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Abstract

Economic literature exhibits a variety of empirical structural impulse response function (SIRF)
patterns in real consumption and real output due to changes in confidence or sentiment, with particular
regard to the USA and the EA. This work replicates them in the orbit of a neo-Keynesian dynamic
stochastic general equilibrium (NK-DSGE) model especially characterised by macroeconomic agents and
derived from start to end. Confidence is specifically modelled as an endogenous variable characterised
by a coalescence of three processes regulated by a degree of volition, the processes being permanent
technology, transitory technology and noise technology. The first two processes affect real production
technology with a delay of one lag, while the third does not at all. Short run responses to changes in
confidence are displayed whenever the degree of volition allow confidence to shift real consumption
and aggregate labour, thereby being non-negligible. Whenever the degree of volition were by contrast
negligible exogenous shocks in noise technology would cause no fluctuations in real consumption and
real output whatsoever.
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1.1 Introduction and scientific literature. Defining the relationship between confidence and real
economic activity is a complex task, for despite being regarded as vital confidence’s nature is rather elusive.
Indeed, reciprocity characterises the two: confidence is said to influence real economic activity and real
economic activity is said to impact confidence in turn.

Economic literature nonetheless provides two main justifications. The first conceives of confidence as
waves of pure sentiment, demand or noise, dating back to Keynes [14] and having been more recently
expanded by Akerlof and Shiller [2], Lorenzoni [15], Angeletos and La’O [3] and Angeletos et alii [4].

The second regards it as a proxy for news and noise shocks in economic fundamentals, dating back to
Pigou [16]; related contemporary works comprise those of Cochrane [11], Beaudry and Portier [6], Barsky
and Sims [5], Sims [19], Blanchard et alii [7], Chahrour and Jurado [10] and Saccal [17]. Independent as
they are, this work hinges on both.

1.2 Notional and methodological contributions. This work’s notional contribution is the theoretical
explanation of all types of empirical SIRFs in real consumption and real output to exogenous shocks in
news and noise processes, normally proxied by economic sentiment or confidence.

The empirical SIRFs need not have all been observed by the pertinent economic literature, but Barsky
and Sims [5] and Saccal [17] effectively did, at least substantially. Such authors globally construct trivariate
structural vector auto-regressions (SVARs) of order 4 featuring confidence, real consumption and real
output in log-levels for the United States of America (USA), the Euro Area (EA) and other European
nations and presented a variety of empirical SIRFs in real consumption and real output given changes in
confidence.

Formally: xt = Π1xt−1 + . . . + Π4xt−4 + wt, in which observable vector xt = [st ct yt]
⊤

and wt is a vector of white noises. Such a V AR (4) is rewritten as an SV AR (1) : zt =

Γzt−1 + εt, in which observable vector zt = [xt xt−1 xt−2 xt−3 xt−4]
⊤

, companion matrix Γ =

[(Π1 Π2 Π3 Π4 0) (I 0 0 0 0) (0 I 0 0 0) (0 0 I 0 0) (0 0 0 I 0)]
⊤

and white noise vector [wt 0 0 0 0]
⊤

=
εt = Dηt, D being a (5× 5) lower triangular matrix such that expectations Et

[

εt ε⊤
t

]

= DD⊤ and

Et

[

ηt η⊤
t

]

= I.
Therefrom causality triggers a Structural Vector Moving Average (SVMA) of infinite order: zt =

∑∞
j=0 ΓjDηt−j , for SIRFs

∑∞
j=0 ΓjD, in which coefficients and errors are estimated by means of ordinary

least squares (OLS); data are treated in log-levels for purposes of co-integration robustness. The empirical
SIRFs globally exhibited patterns of (i) immediate irreversibility, (ii) delayed irreversibility and (iii)
(immediate or delayed) reversibility, hereby reproduced by means of theory.

Table 1: Empirical SIRFs

Pattern SIRF

Short run Long run

Reversibility Response No response

Irreversibility
Delayed No response Response

Immediate Response Response
Note. Empirical SIRF patterns in real consumption and real output at a 40 period horizon. For
any time period taken from integers, the short run is redefined to range from period 0 to period
29 and the long run is redefined to range from period 30 to period 40 : ∀t ∈ Z, the short run
is such that t ∈ [0, 30) and the long run is such that t ∈ [30, 40] . Irreversibility is accordingly
differentiated between delayed irreversibility and immediate irreversibility, while reversibility is not,
although it may. Immediate reversibility could feature responses formally spanning t ∈ [0, 10) and
no responses therefrom; delayed reversibility could feature responses formally spanning t ∈ [10, 30)
and no responses before or afterwards.

The reason for which confidence is normally chosen as an empirical proxy for news and noise processes
is that the latter are unobservable, both empirically and theoretically, as explained by Sims [19] in relation
to Blanchard et alii [7].
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Confidence can thus act as their proxy both in models and in data, so that theoretical and empirical
SIRFs in real consumption and real output given changes in confidence reveal the effective nature of the
exogenous shocks. Such is also in line with the contribution adduced by Chahrour and Jurado [10], who
showed that news and noise proxies are equivalent representations of news and noise processes.

The theoretical explanation of all types of empirical SIRFs in question is developed by means of a
minimalistic NK-DSGE model in discrete time and is as such the work’s methodological contribution.

In such a model confidence Υt is an endogenous variable and figures as a coalescence of two technology
processes ptt and tt, permanent and transitory, and one noise process nt, which are all endogenous variables
as well; coalescence pttttnt is especially regulated by a volition parameter γ endowed with the potential to
dampen the three processes’ propagation.

The NK-DSGE is minimalistic in the sense that the substantial extensions relative to a real business cycle
(RBC) model are merely those of rigid prices and monetary policy. Whether the theoretical explanation of
all types of empirical SIRFs in question may work in a mere RBC model as well is an issue reserved for
future research.

1.3 Other contributions. Another notional distinction, relative to ordinary DSGE models, is that
the economy is not delineated by representative agents, but by macroeconomic agents, thereby eluding the
fallacies stressed by the “Anything goes”1 theorem by which the conceptual aggregation of microeconomic
agents need not guarantee the functional properties exhibited by representative agents, particularly the
canonical laws of supply and demand.

Consequently, this economy is to feature the canonical laws of supply and demand by construction, as
well as the functional properties otherwise pertinent to representative agents. Aggregation in this economy,
whenever present, is to be therefore understood as merely pertaining to macroeconomic agents, not to
homogenous microeconomic ones, that is, to no more than parts of the macroeconomy.

If representative agents were alternatively understood as macroeconomic ones, as opposed to homogenous
microeconomic ones in aggregation, then the fallacies stressed by the “Anything goes” theorem would
clearly not apply.

Another methodological advantage of this work is the complete derivation and resolution of its NK-DSGE
model, until the conduction of policy analysis, encyclopaedically omitting no passage whatsoever and
thereby benefitting all those readers in search of a comprehensive, applied guide to (such a kind of) DSGE
models.

2. Confidence

2.1 Construction. Confidence Υt is an endogenous variable and is to be modelled as follows. First of
all, any exogenous shock is a normally distributed white noise, thereby featuring a 0 mean and a finite
variance: εt ∼ N

(

0, σ2
ε

)

, in which σ2
ε ∈ (0, ∞) ⊂ R++.

Real production technology at then equals its amnesic lagged value ρaat−1, which is in turn augmented
by (i) an exponentiated real population mean µ, ideally modelling a quarterly technological growth rate, (ii)
lagged permanent technology ptt−1 and (iii) lagged transitory technology tt−1 : at = eµρaat−1ptt−1tt−1,
in which coefficient ρa ∈ [0, 1) ⊂ R+ and µ ∈ R, the equation in question being a law of motion for real
production technology at. Present (i.e. surprise) exogenous shocks in real production technology are thus
excluded.

The fact that lagged permanent technology ptt−1 and transitory technology tt−1 augment real production
technology at models exogenous news shocks, one speaking to news regarding exogenous shocks in permanent
technology and the other to news regarding exogenous shocks in transitory technology. News shocks broadly
referenced can thus be understood as rational anticipations of exogenous shocks in technology at large.

Permanent technology ptt equals its mnemonic lagged value ptt−1, which is in turn augmented by an
exponentiated exogenous shock εptt weighted at its own standard deviation σεpt

: ptt = ptt−1eσεpt
εptt , in

which εptt ∼ N


0, σ2
εpt

)

, the equation in question being a law of motion for permanent technology ptt. It

is thus a random walk process: ptt ∼ RW.

1https://en.wikipedia.org
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In addition, the expected value of lead permanent technology Etptt+1 (i.e. process population mean)
is non-zero such that its deviation from the steady state Etp̂tt+1 is non-zero too: Etptt+1 ̸= 0 such that

Etp̂tt+1 ̸= 0.
Transitory technology tt and noise technology nt respectively equal their amnesic lagged values ρttt−1

and ρnnt−1, which are in turn augmented by exponentiations of their respective exogenous shocks εtt and
εnt weighted at their respective standard deviations σεtt

and σεnt
: xt = ρxxt−1eσεx εxt , in which coefficient

ρx ∈ [0, 1) ⊂ R+, εxt ∼ N
(

0, σ2
εx

)

and x = t, n, being laws of motion for transitory technology tt and
noise technology nt. They are therefore auto-regressive processes of order 1 : xt ∼ AR (1) , ceteris paribus.

The expected values of both processes’ lead terms Etxt+1 (i.e. process population means) are accordingly
non-zero such that their deviations from the steady state Etx̂t+1 are non-zero too: Etxt+1 ̸= 0 such that
Etx̂t+1 ̸= 0.

Confidence Υt specifically equals the product of permanent technology ptt, transitory technology tt

and noise technology nt risen to volition parameter γ, which lies in a semi-open real interval between 0
and 1 : Υt = (pttttnt)

γ
, in which γ ∈ (0, 1] ⊂ R++, the equation in question being a law of motion for

confidence Υt.
The expected value of lead confidence EtΥt+1 (i.e. population mean) equals 0 such that its deviation

from the steady state EtΥ̂t+1 equals 0 too: EtΥt+1 = 0 such that EtΥ̂t+1 = 0.
The methodological and theoretical consequence is that the non-nullity of the expected value of lead

permanent technology Etptt+1 is balanced out by that pertaining to the expected values of transitory
technology and noise technology Etxt+1, especially applying at the steady state as well: Etptt+1 ̸= 0 and
Etp̂tt+1 ̸= 0 are balanced out by Etxt+1 ̸= 0 and Etx̂t+1 ̸= 0.

2.2 Discussion. Confidence Υt is to be introduced as a shifter of real consumption Ct and of aggregate
labour lt, which are endogenous variables, so that whenever volition γ lie at an infinitesimal distance from
0 confidence Υt is almost neutralised, either to unity (i.e. non-linearly) or to nullity (i.e. linearly).

Otherwise stated: the higher the value of volition γ the greater the enthusiasm in real consumption Ct

and the effort in aggregate labour lt; accordingly, for infinitesimal values of volition γ the impact exerted
by confidence Υt upon real economic activity is also infinitesimal.

Consequently, while a change in confidence Υt be itself exogenous the extent to which macroeconomic
agents may react to it is endogenous. The econometrician, theoretically and empirically, observes confidence
Υt alone, for its constituents are unobservable; yet, he is capable of identifying both the nature of the
exogenous shock and the regime of volition γ underlying a change in confidence Υt, particularly empirically.

Table 2: Volition regimes

Volition regime Economic region

γH 1
γM 0.5
γL 0.0001

Note. Prospected calibration of volition regimes γ for
an economic region formalised by means of a NK-DSGE
model as outlined above. H, M and L stand for high,
medium and low, respectively.

In the case of an exogenous shock in noise technology nt unless volition γ were infinitesimal an SIRF
pattern of immediate reversibility (i.e. “boom and bust” cycle) would be unavoidable, owing to the presence
of a short turn response precisely triggered by a non-negligible value of volition γ as well as the absence of
noise technology at any time period in real production technology at, thereby giving rise to an expansionary
deviation from the steady state on account of noise, demand or pure sentiment (i.e. animal spirits).

In the case of an exogenous shock in permanent technology ptt and a non-negligible value of volition γ
there would correspondingly arise an SIRF pattern of immediate irreversibility (i.e. endogenous growth),
whereas a negligible value of volition γ would catalyse an SIRF pattern of delayed irreversibility, owing to
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the sole activity of permanent technology ptt−1, thereby failing to capitalise upon a positive permanent
variation in the selfsame steady state.

In the case of an exogenous shock in transitory technology tt and a non-negligible value of volition γ
there would analogously arise an SIRF pattern of delayed reversibility, whereas a negligible value of volition
γ would catalyse an SIRF pattern of postponed delayed reversibility, owing to the sole activity of transitory
technology tt−1, thereby failing to capitalise upon a positive transitory variation in the selfsame steady
state. Table 2 predisposes the formalisation of all such cases.

Saccal [17] wrote the following: “Delayed reversibility suggests a noise shock driven by firm effort and
household enthusiasm.”. According to the potential differentiation of immediate reversibility from delayed
reversibility presented in Table 1, confidence Υt as hereby modelled refines such an affirmation by tying
exogenous shocks in noise technology nt to patterns of immediate reversibility, for non-negligible values
of volition γ, and exogenous shocks in transitory technology tt to patters of delayed reversibility, in the
presence of all feasible values of volition γ.

One can thus expect four principal scenarios: (i) immediate irreversibility, εptt ∧ (γ ≫ 0) ; (ii) delayed
irreversibility, εptt ∧ (γ ≈ 0) ; (iii) immediate reversibility, εnt ∧ (γ ≫ 0) ; (iv) delayed reversibility, εtt ∧
(γ ≫ 0) .

This work consequently merges the Keynesian view of confidence Υt with the Pigovian view one, whereby
long run responses in real economic activity to changes in confidence Υt are indicative of news shocks in
economic fundamentals and short run ones are indicative of shifts in real consumption Ct and aggregate
labour lt due to confidence Υt itself, which is a composite signal of technology processes regulated by a
degree of volition γ (i.e. pure sentiment).

3. Household

3.1 Utility function. As per standard DSGE models, the expectation of the transfinite sum of
household periodic utilities Et

∑∞
t=0 u (Ct, lt) is weighted at discount factor periodic product βt (i.e.

recursively), thereby representing its present or constant value: U (Ct, lt) = Et

∑∞
t=0 βtu (Ct, lt) , in which

discount factor β ∈ (0, 1) ⊂ R++.
In even greater detail household periodic utility u (Ct, lt) is modelled as an iso-elastic utility function2

in which confidence Υt shifts real consumption Ct, itself subjected to inter-temporal inseparability (i.e.

habit formation): u (Ct, lt) = Υt(Ct−hCt−1)1−σc −1
1−σc

−
l
1+σl
t

1+σl
, in which consumption habit, inter-temporal

substitution inverse elasticity and labour inverse elasticity h, σc, σl ∈ R++. Real consumption Ct and
labour lt respectively produce utility and disutility.

3.2 Household constraints. The macroeconomic household’s nominal budget constraint is the
equality between household nominal demand and household nominal supply. In detail, household nominal
demand is the sum of real consumption Ct, real government bond bt, real taxation txt and aggregate capital
utilisation Ψ (ut) Kt−1, all weighted at price Pt : PtCt + Ptbt + Pttxt + PtΨ (ut) Kt−1, in which aggregate
capital utilisation function Ψ (·) is such that Ψ (1) = 0 and Ψ′′ (·) ≥ 0.

Household nominal supply is the sum of aggregate labour lt, utilised aggregate capital utKt−1, lagged
real government bond return rnt−1bt−1, household real profit Π2t and real transfers tft, respectively
weighted at nominal wage Wnt, nominal capital return Rkt, lagged price Pt−1 and twice price Pt :
Wntlt + RktutKt−1 + rnt−1Pt−1bt−1 + PtΠ2t + Pttft, in which endogenous variable rnt−1 is the lagged
nominal interest rate.

