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Abstract

Economic literature exhibits a variety of empirical structural impulse response function (SIRF)
patterns in real consumption and real output due to changes in confidence or sentiment, with particular
regard to the USA and the EA. This work replicates them in the orbit of a neo-Keynesian dynamic
stochastic general equilibrium (NK-DSGE) model especially characterised by macroeconomic agents and
derived from start to end. Confidence is specifically modelled as an endogenous variable characterised
by a coalescence of three processes regulated by a degree of volition, the processes being permanent
technology, transitory technology and noise technology. The first two processes affect real production
technology with a delay of one lag, while the third does not at all. Short run responses to changes in
confidence are displayed whenever the degree of volition allow confidence to shift real consumption
and aggregate labour, thereby being non-negligible. Whenever the degree of volition were by contrast
negligible exogenous shocks in noise technology would cause no fluctuations in real consumption and
real output whatsoever.
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1.1 Introduction and scientific literature. Defining the relationship between confidence and real
economic activity is a complex task, for despite being regarded as vital confidence’s nature is rather elusive.
Indeed, reciprocity characterises the two: confidence is said to influence real economic activity and real
economic activity is said to impact confidence in turn.

Economic literature nonetheless provides two main justifications. The first conceives of confidence as
waves of pure sentiment, demand or noise, dating back to Keynes [14] and having been more recently
expanded by Akerlof and Shiller [2], Lorenzoni [15], Angeletos and La’O [3] and Angeletos et alii [4].

The second regards it as a proxy for news and noise shocks in economic fundamentals, dating back to
Pigou [16]; related contemporary works comprise those of Cochrane [11], Beaudry and Portier [6], Barsky
and Sims [5], Sims [19], Blanchard et alii [7], Chahrour and Jurado [10] and Saccal [17]. Independent as
they are, this work hinges on both.

1.2 Notional and methodological contributions. This work’s notional contribution is the theoretical
explanation of all types of empirical SIRFs in real consumption and real output to exogenous shocks in
news and noise processes, normally proxied by economic sentiment or confidence.

The empirical SIRFs need not have all been observed by the pertinent economic literature, but Barsky
and Sims [5] and Saccal [17] effectively did, at least substantially. Such authors globally construct trivariate
structural vector auto-regressions (SVARs) of order 4 featuring confidence, real consumption and real
output in log-levels for the United States of America (USA), the Euro Area (EA) and other European
nations and presented a variety of empirical SIRFs in real consumption and real output given changes in
confidence.

Formally: z; = Iyzy—1 + ... + Hyzy—4 + wy, in which observable vector z; = [s; ¢ yt]T
and w; is a vector of white noises. Such a VAR(4) is rewritten as an SVAR(1) : 2z =
Tzi_1 + &4, in which observable vector z; = [xyxi—1 Ti—o Ti—3 xt_4]T, companion matrix I' =

(I, T, T3 T1, 0) (10000) (07000) (00700) (00070)]" and white noise vector [w; 000 0] =
e+ = Dn, D being a (5 x 5) lower triangular matrix such that expectations E, [at 5: } = DDT and
E; [nen ] = 1.

Therefrom causality triggers a Structural Vector Moving Average (SVMA) of infinite order: z; =
> 5o T/ Dy, for SIRFs 72 TV D, in which coefficients and errors are estimated by means of ordinary
least squares (OLS); data are treated in log-levels for purposes of co-integration robustness. The empirical
SIRFs globally exhibited patterns of (i) immediate irreversibility, (ii) delayed irreversibility and (iii)
(immediate or delayed) reversibility, hereby reproduced by means of theory.

Table 1: Empirical SIRFs

Pattern SIRF
Short run Long run
Reversibility Response No response
- Delayed No response Response
Irreversibility Immediate Response Response

Note. Empirical SIRF patterns in real consumption and real output at a 40 period horizon. For
any time period taken from integers, the short run is redefined to range from period 0 to period
29 and the long run is redefined to range from period 30 to period 40 : V¢ € Z, the short run
is such that t € [0, 30) and the long run is such that ¢ € [30, 40]. Irreversibility is accordingly
differentiated between delayed irreversibility and immediate irreversibility, while reversibility is not,
although it may. Immediate reversibility could feature responses formally spanning ¢ € [0, 10) and
no responses therefrom; delayed reversibility could feature responses formally spanning t € [10, 30)
and no responses before or afterwards.

The reason for which confidence is normally chosen as an empirical proxy for news and noise processes
is that the latter are unobservable, both empirically and theoretically, as explained by Sims [19] in relation
to Blanchard et alii [7].



Confidence can thus act as their proxy both in models and in data, so that theoretical and empirical
SIRFs in real consumption and real output given changes in confidence reveal the effective nature of the
exogenous shocks. Such is also in line with the contribution adduced by Chahrour and Jurado [10], who
showed that news and noise proxies are equivalent representations of news and noise processes.

