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Strategies in the Repeated Prisoner’s Dilemma: A
Cluster Analysis

Yuval Heller∗ Itay Tubul†‡

May 25, 2023

Abstract

This study uses k-means clustering to analyze the strategic choices made by par-
ticipants playing the infinitely repeated prisoner’s dilemma in laboratory experiments.
We identify five distinct strategies that closely resemble well-known pure strategies:
always defecting, suspicious tit-for-tat, grim, tit-for-tat, and always cooperating. Our
analysis reveals moderate systematic deviations of the clustered strategies from their
pure counterparts, and these deviations are important for capturing the experimental
behavior. Additionally, we demonstrate that our approach significantly enhances the
predictive power of previous analyses. Finally, we examine how the frequencies and
payoffs of these clustered strategies vary based on the underlying game parameters.
Keywords: k-means clustering, machine-learning, memory, laboratory experiment,
repeated games. JEL Classification: C73, C91.

1 Introduction
The infinitely repeated prisoner’s dilemma is a widely-used model for examining the balance
between self-interested actions and cooperative efforts in long-term, strategic interactions.
The theoretical folk-theorem results of the game offer little predictive power in terms of the
actual level of cooperation and the strategies that players use in practice. By analyzing the
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strategies adopted by players in the laboratory, we can bridge this gap and gain a better
understanding of how mutual cooperation can be sustained in real-life settings.

Dal Bó & Fréchette (2018) have compiled a comprehensive dataset comprising 32 treat-
ments of the infinitely repeated prisoner’s dilemma experiment from 12 different papers
published between 2005 and 2019. This dataset includes over 150,000 choices made by 1,734
subjects in nearly 807 supergames3). Interestingly, two previous relevant analyses of this
comprehensive database (namely, Dal Bó & Fréchette, 2018 and Backhaus & Breitmoser,
2021), have yielded two substantially different results regarding the strategies employed by
the players.

Both analyses agree on two key aspects: players’ behavior mostly depends on the what
was played in the previous round (henceforth, memory-1 strategies), and about 30% of the
subjects almost always defect. The two analyses have reached opposing conclusions regarding
the behavior of the remaining 70% of the subjects.

Dal Bó & Fréchette (2018, 2019) assert that these players can are categorized into four
classes, where each class each follows a different pure strategy: (1) tit-for-tat, which involves
cooperating in the first round and playing the opponent’s previous action in subsequent
rounds; (2) suspicious tit-for-tat, which is similar to Tit-for-tat, but with a defection in
the first round; (3) grim, which involves cooperating in the first round and after mutual
cooperation, while defecting if either player defected in the previous round; and (4) a smaller
class of players who almost always cooperate.

In contrast, Backhaus & Breitmoser (2021) (and Breitmoser, 2015) argue that these
players all play a semi-grim strategy, characterized by almost always cooperating after mu-
tual cooperation, almost always defecting after mutual defection, and cooperating with a
probability of about 35% if either player unilaterally defected in the previous round. These
divergent results highlight the need for further research on this important research question.

In this study, we use a new approach using cluster analysis to re-examine the question
of evaluating strategies employed in laboratory experiments. Our analysis reveals that sub-
jects can be grouped into five distinct clusters, with each cluster displaying behavior that is
relatively similar to the pure strategies identified by Dal Bó & Fréchette (2018, 2019). Fur-
thermore, we identify systematic deviations in each clustered strategy from its corresponding
pure strategy and demonstrate that these deviations play an important role in understanding
and predicting players’ behavior.

Brief description of our approach Following the existing literature we focus our anal-
ysis on memory-1 strategies (and we demonstrate in Appendix C the relatively small impact
of allowing the players’ strategies to depend on longer histories). We represent each player
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has a vector in the five-dimensional unit cube [0, 1]5, where each number corresponds to
the player’s average cooperation frequency after each memory-1 history (namely, in the
first round of a new supergame, after both players cooperating, after unilateral opponent’s
defection, after unilateral player’s defection, and after mutual defection).

In order to categorize the players’ behavior in a parsimonious way, we apply the commonly-
used machine-learning k-means algorithm (see,Larose & Larose 2014, Chapter 10.5 for a
textbook exposition). The algorithm groups data points into k clusters, such that the sum
of squared distances between each data point and the mean of the points in its cluster is
minimal. By applying a common heuristic (the elbow method), we choose the number of
clusters to be k = 5 (and we demonstrate the robustness of our results for nearby k-s).

Key Results Our analysis classifies the players into five distinct types. In what follows
we briefly describe each type and its average frequency in the database (as detailed below,
these frequencies depend on the parameters of the underlying game):

1. 30% of the players consistently defect after all histories, with a slightly lower probability
of defection if they cooperated in the previous round.

2. 25% of the players play a strategy similar to tit-for-tat, but with one systematic de-
viation: occasionally playing their own action in the previous round instead of the
opponent’s action in the previous round.

3. 20% of the players play a strategy similar to suspicious-tit-for-tat, with the same
systematic deviation as tit-for-tat.

4. 20% of the players play a strategy similar to grim, with two systematic deviations:
occasionally defecting in the first round of supergames, and occasionally cooperating
after a unilateral defection of the opponent.

5. 5% of the players almost always cooperate, with a slightly reduced probability of
cooperation if either the player or their opponent defected in the previous round.

Our model improves the predictive power compared to both existing analyses (Dal Bó &
Fréchette, 2018; Backhaus & Breitmoser, 2021). Next, we examine how the frequencies
and average payoffs of each clustered strategy change with the underlying parameters. Our
results show that as the parameters of the underlying games change to facilitate cooperation
(decreasing the value of SizeBad, a la Dal Bó & Fréchette, 2011, as defined in Section 3.1),
the share and average payoff of the two most cooperative strategies, namely always cooperate
and tit-for-tat, increase (65% of the players play one of these two most cooperative strategies
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when SizeBad is close to zero). Conversely, when the parameters change in the opposite
direction, hindering cooperation, the share and average payoff of the two least cooperative
strategies, namely always defect and suspicious-tit-for-tat, increase (90% of the players play
one of these two least cooperative strategies when SizeBad is close to one). Notably, the
grim strategy exhibits a relatively high average payoff for all underlying prisoner’s dilemma
games, thus demonstrating its robustness.

Structure Section 2 provides a review of the related literature. We describe our method-
ology and the database in Section 3. Our analysis is presented in Section 4, while Section 5
compares our findings with those of the existing literature. In Section 6, we explore how the
frequencies and the average payoffs of the clustered strategies change as a function of the
underlying game parameters. We conclude our paper in Section 7.

Additional analysis is available in the online appendices. Appendix A assigns each player
to the pure strategy that best predicts their play. Appendix B demonstrates the robustness
of our results by removing the early supergames from the data, which may be noisier due to
the limited players’ experience. The analysis presented in Appendix C shows that allowing
the strategies to depend on longer histories has a relatively small impact. Lastly, Appendix
D provides the frequency and average payoff of each clustered strategy in each treatment.
The code and data used in this paper is available in the supplementary material in GitHub.

2 Related Literature
Eliciting strategies The closest related papers are those that address the same research
question as ours (namely, assessing players’ strategies in the infinitely-repeated prisoner’s
dilemma). We have discussed above Dal Bó & Fréchette (2018) and Backhaus & Breitmoser
(2021) that have applied econometric methods (such as the Strategy Frequency Estimation
Method (SFEM) a la Dal Bó & Fréchette, 2011) to estimate players’ strategies. Three
other recent papers (Dal Bó & Fréchette, 2019; Romero & Rosokha, 2018, 2023) have used
an experimental design that explicitly elicits the players’ strategies. In all three papers,
each experimental treatment is divided to three phases. In the first phase players play in
standard way (i.e., choosing their action at each round, as in our database). Next the players
are asked to specify their repeated-game strategy. In the second phase of the experiment,
players observe the action recommended by their strategy, but is non-binding, and they can
choose a different action, and can modify their elicited strategies. In the third Phase, the
computers follow the players’ elicited strategies.

The three experiments differ in the elicitation interface, which determines which strategies
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can be elicited by the participants. Dal Bó & Fréchette (2019) allow the elicitation of pure
memory-1 strategies, and an additional small number of strategies that depend on longer
histories or has randomness. Romero & Rosokha (2018) allow the elicitation of pure strategies
(essentially without limiting the length of memory of these elicited strategies). Romero &
Rosokha (2023) allow the elicitation of any behavior memory-1 strategies. The three papers
show bounds on differences in the aggregate behavior induced by the elicited strategies and
the aggregate behavior when players directly choose their actions (as in the database analyzed
in the current paper). Moreover, there are some similar themes across the three papers (such
as, the large share of players who play strategies similar to either tit-for-tat, grim or always
defect). Having said that, the elicitation process and interface do have non-negligible impact
on the players’ behavior, which suggests that the present analysis that offers an independent
method to asses the players’ strategies is valuable. In Section 5 we compare our results with
the findings of these three papers (and a brief analysis of the impact of memory-2 histories,
and a comparison with Romero & Rosokha, 2018, is presented in Appendix C).

Experiments excluded from our database In what follows we briefly survey the related
experimental literature which is not included in our database (the experiments included in
our database are briefly described in Section 3.3).

Our database focuses on infinitely-repeated prisoner’s dilemma games. The various ex-
periments of the finitely repeated prisoner’s dilemma (in which the number of rounds in each
supergame is known in advance) has been surveyed and studied in the meta analyses of Men-
gel (2018) and Embrey et al. (2018). We exclude experiments in which time is continuous,
rather than discrete (see, e.g., Friedman & Oprea, 2012; Bigoni et al., 2015), and those in
which choices are made by a team, rather than by a single player (see, e.g., Cooper & Kagel,
2022, which provides evidence that teams tend to be more cooperative than single decision
makers). In addition, we exclude experiments in which a player can choose to terminate
the current supergame and opt for being rematched with a new opponent (e.g., Honhon &
Hyndman, 2020; and see Fujiwara-Greve & Okuno-Fujiwara, 2009).