The macroeconomic household’s nominal budget constraint can therefore be written as follows: PtCt +
Ptbt +Pttxt +PtΨ (ut) Kt−1 = Wntlt +RktutKt−1 +rnt−1Pt−1bt−1 +PtΠ2t +Pttft −→ PtCt +Bt +TXt =
Wntlt + [RktutKt−1 − PtΨ (ut) Kt−1] + rnt−1Bt−1 + PtΠ2t + TFt.

On division by price Pt, the macroeconomic household’s real budget constraint can be accordingly
written as follows: Ct + Bt

Pt
+ T Xt

Pt
= Wtlt + [rktutKt−1 −Ψ (ut) Kt−1] + rnt−1

Bt−1

Pt
+ Π2t + T Ft

Pt
−→

Ct + bt + txt = Wtlt + [rktutKt−1 −Ψ (ut) Kt−1] + rnt−1π−1
t bt−1 + Π2t + tft, in which endogenous variables

πt = P −1
t−1Pt, Wt = P −1

t Wnt and rkt = P −1
t Rkt are inflation, real wage and real capital return, respectively.

2https://en.wikipedia.org
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Aggregate capital Kt equals the sum of lagged aggregate capital Kt−1 weighted at 1− δ and investment
parameter i : Kt = (1− δ) Kt−1 + i, in which i ∈ R++ and capital depreciation rate δ ∈ (0, 1) ⊂ R++, the
equation in question being a law of motion for aggregate capital Kt.

The solvency supply constraint is such that the temporal limit of aggregate capital Kt and nominal
government bond Bt weighted at discount factor periodic product βt and real shadow price λ1t is non-
negative, that is, their supply to the macroeconomic household exacts that their priced present value be
non-negative: limt→∞ Etβ

tλ1tXt+1 ≥ 0, in which λ1t ∈ R and X = K, B.
The insolvency demand constraint is analogously such that the temporal limit of aggregate capital Kt

and nominal government bond Bt weighted at discount factor periodic product βt and shadow price λ1t is
non-positive, that is, their demand by the macroeconomic household exacts that their priced present value
be non-positive: limt→∞ Etβ

tλ1tXt+1 ≤ 0, ceteris paribus.

By anti-symmetry said two constraints are such that the temporal limit of aggregate capital Kt and
nominal government bond Bt weighted at discount factor periodic product βt and shadow price λ1t is 0,
that is, the transversality condition: limt→∞ Etβ

tλ1tXt+1 = 0, ceteris paribus.

3.3 Household optimisation problem. For non-negative arguments relative to the objective function,
the macroeconomic household’s optimisation problem is thus the maximisation of the macroeconomic
household’s utility function U (Ct, lt) subject to the macroeconomic household’s (i) real budget constraint
and (ii) the transversality condition:

max
¶Ct, lt, ut, bt♢∞

t=0

U (Ct, lt) = Et

∞
∑

t=0

βtu (Ct, lt) = Et

∞
∑

t=0

βt

{

Υt (Ct − hCt−1)
1−σc − 1

1− σc

−
l1+σl

t

1 + σl

}

s.t.

Ct + bt + txt = Wtlt + [rktutKt−1 −Ψ (ut) Kt−1] + rnt−1π−1
t bt−1 + Π2t + tft,

lim
t→∞

Etβ
tλ1tXt+1 = 0, ∀X = K, B,

Ct, lt, ut, bt ≥ 0.

A necessary condition for optimal solutions is the invertibility of the objective function’s arguments, being
hereby met by construction. A sufficient condition for optimal solutions is convexity of the objective function,
being hereby translated into concavity of the macroeconomic household’s utility function U (Ct, lt) , met
by construction too, since the convexity requirement relative to the negative minimisation of a negative
objective function corresponds to a concavity requirement relative to the positive maximisation of a positive
objective function: −min [−U (Ct, lt)] = max U (Ct, lt) .

In detail, the macroeconomic household’s utility function is iso-elastic or one of constant relative risk
aversion (CRRA) and is as such homogeneous of first degree, continuous, increasing in consumption,
decreasing in labour and concave in both.

Such conditions speak to the renowned “Karush Kuhn Tucker (KKT) conditions”3 for the optimisation
of standard non-linear programming problems.

The dynamic Lagrangian equation of said optimisation problem is such that discount factor periodic
product βt weights the expectation of the constrained transfinite sum of household periodic utilities
Et

∑∞
t=0 [u (Ct, lt) + λ1t (·)] , in which shadow price λ1t weights the macroeconomic household’s real budget

constraint in turn:

L1t = Et

∞
∑

t=0

βt

{

Υt (Ct − hCt−1)
1−σc − 1

1− σc

−
l1+σl

t

1 + σl

]

+

+λ1t

[

Wtlt + rktutKt−1 −Ψ (ut) Kt−1 + rnt−1π−1
t bt−1 + Π2t + tft − (Ct + bt + txt)

]}

.

First order conditions (FOCs) are:

3https://en.wikipedia.org
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∂L1t

∂Ct

= 0←→ βt



Υt (1− σc) (Ct − hCt−1)
−σc (1)

1− σc

− λ1t (1)

]

= 0 −→ Υt (Ct − hCt−1)
−σc = λ1t;

∂L1t

∂lt
= 0←→ βt

[

− (1 + σl) lσl

t

1 + σl

+ λ1tWt

]

= 0 −→ λ1tWt = lσl

t ;

∂L1t

∂ut

= 0←→ βtλ1t [rkt (1) Kt−1 −Ψ′ (ut) (1) Kt−1] = 0 −→ rkt = Ψ′ (ut) ;

∂L1t

∂bt

= 0←→ βtλ1t(−1) + Etβ
t+1λ1t+1rntπ

−1
t+1(1) = 0 −→ −λ1t + Etβλ1t+1rntπ

−1
t+1 = 0 −→ Etβλ1t+1rntπ

−1
t+1 = λ1t,

recalling that Etxt = xt, in which x is any endogenous variable.

3.4 Household laws of motion. As a consequence, there firstly arises an indirect equation for
stochastic discount factor Etβ

jλ−1
1t λ1t+j :

Etβλ1t+1rntπ
−1
t+1 = λ1t −→ Etπt+1 = Etβλ−1

1t λ1t+1rnt −→ Etπt+j = Etβ
jλ−1

1t λ1t+jrnt.

There subsequently arise the following laws of motion:

Υt (Ct − hCt−1)
−σc = λ1t and λ1tWt = lσl

t −→ Υt (Ct − hCt−1)
−σc Wt = lσl

t −→

−→Wt = Υ−1
t (Ct − hCt−1)

σc lσl

t (real wage or aggregate labour supply);

Υt (Ct − hCt−1)
−σc = λ1t and Etβλ1t+1rntπ

−1
t+1 = λ1t −→

−→ Υt (Ct − hCt−1)
−σc = Etβ

[

Υt+1 (Ct+1 − hCt)
−σc

]

rntπ
−1
t+1 (real consumption or consumption Euler equation);

rkt = Ψ′ (ut) (real capital return).

4. Retailer

4.1 Retail nominal profit. As per standard NK-DSGE models, nominal profit PtΠ1t proper to the
macroeconomic retailer or final goods or services macroeconomic producer equals the difference between

retail nominal marginal revenue PtYt and retail nominal marginal cost
∫ 1

0
PitYitdi, being a continuum of

priced wholesale real outputs in relation to their macroeconomic producers: PtΠ1t = PtYt −
∫ 1

0
PitYitdi.

Wholesale aggregate real output Yt equals a continuum of wholesale real outputs
∫ 1

0
Yitdi exhibiting

constant elasticity of substitution4 (CES): Yt =


∫ 1

0
Y

1
θ

it di
)θ

, in which macroeconomic producer i ∈ [0, 1] ⊂

R+ and substitution elasticity θ ∈ (−∞, 1] ⊂ R such that

θ







= 1, perfect substitutes
= 0, imperfect complements
→ −∞, perfect complements

,

relative to the continuum of wholesale real outputs
∫ 1

0
Yitdi.

4.2 Retail optimisation problem. For non-negative arguments relative to the objective function,
the optimisation problem of the macroeconomic retailer is thus the maximisation of retail nominal profit
PtΠ1t subject to wholesale aggregate real output Yt :

4https://en.wikipedia.org
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max
¶Yit♢∞

t=0

PtΠ1t = PtYt −

∫ 1

0

PitYitdi s.t.

Yt =

(
∫ 1

0

Y
1
θ

it di

)θ

,

Yit ≥ 0.

The necessary condition of objective function argument invertibility and the sufficient condition of
objective function convexity for optimal solutions are analogously met by construction. The Lagrangian
equation of said optimisation problem is such that retail nominal profit PtΠ1t is optimised seeking retail
optimal input or wholesale optimal real output Yit in the face of perfect competition:

L2t = Pt

(
∫ 1

0

Y
1
θ

it di

)θ

−

∫ 1

0

PitYitdi = Pt

(
∫ 1

0

Y
1
θ

it di

)θ

− iPitYit♣
1
0 =

= Pt

(
∫ 1

0

Y
1
θ

it di

)θ

− (1− 0) PitYit = Pt

(
∫ 1

0

Y
1
θ

it di

)θ

− PitYit.

The FOC is

∂L2t

∂Yit

= 0←→ Ptθ

(
∫ 1

0

Y
1
θ

it di

)θ−1

θ−1


Y
1
θ

−1
it

)

− Pit = 0 −→

−→ Pt

(
∫ 1

0

Y
1
θ

it di

)θ−1

Y
1−θ

θ

it = Pit −→

−→ P −1
t Pit =

(
∫ 1

0

Y
1
θ

it di

)θ−1

Y
1−θ

θ

it

and since Y
1
θ

t =

[



∫ 1

0
Y

1
θ

it di
)θ
]

1
θ

=
∫ 1

0
Y

1
θ

it di it follows that

P −1
t Pit =



Y
1
θ

t

)θ−1

Y
1−θ

θ

it −→
(

P −1
t Pit

)
θ

1−θ = Y
θ−1

θ ( θ
1−θ )

t Yit −→

−→
(

P −1
t Pit

)
θ

1−θ = Y
θ−1
1−θ

t Yit −→ Yit = Y
1−θ
1−θ

t

(

P −1
t Pit

)
θ

1−θ = Yt

(

P −1
t Pit

)
θ

1−θ (wholesale real output demand).

In addition,

Yt =

(
∫ 1

0

Y
1
θ

it di

)θ

−→ Yt =

{

∫ 1

0

[

Yt

(

P −1
t Pit

)
θ

1−θ

]

1
θ

di

}θ

−→

−→ Y
1
θ

t =







{

∫ 1

0

[

Yt

(

P −1
t Pit

)
θ

1−θ

]

1
θ

di

}θ






1
θ

−→ Y
−1
θ

t Y
1
θ

t =

∫ 1

0

[

(

P −1
t Pit

)
θ

1−θ

]

1
θ

di −→

−→ 1 =

∫ 1

0

(

P −1
t Pit

)
1

1−θ di −→ 1 = P
−1

1−θ

t

∫ 1

0

P
1

1−θ

it di −→

−→ P
1

1−θ

t =

∫ 1

0

P
1

1−θ

it di −→ Pt =

(
∫ 1

0

P
1

1−θ

it di

)1−θ

(wholesale real output aggregate price).
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5. Wholesaler

5.1 Price rigidity. As per Calvo [9], in period t a random ξ fraction of macroeconomic wholesalers or
intermediate goods or services macroeconomic producers fails to adjust wholesale real output price Pit,
indexing it to lagged inflation πt−1 at parameter τ : Pit = πτ

t−1Pit−1.
Said random ξ fraction lies in an open real interval between 0 and 1; accordingly, inflation indexation τ

lies in a closed real interval between 0 and 1 : ξ ∈ (0, 1) ⊂ R++; τ ∈ [0, 1] ⊂ R+. In period t the other
1− ξ fraction of macroeconomic wholesalers adjusts wholesale real output price Pit with success: Pit = P ∗

it.
In detail,

Pt =

(
∫ 1

0

P
1

1−θ

it di

)1−θ

=



∫ 1−ξ

0

(P ∗
t )

1
1−θ di +

∫ 1

1−ξ

(Pit)
1

1−θ di

]1−θ

=

=



∫ 1−ξ

0

(P ∗
t )

1
1−θ di +

∫ 1

1−ξ

(

πτ
t−1Pit−1

)
1

1−θ di

]1−θ

=



∫ 1−ξ

0

(P ∗
t )

1
1−θ di + ξ

(

πτ
t−1

∫ 1

0

Pit−1di

)

1
1−θ

]1−θ

=

=



∫ 1−ξ

0

(P ∗
t )

1
1−θ di + ξ

(

πτ
t−1Pt−1

)
1

1−θ

]1−θ

−→

−→ Pt =
[

i (P ∗
t )

1
1−θ ♣1−ξ

0 + ξ
(

πτ
t−1Pt−1

)
1

1−θ

]1−θ

=
[

(1− ξ − 0) (P ∗
t )

1
1−θ + ξ

(

πτ
t−1Pt−1

)
1

1−θ

]1−θ

=

=
[

(1− ξ) (P ∗
t )

1
1−θ + ξ

(

πτ
t−1Pt−1

)
1

1−θ

]1−θ

(aggregate price or wholesale real output aggregate price with rigidity),

in which (i)
∫ 1

1−ξ

(

πτ
t−1Pit−1

)
1

1−θ di = ξ


πτ
t−1

∫ 1

0
Pit−1di

)
1

1−θ

on account of random wholesale real

output price adjustment and a continuum of wholesalers and (ii) P
1

1−θ

t−1 =
∫ 1

0
P

1
1−θ

it−1di on account of

P
1

1−θ

t =
∫ 1

0
P

1
1−θ

it di, the equation in question being a law of motion for aggregate price Pt. It follows that a
macroeconomic wholesaler which adjusts its price Pit in period t and which cannot adjust it until period
t + j, for any positive natural j, sets it throughout as follows: ∀j ∈ N+,

EtPit+1 = πτ
t P ∗

it,

EtPit+2 = Etπ
τ
t+1Pit+1 = Etπ

τ
t+1πτ

t P ∗
it,

...

EtPit+j = Etπ
τ
t+j−1 · · ·π

τ
t P ∗

it = Et

j−1
∏

k=0

πτ
t+kP ∗

it.

5.2 Wholesale optimisation problem. Wholesale nominal profit PtΠ3t equals the difference between
wholesale nominal marginal revenue PitYit and wholesale nominal marginal cost Φt : PtΠ3t = (Pit − Φt) Yit.

On division by price Pt, there consequently follow wholesale real profit Π3t = (Pit − Φt) P −1
t Yit and

future wholesale real sub-profit Et

∑∞
j=0(Pit+j − Φt+j)P −1

t+jYit+j , which on being weighted at stochastic

discount factor Etβ
jλ−1

1t λ1t+j and fraction periodic product ξj , on account of the price adjustment failure
throughout j periods on the part of the random ξ fraction of macroeconomic wholesalers, gives rise to
future wholesale real profit Π3t = Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)

(Pit+j − Φt+j) P −1
t+jYit+j .

For non-negative arguments relative to the objective function, the optimisation problem
of the macroeconomic wholesaler is thus the maximisation of future wholesale real sub-profit
Et

∑∞
j=0 (Pit+j − Φt+j) P −1

t+jYit+j weighted at stochastic discount factor Etβ
jλ−1

1t λ1t+j subject to future
wholesale real output demand EtYit+j , provided wholesale real output price Pit have not been adjusted for
j periods, by means of fraction periodic product ξj :
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max
¶P ∗

it♢
∞

t=0

Π3t = Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

(Pit+j − Φt+j) P −1
t+jYit+j =

= Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it − ϕt+j

]

Yit+j s.t.