The theoretical explanation of all types of empirical SIRFs in question is developed by means of a
minimalistic NK-DSGE model in discrete time and is as such the work’s methodological contribution.

In such a model confidence Y; is an endogenous variable and figures as a coalescence of two technology
processes pt; and t;, permanent and transitory, and one noise process n;, which are all endogenous variables
as well; coalescence pt.tin; is especially regulated by a volition parameter v endowed with the potential to
dampen the three processes’ propagation.

The NK-DSGE is minimalistic in the sense that the substantial extensions relative to a real business cycle
(RBC) model are merely those of rigid prices and monetary policy. Whether the theoretical explanation of
all types of empirical SIRFs in question may work in a mere RBC model as well is an issue reserved for
future research.

1.3 Other contributions. Another notional distinction, relative to ordinary DSGE models, is that
the economy is not delineated by representative agents, but by macroeconomic agents, thereby eluding the
fallacies stressed by the “Anything goes”' theorem by which the conceptual aggregation of microeconomic
agents need not guarantee the functional properties exhibited by representative agents, particularly the
canonical laws of supply and demand.

Consequently, this economy is to feature the canonical laws of supply and demand by construction, as
well as the functional properties otherwise pertinent to representative agents. Aggregation in this economy,
whenever present, is to be therefore understood as merely pertaining to macroeconomic agents, not to
homogenous microeconomic ones, that is, to no more than parts of the macroeconomy.

If representative agents were alternatively understood as macroeconomic ones, as opposed to homogenous
microeconomic ones in aggregation, then the fallacies stressed by the “Anything goes” theorem would
clearly not apply.

Another methodological advantage of this work is the complete derivation and resolution of its NK-DSGE
model, until the conduction of policy analysis, encyclopaedically omitting no passage whatsoever and
thereby benefitting all those readers in search of a comprehensive, applied guide to (such a kind of) DSGE
models.

2. CONFIDENCE

2.1 Construction. Confidence T is an endogenous variable and is to be modelled as follows. First of
all, any exogenous shock is a normally distributed white noise, thereby featuring a 0 mean and a finite
variance: &, ~ N (0, ¢2), in which 02 € (0, 00) C Ry 4.

Real production technology a; then equals its amnesic lagged value pga;—1, which is in turn augmented
by (i) an exponentiated real population mean y, ideally modelling a quarterly technological growth rate, (ii)
lagged permanent technology pt;—; and (iii) lagged transitory technology t;—1 : a; = e*pgar_1pti—1ti—1,
in which coefficient p, € [0, 1) C Ry and p € R, the equation in question being a law of motion for real
production technology a:. Present (i.e. surprise) exogenous shocks in real production technology are thus
excluded.

The fact that lagged permanent technology pt; 1 and transitory technology ¢; 1 augment real production
technology a; models exogenous news shocks, one speaking to news regarding exogenous shocks in permanent
technology and the other to news regarding exogenous shocks in transitory technology. News shocks broadly
referenced can thus be understood as rational anticipations of exogenous shocks in technology at large.

Permanent technology pt; equals its mnemonic lagged value pt;_1, which is in turn augmented by an
exponentiated exogenous shock e,;; weighted at its own standard deviation o, : pt; = pty_1eept Pt in

which ey ~ N (0, ngt> , the equation in question being a law of motion for permanent technology pt;. It

is thus a random walk process: pt; ~ RW.

Thttps://en.wikipedia.org
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In addition, the expected value of lead permanent technology E;pt;; (i.e. process population mean)
is non-zero such that its deviation from the steady state Etﬁtt 11 is non-zero too: E¢pt;11 # 0 such that
Eiptyq # 0.

Transitory technology t; and noise technology n; respectively equal their amnesic lagged values pyt;_1
and p,n¢—1, which are in turn augmented by exponentiations of their respective exogenous shocks €4 and
ent weighted at their respective standard deviations o,, and o, : x; = pyxi—1€°==%**  in which coefficient
pr €10, 1) CRy, e4¢ ~ N (0, 0'?1) and x = t, n, being laws of motion for transitory technology t; and
noise technology n;. They are therefore auto-regressive processes of order 1: x; ~ AR (1), ceteris paribus.

The expected values of both processes’ lead terms E;x;11 (i.e. process population means) are accordingly
non-zero such that their deviations from the steady state E;Z;y; are non-zero too: Eixy41 # 0 such that
]Et.’)A?t+1 7£ 0.

Confidence T; specifically equals the product of permanent technology pt;, transitory technology t;
and noise technology n; risen to volition parameter v, which lies in a semi-open real interval between 0
and 1: Yy = (ptityny)”, in which v € (0, 1] C Ry, the equation in question being a law of motion for
confidence Y.

The expected value of lead confidence E; Y41 (i.e. population mean) equals 0 such that its deviation
from the steady state ]Et“i'tﬂ equals 0 too: E; Y1 = 0 such that Et?t+1 =0.