Our database focuses on experiments in which each player plays against the same oppo-
nent throughout the entire supergame. Other experiments (see, e.g., Duffy & Ochs, 2009;
Camera & Casari, 2009; Camera et al., 2012) have studies a setup in which players are
randomly-matched in each round from the same matching group (typically of size of 4-14),
with varying degree of information about the identity and the past behavior of the current op-
ponent against other players. Theoretical predictions for these setups with random-matching
has been presented, among others, in Kandori (1992); Ellison (1994); Heller & Mohlin (2018).

Our analysis focuses on games with in which each player perfectly monitors the past ac-
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tions of her opponent. We exclude experiments with imperfect monitoring. As demonstrated
in Aoyagi et al. (2019), repeated prisoner’s dilemma with imperfect monitoring induce play-
ers to follow strategies that are more complex and more lenient than those chose with perfect
monitoring. In addition, we exclude experiments in which play is implemented with execu-
tion errors (e.g., Dreber et al., 2014; Rand et al., 2015), and games in which players play
against computers (e.g., Duffy et al., 2021; Kasberger et al., 2023).

Proto et al. (2019) study how differences in intelligence and personality traits affect the
behavior and the level of cooperation in various repeated games, including the prisoner’s
dilemma. Their study found that higher intelligence, conscientiousness, or agreeableness,
predict a higher cooperation rate. Similarly, Gill & Rosokha (2020) find that trusting sub-
jects tend to cooperate more in the repeated prisoner’s dilemma. We leave the interesting
question of the correlation between intelligence and personality traits and the player’s clus-
tered strategy to future research.

Cluster Analysis and Economic Research The k-means clustering algorithm is widely
applied in data science and computer science due to its versatility and effectiveness across
various domains. One important application of the algorithm is image segmentation, where it
significantly enhances output image quality and performance measurements (see, e.g., ?). ?
has combined the k-means algorithm with watershed segmentation to substantially improve
medical image segmentation. Another application is molecular biology (see, e.g., ?), where
the k-means algorithm has been used to partition genes into groups based on the similarity
of their expression profiles.

Recently, cluster analysis (and related machine-learning algorithms) have been applied to
study economic questions, as surveyed in Mullainathan & Spiess (2017), ?; see also ? ? for
surveys of the finance literature. These recent economic applications include segmentation
of credit card customers (Umuhoza et al., 2020), evaluating behavioral models of choice
under risk and ambiguity (?; see ? for further uses of machine-learning models in behavioral
economics), predicting futile surgeries (?), classification and evaluation of NBA players (?),
improving bail decisions (?), and assessing the predictive ability of corporate governance
features (?).
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3 Background and Database

3.1 Repeated Prisoner’s Dilemma

Table 1 presents the normalized payoff matrix of the prisoner’s dilemma game. Each player
has two actions, denoted by c and d, representing cooperation and defection, respectively.
When both players cooperate they both get a relatively high payoff (normalized to one), and
when they both defect they both get a relatively low payoff (normalized to zero). When a
single player defects she obtains a payoff of 1 + g (i.e., an additional payoff of g) while her
opponent gets −l, where g, l > 0.1

c d
c 1 , 1 -l , 1+g

d 1+g , -l 0 , 0

Table 1: Prisoner’s Dilemma Payoff Matrix (g, l ∈ (0, 1 + l))

In the (infinitely-)repeated (discounted) prisoner’s dilemma, players are randomly matched
to play repeated rounds of the underlying game, with a discount factor of δ ∈ (0, 1). This is
typically implemented in experiments by having an independent continuation probability δ

after each round; with the remaining probability of 1 − δ a new supergame begins (i.e., the
players are matched with new anonymous opponents) or the session ends (see the discussion
of various experimental implementations of the discount factor in Fréchette & Yuksel, 2017).
It is well-known that for low discount factors, the unique Nash equilibrium outcome is always
defecting. Higher discount factors introduce additional equilibria. In particular, mutual co-
operation is a subgame perfect equilibrium iff δ ≥ δSP E ≡ g

1+g
. When the session ends, each

subject gets a real monetary payoff (typically, a few dozen dollars), which depends on her
payoffs in a few randomly selected rounds.

Next we describe two parameters introduced in the existing literature to predict the
rate of cooperation. The first parameter, δRD = g+l

1+g+l
, is the minimal discount factor

for which mutual cooperation is risk dominant (Harsanyi & Selten, 1988) in the sense of
being the best reply against an opponent who with probability 50% always defects and with
probability 50% plays the grim strategy (i.e., defects iff the opponent has ever defected).2 The

1It is also often required that 1 + g − l < 2, which implies that mutual cooperation is the efficient action
profile, maximizing the sum of payoffs. In most of the lab experiments, the participants observe a (non-
normalized) payoff matrix with integer payoffs: R for mutual cooperation, P for mutual defection, T for a
sole defector, and S for a sole cooperator, where T > R > P > S > 0. The standard normalization of these
four parameters to the two parameters of g and l is as follows: g = T −R

R−P
, l = P −S

R−P
.

2δRD was introduced in Blonski et al. (2011) with an axiomatic foundation (where it was denoted by δ∗),
and its risk-dominant interpretation was presented in Blonski & Spagnolo (2015).
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second parameter, SizeBad, is defined by Dal Bó & Fréchette (2011, 2018) as the maximum
probability of the opponent following the grim strategy such that always defecting is the
best reply against such an opponent:

SizeBad =











1 ifδ < δSPE ≡ g
1+g

(1−δ)l
(1−(1−δ)(1+g−l)

otherwise.
(3.1)

3.2 Memory-1 Strategies

The repeated prisoner’s dilemma admits an infinite number of strategies. Tractability re-
quires focusing on a small finite subset of strategies. We follow most of the existing literature
(e.g., Breitmoser, 2015; Dal Bó & Fréchette, 2018; Romero & Rosokha, 2023) and focus on
memory-1 strategies, which are strategies in which the player’s behavior depends only on
the actions played in the previous round of the current match. This focus can be justified
by the following findings in experiments with strategy elicitation:

1. 91% of the players choose memory-1 strategies when the elicitation interface allows
choosing variants of grim and tit-for-tat strategies with longer memories (Dal Bó &
Fréchette, 2019); and

2. 72% of the players choose strategies that are very similar to the one of the four most
popular memory-1 strategies (AD, GR, TFT and STFT, in the notation of Table 2)
when the elicitation interface allows choosing pure strategies of arbitrary length of
memory (Romero & Rosokha, 2018, Result 3).

Appendix C presents evidence suggesting that the players’ behavior mainly depends on the
most recent round. Although we find and report some systematic impact for the actions
played in the penultimate round, this impact is relatively small.

We denote a memory-1 strategy by a vector σ = (σ0, σcc, σcd, σdc, σdd) ∈ [0, 1]5, where the
first component σ0 describes the probability of cooperation in the first round of a supergame,
and each of the four remaining components σab describes the probability of cooperation when
in the previous round the player played a and her opponent played b (for example, σcd denotes
the cooperation probability of a player when in the previous round she cooperated and the
opponent defected). There are 32 = 25 pure memory-1 strategies (in which, each component
is either 0 or 1). In addition, there is a continuum of behavior memory-1 strategies, in which
each component is between 0 and 1. Table 2 presents the commonly analyzed memory-1
strategies and some variants of them that will play a role in our analysis: 8 pure strategies
(namely, always defect, always cooperate, grim, suspicious grim, tit-for-tat, suspicious tit-for-
tat, and win-stay-lose-shift), and the behavior strategy of semi-grim (Backhaus & Breitmoser,
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Table 2: Memory-1 Strategies of Special Interest
Strategy Abbr. (σ0, σcc, σcd, σdc, σdd) Description

Always defect AD (0, 0, 0, 0, 0) Always defects
Always cooperate AC (1, 1, 1, 1, 1) Always cooperates

Grim GR (1, 1, 0, 0, 0) Only cooperates in R1 and after
CC

Noisy Grim NGR (1 − ϵ, 1 − ϵ, ϵ, ϵ, ϵ) Grim with error probability ϵ ≤ 0.5
Suspicious grim SGR (0, 1, 0, 0, 0) Only cooperates after CC

(off the equilibrium path)
Tit-for-tat TFT (1, 1, 0, 1, 0) Start with c, then copy opponent

Suspicious TFT STFT (0, 1, 0, 1, 0) Start with d, then copy opponent
Win-stay-lose-shift WSLS (1, 1, 0, 0, 1) Cooperate in R1, cc and dd

Semi-grim
(behavior strategy)

SmG (σ0, 1, σd, σd, 0)
Cooperate after cc, defect after dd.
Mix in 1st round, and mix after a
single defection (σd ≡ σcd = σdc)

2021). In addition we demonstrate how a noisy variant of a pure strategy looks like with
noisy grim, in which a player follows the pure strategy grim with portability 1 − ϵ in each
round, and plays the opposite action with probability ϵ < 0.5, where this in interpreted as a
“trembling-hand” error.

3.3 Database

The experimental research on the repeated prisoner’s dilemma is usually done in a laboratory
environment, and usually includes undergraduate students where most of them are without a
game theory background. Participants are randomly divided into pairs and are given verbal
and written instructions concerning the rules and payoffs of the game. The instructions are
phrased in terms of the individual’s payoffs as a function of his own decision (to cooperate
or not) and the decisions made by the opponent.