EtYit+j = EtYt+j

(

P −1
t+jPit+j

)
θ

1−θ = EtYt+j



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it



θ
1−θ

,

P ∗
it ≥ 0,

in which (i) nominal marginal cost Φt = Ptϕt, (ii) EtYit+j = EtYt+j

(

P −1
t+jPit+j

)
θ

1−θ on account of

Yit = Yt

(

P −1
t Pit

)
θ

1−θ and (iii) EtPit+j = Et

∏j−1
k=0 πτ

t+kP ∗
it.

The necessary and sufficient conditions for optimal solutions are again met by construction. The dynamic
Lagrangian equation of said optimisation problem is such that wholesale real profit Π3t is optimised seeking
optimal wholesale real output price P ∗

it in the face of monopolistic competition:

L3t = Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it − ϕt+j

]

Yt+j



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it



θ
1−θ

=

= Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)







P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it



1
1−θ

− ϕt+j



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it



θ
1−θ



Yt+j .

The FOC is

∂L3t

∂P ∗
it

= 0←→ Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)





(

1

1− θ

)

(P ∗
it)

θ
1−θ



P −1
t+j

j−1
∏

k=0

πτ
t+k



1
1−θ

+

−ϕt+j

(

θ

1− θ

)

(P ∗
it)

θ
1−θ

−1



P −1
t+j

j−1
∏

k=0

πτ
t+k



θ
1−θ



Yt+j = 0 −→

−→ Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

(

1

1− θ

)

(P ∗
it)

θ
1−θ



P −1
t+j

j−1
∏

k=0

πτ
t+k



1
1−θ

Yt+j =

= Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

ϕt+j

(

θ

1− θ

)

(P ∗
it)

θ
1−θ

−1



P −1
t+j

j−1
∏

k=0

πτ
t+k



θ
1−θ

Yt+j −→

−→ Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

(

1

1− θ

)

(P ∗
it)

−θ+θ
1−θ



P −1
t+j

j−1
∏

k=0

πτ
t+k



1
1−θ

Yt+j =

= Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

ϕt+j

(

θ

1− θ

)

(P ∗
it)

−θ+θ
1−θ

−1



P −1
t+j

j−1
∏

k=0

πτ
t+k



θ
1−θ

Yt+j −→
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−→ Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

(

1

1− θ

)



P −1
t+j

j−1
∏

k=0

πτ
t+k



1
1−θ

Yt+j =

= Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)

ϕt+j

(

θ

1− θ

)

(P ∗
it)

−1



P −1
t+j

j−1
∏

k=0

πτ
t+k



θ
1−θ

Yt+j −→

−→ P ∗
it =

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)

ϕt+j



θ
1−θ

)

P −1
t+j

∏j−1
k=0 πτ

t+k

)
θ

1−θ

Yt+j

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)



1
1−θ

)

P −1
t+j

∏j−1
k=0 πτ

t+k

)
1

1−θ

Yt+j

−→

−→ P −1
t PtP

∗
it =

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)

ϕt+j



θ
1−θ

)

P −1
t+k+1

∏j−1
k=0 πτ

t+kP −1
t Pt

)
θ

1−θ

Yt+j

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)



1
1−θ

)

P −1
t+k+1

∏j−1
k=0 πτ

t+kP −1
t Pt

)
1

1−θ

Yt+j

−→

−→ Ptp
∗
it =

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)

ϕt+j



θ
1−θ

)

∏j−1
k=0 π−1

t+k+1πτ
t+kP −1

t

)
θ

1−θ

Yt+j

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)



1
1−θ

)

∏j−1
k=0 π−1

t+k+1πτ
t+kP −1

t

)
1

1−θ

Yt+j

−→

−→ p∗
it =

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)

ϕt+j



θ
1−θ

)

∏j−1
k=0 π−1

t+k+1πτ
t+k

)
θ

1−θ

Yt+j

Et

∑∞
j=0 (ξβ)

j (
λ−1

1t λ1t+j

)



1
1−θ

)

∏j−1
k=0 π−1

t+k+1πτ
t+k

)
1

1−θ

Yt+j

−→

−→ p∗
it =

Et

∑∞
j=0 (ξβ)

j
λ1t+jϕt+jθ



∏j−1
k=0 π−1

t+k+1πτ
t+k

)
θ

1−θ

Yt+j

Et

∑∞
j=0 (ξβ)

j
λ1t+j



∏j−1
k=0 π−1

t+k+1πτ
t+k

)
1

1−θ

Yt+j

,

in which (i) optimal adjusted price or optimal wholesale real output price p∗
it =

P ∗

it

Pt
, (ii-a) led inflation

Etπt+j := EtP
−1
t Pt+j , (ii-b) k = j − 1 −→ j = k + 1 and thus (ii-c) Etπt+j = Etπt+k+1 and (iii)

Pt =
[

(

P −1
t

)
1

1−θ

]−1
(

P −1
t

)
θ

1−θ = P
1

1−θ

t P
−θ

1−θ

t . It follows that optimal adjusted price p∗
it is

p∗
it =

At

Bt

,

in which At = λ1tϕtθYt + ξβEt



πτ
t

πt+1

)
θ

1−θ

At+1 and Bt = λ1tYt + ξβEt



πτ
t

πt+1

)
1

1−θ

Bt+1 such that if

ξ = 0 then p∗
it = θϕt. In detail,

At = Et

∞
∑

j=0

(ξβ)
j

λ1t+jϕt+jθ



j−1
∏

k=0

π−1
t+k+1πτ

t+k



θ
1−θ

Yt+j =

= Et

∞
∑

j=0

(ξβ)
j

λ1t+jϕt+jθ
[(

π−1
t+1πτ

t

)

· · ·
(

π−1
t+jπτ

t+j−1

)]
θ

1−θ Yt+j =

= λ1tϕtθYt + Etξβλ1t+1ϕt+1θ
(

π−1
t+1πτ

t

)
θ

1−θ Yt+1 + Et (ξβ)
2

λ1t+2ϕt+2θ
[(

π−1
t+1πτ

t

) (

π−1
t+2πτ

t+1

)]
θ

1−θ Yt+2 + . . .

matches
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At = λ1tϕtθYt + ξβEt

(

πτ
t

πt+1

)
θ

1−θ

At+1 = λ1tϕtθYt + ξβEt

(

πτ
t

πt+1

)
θ

1−θ



λ1t+1ϕt+1θYt+1 + ξβEt

(

πτ
t+1

πt+2

)
θ

1−θ

At+2

]

=

= λ1tϕtθYt + ξβEt

(

πτ
t

πt+1

)
θ

1−θ

{

λ1t+1ϕt+1θYt+1 + ξβEt

(

πτ
t+1

πt+2

)
θ

1−θ



λ1t+2ϕt+2θYt+2 + ξβEt

(

πτ
t+2

πt+3

)
θ

1−θ

At+3

]}

and

Bt = Et

∞
∑

j=0

(ξβ)
j

λ1t+j



j−1
∏

k=0

π−1
t+k+1πτ

t+k



1
1−θ

Yt+j =

= Et

∞
∑

j=0

(ξβ)
j

λ1t+j

[(

π−1
t+1πτ

t

)

· · ·
(

π−1
t+jπτ

t+j−1

)]
1

1−θ Yt+j =

= λ1tYt + Etξβλ1t+1

(

π−1
t+1πτ

t

)
1

1−θ Yt+1 + Et (ξβ)
2

λ1t+2

[(

π−1
t+1πτ

t

) (

π−1
t+2πτ

t+1

)]
1

1−θ Yt+2 + . . .

matches

Bt = λ1tYt + ξβEt

(

πτ
t

πt+1

)
1

1−θ

Bt+1 = λ1tYt + ξβEt

(

πτ
t

πt+1

)
1

1−θ



λ1t+1Yt+1 + ξβEt

(

πτ
t+1

πt+2

)
1

1−θ

Bt+3

]

=

= λ1tYt + ξβEt

(

πτ
t

πt+1

)
1

1−θ

{

λ1t+1Yt+1 + ξβEt

(

πτ
t+1

πt+2

)
1

1−θ



λ1t+2Yt+2 + ξβEt

(

πτ
t+2

πt+3

)
1

1−θ

Bt+3

]}

,

since if j = 0 then
∏j−1

k=0 π−1
t+k+1πτ

t+k =
∏−1

k=0 π−1
t+k+1πτ

t+k =
(

π−1
t+1πτ

t

) (

π−1
t πτ

t−1

)

= 0 and if j = 1 then
∏j−1

k=0 π−1
t+k+1πτ

t+k =
∏0

k=0 π−1
t+k+1πτ

t+k = π−1
t+1πτ

t .

6. Real production

6.1 Production function and real production cost. Along the lines of a neo-classical growth model
with stochastic technology, wholesale real output Yit is equal to a CES production function of imperfect
complements5, being utilised capital K̃it−1 and labour lit, shifted by real production technology at :

Yit = at (utKit−1)
α

(Υtlit)
1−α

= atK̃
α
it−1 (Υtlit)

1−α
(real production or production function),

in which (i) K̃it−1 = utKit−1 and (ii) capital in output share α ∈ [0, 1] ⊂ R+. Real production
technology at can thus be said to be factor augmenting or “Hicks neutral”6. Confidence Υt shifts labour lit
and can similarly be said to be labour augmenting or “Harrod neutral”.

Real production cost Γ1t equals the sum of labour lit weighted at real wage Wt and utilised capital
K̃it−1 weighted at real capital return rkt : Γ1t = Wtlit + rktK̃it−1.

6.2 Real production optimisation problem. For non-negative arguments relative to the objective
function, the second optimisation problem of the macroeconomic wholesaler is thus the minimisation of
real production cost Γ1t subject to real production Yit :

5https://en.wikipedia.org
6https://en.wikipedia.org
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min
¶lit, K̃it−1♢

∞

t=0

Γ1t = Wtlit + rktK̃it−1 s.t.

Yit = atK̃
α
it−1 (Υtlit)

1−α
,

lit, K̃it−1 ≥ 0.

The necessary and sufficient conditions for optimal solutions are afresh met by construction. The
Lagrangian equation of said optimisation problem is such that real production cost Γ1t is optimised seeking
wholesale real production optimal inputs, being labour lit and utilised capital K̃it−1, in the face of perfect
competition, in which real marginal cost ϕt weights real production Yit :

L4t =
[

Wtlit + rktK̃it−1

]

+ ϕt

[

Yit − atK̃
α
it−1 (Υtlit)

1−α
]

.

FOCs are:

∂L4t

∂lit
= 0←→Wt + ϕt

[

−atK̃
α
it−1 (1− α) Υt (Υtlit)

−α
]

= 0 −→

−→Wt = ϕtatK̃
α
it−1 (1− α) Υt (Υtlit)

−α
;

∂L4t

∂K̃it−1

= 0←→ rkt + ϕt

[

−atαK̃α−1
it−1 (Υtlit)

1−α
]

= 0 −→

−→ rkt = ϕtatαK̃α−1
it−1 (Υtlit)

1−α
,

from which there follow

rk−1
t Wt =

[

ϕtatαK̃α−1
it−1 (Υtlit)

1−α
]−1 [

ϕtatK̃
α
it−1 (1− α) Υt (Υtlit)

−α
]

= (αlit)
−1

(1− α) K̃it−1 −→

−→ lit = (Wtα)
−1

(1− α) rktK̃it−1 = α−1 (1− α) W −1
t rktutKit−1 (labour or labour demand),

Wt = (1− α) atK̃
α
it−1 (Υtlit)

−α
ϕtΥt (Υtlit)

−1
(Υtlit) = (1− α) (Υtlit)

−1
YitϕtΥt (average wage) and

rkt = αatK̃
α−1
it−1 (Υtlit)

1−α
ϕtK̃

−1
it−1K̃it−1 = αK̃−1

it−1Yitϕt (average capital return),

in turn implying

Υtlit = (1− α) W −1
t YitϕtΥt and

K̃it−1 = αrk−1
t Yitϕt

such that

Yit = atK̃
α
it−1 (Υtlit)

1−α
= at

(

αrk−1
t Yitϕt

)α [
(1− α) W −1

t YitϕtΥt

]1−α
=

= αα (1− α)
1−α

atYitϕtΥ
1−α
t rk−α

t W α−1
t −→

−→ ϕt = α−α (1− α)
α−1

a−1
t Υα−1

t rkα
t W 1−α

t ,

being a law of motion for real marginal cost ϕt.

7. Central bank and treasury

7.1 Nominal interest rate. Nominal interest rate rnt is set according to a “Taylor rule”7:

7https://en.wikipedia.org

13

https://en.wikipedia.org/wiki/Taylor_rule


rnt

rn

)

=
rnt−1

rn

)ρrn



(

πt/π

πT /π

)ϕπ
(

πt/π

πt−1/π

)ϕπg
(

Yt

Y

)ϕy
(

Yt/Y

Yt−1/Y

)ϕyg

]1−ρrn

eφ,

in which interest rate persistence, inflation coefficient, inflation gap coefficient, output coefficient and
output gap coefficient ρrn, ϕπ, ϕπg

, ϕy, ϕyg
∈ R++ and monetary policy parameter φ ∈ R.

All endogenous variables are divided by their values at the steady state, thereby representing non-linear
deviations from it. The deviation of nominal interest rate rnt from its steady state is therefore the weighted
product of (i) exponentiated monetary policy parameter eφ, (ii) the deviation of lagged nominal interest
rate rnt−1 from its steady state and (iii) that of a product of inflation πt, aggregate real output Yt and their
respective gaps π−1

t−1πt and Y −1
t−1Yt. Such a “Taylor rule” is a law of motion for nominal interest rate rnt.

7.2 Public finance. The treasury’s nominal budget constraint is the equality between its nominal
demand and its nominal supply. In detail, the treasury’s nominal demand is the sum of real fiscal policy or
government expenditure parameter g weighted at price Pt, lagged real government bond return rnt−1bt−1

weighted at lagged price Pt−1 and real transfers tft weighted at price Pt : Ptg + rnt−1Pt−1bt−1 + Pttft, in
which g ∈ R++.

The treasury’s nominal supply is the sum of real government bond return bt and real taxation txt, both
weighted at price Pt : Ptbt + Pttxt. The treasury’s nominal budget constraint can therefore be written as
follows: Ptg + rnt−1Pt−1bt−1 + Pttft = Ptbt + Pttxt −→ Ptg + rnt−1Bt−1 + TFt = Bt + TXt.

On division by price Pt, the treasury’s real budget constraint can be accordingly written as follows:
g + rnt−1Bt−1

Pt
+ T Ft

Pt
= Bt

Pt
+ T Xt

Pt
−→ g + rnt−1π−1

t bt−1 + tft = bt + txt. Such in turn implies an equation

for real government bond bt : bt = g + rnt−1π−1
t bt−1 + tft − txt.

