplification Ratios using θ̂: Klotzbach et al Data

Land+Ocean Troposphere/Surface 1979-2008 1979-2014 1979-1998 1999-2014
UAH/NCDC .818 .904 .713 1.454
RSS/NCDC .862 .829 .974 .336
UAH/HADC .763 .847 .665 1.331
RSS/HADC .805 .777 .908 .308

Land Troposphere/Surface 1979-2008 1979-2014 1979-1998 1999-2014
UAH/NCDC .615 .694 .561 1.250
RSS/NCDC .707 .643 .838 -.006
UAH/HADC .614 .704 .559 1.326
RSS/HADC .705 .652 .834 -.006

Ocean Troposphere/Surface 1979-2008 1979-2014 1979-1998 1999-2014
UAH/NCDC .930 1.010 .795 1.455
RSS/NCDC .948 .952 1.031 .676
UAH/HADC .810 .857 .706 1.059
RSS/HADC .826 .808 .915 .492

Note: θ̂ is the ratio of OLS trend slopes (the IV estimator (10)). Results for 1979-1998
and 1999-2014 use the full sample allowing for a shift in intercept and slope at the end of 1998.

Table 8: Troposphere/Surface Amplification Ratio 95% Confidence Intervals, Klotzbach et al Data

Land+Ocean Land Ocean

1979-2008 Daniell VF-MV Daniell VF-MV Daniell VF-MV

UAH/NCDC [.498, 1.012] [.429, 1.060] [.446, .748] [.371, .766] [.398, 1.211] [.372, 1.266]

RSS/NCDC [.588, 1.036] [.525, 1.076] [.565, .823] [.452, .914] [.527, 1.153] [.532, 1.172]

UAH/HADC [.468, .942] [.402, .984] [.444, .738] [.377, .756] [.454, 1.045] [.323, 1.099]

RSS/HADC [.548, .969] [.483, 1.017] [.563, .814] [.449, .921] [.544, 1.008] [.454, 1.034]

1979-2014 Daniell VF-MV Daniell VF-MV Daniell VF-MV

UAH/NCDC [.678, 1.070] [.629, 1.171] [.562, .811] [.491, .895] [.688, 1.242] [.661, 1.328]

RSS/NCDC [.599, .990] [.529, 1.011] [.510, .750] [.356, .842] [.678, 1.126] [.662, 1.123]

UAH/HADC [.640, .998] [.594, 1.092] [.574, .815] [.498, .919] [.621, 1.042] [.562, 1.094]

RSS/HADC [.563, .926] [.497, .948] [.518, .756] [.371, .842] [.601, .960] [.535, .973]

1979-1998 Daniell VF-MV Daniell VF-MV Daniell VF-MV

UAH/NCDC [-.060, 1.047] [-.467, 1.128] [.117, .828] [-.256, .904] [-.327, 1.196] [-.993, 1.276]

RSS/NCDC [.441, 1.246] [.072, 1.329] [.552, 1.060] [.137, 1.199] [.331, 1.331] [-.121, 1.397]

UAH/HADC [-.055, .968] [-.459, 1.030] [.104, .802] [-.281, .872] [-.025, 1.063] [-.859, 1.142]

RSS/HADC [.417, 1.159] [.069, 1.239] [.551, 1.020] [.147, 1.187] [.456, 1.189] [-.105, 1.249]

1999-2014 Daniell VF-MV Daniell VF-MV Daniell VF-MV

UAH/NCDC [-∞, ∞] [-∞, ∞] -4.150], [.416 [-∞, ∞] [-∞, ∞] [-∞, ∞]
RSS/NCDC 1.126], [10.02 1.295], [4.645 .632], [40.26 .959], [7.370 1.487], [2.686 1.610], [2.646

UAH/HADC [-∞, ∞] [-∞, ∞] -1.374], [.553 [-∞, ∞] 1.865], [19.17 1.791], [2.692

RSS/HADC 1.032], [9.208 1.193], [3.915 .645], [19.55 .964], [3.964 [-85.97, 1.140] 1.259], [3.698

Note: 95% confidence intervals in brackets. Daniell uses the Daniell k(x) function with
Andrews (1991) data dependent bandwidth. VF-MV uses Bartlett k(x) function with bandwidth
equal to sample size (b = 1). Results for 1979-1998 and 1999-2014 use the full sample
allowing for a shift in intercept and slope at the end of 1998.
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Figure 1: Monthly Land Temperature Series.
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Figure 2: Monthly Ocean Temperature Series
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Figure 3: Monthly Land+Ocean Temperature Series
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