We analyze in this paper the large database kindly constructed and publicly shared by
Dal Bó & Fréchette (2018), which comprises the modern experiments on repeated (and
one-shot) Prisoner’s Dilemmas with perfect monitoring. These modern experiments are
characterized by anonymous matching between human players, neutral framing of the actions
and the game (i.e., presenting the actions as a and b, and not as cooperation and defection),
being truthful to the subjects, and providing monetary incentives to the subjects, which are
proportional to their game payoffs. After removing experimental treatments with one-shot
prisoner’s dilemma games, the remaining dataset includes a total number of 1734 players
that do 145,800 choices in 32 different treatments taken from 12 experimental papers, as
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summarized in Table 3.
In order to maximize the amount of data for each subject, we have chosen in the main-text

analysis to study all actions played by each subject. In Appendix B we present an alternative
specification that removes from the data the early supergames in which the experimental
behavior might be nosier (a methodology commonly used in the existing literature, see, e.g.,
Dal Bó & Fréchette, 2018; Backhaus & Breitmoser, 2021). The appendix demonstrates that
the main results of our analysis remain qualitatively similar when removing up to 50% of
the early supergames in each treatment.

4 Analysis

4.1 Memory-1 Strategy Space

The first step of the analysis is to represent each player i by a vector σ = (σi
0, σi

cc, σi
cd, σi

dc, σi
dd) ∈

[0, 1]5, which captures her average memory-1 behavior. Recall that the first component σi
0

describes her frequency of cooperation in the first round of her supergames, and each compo-
nent σi

ab describes her frequency of cooperation when in the previous round player i played
action a and her opponent played action b. For example, if player i had encountered 20
rounds following a memory-1 history of cd (player i cooperating and her opponent defect-
ing), and she had cooperated in 8 of these rounds, then we set σi

cd = 8
20

= 40%).
Some of the players have not encountered all four memory-1 histories (for example, a

player who defects with high probability is likely to never encounter the history in which
both players have cooperated in the previous round).3 In such cases, we set the cooperation
probability after a never-encountered memory-1 history as the player’s mean frequency of
cooperation (e.g., if player i has played a total number of 300 rounds, out of which she
cooperated in 30 rounds, and if she had never encountered the history cc, then we set
σi

cc = 30
300

= 10%).
The representation of the 1734 players as points in the memory-1 strategy space is il-

lustrated in Figure 4.1. Each panel illustrates the frequency of cooperation in three out of
the five dimensions of the memory-1 strategy space. Both panels show in the x-axis the fre-
quency of cooperation in the first round. The left panel shows the frequency of cooperation
after history cd in the y-axis and after history dc in the vertical z-axis, The right panel shows
the frequency of cooperation after history cc in the y-axis and after history dd in the z-axis.
As can be seen in the right panel, most players cooperate with high probability after cc,

3Specifically, 68% of the subjects encountered all four memory-1 histories, 16% encountered three of these
histories, 14% encountered two of these histories, and 2% encountered only one memory-1 history.
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Table 3: Description of the Analyzed Dataset (Dal Bó & Fréchette, 2018)
Experimental

Paper
Treat.
ID

#Super #Cho #Pla Coop. Parameters Size
Badgames -ices -yers Freq. δ g l δSP E δRD

Aoyagi &

Fréchette (2009)

AF1 10 3,050 38 74% 0.9 0.33 0.11 0.01 0.31 1%

Blonski et al.

(2011)

BOS2 11 740 20 42% 0.75 0.75 1.25 0.36 0.67 36%

BOS3 11 860 20 25% 0.75 0.83 0.5 0.19 0.57 19%

BOS4 8 1,200 20 24% 0.875 2 2 0.29 0.80 29%

BOS5 11 1,040 20 19% 0.75 1 1 0.33 0.67 33%

BOS6 11 1,860 40 17% 0.75 2 2 0.67 0.80 67%

BOS7 11 520 20 14% 0.5 2 2 1 0.80 100%

BOS8 30 700 20 11% 0.875 0.5 3.5 0.35 0.80 35%

BOS9 11 620 20 5% 0.75 0.5 3.5 0.58 0.80 58%

BOS10 11 960 20 1% 0.75 1 8 0.8 0.90 80%

Bruttel &

Kamecke (2012)

BK11 20 3,552 36 31% 0.8 1.17 0.83 0.23 0.67 23%

Dal Bó (2005)
D12 10 1,050 60 38% 0.75 0.83 1.17 0.35 0.67 35%

D13 7 1,920 42 36% 0.75 1.17 0.83 0.31 0.67 31%

Dal Bó &

Fréchette (2011)

DF14 35 6284 44 76% 0.75 0.09 0.57 0.16 0.40 16%

DF15 77 6490 46 35% 0.5 0.09 0.57 0.38 0.40 38%

DF16 33 6,448 44 20% 0.75 2.57 1.86 0.81 0.82 81%

DF17 72 6,904 50 18% 0.5 0.67 0.87 0.72 0.61 72%

DF18 71 5,736 44 10% 0.5 2.57 1.86 1 0.82 100%

Df19 47 5180 38 59% 0.75 0.67 0.87 0.27 0.61 27%

Dal Bó &

Fréchette (2019)

DF20 24 10,830 164 62% 0.75 0.09 0.57 0.16 0.40 16%

DF21 7 4,356 36 50% 0.95 2.57 1.86 0.1 0.82 10%

DF22 46 8,750 140 48% 0.5 0.09 0.57 0.38 0.40 38%

DF23 21 16,156 168 33% 0.9 2.57 1.86 0.22 0.82 22%

DF24 25 8,424 114 21% 0.75 2.57 1.86 0.81 0.82 81%

DF25 37 3,076 50 9% 0.5 2.57 1.86 1 0.82 100%

Dreber et al.

(2008)

Dea26 27 1,914 22 43% 0.75 1 1 0.33 0.67 33%

Dea27 21 1,988 28 21% 0.75 2 2 0.67 0.80 67%

Duffy & Ochs

(2009)

DO28 13 9,146 102 54% 0.9 1 1 0.11 0.67 11%

Fréchette &

Yuksel (2017)

FY29 12 2,368 50 65% 0.75 0.4 0.4 0.13 0.44 13%

Fudenberg et al.

(2012)

Fea30 9 3,252 48 74% 0.875 0.33 0.33 0.05 0.40 5%

Kagel & Schley

(2013)

KS31 39 14,772 114 48% 0.75 1 0.5 0.2 0.60 20%

Sherstyuk et al.

(2013)

Sea32 29 5,656 56 55% 0.75 1 0.25 0.11 0.56 11%

Total / Average 807 145,802 1734 41% - - - - - -
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and defect with high probability after dd, which implies that the heterogeneity in these two
dimensions is limited. By contrast, there is substantial heterogeneity in the players behavior
in the remaining three dimensions (i.e., in the first round of a supergame, and after histories
in which one of the players defected).

Figure 4.1: Cooperation rate for each participant after each memory-1 history

the diff.png

Each panel shows the frequency of cooperation of each player for 3 of the 5 memory-1 histories.
Both panels show in the x-axis the frequency of cooperation in the first round. The left (resp., right)
panel shows the frequency of cooperation after cd (resp., cc) in the y-axis and after dc (resp., dd)
in the vertical z-axis. The shape and color of each point represents how many of the 3 dimensions
include histories that the player has experienced.

4.2 Cluster Analysis

k-Means Algorithm In what follows we briefly describe the algorithm that we used to
classify the players into clusters. The k-means algorithm is a commonly-used method to
partition the dataset into a pre-defined number (k) of disjoint clusters/groups (see, e.g.,
Larose & Larose 2014, Chapter 10.5 for a textbook exposition). The objective of the k-
means algorithm is to obtain k clusters for which the sum of squared distances between each
data point (subject) and the mean of the points in its cluster is minimal (henceforth called
Within-Cluster Sum of Square, and abbreviated as WCSS).

The k-Means algorithm selects k data points randomly and uses them as initial values
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for the cluster means.4 The algorithm then iterates between the following two steps: (1)
assigning each point to the cluster with the nearest mean, and (2) recalculate the mean of
each cluster as the mean location of the observations assigned to the cluster. The algorithm
continues to iterate until the clusters and their means do not undergo any change, and
calculate the obtained WCSS. Finally, in order to avoid the risk of the outcome being affected
by a convergence to a local (rather than global) minimum, the algorithm repeats the above
process 300 times (each time with new random initial values for the cluster means) and
returns the minimal outcome.5

Choosing k Next we describe the method that we used to determine the number of clusters
(k). The elbow method is a heuristic commonly used to determine the optimal k in k-means
clustering (see, e.g., Yuan & Yang, 2019; Umargono et al., 2020). The heuristics calculates
the WCSS induced by the k-means algorithm as a (decreasing) function of k, presents it
graphically, and aims to choose the value of k that is the “elbow of the curve”(a turning
point in which the curve bends from a high slope to a low slope).

The right panel in Figure 4.2 presents the WCSS induced by the k-means algorithm as
a function of k. The left panel presents the log-likelihood obtained by k-mean clustering for
each value of k. That is, for each k, and each cluster, we assume that all players assigned to
the cluster follow the cluster’s average behavior strategy (as detailed in Table 4 below), and
calculate the (absolute value of) the log-likelihood of the observed play in all experiments
under the assumption that all players follow the average behavior of their cluster.