8. Aggregation

8.1 Household real profit. Owing to market clearing, aggregate labour lt equals a continuum of labour
∫ 1

0
litdi and utilised aggregate capital K̃t−1 equals a continuum of utilised capital

∫ 1

0
K̃it−1di : lt =

∫ 1

0
litdi

and K̃t−1 =
∫ 1

0
K̃it−1di. Such implies the following aggregation:

∫ 1

0

litdi = α−1 (1− α) W −1
t rktut

∫ 1

0

Kit−1di −→

−→ lt = α−1 (1− α) W −1
t rktutKt−1,

being a law of motion for aggregate labour or aggregate labour demand lt. Household nominal profit
PtΠ2t is consequently aggregated as follows:

PtΠ2t =

∫ 1

0

[

PitYit −Wntlit −RktK̃it−1

]

di −→

−→ Π2t =

∫ 1

0

[

P −1
t PitYit −Wtlit − rktK̃it−1

]

di −→

−→ Π2t =

∫ 1

0

[

P −1
t PitYt

(

P −1
t Pit

)
θ

1−θ −Wtlit − rktK̃it−1

]

di =

=

∫ 1

0

[

P
−(1−θ)−θ

1−θ

t P
(1−θ)+θ

1−θ

it Yt −Wtlit − rktK̃it−1

]

di −→

−→ Π2t = P
−1

1−θ

t Yt

∫ 1

0

P
1

1−θ

it di−Wt

∫ 1

0

litdi− rkt

∫ 1

0

K̃it−1di −→

−→ Π2t = P
−1

1−θ

t YtP
1

1−θ

t −Wtlt − rktK̃t−1 −→

−→ Π2t = Yt −Wtlt − rktK̃t−1 = Yt −Wtlt − rktutKt−1 (household real profit),
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in which (i) Yit = Yt

(

P −1
t Pit

)
θ

1−θ , (ii) lt =
∫ 1

0
litdi, (iii) K̃t−1 =

∫ 1

0
K̃it−1di and (iv) P

1
1−θ

t =
∫ 1

0
P

1
1−θ

it di.

8.2 Aggregate capital utilisation. The substitution of real government bond bt and household real
profit Π2t into the macroeconomic household’s real budget constraint gives rise to a law of motion for
aggregate capital utilisation Ψ(ut)Kt−1 or aggregate resources Yt :

Ct + bt + txt = Wtlt + [rktutKt−1 −Ψ(ut)Kt−1] + rnt−1π−1
t bt−1 + Π2t + tft −→

−→ Ct + (g + rnt−1π−1
t bt−1 + tft − txt) + txt =

= Wtlt + [rktutKt−1 −Ψ(ut)Kt−1] + rnt−1π−1
t bt−1 + (Yt −Wtlt − rktutKt−1) + tft −→

−→ Ct + g = −Ψ(ut)Kt−1 + Yt −→

−→ Yt = Ct + g + Ψ(ut)Kt−1,

in which (i) bt = g + rnt−1π−1
t bt−1 + tft − txt and (ii) Π2t = Yt −Wtlt − rktutKt−1.

8.3 Aggregate real production. Real production Yit is analogously aggregated in the following
manner:

Yit = atK̃
α
it−1 (Υtlit)

1−α −→

−→

∫ 1

0

Yitdi =

∫ 1

0

atK̃
α
it−1 (Υtlit)

1−α
di −→

−→

∫ 1

0

Yt

(

P −1
t Pit

)
θ

1−θ di = atΥ
1−α
t

∫ 1

0

K̃α
it−1l1−α

it di −→

−→ Yt

∫ 1

0

(

P −1
t Pit

)
θ

1−θ di = Ytpdt = atK̃
α
t−1 (Υtlt)

1−α −→

−→ Yt = pd−1
t atK̃

α
t−1 (Υtlt)

1−α
,

in which (i) Yit = Yt

(

P −1
t Pit

)
θ

1−θ , (ii) lt =
∫ 1

0
litdi, (iii) K̃t−1 =

∫ 1

0
K̃it−1di and (iv) price dispersion

pdt =
∫ 1

0

(

P −1
t Pit

)
θ

1−θ di, the equation in question being a law of motion for aggregate real production or
aggregate production function Yt.

8.4 Price dispersion and optimal adjusted aggregate price. Price dispersion pdt naturally
follows aggregate price Pt :

Pt =

(
∫ 1

0

P
1

1−θ

it di

)1−θ

=



∫ 1−ξ

0

(P ∗
t )

1
1−θ di +

∫ 1

1−ξ

(Pit)
1

1−θ di

]1−θ

−→

−→ pdt =

∫ 1

0

(

P −1
t Pit

)
θ

1−θ di =

∫ 1−ξ

0

(

P −1
t P ∗

it

)
θ

1−θ di +

∫ 1

1−ξ

(

P −1
t Pit

)
θ

1−θ di =

=

∫ 1−ξ

0

(

P −1
t P ∗

it

)
θ

1−θ di +

∫ 1

1−ξ

(

P −1
t πτ

t−1Pit−1

)
θ

1−θ di =

∫ 1−ξ

0

(

P −1
t P ∗

it

)
θ

1−θ di + ξ

(

P −1
t πτ

t−1

∫ 1

0

Pit−1di

)

θ
1−θ

=

=

∫ 1−ξ

0

(

P −1
t−1Pt−1

)
θ

1−θ
(

P −1
t P ∗

it

)
θ

1−θ di +
(

P −1
t−1Pt−1

)
θ

1−θ ξ

(

P −1
t πτ

t−1

∫ 1

0

Pit−1di

)

θ
1−θ

=

=

∫ 1−ξ

0

(

π−1
t π∗

it

)
θ

1−θ di + ξ

(

P −1
t−1π−1

t πτ
t−1

∫ 1

0

Pit−1di

)

θ
1−θ

=
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= i
(

π−1
t π∗

it

)
θ

1−θ ♣1−ξ
0 + ξ

∫ 1

0

(

P −1
t−1Pit−1

)
θ

1−θ di
(

π−1
t πτ

t−1

)
θ

1−θ = (1− ξ − 0)
(

π−1
t π∗

it

)
θ

1−θ + ξpdt−1

(

π−1
t πτ

t−1

)
θ

1−θ =

= (1− ξ)
(

π−1
t π∗

it

)
θ

1−θ + ξpdt−1

(

π−1
t πτ

t−1

)
θ

1−θ = ξpdt−1

(

πτ
t−1

πt

)
θ

1−θ

+ (1− ξ)

(

π∗
t

πt

)
θ

1−θ

,

in which (i)
∫ 1

1−ξ

(

P −1
t πτ

t−1Pit−1

)
θ

1−θ di = ξ


P −1
t πτ

t−1

∫ 1

0
Pit−1di

)
θ

1−θ

on account of random wholesale

real output price adjustment and a continuum of wholesalers and (ii) π
−θ

1−θ

t =
(

P −1
t Pt−1

)

−θ
1−θ on account of

π−1
t = P −1

t Pt−1, the equation in question being a law of motion for price dispersion pdt.
Owing to market clearing, optimal adjusted aggregate price p∗

t accordingly equals a continuum of

optimal adjusted prices
∫ 1

0
p∗

itdi : p∗
t =

∫ 1

0
p∗

itdi =
∫ 1

0
At

Bt
di = i At

Bt
♣10 = (1− 0) At

Bt
= At

Bt
, ceteris paribus. It

follows that the law of motion for optimal adjusted aggregate price p∗
t is

p∗
t =

At

Bt

,

all else equal.

9. Equilibrium

9.1 Price equilibrium with transfers. A price equilibrium with transfers is a pair of feasible
allocation ¶U (Ct, lt) , Υt, Ct, lt, ut, Kt, Ψ (ut) , bt, Π2t, Π1t, Yt, Yit, Π3t, Γ1t, lit, Kit♢

∞
t=0 and prices

¶λ1t, Wt, rkt, πt, Pt, Pit, P ∗
it, ϕt, pdt, π∗

t ♢
∞
t=0 such that retail nominal profit PtΠ1t and wholesale real

profit Π3t, real production cost Γ1t and household utility U (Ct, lt) (i.e. preferences) are optimal and
markets clear: ceteris paribus,

(household utility optimisation)

max
¶Ct, lt, ut, bt♢∞

t=0

U (Ct, lt) = Et

∞
∑

t=0

βt

{

Υt (Ct − hCt−1)
1−σc − 1

1− σc

−
l1+σl

t

1 + σl

}

s.t.

Ct + bt + txt = Wtlt + [rktutKt−1 −Ψ (ut) Kt−1] + rnt−1π−1
t bt−1 + Π2t + tft,

Kt = (1− δ) Kt−1 + i,

lim
t→∞

Etβ
tλ1tXt+1 = 0, ∀X = K, B,

Ct, lt, ut, bt ≥ 0;

(retail nominal profit optimisation)

max
¶Yit♢∞

t=0

PtΠ1t = PtYt −

∫ 1

0

PitYitdi s.t.

Yt =

(
∫ 1

0

Y
1
θ

it di

)θ

,

Yit ≥ 0;

(wholesale real profit optimisation)

max
¶P ∗

it♢
∞

t=0

Π3t = Et

∞
∑

j=0

(ξβ)
j (

λ−1
1t λ1t+j

)



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it − ϕt+j

]

Yit+j s.t.

Yit+j = Yt+j

(

P −1
t+jPit+j

)
θ

1−θ = Yt+j



P −1
t+j

j−1
∏

k=0

πτ
t+kP ∗

it



θ
1−θ

,

P ∗
it ≥ 0;
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(real production cost optimisation)

min
¶lit, K̃it−1♢

∞

t=0

Γ1t = Wtlit + rktK̃it−1 s.t.

Yit = atK̃
α
it−1 (Υtlit)

1−α
,

lit, K̃it−1 ≥ 0;

(aggregate price) Pt =
[

ξ(πτ
t−1Pt−1)

1
1−θ + (1− ξ)(P ∗

t )
1

1−θ

]1−θ

;

(price dispersion) pdt = ξpdt−1

(

πτ
t−1

πt

)
θ

1−θ

+ (1− ξ)

(

π∗
t

πt

)
θ

1−θ

;

(confidence) Υt = (pttttnt)
γ

;

(permanent technology) ptt = ptt−1eσεpt
εptt ;

(transitory technology and noise technology) xt = ρxxt−1eσεx εxt , ∀x = t, n;

(real production technology) at = eµρaat−1ptt−1tt−1;

(nominal interest rate)
rnt

rn

)

=
rnt−1

rn

)ρrn



(

πt/π

πT /π

)ϕπ
(

πt/π

πt−1/π

)ϕπg
(

Yt

Y

)ϕy
(

Yt/Y

Yt−1/Y

)ϕyg

]1−ρrn

eφ;

(aggregate capital utilisation) Yt = Ct + g + Ψ (ut) Kt−1.

9.2 Feasible Pareto efficient allocation. Endogenous variables can be sub-
divided as follows. Consumption, endowment and production endogenous variables:
¶U (Ct, lt) , Υt, Ct, lt, ut, Kt, Ψ (ut) , bt, Π2t, Π1t, Yt, Yit, Π3t, Γ1t, lit, Kit♢

∞
t=0 .

Price endogenous variables: ¶λ1t, Wt, rkt, πt, Pt, Pit, P ∗
it, ϕt, pdt, π∗

t ♢
∞
t=0 . Technology endogenous

variables: ¶ptt, nt, tt, at♢
∞
t=0 . Policy endogenous variables: ¶rnt, tft, txt♢

∞
t=0 .

Parameters are
{

β, h, σc, σl, δ, i, θ, ξ, τ, α, γ, σpt, ρn, σn, ρt, σt, µ, ρa, ρrn, ϕπ, ϕπg
, ϕy, ϕyg

, φ, g
}

.
The feasible allocation is characterised by consumption, endowment and production endogenous variables.

Prices are characterised by price endogenous variables. Technology endogenous variables should be feasible
allocation endogenous variables, but are recorded separately for scopes of clarity.

Policy endogenous variables should be both feasible allocation and price endogenous variables, but are
recorded separately for identical scopes. Strictly speaking, in fact, endowment endogenous variables should
have to be transfers tft and taxation txt alone, being there none in the feasible allocation.

A feasible allocation is Pareto efficient if and only if there exists no other feasible allocation such that
almost all agents prefer it to the given one and at least one agent strictly prefers it to the given one. By
construction, markets are complete. The first fundamental theorem of welfare economics consequently
applies, whereby a price equilibrium with transfers in a complete market system is a feasible Pareto efficient
allocation.

10. Laws of motion and normalisation

10.1 Laws of motion. There thus emerge the following laws of motion:

ptt = ptt−1eσεpt
εptt (permanent technology);

xt = ρxxt−1eσεx εxt , ∀x = t, n (transitory technology and noise technology);

at = eµρaat−1ptt−1tt−1 (real production technology);

rkt = Ψ′(ut) (real capital return);

Pt =
[

ξ(πτ
t−1Pt−1)

1
1−θ + (1− ξ)(P ∗

t )
1

1−θ

]1−θ

(aggregate price);

p∗
t =

At

Bt

(optimal adjusted aggregate price), for
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At = λ1tϕtθYt + ξβEt

(

πτ
t

πt+1

)
θ

1−θ

At+1 and

Bt = λ1tYt + ξβEt

(

πτ
t

πt+1

)
1

1−θ

Bt+1;

pdt = ξpdt−1

(

πτ
t−1

πt

)
θ

1−θ

+ (1− ξ)

(

π∗
t

πt

)
θ

1−θ

(price dispersion);

Wt = Υ−1
t (Ct − hCt−1)σc lσl

t (real wage);

lt = α−1(1− α)W −1
t rktutkt−1 (aggregate labour);

Υt(Ct − hCt−1)−σc = Etβ

[

Υt+1(Ct+1 − hCt)
−σcrnt

πt+1

]

(real consumption);

rnt

rn

)

=
rnt−1

rn

)ρrn



(

πt/π

πT /π

)ϕπ
(

πt/π

πt−1/π

)ϕπg
(

Yt

Y

)ϕy
(

Yt/Y

Yt−1/Y

)ϕyg

]1−ρrn

eφ (nominal interest rate);

Yt = pd−1
t atK̃

α
t−1(Υtlt)

1−α (aggregate real production);

Υt = (pttttnt)
γ (confidence);

ϕt = α−α(1− α)α−1a−1
t Υα−1

t rkα
t W 1−α

t (real marginal cost);

Kt = (1− δ)Kt−1 + i (aggregate capital);

Yt = Ct + g + Ψ(ut)Kt−1 (aggregate capital utilisation).

10.2 Normalisation. Certain endogenous variables, being real consumption Ct, aggregate capital Kt,
aggregate real output Yt and real wage Wt, abide by the permanent changes to the steady state dictated
by permanent technology ptt and are normalised thus: Xt = xtptt, in which X = C, K, Y, W.

11. Log-linearisation

The DSGE model at hand is solved by resorting to a first order linear approximation whereby its laws of
motion are log-linearised about the steady state of each endogenous variable. Specifically, a first order Taylor

expansion is conducted about the logarithmic form of each law of motion: f (x) = f (a) + f ′(a)
1! (x− a) =

f (a) + f ′ (a) x̄, in which a is the endogenous variable’s steady state and x̄ is its deviation therefrom.
Permanent technology:

ptt = ptt−1eσεpt
εptt ;

pt = pteσεpt
εpt (steady state);

pt = pt (steady state, in which εpt = 0, admitting pt = 1);

lnpt = lnpt + σεpt
εpt;

lnpt +
p̄tt

pt
= lnpt +

p̄tt−1

pt
+ σεpt

εpt + σεpt
(εptt − εpt) −→

−→ p̂tt = p̂tt−1 + σεpt
εptt −→

−→ p̂tt = p̂tt−1 + εptt (imposing σεpt
= 1).

Transitory technology and noise technology:

x = t, n;

xt = ρxxt−1eσεx εxt ;

x = ρxxeσεx εx (steady state);
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x = ρxx (steady state, in which εx = 0, admitting x = 1);

1 = ρx, but ρx < 1, so 1 = ρxeσεx εx −→ ρx = e−σεx εx < 1 −→

−→ −σεx
εxlne < ln1 −→ −σεx

εx < 0 −→ εx > 0 (steady state, being there an attendant shock);

lnx = ρxlnx + σεx
εx;

lnx +
x̄t

x
= ρxlnx +

ρxx̄t−1

x
+ σεx

εx + σεx
(εxt − εx) −→

−→ x̂t = ρxx̂t−1 + σεx
εxt −→

−→ x̂t = ρxx̂t−1 + εxt (imposing σεx
= 1).