The WCSS analysis suggests that the number of clusters should be 5 ± 1 (as the slope
of the WCSS is approximately constant for the values above 6, while the slope substantially
decreases till 4). The likelihood analysis suggests the number of clusters should be 4 (or
slightly above 4), as adding more clusters above 4 only marginally improve the log-likelihood.
As further discussed below, we have chosen k = 5 as the number of clusters in our main
analysis (and we test the robustness of the results to close values of k around 5).

The Clusters It turns out the key properties of the clusters are robust, in the sense that
increasing k by 1 typically adds a new cluster, without substantially changing the properties
of the pre-existing clusters. Table 4 presents the average frequency of cooperation after

4We have followed the algorithm of Vassilvitskii & Arthur (2006), according to which, the first cluster mean
is chosen uniformly among all the data points. The k − 1 other initial cluster means are chosen sequentially,
using a weighted probability distribution, where each point is chosen with probability proportional to the
square of its distance to the nearest existing cluster center.

5We have manually run the algorithm at-least 10 times for each analysis presented in the paper (with 300
iterations in each time as described above), and we have confirmed that in all cases the algorithm returns
the same WCSS (our Python code is detailed in the supplementary material in Github).
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Figure 4.2: Log-likelihood and WCSS as a Function of the Number of Clusters k

MLE and WCSS.png

each memory-1 history in each cluster for each value of k between 1 and 7 (e.g., if the total
number of times in which the players within a cluster faced history ab 300 times, and they
cooperated in 180 of the rounds following this history, then this average probability is equal
to 60%). Table 5 presents the five clusters induced by our preferred specification of k = 5,
and demonstrates their robustness to changing the number of clusters to 4, 6 and 7.

When k = 2, about 30% of the population is clustered into ADc. These agents almost
always defect in the first round, and their probability of cooperation remains low for all
histories (although, being slightly higher if the player cooperated in the previous round).
This cluster remains essentially the same for all values of k between 2 and 7. Increasing the
number of clusters to 4 divides the remaining population into three additional clusters, each
with a size of 20%-25% of the population. The average behavior of each of these clusters
remain stable for all values of k between 4 and 7. In each of these clusters agents almost
always cooperate after mutual cooperation and almost always defect after mutual defection.

The agents in the second cluster, STFTc, present a behavior similar to suspicious tit-for-
tat. The agents typically defect in the first round, but they tend to shift to cooperation if
the opponent cooperates, and they keep cooperating as long as both players cooperated in
the previous round. If the opponent unilaterally defects (resp., cooperates), players following
STFTc are relatively likely to defect (resp., cooperate) in the next round, though this reaction
is substantially weaker than of the pure strategy STFT .
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The third cluster is the grim-like cluster GRc, which corresponds to agents who initially
cooperates with a relatively high probability, and they continue cooperating as long as no
player has defected, while they defect if any player defected in the previous round (with a
somewhat lower defection probability after a unilateral opponent’s defection). The fourth
cluster, TFTc presents a tit-for-tat-like behavior (usually playing the action played by the
opponent in the previous round) that mainly differs from STFTc by having the agents
starting most of the supergames by cooperation. Similar to STFTc, the clustered strategy
TFTc differs from its pure counterpart by having a weaker response to the opponent’s action
after a recent history in which the players played different actions.

Finally, when increasing the number of clusters to 5, a new small cluster, ACc, appears,
and the agents in this cluster are always more likely to cooperate than defect. Unlike the
pure strategy of AC, the players have some tendency to defect if either player has defected in
the previous round. Because the size of this cluster is small (5%), its impact on the likelihood
and on the WCSS is relatively small (see Figure 4.2). Despite this we choose to include this
fifth cluster in our main analysis because we think that it does truly capture the behavior
of a group of subjects in prisoner’s dilemma experiments (the cluster remains essentially the
same for higher values of k in our analysis, and its pure-strategy counterpart AC has been
found to describe the behavior of a small, yet statistically significant, share of agents in the
existing literature, see, e.g., Dal Bó & Fréchette, 2018, 2019).

Figure 4.3 illustrates the locations of the 5 clusters in the two three-dimensional sub-
spaces, as introduced in Figure 4.1. Figure 4.4 illustrates the locations of the five clusters in
each of the 20= 5·4

2
two-dimensional sub-spaces. In addition, the panels in the main diagonal

of Figure 4.4 show the distribution of the players’ frequency of cooperation in each cluster
after each history.

5 Comparison with Existing Analyses
In the next section, we will compare our results with the existing analyses of the same
database (or of a large subset of this database) in Dal Bó & Fréchette (2018), Backhaus &
Breitmoser (2021), and Breitmoser (2015).

5.1 Log-Likelihood and Completeness

Substantial parts of out comparisons will present the (absolute value of the) log-likelihood
induced by the various models. As an intuitive scale for these likelihoods we adapt Fudenberg
et al.’s (2022) notion of completeness of models to the current setup. Our database includes
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Figure 4.3: Graphic Illustration of the Five Clusters in Two 3-Dimensional Spaces

3D Kmeans.png

The location of each point describes the frequency of cooperation of each player as a function of
the memory-1 history, and the color of the point shows its cluster. Both panels show in the x-axis
the frequency of cooperation in the first round. The left (resp., right) panel shows the frequency
of cooperation after cd (resp., cc) in the y-axis and after dc (resp., dd) in the z-axis. The larger
circles show the average probability of cooperation after each history in each cluster.

145,802 binary choices of players. A trivial model that predicts that players always play
uniformly would achieve a log-likelihood of 101,062 for any observable behavior. We have
done a similar analysis focusing only on each half of the data separately (where, the first half
of the data including the first half of the supergames played in the treatment, rounding up).
The analogous calculation of the log-likelihood induced by a trivial prediction of uniform
play yields 52,708 for the first half (with 76,042 binary choices) and 48,354 for the second
half (with 52,708 binary choices).

Next, we calculate the lower bound on the log- likelihood that can be obtained by any
prediction rule that relies on memory-1 histories. This lower bound is achieved by predicting
for each player and for each memory-1 history a probability of cooperation that exactly
matches the player’s empirical frequency of play after this memory-1 history (i.e., this is
the log-likelihood induced by our clustering algorithms, if one were using 1,734 clusters, one
for each player). Applying this lower bound on our data yields log-likelihood of 31,399. A
similar lower bound applied to each half of data (where the values of each player’s l cluster
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Figure 4.4: Graphic Illustration of the Five Clusters in all 2-Dimensional Sub-Spaces

save_as_a_png.png

The five main-diagonal panels show the distribution of the players’ frequency of cooperation in each
cluster after each history. The twenty off-diagonal panels illustrate the locations of the 5 clusters
in all the 20 two-dimensional sub-spaces of the memory-1 space.
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is adjusted to best fit her behavior in this half of the data) yields 17,228 for the first half
and 9,264 for the second half.

Thus, we estimate the level of completeness of a model that induces log-likelihood of X

in our database to be 101,062−X

101,062−31,399
. For example, the completeness of our k-means model

with five clusters is 101,062−X

101,062−39,303
= 101,062−41,660

101,062−31,399
≈ 85.3%.

5.2 Comparison with Dal Bó & Fréchette (2018)

The main conclusion of Dal Bó & Fréchette’s (2018) strategy analysis of the data has been
that the behavior of the large majority of subjects can be explained by them following one
out of five pure strategies: AD, AC, GR, TFT and STFT (and the conclusions are similar in
Dal Bó & Fréchette, 2019).6 Our analysis has followed a substantially different classification
methodology (namely, the k-means algorithm), and has yielded similar results: players can
be clustered to five classes of behaviors, and each such behavior corresponds to a behavior
strategy that is relatively close to one of the five pure strategies of Dal Bó & Fréchette. This
provides a significant independent support to their main finding.

Dal Bó & Fréchette’s analysis implicitly assumes that players’ deviations from these five
pure strategies are the result of a random noise. Our analysis suggest that the clustered
strategies has some systematic differences with respect to their counterpart pure strategy.
In what follows, we evaluate these systematic differences, and how much the log-likelihood
of the observed data is improved by incorporating these systematic deviations.

We have clustered each subject to one of the 5 pure strategies {AD, AC, GR, TFT, STFT }

that predicts the maximal share of the subject’s behavior in the experiment (breaking ties
uniformly). For each strategy σ ∈ {AD, AC, GR, TFT, STFT } we have chosen the error prob-
ability ϵσ (which is assumed to be the same for all histories; henceforth, history-independent
noise) that maximizes the likelihood of the observed behavior of all agent who have clustered
to this strategy. Table 6 presents the size of each cluster and the mean frequency of coop-
eration in each cluster after each memory-1 history, when using the five pure strategies of
Dal Bó & Fréchette (2018), and when using the five clusters induced by our analysis of the
k-means algorithm. Observe that both methods yield very similar cluster sizes. In addition,
Table 6 highlights the systematic deviation of each clustered strategy from its pure/noisy
counterpart strategy.

Table 7 presents the log-likelihood and completeness measure induced by clustering
the players according to Dal Bó & Fréchette’s pure strategies (with likelihood-maximizing
history-independent noise) and compare it to the log-likelihood induced by our five clusters.

6Dal Bó & Fréchette (2018) strategy analysis relies on SFEM (other paper that use SFEM are ).
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The table shows that the systematic deviations of our clustered strategies substantially im-
proves the log-likelihood (the model’s completeness improves from 77.8% to 85.3%). This
substantial improvement is achieved even though the parameters of our clusters have been
chosen to minimize the WCSS (and not to maximize the log-likelihood). This suggests that
the systematic deviations of our clustered strategies from their pure counterparts are likely
to capture important aspects of the experimentally observed behavior. We have done an
analogous analysis for each half of the data separately (where the centers of the clusters
remain the same as calculated for the whole data, and each player is assigned to one of the
five clusters that maximizes the likelihood of her play in this half of the data). This analo-
gous analysis yields similar results. We note that the gap in favor of our model’s predictions
somewhat narrows for the second half of the data, as the behavior of most players is closer
to pure strategies in the second half of the treatments.