Real production technology:

at = eµρaat−1ptt−1tt−1;

a = eµρaaptt (steady state, admitting a = 1);

ρ−1
a = eµ (steady state, in which pt = t = 1);

− lnρa = µlne −→ µ = −lnρa (steady state);

lna = µ + ρalna + lnpt + lnt;

lna +
āt

a
= µ + ρalna +

ρaāt−1

a
+ lnpt +

p̄tt−1

pt
+ lnt +

t̄t−1

t
−→

−→ ât = ρaât−1 + p̂tt−1 + t̂t−1.

Real capital return:

rkt = Ψ′ (ut) ;

rk = Ψ′ (u) (steady state);

rk = Ψ′ (1) (steady state, imposing u = 1);

lnrk = lnΨ′ (u) ;

lnrk +
r̄kt

rk
= lnΨ′ (u) +

Ψ′′ (u) (1) ūt

Ψ′ (u)
−→

−→
r̄kt

rk
=

Ψ′′ (u) (1) ūtu

Ψ′ (u) u
−→

−→ r̂kt =
Ψ′′ (u) ût

Ψ′ (u)
−→

−→ r̂kt = ω−1ût

(

ω =
Ψ′ (u)

Ψ′′ (u)

)

−→

−→ ût = ωr̂kt.

One notices that parameter ω models capital utilisation adjustment cost inverse elasticity, being a
positive real number: ω ∈ R++.

Aggregate price:

Pt =
[

ξ
(

πτ
t−1Pt−1

)
1

1−θ + (1− ξ) (P ∗
t )

1
1−θ

]1−θ

−→

−→ P
1

1−θ

t = ξ
(

πτ
t−1Pt−1

)
1

1−θ + (1− ξ) (P ∗
t )

1
1−θ ;
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(

Pt

Pt

)
1

1−θ

= ξ

(

πτ
t−1Pt−1

Pt

)
1

1−θ

+ (1− ξ)

(

P ∗
t

Pt

)
1

1−θ

←→

←→ 1 = ξ

(

πτ
t−1

πt

)
1

1−θ

+ (1− ξ) (p∗
t )

1
1−θ (standardisation);

1 = ξ

(

πτ

π

)
1

1−θ

+ (1− ξ) (p∗)
1

1−θ (steady state);

1 = ξ + (1− ξ) (p∗)
1

1−θ (steady state, imposing π = 1);

1− ξ = (1− ξ) (p∗)
1

1−θ −→

−→ 1 = (p∗)
1

1−θ −→

−→ 11−θ =
[

(p∗)
1

1−θ

]1−θ

−→

−→ 1 = p∗ (steady state);

ln1 = ln



ξ

(

πτ

π

)
1

1−θ

+ (1− ξ) (p∗)
1

1−θ

]

;

ln1 = ln



ξ

(

πτ

π

)
1

1−θ

+ (1− ξ) (p∗)
1

1−θ

]

+
(1− ξ) (1− θ)

−1
(p∗)

1
1−θ

−1
p̄∗

t

1
+

+
ξτ (1− θ)

−1
π

τ
1−θ

−1π
−1

1−θ π̄t−1

1
+
−ξ (1− θ)

−1
π

τ
1−θ π

−1
1−θ

−1π̄t

1
−→

−→ 0 =
(1− ξ) 1

1−1+θ
1−θ p∗p̄∗

t

(1− θ) p∗
+

ξτ1
τ−1+θ

1−θ 1
−1

1−θ ππ̄t−1

(1− θ) π
−

ξ1
τ

1−θ 1
−1−1+θ

1−θ ππ̄t

(1− θ) π
(in which π = p∗ = 1) −→

−→ 0 =
(1− ξ) p̂∗

t

(1− θ)
+

ξτ π̂t−1

(1− θ)
−

ξπ̂t

(1− θ)
(in which π = p∗ = 1) −→

−→ (1− ξ) p̂∗
t = ξ (π̂t − τ π̂t−1) −→

−→ p̂∗
t =

ξ (π̂t − τ π̂t−1)

(1− ξ)
.

Optimal adjusted aggregate price:
Numerator:

At = θϕt + ξβEt

(

πτ
t

πt+1

)
θ

1−θ

At+1;

A = θϕ + ξβ

(

πτ

π

)
θ

1−θ

A (steady state);

A = θϕ + ξβA (steady state, in which π = 1);

(1− ξβ) A = θϕ −→

−→ A = (1− ξβ)
−1

θϕ (steady state);

lnA = ln



θϕ + ξβ

(

πτ

π

)
θ

1−θ

A

]

;

lnA +
Āt

A
= ln



θϕ + ξβ

(

πτ

π

)
θ

1−θ

A

]

+
θϕ̄t

θϕ + ξβA
+
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+
ξβθτ (1− θ)

−1
π

τθ
1−θ

−1π
−θ

1−θ π̄t

θϕ + ξβA
+
−ξβθ (1− θ)

−1
π

τθ
1−θ π

−θ
1−θ

−1
Etπ̄t+1

θϕ + ξβA
+

ξβπ
τθ

1−θ π
−θ

1−θ EtĀt+1

θϕ + ξβA
−→

−→ Ât =
θϕϕ̄t

Aϕ
+

ξβθτ (1− θ)
−1

ππ̄t

Aπ
−

ξβθ (1− θ)
−1

πEtπ̄t+1

Aπ
+ ξβEtÂt+1 (in which π = 1) −→

−→ Ât =
θϕϕ̂t

A
+

ξβθ (τ π̂t − Etπ̂t+1)

A (1− θ)
+ ξβEtÂt+1.

Denominator:

Bt = 1 + ξβEt

(

πτ
t

πt+1

)
1

1−θ

Bt+1;

B = 1 + ξβ

(

πτ

π

)
1

1−θ

B (steady state);

B = 1 + ξβB (steady state, in which π = 1);

(1− ξβ) B = 1 −→

−→ B = (1− ξβ)
−1

(steady state);

lnB = ln



1 + ξβ

(

πτ

π

)
1

1−θ

B

]

;

lnB +
B̄t

B
= ln



1 + ξβ

(

πτ

π

)
1

1−θ

B

]

+
ξβτ (1− θ)

−1
π

τ
1−θ

−1π
−1

1−θ π̄t

1 + ξβB
+

+
ξβ (1− θ)

−1
π

τ
1−θ π

−1
1−θ

−1
Etπ̄t+1

1 + ξβB
+

ξβπ
τ

1−θ π
−1

1−θ EtB̄t+1

1 + ξβB
−→

−→ B̂t =
ξβτ (1− θ)

−1
ππ̄t

Bπ
+

ξβ (1− θ)
−1

πEtπ̄t+1

Bπ
+ ξβEtB̂t+1 (in which π = 1) −→

−→ B̂t =
ξβ (τ π̂ − Etπ̂t+1)

(1− θ) B
+ ξβEtB̂t+1.

Fraction:

p∗
t =

At

Bt

;

p∗ =
A

B
(steady state);

1 =
A

B
(steady state, in which p∗ = 1, admitting A = B = 1);

lnp∗ = lnA− lnB;

lnp∗ +
p̄∗

t

p∗
= lnA +

Āt

A
− lnB −

B̄t

B
−→

−→ p̂∗
t = Ât − B̂t −→

−→ p̂∗
t =



θϕϕ̂t

A
+

ξβθ (τ π̂t − Etπ̂t+1)

A (1− θ)
+ ξβEtÂt+1

]

−

[

ξβ (τ π̂ − Etπ̂t+1)

(1− θ) B
+ ξβEtB̂t+1

]

;

p̂∗
t =

θϕϕ̂t

A
+

ξβ (1− θ)Etπ̂t+1

A (1− θ)
−

ξβ (1− θ) τ π̂t

(1− θ) B
+ ξβEtp̂

∗
t+1 (in which Etp̂

∗
t+1 = EtÂt+1 − EtB̂t+1) −→
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−→
ξ (π̂t − τ π̂t−1)

(1− ξ)
=

θϕϕ̂t

A
+

ξβEtπ̂t+1

A
−

ξβτπ̂t

B
+ ξβ

ξ (Etπ̂t+1 − τ π̂t)

(1− ξ)
−→

−→ π̂t − τ π̂t−1 =
(1− ξ) θϕϕ̂t

ξA
+

(1− ξ) βEtπ̂t+1

A
−

(1− ξ) βτπ̂t

B
+ ξβ (Etπ̂t+1 − τ π̂t) −→

−→ π̂t − τ π̂t−1 =
(1− ξ) θϕϕ̂t

ξA
+ (1− ξ) β

(

A−1
Etπ̂t+1 −B−1τ π̂t

)

+ ξβ (Etπ̂t+1 − τ π̂t) −→

−→ π̂t − τ π̂t−1 =
(1− ξ) θϕϕ̂t

ξ
+ β (Etπ̂t+1 − τ π̂t) (in which A = B = 1) −→

−→ (1 + βτ) π̂t =
(1− ξ) θϕϕ̂t

ξ
+ βEtπ̂t+1 + τ π̂t−1 −→

−→ π̂t =
(1− ξ) θϕϕ̂t

(1 + βτ) ξ
+

βEtπ̂t+1

(1 + βτ)
+

τ π̂t−1

(1 + βτ)
−→

−→ π̂t =
(1− ξ) (1− ξβ) ϕϕ̂t

(1 + βτ) ξϕ
+

βEtπ̂t+1

(1 + βτ)
+

τ π̂t−1

(1 + βτ)

[in which A = (1− ξβ)
−1

θϕ −→ 1 = (1− ξβ)
−1

θϕ −→ θ = ϕ−1 (1− ξβ)] −→

−→ π̂t =
(1− ξ) (1− ξβ) ϕ̂t

(1 + βτ) ξ
+

βEtπ̂t+1

(1 + βτ)
+

τ π̂t−1

(1 + βτ)
.

Price dispersion:

pdt = ξpdt−1

(

πτ
t−1

πt

)
θ

1−θ

+ (1− ξ)

(

π∗
t

πt

)
θ

1−θ

pd = ξpd

(

πτ

π

)
θ

1−θ

+ (1− ξ)

(

π∗

π

)
θ

1−θ

(steady state);

pd = ξpd + (1− ξ) (steady state, in which π = π∗ = 1);

(1− ξ) pd = (1− ξ) −→

−→ pd = 1 (steady state);

lnpd = ln



ξpd

(

πτ

π

)
θ

1−θ

+ (1− ξ)

(

π∗

π

)
θ

1−θ

]

;

lnpd +
p̄dt

pd
= ln



ξpd

(

πτ

π

)
θ

1−θ

+ (1− ξ)

(

π∗

π

)
θ

1−θ

]

+
ξπ

τθ
1−θ π

−θ
1−θ p̄dt−1

pd
+

ξτθ (1− θ)
−1

pdπ
τθ

1−θ
−1π

−θ
1−θ π̄t−1

π
+

+
−ξθ (1− θ)

−1
pdπ

τθ
1−θ π

−θ
1−θ

−1π̄t

π
+

(1− ξ) θ (1− θ)
−1

(π∗)
θ

1−θ
−1

π
−θ

1−θ π̄∗
t

π
+
− (1− ξ) θ (1− θ)

−1
(π∗)

θ
1−θ π

−θ
1−θ

−1π̄t

π
−→

−→ p̂dt = ξp̂dt−1 + ξτθ (1− θ)
−1

π̂t−1 − ξθ (1− θ)
−1

π̂t + (1− ξ) θ (1− θ)
−1

π̂∗
t − (1− ξ) θ (1− θ)

−1
π̂t

(in which pd = π = π∗ = 1) −→

−→ p̂dt = ξp̂dt−1 + ξτθ (1− θ)
−1

π̂t−1 + (1− ξ) θ (1− θ)
−1

π̂∗
t − θ (1− θ)

−1
π̂t −→

−→ p̂dt = ξp̂dt−1 + θ (1− θ)
−1

[ξτ π̂t−1 + (1− ξ) π̂∗
t − π̂t] .

Since (1− ξ) p̂∗
t = ξ (π̂t − τ π̂t−1) = ξπ̂t − ξτ π̂t−1 −→ ξτ π̂t−1 = ξπ̂t − (1− ξ) p̂∗

t

p̂dt = ξp̂dt−1 + θ (1− θ)
−1

[ξπ̂t − (1− ξ) p̂∗
t + (1− ξ) π̂∗

t − π̂t] −→

−→ p̂dt = ξp̂dt−1 + θ (1− θ)
−1

[(ξ − 1) π̂t − (1− ξ) p̂∗
t + (1− ξ) π̂∗

t ] .
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Since π̂∗
t = P̂ ∗

t − P̂t−1 and p̂∗
t = P̂ ∗

t − P̂t

p̂dt = ξp̂dt−1 + θ (1− θ)
−1
[

(ξ − 1) π̂t − (1− ξ)


P̂ ∗
t − P̂t

)

+ (1− ξ)


P̂ ∗
t − P̂t−1

)]

−→

−→ p̂dt = ξp̂dt−1 + θ (1− θ)
−1
[

(ξ − 1) π̂t + (1− ξ)


P̂t − P̂t−1

)]

.

Since π̂t = P̂t − P̂t−1

p̂dt = ξp̂dt−1 + θ (1− θ)
−1

[(ξ − 1) π̂t + (1− ξ) π̂t] −→

−→ p̂dt = ξp̂dt−1 + θ (1− θ)
−1

(1− ξ) (π̂t − π̂t) −→

−→ p̂dt = ξp̂dt−1.

Since p̂dt−1 = 0 (zero inflation steady state)

p̂dt = 0.

Real wage:

Wt = Υ−1
t (Ct − hCt−1)

σc lσl

t ;

wtptt = Υ−1
t (ctptt − hct−1ptt−1)

σc lσl

t (normalisation);

wpt = Υ−1 (cpt− hcpt)
σc lσl (steady state);

w = (c− hc)
σc lσl (steady state, in which Υ = pt = 1);

lnw + lnpt = −lnΥ + σcln (cpt− hcpt) + σllnl;

lnw +
w̄t

w
+ lnpt +

p̄tt

pt
= −lnΥ−

Ῡt

Υ
+ σcln (cpt− hcpt) +

σcptc̄t

(cpt− hcpt)
+

+
σccp̄tt

(cpt− hcpt)
−

σchptc̄t−1

(cpt− hcpt)
−

σchcp̄tt−1

(cpt− hcpt)
+ σllnl +

σl l̄t
l
−→

−→
w̄t

w
+

p̄tt

pt
= −

Ῡt

Υ
+

σcptc̄t

cpt (1− h)
+

σccp̄tt

cpt (1− h)
−

σchptc̄t−1

cpt (1− h)
−

σchcp̄tt−1

cpt (1− h)
+

σl l̄t
l
−→

−→ ŵt + p̂tt = −Υ̂t +
σcĉt

(1− h)
+

σcp̂tt

(1− h)
−

σchĉt−1

(1− h)
−

σchp̂tt−1

(1− h)
+ σl l̂t −→

−→ ŵt = σl l̂t +
σc

(

ĉt + p̂tt

)

(1− h)
−

σch
(

ĉt−1 − p̂tt−1

)

(1− h)
− Υ̂t − p̂tt.