Another exercise that we did was to calculate the likelihood induced by clustering the
players to 32 clusters, corresponding to all feasible memory-1 pure strategies. That is, we
classify each subject to the pure strategy that bests predicts her behavior (with an arbitrary
tie-breaking rule). We then assign to each pure strategy σ the level of history-independent
noise ϵσ that minimizes the likelihood of the observed behavior of all agent who have clustered
to this strategy. This classification to all possible pure strategies yields log-likelihood of
44,581, which corresponds to completeness level of 81%. Thus our k-means model with
five clusters substantively improve the induced likelihood of the classification to 32 pure
strategies (i.e., it increases completeness from 81% to 85%), which gives demonstrates the
importance of the moderate systematic deviations from pure strategies mentioned above to
understanding and predicting the players’ behavior.

5.3 Comparison with Backhaus & Breitmoser (2021)

Backhaus & Breitmoser (2021) identify three different types of subjects:

1. Always defect – ADB= (ϵA, ϵA, ϵA, ϵA, ϵA): Players who always defect with a history-
independent noise of ϵA.

2. Cooperative semi-grim – CSGB= (σ0C , 1 − ϵC1
, σC , σC , ϵC2

): Players who cooperate
with high probability σ0C > 50% in the first round, and follow a semi-grim strategy in
later rounds: almost always cooperate after mutual cooperation (with error probability
ϵC1

), almost always defect after mutual defection (with error probability ϵC2
), and

cooperate with interior probability σC after exactly one of the players defected.

3. Suspicious semi-grim – SSGB= (σ0S, 1 − ϵS1
, σS, σS, ϵS2

): Players who cooperate with
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low probability σ0 < 50% in the first round, and follow a semi-grim strategy in later
rounds: almost always cooperate after mutual cooperation (with error probability ϵS1

),
almost always defect after mutual defection (with error probability ϵS2

), and defect with
interior probability σS after exactly one of the players defected.

We initiated the parameters above according to the average estimated values of Backhaus
& Breitmoser’s Table 9; that is, Backhaus & Breitmoser allow different estimation for each
parameter in each treatment, and we took the weighted averages of these estimations, such
that they will be the same in all treatments. Specifically, the initial values were: ϵA = 6%,
σ0C = 87%, σC = σS = 35%, ϵC1

= ϵS1
= ϵC2

= ϵS2
= 7%, and σ0S = 35%. Next we have

clustered each subject to the strategy among these 3 strategies that maximizes her likelihood
of play. Finally, we have adapted the values of the various parameters of these 3 strategies,
such that each strategy will maximize the likelihood of the behavior of subjects clustered to
this strategy. The final values of the parameters of the 3 strategies are presented in Table 8.

Table 9 presents the log-likelihood when clustering the players à la Backhaus & Breit-
moser’s model (namely, players are clustered to one of the 3 strategies described in Table
8 with the parameters that maximizes the log-likelihood), and compare it with the log-
likelihood obtained by the k-means clustering for k = 3, 4, 5. The table shows that the
clustering to the 3 strategies of Backhaus & Breitmoser yields lower log-likelihood than the
once induced by k-means clustering with our parameters (recall, that the parameters of
our model are chosen to minimize the WCSS without regarding the induced log-likelihood).
Increasing the number of the clusters in the k-means algorithm from 3 to 4 substantially
decrease the log-likelihood, such that the level of completeness of our model with 4 clusters
is 1.3 percentage points higher than Backhaus & Breitmoser ’s. Increasing the number of
clusters to 5 further increase the gap in favor of our clustering to 2.3 percentage points
(85.3% vs. 83%). Similar results hold when focusing on the behavior in the second half
of each treatment. Thus our analysis suggests that capturing the behavior of the non-AD
players requires more than two clusters, and that the two semi-grim strategies a la Backhaus
& Breitmoser are induced by averaging different clusters, as detailed in the next subsection.

5.4 Comparison with Breitmoser (2015)

Breitmoser (2015) has observed that the aggregate behavior in experiments of the prisoner’s
dilemma is close to semi-grim behavior, where player almost always cooperate after mu-
tual cooperation almost always defect after mutual defection, and they mix with the same
probability after a unilateral defection of either player. We replicate the same result when
classifying all players to a single cluster (i.e., for k = 1). By contrast, none of our five
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clustered strategies is close to a semi-grim behavior. In order to shed more light on this,
we present in Table 10 the frequency of cooperation after each memory-1 history and the
number of occurrences of each such history for each clustered strategy.

Table 10 shows that the aggregate semi-grim-like behavior, in which the frequency of
cooperation after cd is similar to the frequency of cooperation after dc is induced by two
opposing factors:

1. The players who have been classified to the two variants of tit-for-tat (namely, TFTc

and STFTc) are substantially more likely to cooperate after a recent history cd (in
which the player was the sole defector) relative to a recent history of dc (in which the
opponent was the sole defector). As a result, a calculation of the average probability
of cooperation that gives equal weight to all players would yield a higher value after
cd than after cd.

2. Agents who follow less cooperative strategy (and, in particular, those clustered to ADc)
tend to face the recent history of dc much more often than the recent history cd (in
particular, the former history is 4 times more frequent for those clustered to ADc).
This and the fact that these players cooperate less often than other player implies that
the weighted average probability of cooperation (which gives more weight to players
who face a history more often) after dc is substantially reduced, and becomes similar
to the average probability of cooperation after cd.

6 Frequencies and Payoffs
In this section we explore the relations between the frequencies and payoffs of the clustered
strategies and the parameters of the underlying prisoner’s dilemma game.

6.1 Frequencies of the Clustered Strategies

The analysis of the previous sections has classified each subject to one of five clustered
strategies, and it has presented the average frequency of these five strategies across all
treatments. In what follows we study how these frequencies depend on the underlying
parameters of the game. Specifically, Figure 6.1 shows the frequency of each clustered
strategy as a function of SizeBad (the parameter defined in (3.1), which, roughly speaking,
captures the size of the basin of attraction of the cooperative equilibrium). The focus of this

7The small difference of 2 between the number of cd histories and the number of dc histories is due to a
small discrepancy in the data presented for Duffy & Ochs (2009) in Dal Bó & Fréchette’s aggregate database.
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Figure 6.1: The Frequency of each Clustered Strategy as a Function of SizeBad

SIZEBADNew.png

The x-coordinate of each dot presents the average value of SizeBad in the relevant interval
(within the 6 intervals of [0,0.1], [0.1,0.3], [0.3,0.5], [0.5,0.7], [0.7,0.9], and [0.9-1]), and the
y-coordinate presents the average frequency of the clustered strategy in the interval.

analysis on SizeBad is motivated by the finding of Dal Bó & Fréchette (2018) that SizeBad
predicts the cooperation rate very well.8Specifically, we divide the domain of SizeBad values
to 6 intervals: [0,0.1], [0.1,0.3], [0.3,0.5], [0.5,0.7], [0.7,0.9], and [0.9-1]. The x-coordinate of
each dot in Figure 6.1 presents the average value of SizeBad in the relevant interval, and the
y - of each dot presents the average frequency of the clustered strategy in the interval.

Figure 6.1 shows that increasing SizeBad decreases the frequency of the more cooperative
strategies (ACc, TFTC and GRC), while it increases the frequency of the less cooperative
strategies (ADC and STFTC). Specifically, when SizeBad is close to 0, 85% of the players
play the three more cooperative strategies (the share of TFTC is about 40%, and the share
of GRC and ACc is about 20-25% each), while when SizeBad is close to 1, about 90% of
the players play the two less cooperative strategies (the share of isADC about 70% and the
share of STFTC is about 20%).

6.2 Mean Payoffs of the Clustered Strategies

Next, we study the average payoffs induced by following each of the five clustered strategies,
and how they depend on the parameters of the game.

We begin by calculating for each subject in each treatment her (aggregate) payoff in all
the rounds of all supergames in which the subject has participated (i.e., the sum of her payoffs
in the all the rounds that she played). In order to allow comparison of various experimental
treatments with different payoff parameters and different supergame lengths, we normalize
the subjects’ payoffs in each treatment by a linear transformation that changes the payoff of
the subject with the highest payoff to 1, and the payoff of the subject with the lowest payoff
to 0. Figure 6.2 illustrates the average normalized payoff of the players clustered to each

8Similar finding is presented in Embrey et al. (2018) for finitely-repeated prisoner’s dilemma. Mengel
et al. (2022) suggest that, in addition to SizeBad, the earlier match length realizations impact the cooperation
rate; we leave for future reseach the interesting question of the impact on earlier match realizations on the
frequencies and payoffs of the clustered strategeies.
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strategy in each of the six intervals of SizeBad.

Figure 6.2: Normalized Payoffs as a Function of SizeBad

normalized payoffs.png

The x-coordinate of each dot presents the average value of SizeBad in the relevant interval
(within the six intervals of [0,0.1], [0.1,0.3], [0.3,0.5], [0.5,0.7], [0.7,0.9], and [0.9-1]), and the
y-coordinate presents the average normalized payoff of the players clustered to the relevant
strategy in the interval. The data for ACc is presented only in the first 3 intervals because
a single player was classified to ACc in the remaining 3 intervals.

Figure 6.2 shows that:

1. The two most cooperative clustered strategies ACc and TFTC yield high payoffs for
low levels of SizeBad (up to 0.4). By contrast, when SizeBad is large (at-least 0.6),
these clustered strategies either yield low payoffs (TFTC) or their frequency decreases
to zero (ACc).