Aggregate labour:

lt = α−1 (1− α) W −1
t rktutkt−1;

lt = α−1 (1− α) (wtptt)
−1

rktutkt−1ptt−1 (normalisation);

l = α−1 (1− α) (wpt)
−1

rkukpt (steady state);

l = α−1 (1− α) (w)
−1

rkuk (steady state, in which pt = 1);

lnl = −lnα + ln (1− α)− lnw + lnrk + lnu + lnk + lnpt− lnpt;

lnl +
l̄t
l

= −lnα + ln (1− α)− lnw −
w̄t

w
+ lnrk +

r̄kt

rk
+ lnu +

ūt

u
+ lnk +

k̄t−1

k
+ lnpt +

p̄tt−1

pt
− lnpt−

p̄tt

pt
−→
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−→
l̄t
l

= −
w̄t

w
+

r̄kt

rk
+

ūt

u
+

k̄t−1

k
+

p̄tt−1

pt
−

p̄tt

pt
−→

−→ l̂t = −ŵt + r̂kt + ût + k̂t−1 − p̂tt−1 − p̂tt −→

−→ l̂t = r̂kt + ωr̂kt + k̂t−1 − p̂tt−1 − ŵt − p̂tt −→

−→ l̂t = (1 + ω) r̂kt + k̂t−1 − p̂tt−1 − ŵt − p̂tt.

Real consumption:

Υt (Ct − hCt−1)
−σc = Etβ



Υt+1 (Ct+1 − hCt)
−σc rnt

πt+1

]

;

Υt (ctptt − hct−1ptt−1)
−σc = Etβ



Υt+1 (ct+1ptt+1 − hctptt)
−σc rnt

πt+1

]

(normalisation);

Υ (cpt− hcpt)
−σc = β



Υ (cpt− hcpt)
−σc rn

π

]

(steady state);

(c− hc)
−σc = β (c− hc)

−σc rn (steady state, in which Υ = pt = π = 1);

1 = βrn −→

−→ rn = β−1 (steady state);

lnΥ− σcln (cpt− hcpt) = lnβ + lnΥ− σcln (cpt− hcpt) + lnrn− lnπ;

lnΥ +
Ῡt

Υ
− σcln (cpt− hcpt)−

σcptc̄t

(cpt− hcpt)
−

σccp̄tt

(cpt− hcpt)
+

σchptc̄t−1

(cpt− hcpt)
+

σchcp̄tt−1

(cpt− hcpt)
= lnβ+

+ lnΥ +
EtῩt+1

Υ
− σcln (cpt− hcpt)−

Etσcptc̄t+1

(cpt− hcpt)
−

Etσccp̄tt+1

(cpt− hcpt)
+

+
σchptc̄t

(cpt− hcpt)
+

σchcp̄tt

(cpt− hcpt)
+ lnrn +

r̄nt

rn
− lnπ −

Etπ̄t+1

π
−→

−→
Ῡt

Υ
−

σcptc̄t

cpt (1− h)
−

σccp̄tt

cpt (1− h)
+

σchptc̄t−1

cpt (1− h)
+

σchcp̄tt−1

cpt (1− h)
=

=
EtῩt+1

Υ
−

Etσcptc̄t+1

cpt (1− h)
−

Etσccp̄tt+1

cpt (1− h)
+

σchptc̄t

cpt (1− h)
+

σchcp̄tt

cpt (1− h)
+

r̄nt

rn
−

Etπ̄t+1

π
−→

−→ Υ̂t −
σcĉt

(1− h)
−

σcp̂tt

(1− h)
+

σchĉt−1

(1− h)
+

σchp̂tt−1

(1− h)
=

= EtΥ̂t+1 −
Etσcĉt+1

(1− h)
−

Etσcp̂tt+1

(1− h)
+

σchĉt

(1− h)
+

σchp̂tt

(1− h)
+ r̂nt − Etπ̂t+1 −→

−→ −
σc

(

ĉt + p̂tt

)

(1− h)
+

σch
(

ĉt−1 + p̂tt−1

)

(1− h)
= −

Etσc

(

ĉt+1 + p̂tt+1

)

(1− h)
+

σch
(

ĉt + p̂tt

)

(1− h)
+ r̂nt − Etπ̂t+1 − Υ̂t

(in which EtΥ̂t+1 = 0, but Etp̂tt+1 ̸= 0) −→

−→ −
(

ĉt + p̂tt

)

+ h
(

ĉt−1 + p̂tt−1

)

= −Etĉt+1 − Etp̂tt+1 + h
(

ĉt + p̂tt

)

+
(1− h)



r̂nt − Etπ̂t+1 − Υ̂t

)

σc

−→

−→ − (1 + h)
(

ĉt + p̂tt

)

=
(1− h)



r̂nt − Etπ̂t+1 − Υ̂t

)

σc

− h
(

ĉt−1 + p̂tt−1

)

−
(

Etĉt+1 + Etp̂tt+1

)

−→
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−→ ĉt + p̂tt =
(1− h)



Υ̂t + Etπ̂t+1 − r̂nt

)

σc (1 + h)
+

h
(

ĉt−1 + p̂tt−1

)

(1 + h)
+

Etĉt+1 + Etp̂tt+1

(1 + h)
−→

−→ ĉt =
(1− h)



Υ̂t + Etπ̂t+1 − r̂nt

)

σc (1 + h)
+

h
(

ĉt−1 + p̂tt−1

)

(1 + h)
+

Etĉt+1 + Etp̂tt+1

(1 + h)
− p̂tt.

As mentioned above, one notices the following: EtΥ̂t+1 = 0 and Etp̂tt+1 ≠ 0 imply Etx̂t+1 ̸= 0,

whereby, ∀γ ∈ (0, 1] ⊂ R++, Etγt̂t+1 + Etγn̂t+1 = γ
(

Ett̂t+1 + Etn̂t+1

)

= −Etγp̂tt+1 = −γEtp̂tt+1, since

EtΥ̂t+1 = Et

[

γ
(

p̂tt+1 + t̂t+1 + n̂t+1

)]

= Etγp̂tt+1 + Etγt̂t+1 + Etγn̂t+1 = γ
(

Etp̂tt+1 + Ett̂t+1 + Etn̂t+1

)

.
Nominal interest rate:

rnt

rn

)

=
rnt−1

rn

)ρrn



(

πt/π

πT /π

)ϕπ
(

πt/π

πt−1/π

)ϕπg
(

Yt

Y

)ϕy
(

Yt/Y

Yt−1/Y

)ϕyg

]1−ρrn

eφ;

rnt

rn

)

=
rnt−1

rn

)ρrn



(

πt/π

πT /π

)ϕπ
(

πt/π

πt−1/π

)ϕπg
(

ytptt

ypt

)ϕy
(

ytptt/ypt

yt−1ptt−1/ypt

)ϕyg

]1−ρrn

eφ (normalisation);

rn

rn

)

=
rn

rn

)ρrn



(

π/π

π/π

)ϕπ
(

π/π

π/π

)ϕπg
(

ypt

ypt

)ϕy
(

ypt/ypt

ypt/ypt

)ϕyg

]1−ρrn

eφ (steady state);

1 = eφ −→

−→ 0 = φ (steady state);

lnrn− lnrn = ρrn (lnrn− lnrn) + (1− ρrn)
[

ϕπ (lnπ − lnπ + lnπ − lnπ) + ϕπg
(lnπ − lnπ + lnπ − lnπ) +

+ ϕy (lny + lnpt− lny − lnpt) + ϕyg
(lny + lnpt− lny − lnpt + lny + lnpt− lny − lnpt)

]

+ φ −→

−→ lnrn +
r̄nt

rn
− lnrn = ρrn (lnrn− lnrn) +

ρrnr̄nt−1

rn
+

+ (1− ρrn)

[

ϕπ (lnπ − lnπ + lnπ − lnπ) +
ϕππ̄t

π
+ ϕπg

(lnπ − lnπ + lnπ − lnπ) +
ϕπg

π̄t

π
−

ϕπg
π̄t−1

π
+

+ϕy (lny + lnpt− lny − lnpt) +
ϕy ȳt

y
+

ϕyp̄tt

pt
+ ϕyg

(lny + lnpt− lny − lnpt + lny + lnpt− lny − lnpt) +

+
ϕyg

ȳt

y
+

ϕyg
p̄tt

pt
−

ϕyg
ȳt−1

y
−+

ϕyg
p̄tt−1

pt

]

+ φ −→

−→ r̂nt = ρrnr̂nt−1 + (1− ρrn)
[

ϕππ̂t + ϕπg
(π̂t − π̂t−1) + ϕy

(

ŷt + p̂tt

)

+ ϕyg

(

ŷt + p̂tt − ŷt−1 − p̂tt−1

)]

.

Aggregate real production:

Yt = pd−1
t atK̃

α
t−1 (Υtlt)

1−α −→

−→ Yt = pd−1
t at (utkt−1)

α
(Υtlt)

1−α
;

ytptt = pd−1
t at (utkt−1ptt−1)

α
(Υtlt)

1−α
(normalisation);

ypt = pd−1a (ukpt)
α

(Υl)
1−α

(steady state);

y = a (uk)
α

l1−α (steady state, in which Υ = pt = pd = 1);

lny + lnpt = −lnpd + lna + α (lnu + lnk + lnpt) + (1− α) (lnΥ + lnl) ;

lny +
ȳt

y
+ lnpt +

p̄tt

pt
= −lnpd−

p̄dt

pd
+ lna +

āt

a
+
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+ α (lnu + lnk + lnpt) +
αūt

u
+

αk̄t−1

k
+

αp̄tt−1

pt
+ (1− α) (lnΥ + lnl) +

(1− α) Ῡt

Υ
+

(1− α) l̄t
l

−→

−→ ŷt + p̂tt = −p̂dt + ât + α


ût + k̂t−1 + p̂tt−1

)

+ (1− α)


Υ̂t + l̂t

)

−→

−→ ŷt = ât + α


ût + k̂t−1 + p̂tt−1

)

+ (1− α)


Υ̂t + l̂t

)

− p̂dt − p̂tt −→

−→ ŷt = ât + αωr̂kt + α


k̂t−1 + p̂tt−1

)

+ (1− α)


Υ̂t + l̂t

)

− p̂tt (in which p̂dt = 0).

Confidence:

Υt = (pttttnt)
γ

;

Υ = (pttn)
γ

(steady state);

1 = 1 (steady state, in which pt = t = n = 1);

lnΥ = γ (lnpt + lnt + lnn) ;

lnΥ +
Ῡt

Υ
= γ (lnpt + lnt + lnn) +

γp̄tt

pt
+

γt̄t

t
+

γn̄t

n
−→

−→ Υ̂t = γ
(

p̂tt + t̂t + n̂t

)

.

Real marginal cost:

ϕt = α−α (1− α)
α−1

a−1
t Υα−1

t rkα
t W 1−α

t ;

ϕt = α−α (1− α)
α−1

a−1
t Υα−1

t rkα
t (wtptt)

1−α
(normalisation);

ϕ = α−α (1− α)
α−1

a−1Υα−1rkα (wpt)
1−α

(steady state);

ϕ = α−α (1− α)
α−1

rkαw1−α (steady state, in which Υ = pt = a = 1);

lnϕ = −αlnα + (α− 1) ln (1− α)− lna + (α− 1) lnΥ + αlnrk + (1− α) (lnw + lnpt) ;

lnϕ +
ϕ̄t

ϕ
= −αlnα + (α− 1) ln (1− α)− lna−

āt

a
+ (α− 1) lnΥ+

+
(α− 1) Ῡt

Υ
+ αlnrk +

αr̄kt

rk
+ (1− α) (lnw + lnpt) +

(1− α) w̄t

w
+

(1− α) p̄tt

pt
−→

−→ ϕ̂t = −ât + (α− 1) Υ̂t + αr̂kt + (1− α) ŵt + (1− α) p̂tt −→

−→ ϕ̂t = αr̂kt + (1− α)


ŵt + p̂tt − Υ̂t

)

− ât.

Aggregate capital:

Kt = (1− δ) Kt−1 + i;

ktptt = (1− δ) kt−1ptt−1 + i (normalisation);

kpt = (1− δ) kpt + i (steady state);

δk = i (steady state, in which pt = 1) −→

−→ k = δ−1i (steady state);

lnk + lnpt = ln [(1− δ) kpt + i] ;

lnk +
k̄t

k
+ lnpt +

p̄tt

pt
= ln [(1− δ) kpt + i] +

(1− δ) ptk̄t−1

(1− δ) kpt + i
+

(1− δ) kp̄tt−1

(1− δ) kpt + i
−→
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−→
k̄t

k
+

p̄tt

pt
=

(1− δ) ptk̄t−1

kpt
+

(1− δ) kp̄tt−1

kpt
−→

−→ k̂t + p̂tt = (1− δ)


k̂t−1 + p̂tt−1

)

−→

−→ k̂t = (1− δ)


k̂t−1 + p̂tt−1

)

− p̂tt.

Aggregate capital utilisation:

Yt = Ct + g + Ψ (ut) Kt−1;

ytptt = ctptt + g + Ψ (ut) kt−1ptt−1 (normalisation);

ypt = cpt + g + Ψ (u) kpt (steady state);

y = c + g + Ψ (1) k (steady state, in which pt = 1);

y = c + g [steady state, in which Ψ (1) = 0];

lny + lnpt = ln [cpt + g + Ψ (u) kpt] ;

lny +
ȳt

y
+ lnpt +

p̄tt

pt
= ln [cpt + g + Ψ (u) kpt] +

ptc̄t

cpt + g + Ψ (u) kpt
+

cp̄tt

cpt + g + Ψ (u) kpt
+

+
kptΨ′ (u) (1) ūt

cpt + g + Ψ (u) kpt
+

Ψ (u) ptk̄t−1

cpt + g + Ψ (u) kpt
+

Ψ (u) kp̄tt−1

cpt + g + Ψ (u) kpt
−→

−→
ȳt

y
+

p̄tt

pt
=

c̄t

ypt
+

cp̄tt

ypt
+

kΨ′ (1) ūt

ypt
+

Ψ (1) k̄t−1

ypt
+

Ψ (1) kp̄tt−1

ypt
−→

−→ ŷt + p̂tt =
cc̄t

yc
+

cp̂tt

y
+

krkuūt

yu
+

Ψ (1) kk̄t−1

yk
+

Ψ (1) kp̂tt−1

y
−→

−→ ŷt + p̂tt =

(

c

y

)

(

ĉt + p̂tt

)

+

(

k

y

)

[

rkût + Ψ (1)


k̂t−1 + p̂tt−1

)]

−→

−→ ŷt =

(

c

y

)

(

ĉt + p̂tt

)

+

(

k

y

)

rkωr̂kt − p̂tt.

One notices that parameters rk, y−1c and y−1k respectively model steady state capital return, con-
sumption to output ratio and capital to output ratio, being positive real numbers: rk, y−1c, y−1k ∈ R++.