2. The two least cooperative strategies ADC and STFTC yield low payoffs for low levels
of SizeBad. By contrast, when SizeBad is large, they yield high payoffs.

3. The intermediate cooperative strategy GRC is robust in the sense of yielding relatively
high payoffs for all possible values of SizeBad (which only slightly decrease for higher
values of SizeBad).

Observe that the frequencies and payoffs of the different strategies are positively correlated.
That is, the strategic choices of the players react to the environment in the sense of increasing
the frequency of the clustered strategies that yield higher payoffs.

6.3 Comparison with Romero & Rosokha (2023)

Romero & Rosokha ’s(2023) main treatment have elicited memory-1 behavior strategies
of 124 players who played a repeated prisoner’s dilemma experiment with parameters of
δ = 0.95, g = 2.57, and l = 1.86, which induce a value of 10% for SizeBad. Table 11
compares our model’s predictions (with SizeBad=10%, see Figure 6.1) with the result of the
clustering analysis of the elicited strategies in the main treatment of Romero & Rosokha
(2023, Figure 2).
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Table 11 shows a good fit between our predictions and the distribution of elicited strate-
gies in 11. In particular, the behavior of 39% of the players in their experiment who have
been clustered in their analysis to clusters 1 and 3 is similar to TFTc (cluster 1 is closer to
the pure counterpart tit-for-tat strategy, while cluster 3 introduces more randomness). The
players in their cluster 2 present similar behavior to GRc and players in their cluster 5 behave
similar toADc. Finally, the players in their smaller clusters of 6, 7, and 8 behave in a way
similar to STFTc (with cluster 6 somewhat closer to the similar strategy of suspicious-grim,
cluster 8 close to the pure counterpart strategy of STFT , and cluster 7 introducing a bit
more randomness). The only, relatively small, inconsistency between our model’s predic-
tions and their result is that their data does not include a cluster corresponding to ACc,
and instead have cluster 4, which includes random behavior that is somewhat difficult to
interpret.

Romero & Rosokha (2023, Figure 3) present data about the performance of different
strategies in their setup. They show that the players clustered to the more cooperative
strategies of TFT and to GR in their analysis achieved the highest average payoffs, which
is consistent with our result for low values of SizeBad close to 0.

7 Conclusion
We apply a new approach of k-mean cluster analysis to revisit the question of evaluating the
strategies employed in laboratory experiments of the infinitely-repeated prisoner’s dilemma.
Our analysis reveals that subjects can be grouped into five distinct clusters, with each cluster
displaying behavior that is relatively similar to a pure strategy, but with some systematic
deviations that are important in understanding and predicting players’ behavior:

1. 30% of the players almost always defect, with a slightly lower probability of defection
if they cooperated in the previous round.

2. 25% of the players play tit-for-tat, except that occasionally they play their own action
in the previous round instead of the opponent’s action.

3. 20% of the players play suspicious-tit-for-tat, with the same systematic deviation as
for tit-for-tat.

4. 20% of the players play grim, except that they occasionally (1) defect in the first round,
and (2) cooperate after a unilateral opponent’s defection.

5. 5% of the players almost always cooperate, with a slightly lower probability of cooper-
ation if either player defected in the previous round.
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The above frequencies describe the average values in the entire database; higher values
of SizeBad increase the frequencies of the less cooperative strategies (always defect and
suspicious-tit-for-tat), and decrease the frequencies of the more cooperative strategies.

Our model improves the predictive power compared to both existing analyses (Dal Bó &
Fréchette, 2018; Backhaus & Breitmoser, 2021). Furthermore, our analysis demonstrates a
large potential to apply k-means cluster analysis to study experimental data, and, in partic-
ular, to estimate players’ strategies. In some setups, this can help gain additional insights
and, possibly, allow to verify and approve the predictions of the commonly-applied methods
of SFEM (Strategy Frequency Estimation Method, developed in Dal Bó & Fréchette, 2011,
and later applied, among others, in Bigoni et al., 2015; Aoyagi et al., 2019; Vespa, 2020),
and of explicit strategy elicitation (e.g., Romero & Rosokha, 2018, 2023)
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Table 4: Frequency of Cooperation and Size of Each Cluster (k = 1, ..., 7)
k % Players Cooperation Frequency

after each memory-1
history (σ0, σcc, σcd, σdc, σdd)

Mean
Cooperation
Frequency

Cluster Name
(Closest memory-1

pure strategy)
1 100% (44%, 96%, 31%, 35%, 5%) 41% -

2 30% (7%, 27%, 17%, 10%, 2%) 5% ADc

70% (62%, 97%, 33%, 48%, 7%) 55% GRc

3
29% (7%, 21%, 16%, 10%, 2%) 5% ADc

36% (60%, 96%, 28%, 25%, 6%) 48% GRc

35% (65%, 97%, 37%, 77%, 9%) 61% TFTc

4

29% (7%, 18%, 16%, 9%, 2%) 5% ADc

25% (79%, 96%, 25%, 20%, 7%) 59% GRc

24% (85%, 98%, 35%, 78%, 8%) 71% TFTc

22% (23%, 94%, 39%, 52%, 7%) 31% STFTc

5

29% (7%, 18%, 16%, 9%, 2%) 5% ADc

21% (74%, 96%, 26%, 16%, 7%) 56% GRc

25% (85%, 98%, 29%, 75%, 6%) 68% TFTc

20% (22%, 95%, 39%, 52%, 7%) 31% STFTc

5% (80%, 94%, 61%, 56%, 61%) 82% ACc

6

28% (7%, 12%, 16%, 8%, 2%) 4% ADc

16% (86%, 96%, 28%, 19%, 7%) 65% GRc

24% (87%, 98%, 28%, 74%, 6%) 69% TFTc

14% (26%, 95%, 38%, 76%, 9%) 37% STFTc

5% (87%, 94%, 62%, 55%, 60%) 84% ACc

13% (28%, 91%, 32%, 21%, 6%) 25% SGRc

7

26% (6%, 11%, 16%, 4%, 2%) 4% ADc

16% (87%, 96%, 28%, 19%, 7%) 65% GRc

24% (87%, 98%, 27%, 74%, 6%) 69% TFTc

12% (26%, 97%, 43%, 75%, 8%) 37% STFTc

4% (88%, 95%, 644%, 56%, 57%) 84% ACc

13% (27%, 92%, 31%, 20%, 5%) 25% SGRc

5% (23%, 40%, 20%, 60%, 12%) 25% –
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Table 5: The Five Clusters in the Repeated Prisoner’s Dilemma
% Players for k = 5 Cooperation Frequency after each

memory-1 history (σ0, σcc, σcd, σdc, σdd)
Mean Coop.
Frequency

ADc 29%
(28 − 29% ∀2 ≤ k ≤ 7)

(7%, 18%, 16%, 8%, 2%)
Coop. < 18% ∀ history & ∀4 ≤ k ≤ 7

5%

STFTc 20%
(12 − 22% ∀4 ≤ k ≤ 7)

(22%, 95%, 39%, 52%, 7%)
essentially the same ∀4 ≤ k ≤ 7

31%

GRc

21%
(16 − 25% ∀4 ≤ k ≤ 7)

(74%, 96%, 26%, 16%, 7%)
σ0 increases to 86% at k = 6; all else is

essentially the same ∀4 ≤ k ≤ 7

56%

TFTc

25%
(24 − 25% ∀4 ≤ k ≤ 7)

(85%, 98%, 29%, 76%, 6%)
σcd increases to 35% at k = 6; all else

is essentially the same ∀4 ≤ k ≤ 7

68%

ACc

5%
(4 − 5% ∀5 ≤ k ≤ 7)

(80%, 94%, 61%, 56%, 61%)
essentially the same ∀5 ≤ k ≤ 7

82%

The numbers in the first line in each cell describe the main specification of k = 5 clusters, while
the remaining lines describe how these values are affected when changing k between 4 and 7.

Table 6: Comparing the Clusters with Dal Bó & Fréchette (2018)
% Players Cooperation Frequency after

each memory-1 history
(σ0, σcc, σcd, σdc, σdd)

Cluster Name

Dal Bó &
Fréchette

(2018)

29% (4%, 4%, 4%, 4%, 4%) AD

20% (22%, 78%, 22%, 78%, 22%) STFT

22% (91%, 91%, 9%, 9%, 9%) GR

26% (90%, 90%, 10%, 90%, 10%) TFT

3% (96%, 96%, 96%, 96%, 96%) AC

Our Clusters
and the

systematic
deviations
from their

pure
counterparts

29% (7%, 18%, 16%, 8%, 2%) ADc

A player who cooperated in previous round is somewhat more
likely to cooperate again

20% (22%, 95%, 39%, 52%, 7%) STFTc

Weaker response to the opponent’s action when the actions differ
21% (74%, 96%, 26%, 16%, 7%) GRc

Players are somewhat less likely to (1) cooperate in the first round, and
(2) to defect following a unilateral opponent’s defection

25% (85%, 98%, 29%, 75%, 6%) TFTc

Weaker response to the opponent’s action when the actions differ
5% (80%, 94%, 61%, 56%, 61%) ACc

Tendency to defect if either player defected in the previous round
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Table 7: Log-likelihood and Completeness Comparison with Dal Bó & Fréchette (2018)

Analyzed Data
Clustering to 5 Pure

Strategies of Dal Bó &
Fréchette (2018)

Our Clustering
(k-means with k=5)

All data 46,892 (77.8%) 41,668 (85.3%)
1st half of each session 26,049 (75.1%) 23,789 (81.5%)
2nd half of each session 16,852 (80.6%) 15,385 (84.3%)

The number describes the log-likelihood, and the percentage point is the completeness measure.