12. Parametrisation and solution

12.1 Calibration. The log-linearised laws of motion of the economy are consequently the following:

p̂tt = p̂tt−1 + εptt (permanent technology);

n̂t = ρnn̂t−1 + εnt (noise technology);

t̂t = ρtt̂t−1 + εtt (transitory technology);

ât = ρaât−1 + p̂tt−1 + t̂t−1 (real production technology);

π̂t =
(1− ξ) (1− ξβ) ϕ̂t

(1 + βτ) ξ
+

βEtπ̂t+1

(1 + βτ)
+

τ π̂t−1

(1 + βτ)
(inflation);

ŵt = σl l̂t +
σc

(

ĉt + p̂tt

)

(1− h)
−

σch
(

ĉt−1 − p̂tt−1

)

(1− h)
− Υ̂t − p̂tt (real wage);

l̂t = (1 + ω) r̂kt + k̂t−1 − p̂tt−1 − ŵt − p̂tt (aggregate labour);
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ĉt =
(1− h)



Υ̂t + Etπ̂t+1 − r̂nt

)

σc (1 + h)
+

h
(

ĉt−1 + p̂tt−1

)

(1 + h)
+

Etĉt+1 + Etp̂tt+1

(1 + h)
− p̂tt (real consumption);

r̂nt = ρrnr̂nt−1 + (1− ρrn)
[

ϕππ̂t + ϕπg
(π̂t − π̂t−1) +

+ϕy

(

ŷt + p̂tt

)

+ ϕyg

(

ŷt + p̂tt − ŷt−1 − p̂tt−1

)]

(nominal interest rate);

ŷt = ât + αωr̂kt + α


k̂t−1 + p̂tt−1

)

+ (1− α)


Υ̂t + l̂t

)

− p̂tt (aggregate real production);

Υ̂t = γ
(

p̂tt + t̂t + n̂t

)

(confidence);

ϕ̂t = αr̂kt + (1− α)


ŵt + p̂tt − Υ̂t

)

− ât (real marginal cost);

k̂t = (1− δ)


k̂t−1 + p̂tt−1

)

− p̂tt (aggregate capital);

ŷt =

(

c

y

)

(

ĉt + p̂tt

)

+

(

k

y

)

rkωr̂kt − p̂tt (aggregate capital utilisation).

Endogenous variables, exogenous shocks and parameters can be thys collected. Endogenous variables:
¶Υ̂t, ĉt, l̂t, k̂t, ŷt, ŵt, r̂kt, π̂t, ϕ̂t, p̂tt, n̂t, t̂t, ât, r̂nt♢

∞
t=0.

Exogenous shocks: ¶εptt, εnt, εtt♢
∞
t=0. Parameters: Θ =

¶β, h, σc, σl, δ, ξ, τ, α, γ, ρn, ρt, ρa, ρrn, ϕπ, ϕπg
, ϕy, ϕyg

, ω, rk, y−1c, y−1k♢ ∈ R++.

Table 3: Calibration

Parameter USA EA Name

β 0.99 0.99 Discount factor
h 0.69 0.573 Consumption habit
σc 1.62 1.353 Inter-temporal substitution inverse elasticity
σl 2.45 2.4 Labour inverse elasticity
δ 0.025 0.025 Capital depreciation rate
ξ 0.87 0.908 Price adjustment failure fraction
τ 0.66 0.469 Inflation indexation
α 0.24 0.3 Capital in output share
γi i = H, M, L i = H, M, L Volition regime
ρn 0.65 0.65 Noise technology shock persistence
ρt 0.95 0.95 Transitory technology shock persistence
ρa 0.822 0.823 Production technology shock persistence
ρrn 0.88 0.961 Interest rate persistence
ϕπ 1.48 1.684 Inflation coefficient
ϕπg

0.24 0.14 Inflation gap coefficient
ϕy 0.08 0.099 Output coefficient
ϕyg

0.24 0.159 Output gap coefficient
ω 3.23 5.917 Capital utilisation adjustment cost inverse elasticity
rk 0.0351 0.0351 Steady state capital return

y−1c 0.65 0.6 Consumption to output ratio
y−1k 6.8 6.8 Capital to output ratio

Note. Calibration of parameters for the USA and the EA, in which volition regimes γi are calibrated as outlined in Table 2.

Such laws of motion can be cast into a linear rational expectations (LRE) model:

Q (Θ) xt = R (Θ) xt−1 + Sεt,

in which endogenous variables xt ∈ R
nx , exogenous shocks εt ∈ R

nε , companion matrices Q (Θ) , R (Θ) ∈
R

nx×nx and exogenous shock matrix S ∈ R
nx×nε , being composed of zeros and ones.
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In the spirit of the Lucas critique8, whereby space-time independence is necessary for policy robustness,
parametrisation follows calibration over maximum likelihood9 or Bayesian estimation10 of parameters and
is according to the aforementioned parameter specifics and common sense at large; its exploitation of Smets
and Wouters [20]’s Bayesian estimation is thus only auxiliary and subordinated to the aforementioned
parameter specifics and common sense at large, as formalised by the pertinent economic literature.

Bayesian estimation of parameters also noteworthily conflicts with log-linearisation of laws of motion,
for its idiosyncratic spirit would require a correspondence in non-linear laws of motion, instead lost before.
An ulterior reason for which calibration is preferred to maximum likelihood or Bayesian estimation of
parameters concerns the desire to merely replicate the empirical SIRF patterns in question all else remaining
equal. Calibration, in the regards of the USA and the EA, is reported in Table 3.

12.2 Unique and stable solution. As per Blanchard and Kahn [8], the LRE model in question
evolves as follows:

Qxt = Rxt−1 + Sεt ←→

←→







Q11

(nx1 ×nx1)
Q12

(nx1 ×nx2)
Q21

(nx2 ×nx1)
Q22

(nx2 ×nn2)













x1t

(nx1 ×1)
Etx2t+1

(nx2 ×1)






=







R11

(nx1 ×nx1)
R12

(nx1 ×nx2)
R21

(nx2 ×nx1)
R22

(nx2 ×nn2)















x1t−1

(nx1 ×1)
Et−1x2t

(nx2 ×1)









+







S1

(nx1 ×nε)
S2

(nx2 ×nε)






εt,

in which non-expectational or past endogenous variables x1t =
[

Υ̂t ĉt l̂t k̂t ŷt ŵt r̂kt π̂t ϕ̂t p̂tt n̂t t̂t ât r̂nt

]⊤

, expectational or future endogenous variables

Etx2t+1 =
[

Etĉt+1 Etπ̂t+1 Etp̂tt+1

]⊤
and exogenous shocks εt = [εptt εnt εtt]

⊤
, that is,

xt ∈ R
14+3, εt ∈ R

3, Q, R ∈ R
(14+3)×(14+3) and S ∈ R

(14+3)×3; one notices that sub-matrices
Q21 and R22 are selector matrices and sub-matrix Q22 = R21 = 0, since, ∀i = 1, . . . , nx2

, non-
expectational endogenous variable x1it = Et−1x2it, having observed no exogenous shock or no longer being
there uncertainty in period t.

A generalised Schur decomposition solves the generalised eigenvalue problem Qv = λRv such that
matrices Q = HJQK⊤ and R = HJRK⊤ and generalised eigenvalue λi = JRii

JQii
, matrices JQ and JR

eigenvalues being situated along the respective diagonals.
Matrices JQ and JR are upper triangular and matrices HH⊤ = HH−1 = KK⊤ = KK−1 = I; in detail,

matrices JQ, JR ∈ R
nλ×nλ , H, K ∈ R

nx×nλ and K⊤, H⊤ ∈ R
nλ×nx .

Matrices JQ and JR are additionally reordered such that sub-matrices JQ11 and JR11 respectively
contain all eigenvalues smaller than one in modulus; accordingly, sub-matrices JQ22 and JR22 are reordered
to contain all eigenvalues no smaller than one in modulus: modulus eigenvalues ♣λJQ(λ)♣ < 1 in JQ11 and
♣λJQ(λ)♣ ≥ 1 in JQ22 for characteristic polynomial JQ (λ) = JQ−λI in determinant det [JQ (λ)] = 0; modulus
eigenvalues ♣λJR(λ)♣ < 1 in JR11 and ♣λJR(λ)♣ ≥ 1 in JR22 for characteristic polynomial JR (λ) = JR − λI in
determinant det [JR (λ)] = 0. Formally:







Q11

(nx1 ×nx1)
Q12

(nx1 ×nx2)
Q21

(nx2 ×nx1)
Q22

(nx2 ×nn2)






=







H11

(nx1 ×nλ1)
H12

(nx1 ×nλ2)
H21

(nx2 ×nλ1)
H22

(nx2 ×nλ2)















JQ11

(nλ1 ×nλ1)
JQ12

(nλ1 ×nλ2)
0 JQ22

(nλ2 ×nλ2)

















K̂11

(nλ1 ×nx1)
K̂12

(nλ1 ×nx2)

K̂21

(nλ2 ×nx1)
K̂22

(nλ2 ×nx2)









;







R11

(nx1 ×nx1)
R12

(nx1 ×nx2)
R21

(nx2 ×nx1)
R22

(nx2 ×nn2)






=







H11

(nx1 ×nλ1)
H12

(nx1 ×nλ2)
H21

(nx2 ×nλ1)
H22

(nx2 ×nλ2)













JR11

(nλ1 ×nλ1)
JR12

(nλ1 ×nλ2)
0 JR22

(nλ2 ×nλ2)















K̂11

(nλ1 ×nx1)
K̂12

(nλ1 ×nx2)

K̂21

(nλ2 ×nx1)
K̂22

(nλ2 ×nx2)









.

8https://en.wikipedia.org
9https://en.wikipedia.org

10https://en.wikipedia.org
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The LRE model in question thus continues to evolve as follows:

Qxt = Rxt−1 + Sεt −→

−→ HJQK⊤xt = HJRK⊤xt−1 + Sεt −→

−→ HJQzt = HJRzt−1 + Sεt, in which zt = K⊤xt −→

−→ JQzt = JRzt−1 + H⊤Sεt ←→

←→

[

JQ11 JQ12

0 JQ22

] [

z1t

z2t

]

=

[

JR11 JR12

0 JR22

] [

z1t−1

z2t−1

]

+

[

Ĥ11 Ĥ12

Ĥ21 Ĥ22

] [

S1

S2

]

εt =

=

[

JR11 JR12

0 JR22

] [

z1t−1

z2t−1

]

+

[

U1

U2

]

εt, in which U = H⊤S −→

−→ JQ11z1t + JQ12z2t = JR11z1t−1 + JR12z2t−1 + U1εt and

JQ22z2t = JR22z2t−1 + U2εt −→

−→ JR22z2t−1 = JQ22z2t − U2εt −→

−→ z2t−1 = J−1
R22JQ22z2t − J−1

R22U2εt −→

−→ z2t = J−1
R22JQ22Etz2t+1 − J−1

R22U2Etεt+1 =

= J−1
R22JQ22

[

J−1
R22JQ22Etz2t+2 − J−1

R22U2Etεt+2

]

− J−1
R22U2Etεt+1 =

=
(

J−1
R22JQ22

)2
Etz2t+2 − J−2

R22JQ22U2Etεt+2 − J−1
R22U2Etεt+1 −→

−→ z2t = lim
j→∞

(

J−1
R22JQ22

)j
Etz2t+j −

∞
∑

j=1

J−j
R22JQ22U2Etεt+j = 0,

noticing the following facts. Expectational endogenous variable stationarity: limj→∞ Etz2t+j < ∞.

Eigenvalue instability: limj→∞ J−j
R22 = 0. Exogenous shock zero mean (i.e. white noise):

∑∞
j=1 Etεt+j = 0.

For clarity, matrices U1 ∈ R
nλ1 ×nε and U2 ∈ R

nλ2 ×nε . Since matrix









K̂11

(nλ1 ×nx1)
K̂12

(nλ1 ×nx2)

K̂21

(nλ2 ×nx1)
K̂22

(nλ2 ×nx2)















x1t

(nx1 ×1)
Etx2t+1

(nx2 ×1)






=







z1t

(nx1 ×1)
z2t

(nx2 ×1)






=







z1t

(nx1 ×1)
0

(nx2 ×1)






,

there arise the following manipulations:

0 = K̂21x1t + K̂22Etx2t+1 −→

−→ K̂21x1t = −K̂22Etx2t+1 −→

−→ Etx2t+1 = −K̂−1
22 K̂21x1t = −L2x1t,

in which L2 = K̂−1
22 K̂21, provided nλ2

= nx2
, and

z1t = K̂11x1t + K̂12Etx2t+1 = K̂11x1t + K̂12



−K̂−1
22 K̂21x1t

)

=

=


K̂11 − K̂12K̂−1
22 K̂21

)

x1t =


K̂11 − K̂12K̂−1
22 K̂21

)

x1t = L1x1t,

in which L1 = K̂11 − K̂12K̂−1
22 K̂21.

In detail, condition nλ2
= nx2

signifies that the cardinality of unstable generalised eigenvalues equals
that of expectational endogenous variables, to the end of a unique and stable solution. Indeed, condition
nλ2

< nx2
is indicative of indeterminacy and condition nλ2

> nx2
is indicative of no solution. The LRE

model in question consequently finalises its evolution thus: since z2t = 0 and z1t = L1x1t,
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JQ11z1t + JQ12z2t = JR11z1t−1 + JR12z2t−1 + U1εt −→

−→ JQ11z1t = JR11z1t−1 + U1εt −→

−→ JQ11L1x1t = JR11L1x1t−1 + U1εt −→

−→ JQ11x1t = JR11x1t−1 + L−1
1 U1εt −→

−→ x1t = J−1
Q11JR11x1t−1 + J−1

Q11L−1
1 U1εt and

Etx2t+1 = −L2x1t = −L2



J−1
Q11JR11x1t−1 + J−1

Q11L−1
1 U1εt

)

−→

−→

[

x1t

Etx2t+1

]

=

[

J−1
Q11JR11 0

−L2J−1
Q11JR11 0

] [

x1t−1

Et−1x2t

]

+

[

J−1
Q11L−1

1 U1

−L2J−1
Q11L−1

1 U1

]

εt ←→

←→

[

x1t

Etx2t+1

]

=

[

A11 0
A21 0

] [

x1t−1

Et−1x2t

]

+

[

B1

B2

]

εt ←→

←→ xt = Axt−1 + Bεt.

13. IRFs

13.1 IRF construction. Such a solution proper to the LRE model in question, computed in Matlab
or Octave by means of CEPREMAP [1]’s dynare, is more specifically identified as the transition or state
equation of a linear time invariant (LTI) state space representation in discrete time, being itself a first order
linear heterogeneous difference equation: ∀n ≥ 1, function f : Rn → R

n such that, ∀t ∈ Z, xt = Axt−1+Bεt,
in which states xt ∈ R

nx , inputs εt ∈ R
nε , companion matrix A ∈ R

nx×nx and input matrix B ∈ R
nx×nε .

It is also a fundamental V AR (1) process, because of companion matrix A’s stability, thereby bearing the
potential to be rewritten as a causal V MA (∞) process:

xt = Axt−1 + Bεt [fundamental V AR (1)] −→

−→ (I −AL) xt = A (L) xt = Bεt,

in which operator L : Rn → R
n such that L = x−1

t xt−1 −→

−→ xt = A−1 (L) Bεt =

∞
∑

j=0

AjLjBεt =

∞
∑

j=0

AjBεt−j [causal V MA (∞)],

since, ∀♣s♣ < 1 and operator k : R → R, limn→∞ S = limn→∞

∑n−1
j=0 sjkj = (1− sk)

−1
(1− snkn) =

(1− sk)
−1

, because S − Ssk = (1− sk) S =
∑n−1

j=0 sjkj −
∑n−1

j=0 sj+1kj+1 = s0k0 − snkn = 1 − snkn,

thus,
∑∞

j=0 AjLj = (I −AL)
−1

= A−1 (L) if and only if modulus eigenvalues ♣λA(λ)♣ < 1 for characteristic
polynomial A (λ) = A− λI in determinant det[A (λ)] = 0, which is equivalent to stating if and only if trace
tr
(

AA⊤
)

=
∑nx

i, j=1 aija⊤
ji =

∑nx

i, j=1 a2
ij <∞, whence

∂xt

∂εt−j

= AjB (IRF coefficients).