Table 8: The 3 Clusters induced by Backhaus & Breitmoser (2021)
% Players Cooperation Frequency

after each memory-1
history (σ0, σcc, σcd, σdc, σdd)

Cluster Name

Backhaus &
Breitmoser
(2021)

24% (2%, 2%, 2%, 2%, 2%) ADB

40% (89%, 98%, 37%, 37%, 6%) CSGB

36% (30%, 89%, 39%, 39%, 8%) SSGB

Table 9: Log-likelihood Comparison with Backhaus & Breitmoser (2021)

Analyzed data
Clustering to the 3
Strategies of Backhaus
& Breitmoser (2021)

Our clustering (k-means)

k = 3 k = 4 k = 5

All data 43,065 (83%) 46,015
(79%)

42,341
(84.3%)

41,668
(85.3%)

1st half 24,723 (78.9%) 25,599
(76.4%)

24,310
(80.0%)

23,789
(81.5%)

2nd half 16,033 (82.7%) 18,181
(77.2%)

15,773
(83.3%)

15,385
(84.3%)

The number describes the log-likelihood, and the percentage point is the completeness measure.
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Table 10: Cooperation Frequency and # of Occurrences of each Memory-1 History
Clustered
strategy

Memory-1 History
1st

round
cc cd dc dd

ADc 7%
(12,481)

18%
(258)

16%
(957)

9%
(3,653)

2%
(21,445)

STFTc 22%
(8,355)

95%
(4,822)

39%
(2,603)

52%
(2,908)

7%
(13,222)

GRc 74%
(7,879)

96%
(10,858)

26%
(2,500)

16%
(2,165)

7%
(8,201)

TFTc 85%
(9,055)

98%
(15,197)

29%
(4,158)

75%
(1,814)

6%
(7,328)

ACc 80%
(1,320)

94%
(3,260)

61%
(787)

56%
(467)

61%
(409)

Total 44%
(39,090)

96%
(34,395)

31%
(11,005)

35%
(11,007)7

5%
(50,305)

All except
ADc

62%
(26,609)

97%
(34,137)

33%
(10,048)

48%
(7,354)

7%
(29,160)

Table 11: Comparison with Romero & Rosokha (2023, Figure 2)
Our
clustered
strategy

Frequency in
our model for
SizeBad = 10%

Romero & Rosokha’s
(2023)main treatment
Frequency Clusters

TFTc 35% 39% 1+3
GRc 25% 19% 2
ADc 10-15% 12% 5

STFTc 10-15% 17% 6+7+8
ACc 10-15% -

- 13% 4
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Online Appendices

A Classification to pure Memory-1 Strategies
In this section we briefly present an analysis that classifies each subject to the pure
strategy that best predicts her behavior. Specifically, we classify each of the 1,734
subjects to one of the 32 = 25 pure strategy that predicts correctly the subject’s play
in the highest share of rounds played the subject played. If multiple pure strategies
shared the same highest prediction rate, we have broken the tie by dividing the
player’s weight equally between these strategies.9 Figure A.1 shows the distribution
of the pure strategies that had the highest prediction rate. Observe that 4 out of
the 5 most frequent pure strategies in this prediction-based classification are the
pure strategies closest to the 4 largest clustered strategies in our main text analysis
(namely, GR, TFT , AD, STFT ), and the fifth one (SGR) presents similar behavior
to STFT . The two pure strategies only differ in their play following history dc (in
which the player was the sole defector in the previous round). Our clustered strategy
STFTc lies between the two pure strategies of STFT and SGR, slightly closer to
the former (as the mean frequency of cooperation after observing dc is 52%, slightly
above half).

Figure A.2 shows the distribution of these highest memory-1 pure prediction rates
for the different subjects. Observe that the behavior of 15% of the subjects is exactly
predicted in all of their supergames by a pure memory-1 pure strategy. Moreover,
the behavior of 63% of the subjects is predicted by a memory-1 pure strategy with a
rate of at-least 90%. This is in line with Dal Bó & Fréchette’s (2018) findings about
the good experimental fit of pure memory-1 strategies. Having said that, out main
text analysis suggests that some systematic deviations from the pure strategies seem
to play a substantial role in understanding the subjects’ behavior.

B Robustness to Removing Early Supergames
The analyses in the exiting literature often either ignore the data in the first su-
pergames (see, e.g., Blonski et al., 2011), or give more focus to behavior in the
second halves of the experimental treatments (see, e.g., Backhaus & Breitmoser,

955% of the subjects had a single strategy with the highest prediction rate. The remaining 45%
of the subjects had ties between multiple strategies that share the highest prediction rate: 25% of
them had a tie between 2 strategies, 16% a tie between 3 strategies, and 4 players had a tie between
4 or more strategies.
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Figure A.1: The distribution of memory-1 strategies that best fit behavior

str domine2.png

Figure A.2: The distribution of memory-1 strategies that best fit behavior

fitting str.png
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2021). This is done because subjects’ behavior might be more noisy in the early
supergames before the players had the time to fully understand the experimental
environment, and to learn how to play. By contrast, our main-text analysis relies
on the whole data, including the first supergames. In this appendix we show the ro-
bustness of our main results to removing up to 50% of the early supergames played
in each treatment.

Specifically, we have redone our main text analysis (namely, the k-means clas-
sification with 5 clusters), while removing 10%-50% of the first supergames in each
treatment . Figure B.1 shows the results of this analysis. Specifically, it shows for
each clustered strategy (1) the share of players who were classified to this strategy,
and (2) the average play of the players clustered in this strategy after each memory-1
history when the analysis is restricted the last 50%, 60%, 70%, 80 and 90% of the
supergames in each treatment (rounding up, e.g., if there were 28 supergames in a
treatment, we included 26 when restricting to the last 90% of the supergames), and
compares it with the main-text analysis of the entire experiential data.

Figure B.1 demonstrates the robustness of our results to removing the initial
supergames. The five clustered strategies remain similar in all cases, both in terms
of their frequencies as well as in the average behavior in each clustered strategy.
Gradually removing up to 50% of the initial supergames has the following, relatively
limited, two effects:

1. The share of players playing either the most cooperative or the least coopera-
tive strategies (namely, ADc and ACc) somewhat increases by 3-5 percentage
points. In addition, both of these strategies move somewhat closer to their
pure counterpart: the probability of cooperating somewhat decreases in ADc,
and somewhat increases in ACc.

2. The share of agents following either STFTc or GRC somewhat decrease by 3-6
percentage points.

C Memory-2 Histories
Our main-text analysis focuses entirely on memory-1 strategies. In this appendix
we demonstrate the robustness of our analysis to considering the impact of memory-
2 histories (i.e., to allow players’ behavior to depend on the observed play in the
previous two rounds of the supergame, rather than only on the most recent round).

Each of the four non-empty memory-1 histories (namely, cc, cd, dc, dd, where the
first letter describe the player’s action and the second letter the opponent’s action

3



Figure B.1: The Five Clusters of the Repeated Prisoner’s Dilemma

Last k.png

The figure shows the frequency of players clustered to each strategy (the top number)
and the average behavior of these players after each memory-1 history (as a vector
with 5 components showing the probability of cooperation in the first round, after
both players cooperating, after the player being the sole cooperator, after the player
being the sole defector, and after both players defecting, respectively).
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Table 12: Frequency of Cooperation after each Memory-1 and Memory-2 History
Memory-1

History
Memory-2

History
Cooperation
Frequency

Difference with
Memory-1 Freq.

Number of
histories

∅ (round 1) 44% - 39,090
(∅, cc) 94% -2% 7,107
(cc, cc) 97% 1% 25,029
(cd, cc) 90% -6% 1,044
(dc, cc) 86% -10% 1,045
(dd, cc) 69% -27% 170

cc Sum 96% - 34,395
(∅, cd) 28% -3% 4,818
(cc, cd) 27% -4% 1,003
(cd, cd) 32% 1% 1,551
(dc, cd) 44% 14% 1,854
(dd, cd) 30% -1% 1,779

cd Sum 31% - 11,005
(∅, dc) 31% -4% 4,821
(cc, dc) 40% 5% 1,001
(cd, dc) 59% 24% 1,854
(dc, dc) 19% -16% 1,552
(dd, dc) 31% -4% 1,779

dc Sum 35% - 11,007
(∅, dd) 8% 3% 8,854
(cc, dd) 33% 28% 116
(cd, dd) 8% 3% 3,762
(dc, dd) 12% 7% 3,762
(dd, dd) 3% -2% 33,811

dd Sum 5% - 50,305

in the previous round) corresponds to five memory-2 histories. For example, The
memory-1 history cc is split into five memory-2 histories: (∅, cc) (where the players
are now in round 2 of the supergame and cc was played in round 1), (cc, cc) (where
cc was played in the previous two rounds), (cd, cc) (when cd was played in the
penultimate round and cc in the previous round), (dd, cc), and (dd, cc).

Table 12 shows the average frequency of cooperation after each memory-1 and
memory-2 history. The table shows that the memory-2 histories have a relatively
small impact on the aggregate average behavior.10 Specifically, the median difference
between the frequency of cooperation of each memory-2 history and its memory-1
counterpart is 4 percentage points, and for 14 out of the 20 memory-2 histories this

10An additional analysis that we did focusing only on the second half of the super games in each
treatment yielded similar results.
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difference is at most 7 percentage points. The six memory-2 histories for which the
cooperation frequency differs from the memory-1 counterpart history by more than
7 percentage points are as follows:

1. The frequencies of cooperation after the memory-2 histories of (dc, cd) and
(cd, dc) are higher than after their counterpart memory-1 histories. It might
suggest that a “reciprocal” memory-2 history in which each player was the dole
defector once, may encourage both players to cooperate (in line of the strategy
“payback”, recently suggested by Bigoni et al., 2022).