In fact, first order IRFs are analytically constructed thus: ∀j ∈ N and exogenous shock εt ∼ N
(

0, σ2
)

,
IRF Ixj

:= Etxt+j − Et−1xt+j ♣εt = ε̃, in which ε̃ is a realisation of εt.
Assuming that exogenous shock realisation ε̃ = σ, the following unfolds:

Etxt = Et (Axt−1 + Bεt) = Et (Axt−1 + Bε̃) = Et (Axt−1 + Bσ) = Axt−1 + Bσ,

since Etxt−1 = xt−1 and Etσ = σ (observations),

Etxt+1 = Et (Axt + Bεt+1) = Axt = A (Axt−1 + Bσ) = A2xt−1 + ABσ,
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Etxt+2 = Et (Axt+1 + Bεt+2) = EtAxt+1 = A
(

A2xt−1 + ABσ
)

= A3xt−1 + A2Bσ,

...

Etxt+j = Aj+1xt−1 + AjBσ, since, ∀j ∈ N(+), Etεt+j = 0 (white noise);

Et−1xt = Et−1 (Axt−1 + Bεt) = Axt−1,

Et−1xt+1 = Et−1 (Axt + Bεt+1) = Axt = A (Axt−1) = A2xt−1,

Et−1xt+2 = Et−1 (Axt+1 + Bεt+2) = Axt+1 = A
(

A2xt−1

)

= A3xt−1,

...

Et−1xt+j = Aj+1xt−1, since, ∀j ∈ N(+), Et−1εt+j = 0 (white noise),

whereby Ixj
= Etxt+j − Et−1xt+j = Aj+1xt−1 + AjBσ −Aj+1xt−1 = AjBσ such that Ix0 = A0Bσ =

Bσ, Ix1
= ABσ, Ix2

= A2Bσ, . . . and Ixj
= AjBσ.

13.2 IRF commentary. The empirical SIRF patterns presented in Table 1 are all replicated by
accounting for all exogenous shocks underlying changes in confidence Υ̂t and all volition regimes γ. This
establishes volition γ as the ultimate determiner of fluctuations in real economic activity in the face of
changes in confidence Υ̂t. For clarity, fluctuations in real economic activity refer to its cycle component,
rather its trend component, which instead refers to the economy’s balanced growth or decline path.

Figure 1: USA and EA IRFs

Note. IRFs for aggregate real production ŷt (y) and real consumption ĉt (c), relative to the USA and the EA, given exogenous shocks
at a standard deviation of 0.01 in permanent technology εptt (ep), transitory technology εtt (et) and noise technology εnt (en), under
a high (black), medium (red) and low (blue) volition regime γ.

A pattern of immediate irreversibility is exhibited by a combination entailing an exogenous shock in
permanent technology εptt and a high or medium volition regime γH, M . A pattern of delayed irreversibility
is exhibited by a combination entailing an exogenous shock in permanent technology εptt and a low volition
regime γL.

At one order of magnitude below the others, a pattern of immediate reversibility is exhibited by a
combination entailing an exogenous shock in noise technology εnt and a high or medium volition regime
γH, M . A pattern of delayed reversibility is exhibited by a combination entailing an exogenous shock in
transitory technology εtt and any volition regime γ.

The regime of volition γ therefore gives rise to a compromise between endogenous growth and a “boom
and bust” cycle. An exogenous shock in noise technology εnt gives rise to a “boom and bust” cycle whenever
the regime of volition γ be non-negligible. On the other hand, an exogenous shock in permanent technology
εptt in the face of a non-negligible regime of volition γ causes endogenous growth.

Correspondingly, a “boom and bust” cycle is avoided in the face of an exogenous shock in noise
technology εnt whenever the regime of volition γ be negligible, although avoiding endogenous growth too in
the face of an exogenous shock in permanent technology εptt.
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14. Minimal poor man’s invertibility condition

14.1 Poor man’s invertibility condition. For a selector matrix suitably composed of zeros and ones
there arises a measurement or observation equation proper to an LTI state space representation in discrete
time: Mxt = MAxt−1 + MBεt −→ yt = Cxt−1 + Dεt, in which selector matrix M ∈ R

ny×nx , outputs or
observables yt ∈ R

ny , companion matrix C ∈ R
ny×nx and input matrix D ∈ R

ny×nε . Assume input matrix

D to be invertible and thus square: dimension ny = nε ≤ nx ∈ N+; in fact, yt =
[

Υ̂t ĉt ŷt

]⊤

. Then,

yt = Cxt−1 + Dεt −→

−→ Dεt = yt − Cxt−1 −→

−→ εt = D−1 (yt − Cxt−1) −→

−→ xt = Axt−1 + BD−1 (yt − Cxt−1) −→

−→ xt =
(

A−BD−1C
)

xt−1 + BD−1yt = Fxt−1 + BD−1yt −→

−→ xt − Fxt−1 = (I − FL) xt = F (L) xt = BD−1yt −→

−→ xt = F −1 (L) BD−1yt =
∞
∑

j=0

F jLjBD−1yt =
∞
∑

j=0

F jBD−1yt−j

if and only if modulus eigenvalues ♣λF (λ)♣ < 1 for characteristic polynomial F (λ) = F−λI in determinant
det [F (λ)] = 0, being Fernández-Villaverde et alii [12]’s poor man’s invertibility condition (PMIC), which
is equivalent to stating if and only if trace tr

(

FF ⊤
)

=
∑nx

i, j=1 fijf⊤
ji =

∑nx

i, j=1 f2
ij <∞, whence

yt = Cxt−1 + Dεt = C

∞
∑

j=0

F jBD−1yt−j−1 + Dεt [fundamental V AR (∞)],

being a VAR representation of states xt in outputs yt.

14.2 Minimality. For controllability matrix C =
[

B · · ·Anx−1B
]

and observability matrix O =
[

C · · ·CAnx−1
]⊤

the LTI state space representation is minimal if and only if dimension nx = rC = rO. If it
is non-minimal it is then discretionally reduced to minimality as follows:

(i) if dimension nx > rC (i.e. non-controllable) one then constructs similarity transformation matrix T =
[CrC

vnx−rC
] for vector x̄cc̄t = T −1xt and matrices Ācc̄ = T −1AT , B̄cc̄ = T −1B, C̄cc̄ = CT , C̄cc̄ = T −1C

and Ōcc̄ = OT , in which the first rC states are controllable, namely, vector x̄ct and matrices Āc, B̄c, C̄c, C̄c

and Ōc; if dimension nx = rC (i.e. controllable) one then directly acknowledges vector x̄ct and matrices
Āc, B̄c, C̄c, C̄c and Ōc;

(ii) if dimension nx̄c
> rŌc

(i.e. non-observable) one then constructs similarity transformation matrix

T =
[

Ōcr
Ōc

vnx̄c −r
Ōc

]

for vector x̄coōt = T −1xct and matrices Ācoō = T −1ĀcT , B̄coō = T −1B̄c, C̄coō =

C̄cT , C̄coō = T −1C̄c and Ōcoō = ŌcT , in which the first rŌc
are controllable and observable (i.e. minimal),

namely, vector x̄cot = xmt and matrices Āco = Am, B̄co = Bm, C̄co = Cm, C̄co = Cm and Ōco = Om; if
dimension nx̄c

> rŌc
(i.e. controllable and observable, minimal ) one then directly acknowledges vector

x̄cot = xmt and matrices Āco = Am, B̄co = Bm, C̄co = Cm, C̄co = Cm and Ōco = Om.
It follows that minimal transition and measurement equations

xmt = Amxmt−1 + Bmεt and

yt = Cmxmt−1 + Dεt,

in which dimension nxm
= rCm

= rOm
, give rise to minimal fundamental V AR (∞) yt =

Cm

∑∞
j=0 F j

mBmD−1yt−j−1 + Dεt for minimal matrix Fm = Am −BmD−1Cm.
In minimal LTI state space representations the IRFs of the transition equation and the coefficients of the

VAR representation of states xt in outputs yt are invariant, as especially remarked by Franchi [13]: ∀j ∈
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N+, CAjB = CmAj
mBm ̸= 0, from xt =

∑∞
j=0 AjBεt−j −→ yt = Cxt−1 + Dεt = C

∑∞
j=0 AjBεt−j + Dεt,

and CF jB = CmF j
mBm ̸= 0, from yt = Cm

∑∞
j=0 F j

mBmD−1yt−j−1 + Dεt. Absent loss of generality, one
can therefore conduct suitable evaluations in terms of the minimal poor man’s invertibility condition
(mPMIC).

As borne out by the attendant eigenvalues in the annexed code, the mPMICs for the USA and the EA
hereby computed fail to give rise to a VAR representation of states xt in outputs yt across all three volition
regimes γ except for a medium volition regime γM with regard to the EA.

14.3 Discussion. As implicitly shown by Sims [19], if the mPMIC fails it need not mean that states xt

may not be practically represented in outputs yt by means of VARs, thereby recovering the nature of the
underlying exogenous shocks in the observed endogenous variables under consideration all the same.

In fact, Saccal [18] showed that for any minimal transition equation the V MA (0) representation of
the form yt = Dεt is almost sure, in all of its empirical futility, whereby the adjunction of other VAR
representations of states xt in outputs yt is probabilistically negligible. The recovery of the underlying
exogenous shocks in the observed endogenous variables is consequently almost always tied to a structural
model other than that of the transition equation.

The unique and stable solution of the first order approximation of the present NK-DSGE model is
consequently salvaged by recourse to axiomatic abstraction, deeming it logically valid and its hypotheses no
less than probable, which judgement appears to be confirmed by the successful replication of the empirical
SIRF patterns at hand.

15. Conclusion

Economic literature exhibits a variety of empirical SIRF patterns in real economic activity in the face of
changes in confidence or sentiment, with particular regard to the USA and the EA. This work successfully
endeavoured to replicate them in the orbit of a NK-DSGE model especially characterised by macroeconomic
agents and derived from start to end. Confidence Υt has been specifically modelled as an endogenous
variable characterised by a coalescence of two technology processes ptt and tt, permanent and transitory,
and one noise process nt, being globally regulated by a degree of volition γ. The first two processes affect
real production technology at with a lag delay, while the third does not. Short run responses to changes
in confidence Υt are therefore displayed whenever confidence Υt shift real consumption ct and aggregate
labour lt. In turn, confidence Υt shifts real consumption ct and aggregate labour lt whenever volition γ be
not infinitesimal. Whenever volition γ were infinitesimal, by contrast, exogenous shocks in noise nt would
not cause fluctuations in real economic activity at all.
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Appendix

This is the dynare code for a unique and stable solution of the first order approximation of the NK-DSGE
model at hand.

1 /*A role for confidence: volition regimes and news (Alessandro Saccal)*/

2

3 var w l c pt rk rn pi y phi a k Upsilon t n; // Endogenous variables

4

5 varexo e_pt e_t e_n; // Exogenous shocks

6

7 parameters sigma_l sigma_c h omega rho_rn phi_pi phi_y phi_pi_g phi_y_g beta tau xi ∆ ...

rkss alpha c_y k_y rho_a rho_t rho_n gamma; // Parameters

8

9 /*EA parameters

10 rho_t=0.95; // Transitory technology persistence

11 rho_n=0.65; // Noise technology persistence

12 rho_a=0.823; // Production technology persistence

13 gamma=1; // Volition regime; 1, 0.5, 0.0001

14 beta=0.99; // Discount factor

15 tau=0.469; // Inflation indexation

16 xi=0.908; // Price adjustment failure fraction

17 sigma_l=2.4; // Labour inverse elasticity

18 sigma_c=1.353; // Inter−temporal substitution inverse elasticity

19 h=0.573; // Consumption habit

20 omega=5.917; // Capital utilisation adjustment cost inverse elasticity

21 rho_rn=0.961; // Interest rate persistence

22 phi_pi=1.684; // Inflation coefficient

23 phi_y=0.099; // Output coefficient

24 phi_pi_g=0.14; // Inflation gap coefficient

25 phi_y_g=0.159; // Output gap coefficient

26 ∆=0.025; // Capital depreciation rate

27 rkss=0.0351; // Steady state capital return

28 alpha=0.3; // Capital in output share

29 c_y=0.6; // Consumption to output ratio

30 k_y=8.8; // Capital to output ratio*/

31

32 // USA parameters

33 rho_t=0.95; // Transitory technology persistence

34 rho_n=0.65; // Noise technology persistence

35 rho_a=0.822; // Production technology persistence

36 gamma=1; // Volition regime; 1, 0.5, 0.0001

37 beta=0.99; // Discount factor

38 tau=0.66; // Inflation indexation

39 xi=0.87; // Price adjustment failure fraction
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40 sigma_l=2.45; // Labour inverse elasticity

41 sigma_c=1.62; // Inter temporal substitution inverse elasticity

42 h=0.69; // Consumption habit

43 omega=3.23; // Capital utilisation adjustment cost inverse elasticity

44 rho_rn=0.88; // Interest rate persistence

45 phi_pi=1.48; // Inflation coefficient

46 phi_y=0.08; // Output coefficient

47 phi_pi_g=0.24; // Inflation gap coefficient

48 phi_y_g=0.24; // Output gap coefficient

49 ∆=0.025; // Capital depreciation rate

50 rkss=0.0351; // Steady state capital return

51 alpha=0.24; // Capital in output share

52 c_y=0.65; // Consumption to output ratio

53 k_y=6.8; // Capital to output ratio

54

55 model(linear);

56

57 pt=pt(−1)+e_pt; // Permanent technology

58

59 t=rho_t*t(−1)+e_t; // Transitory technology

60

61 n=rho_n*n(−1)+e_n; // Noise technology

62

63 a=rho_a*a(−1)+pt(−1)+t(−1); // Production technology

64

65 pi=(((1−xi)*(1−beta*xi))/((1+beta*tau)*xi))*phi+(beta/(1+beta*tau))*pi(+1)+(tau/(1+beta*tau))*pi(−1); ...

// Inflation

66

67 w=sigma_l*l+(sigma_c/(1−h))*(c+pt)−(sigma_c*h/(1−h))*(c(−1)+pt(−1))−Upsilon−pt; // Real wage

68

69 l=(1+omega)*rk+k(−1)+pt(−1)−w−pt; // Aggregate labour

70

71 c=((1−h)/(sigma_c*(1+h)))*(Upsilon+pi(+1)−rn)+(h/(1+h))*(c(−1)+pt(−1))+(1/(1+h))*(c(+1)+pt(+1))−pt; ...

// Real consumption

72

73 rn=rho_rn*rn(−1)+(1−rho_rn)*(phi_pi*pi+phi_pi_g*(pi−pi(−1))+phi_y*(y+pt)+phi_y_g*(y+pt−y(−1)−pt(−1))); ...

// Nominal interest rate

74

75 y=a+alpha*omega*rk+alpha*(k(−1)+pt(−1))+(1−alpha)*(Upsilon+l)−pt; // Aggregate real ...

production

76

77 Upsilon=gamma*(pt+t+n); // Confidence

78

79 phi=alpha*rk+(1−alpha)*(w+pt−Upsilon)−a; // Real marginal cost

80

81 k=(1−∆)*(k(−1)+pt(−1))−pt; // Aggregate capital

82

83 y=c_y*(c+pt)+k_y*rkss*omega*rk−pt; // Aggregate capital utilisation

84

85 end;

86

87 initval;

88 w=0; l=0; c=0; pt=0; rk=0; rn=0; pi=0; y=0; phi=0; a=0; k=0; Upsilon=0; t=0; n=0;

89 end;

90

91 steady;

92 check; // Rational expectations stable unique solution check

93

94 shocks;

95 var e_pt; stderr 0.01;

96 var e_t; stderr 0.01;

97 var e_n; stderr 0.01;

98 end;

99

100 stoch_simul(irf=40, order=1) c y; // graph_format=(none) and nograph can be added to ...

omit first order IRF graphs

101
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102 varobs Upsilon c y;

103 [result, eigenvalue_modulo, A, B, C, D]=ABCD_test(M_, options_, oo_, 0); // 0 can be ...

changed to 1 for minimality
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