2. The frequencies of cooperation after the memory-2 histories of (dc, cc) and
(dc, dc) are lower than after their counterpart memory-1 histories. It might
suggest that a player who was the sole defector in the penultimate round, and
her opponent cooperated in the last round, might infer that her opponent is
likely to be an “unconditionally cooperator”, which, in turn, might encourage
the player to exploit it by defecting.

3. The frequency of cooperation after the memory-2 history (dd, cc) is substan-
tially lower than after the memory-1 history cc, and, similarly, the frequency
of cooperation after the memory-2 history (cc, dd) is substantially higher than
after the memory-1 history dd. Both of these two memory-2 histories are very
rare - they happen each in less than 0.15% of the choices in the data.

Interestingly, the above impacts of memory-2 histories are different than those re-
ported in Romero & Rosokha (2018), where strategies were elicited by an interface
allowing of pure strategies with long memories. The main finding they report is of
strategies in which players start defecting after a sequence of at least two periods of
mutual cooperation. We do not see evidence for this in our data (players have very
high probaiblity of cooperation of 97% after observing two consecutive rounds with
mutual cooperation). Moreover, none of the three impacts of memory-2 histories
discussed above is reported in Romero & Rosokha (2018).

D Frequencies and Mean Normalized Payoffs
Tables 13-14 describe the frequency and the mean normalized payoff (as defined
in Section 6.2) of each clustered strategy in each treatment (Table 13 sorts the
treatments according to SizeBad, while Table 14 sort them alphabetically, as in
Table 3.
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Table 13: Frequencies and Normalized Payoffs in Each Treatment (Sorted by SizeBad)
Treat.

ID

Size

Bad

#Pla

-ers

Frequency Mean Normalized Payoff

ADc ST F Tc GRc T F Tc ACc ADc ST F Tc GRc T F Tc ACc

AF1 1% 38 0.03 0.21 0.29 0.08 0.39 0.16 0.56 0.54 0.25 0.55

Fea30 5% 48 0.08 0.23 0.44 0.10 0.15 0.10 0.71 0.63 0.43 0.73

DF21 10% 36 0.17 0.33 0.39 0.11 0.38 0.59 0.59 0.79

DO28 11% 102 0.07 0.37 0.26 0.23 0.07 0.18 0.48 0.55 0.38 0.36

Sea32 11% 56 0.13 0.21 0.39 0.21 0.05 0.44 0.62 0.51 0.44 0.62

FY29 13% 50 0.12 0.34 0.40 0.04 0.10 0.22 0.47 0.57 0.30 0.57

DF14 16% 44 0.57 0.36 0.02 0.05 0.57 0.65 0.00 0.39

DF20 16% 164 0.11 0.26 0.43 0.09 0.12 0.26 0.52 0.57 0.38 0.63

BOS3 19% 20 0.35 0.35 0.15 0.15 0.22 0.78 0.20 0.41

KS31 20% 114 0.20 0.29 0.38 0.11 0.02 0.21 0.46 0.43 0.33 0.50

DF23 22% 168 0.29 0.14 0.21 0.35 0.02 0.27 0.37 0.41 0.38 0.50

BK11 23% 36 0.22 0.28 0.17 0.33 0.53 0.68 0.65 0.45

Df19 27% 38 0.08 0.34 0.39 0.16 0.03 0.16 0.49 0.52 0.26 1.00

BOS4 29% 20 0.35 0.25 0.10 0.25 0.05 0.79 0.72 0.62 0.69 0.00

D13 31% 42 31% 0.29 0.24 0.21 0.19 0.07 0.44 0.50 0.47 0.56

BOS5 33% 20 0.55 0.15 0.10 0.15 0.05 0.48 0.42 0.20 0.56 0.00

Dea26 33% 22 0.18 0.27 0.36 0.18 0.71 0.54 0.66 0.46

BOS8 35% 20 0.75 0.15 0.05 0.05 0.60 0.25 0.00 0.49

D12 35% 60 35% 0.33 0.18 0.30 0.15 0.03 0.46 0.53 0.43 0.40

BOS2 36% 20 0.15 0.40 0.30 0.10 0.05 0.67 0.59 0.61 0.18 0.34

DF15 38% 46 0.24 0.24 0.20 0.33 0.62 0.66 0.42 0.54

DF22 38% 140 0.30 0.23 0.26 0.17 0.04 0.28 0.44 0.49 0.29 0.66

BOS9 58% 20 0.90 0.10 0.76 0.50

BOS6 67% 40 0.50 0.10 0.15 0.25 0.63 0.48 0.31 0.48

Dea27 67% 28 0.29 0.43 0.14 0.14 0.73 0.62 0.13 0.57

DF17 72% 50 0.52 0.06 0.06 0.34 0.02 0.44 0.30 0.10 0.27 0.05

BOS10 80% 20 1.00 0.78

DF16 81% 44 0.32 0.05 0.16 0.48 0.65 0.42 0.40 0.57

DF24 81% 114 0.42 0.08 0.14 0.35 0.01 0.50 0.53 0.43 0.45 0.00

BOS7 100% 20 0.65 0.20 0.05 0.10 0.70 0.48 0.00 0.46

DF18 100% 44 0.73 0.02 0.02 0.20 0.02 0.57 0.35 0.05 0.60 0.51

DF25 100% 50 0.74 0.02 0.06 0.18 0.61 0.47 0.26 0.53

Total 1734 29% 20% 21% 25% 5% 0.48 0.43 0.52 0.5 0.56
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Table 14: Frequencies and Mean Normalized Payoffs in Each Treatment (Sorted Al-
phabetically)
Treat.

ID

Size

Bad

#Pla

-ers

Frequency Mean Normalized Payoff

ADc ST F Tc GRc T F Tc ACc ADc ST F Tc GRc T F Tc ACc

AF1 1% 38 0.03 0.21 0.29 0.08 0.39 0.16 0.56 0.54 0.25 0.55

BOS2 36% 20 0.15 0.40 0.30 0.10 0.05 0.67 0.59 0.61 0.18 0.34

BOS3 19% 20 0.35 0.35 0.15 0.15 0.22 0.78 0.20 0.41

BOS4 29% 20 0.35 0.25 0.10 0.25 0.05 0.79 0.72 0.62 0.69 0.00

BOS5 33% 20 0.55 0.15 0.10 0.15 0.05 0.48 0.42 0.20 0.56 0.00

BOS6 67% 40 0.50 0.10 0.15 0.25 0.63 0.48 0.31 0.48

BOS7 100% 20 0.65 0.20 0.05 0.10 0.70 0.48 0.00 0.46

BOS8 35% 20 0.75 0.15 0.05 0.05 0.60 0.25 0.00 0.49

BOS9 58% 20 0.90 0.10 0.76 0.50

BOS10 80% 20 1.00 0.78

BK11 23% 36 0.22 0.28 0.17 0.33 0.53 0.68 0.65 0.45

D12 35% 60 35% 0.33 0.18 0.30 0.15 0.03 0.46 0.53 0.43 0.40

D13 31% 42 31% 0.29 0.24 0.21 0.19 0.07 0.44 0.50 0.47 0.56

DF14 16% 44 0.57 0.36 0.02 0.05 0.57 0.65 0.00 0.39

DF15 38% 46 0.24 0.24 0.20 0.33 0.62 0.66 0.42 0.54

DF16 81% 44 0.32 0.05 0.16 0.48 0.65 0.42 0.40 0.57

DF17 72% 50 0.52 0.06 0.06 0.34 0.02 0.44 0.30 0.10 0.27 0.05

DF18 100% 44 0.73 0.02 0.02 0.20 0.02 0.57 0.35 0.05 0.60 0.51

Df19 27% 38 0.08 0.34 0.39 0.16 0.03 0.16 0.49 0.52 0.26 1.00

DF20 16% 164 0.11 0.26 0.43 0.09 0.12 0.26 0.52 0.57 0.38 0.63

DF21 10% 36 0.17 0.33 0.39 0.11 0.38 0.59 0.59 0.79

DF22 38% 140 0.30 0.23 0.26 0.17 0.04 0.28 0.44 0.49 0.29 0.66

DF23 22% 168 0.29 0.14 0.21 0.35 0.02 0.27 0.37 0.41 0.38 0.50

DF24 81% 114 0.42 0.08 0.14 0.35 0.01 0.50 0.53 0.43 0.45 0.00

DF25 100% 50 0.74 0.02 0.06 0.18 0.61 0.47 0.26 0.53

Dea26 33% 22 0.18 0.27 0.36 0.18 0.71 0.54 0.66 0.46

Dea27 67% 28 0.29 0.43 0.14 0.14 0.73 0.62 0.13 0.57

DO28 11% 102 0.07 0.37 0.26 0.23 0.07 0.18 0.48 0.55 0.38 0.36

FY29 13% 50 0.12 0.34 0.40 0.04 0.10 0.22 0.47 0.57 0.30 0.57

Fea30 5% 48 0.08 0.23 0.44 0.10 0.15 0.10 0.71 0.63 0.43 0.73

KS31 20% 114 0.20 0.29 0.38 0.11 0.02 0.21 0.46 0.43 0.33 0.50

Sea32 11% 56 0.13 0.21 0.39 0.21 0.05 0.44 0.62 0.51 0.44 0.62

Total 1734 29% 20% 21% 25% 5% 0.48 0.43 0.52 0.5 0.56
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