The methodological and theoretical consequence is that the non-nullity of the expected value of lead
permanent technology E;pt;;1 is balanced out by that pertaining to the expected values of transitory
technology and noise technology E;x, 1, especially applying at the steady state as well: Eypt;11 # 0 and
]Et];tt+1 # 0 are balanced out by E;xyy1 # 0 and E;2441 # 0.

2.2 Discussion. Confidence T, is to be introduced as a shifter of real consumption C; and of aggregate
labour [;, which are endogenous variables, so that whenever volition  lie at an infinitesimal distance from
0 confidence T; is almost neutralised, either to unity (i.e. non-linearly) or to nullity (i.e. linearly).

Otherwise stated: the higher the value of volition v the greater the enthusiasm in real consumption C}
and the effort in aggregate labour [l;; accordingly, for infinitesimal values of volition v the impact exerted
by confidence T; upon real economic activity is also infinitesimal.

Consequently, while a change in confidence T; be itself exogenous the extent to which macroeconomic
agents may react to it is endogenous. The econometrician, theoretically and empirically, observes confidence
T, alone, for its constituents are unobservable; yet, he is capable of identifying both the nature of the
exogenous shock and the regime of volition v underlying a change in confidence T4, particularly empirically.

Table 2: Volition regimes

Volition regime Fconomic region

YH 1
YM 0.5
YL 0.0001

Note. Prospected calibration of volition regimes v for
an economic region formalised by means of a NK-DSGE
model as outlined above. H, M and L stand for high,
medium and low, respectively.

In the case of an exogenous shock in noise technology n; unless volition v were infinitesimal an SIRF
pattern of immediate reversibility (i.e. “boom and bust” cycle) would be unavoidable, owing to the presence
of a short turn response precisely triggered by a non-negligible value of volition ~ as well as the absence of
noise technology at any time period in real production technology a;, thereby giving rise to an expansionary
deviation from the steady state on account of noise, demand or pure sentiment (i.e. animal spirits).

In the case of an exogenous shock in permanent technology pt; and a non-negligible value of volition ~
there would correspondingly arise an SIRF pattern of immediate irreversibility (i.e. endogenous growth),
whereas a negligible value of volition v would catalyse an SIRF pattern of delayed irreversibility, owing to



the sole activity of permanent technology pt;_1, thereby failing to capitalise upon a positive permanent
variation in the selfsame steady state.

In the case of an exogenous shock in transitory technology ¢, and a non-negligible value of volition
there would analogously arise an SIRF pattern of delayed reversibility, whereas a negligible value of volition
~ would catalyse an SIRF pattern of postponed delayed reversibility, owing to the sole activity of transitory
technology t;_1, thereby failing to capitalise upon a positive transitory variation in the selfsame steady
state. Table 2 predisposes the formalisation of all such cases.

Saccal [17] wrote the following: “Delayed reversibility suggests a noise shock driven by firm effort and
household enthusiasm.”. According to the potential differentiation of immediate reversibility from delayed
reversibility presented in Table 1, confidence T; as hereby modelled refines such an affirmation by tying
exogenous shocks in noise technology n; to patterns of immediate reversibility, for non-negligible values
of volition v, and exogenous shocks in transitory technology t¢; to patters of delayed reversibility, in the
presence of all feasible values of volition ~.

One can thus expect four principal scenarios: (i) immediate irreversibility, e, A (7 > 0); (ii) delayed
irreversibility, ey A (v = 0); (iii) immediate reversibility, €,+ A (7 > 0); (iv) delayed reversibility, ey A
(v>0).

This work consequently merges the Keynesian view of confidence Y, with the Pigovian view one, whereby
long run responses in real economic activity to changes in confidence Y; are indicative of news shocks in
economic fundamentals and short run ones are indicative of shifts in real consumption C; and aggregate
labour I; due to confidence T, itself, which is a composite signal of technology processes regulated by a
degree of volition «y (i.e. pure sentiment).

3. HOUSEHOLD

3.1 Utility function. As per standard DSGE models, the expectation of the transfinite sum of
household periodic utilities E; > ooy u (Cy, Ip) is weighted at discount factor periodic product 8 (i.e.
recursively), thereby representing its present or constant value: U (Cy, Iy) = E; > ooy Blu (Cy, 1), in which
discount factor g € (0, 1) C Ry

In even greater detail household periodic utility u (C, ;) is modelled as an iso-elastic utility function®
in which confidence T; shifts real consumption Cy, itself subjected to inter-temporal inseparability (i.e.

l—oc_ 1+
habit formation): w (Cy, ;) = Tt(cﬁ_hﬁ";l) L lerm, in which consumption habit, inter-temporal
substitution inverse elasticity and labour inverse elasticity h, o., o, € R4 . Real consumption C; and

labour I; respectively produce utility and disutility.

3.2 Household constraints. The macroeconomic household’s nominal budget constraint is the
equality between household nominal demand and household nominal supply. In detail, household nominal
demand is the sum of real consumption Cy, real government bond by, real taxation tx; and aggregate capital
utilisation ¥ (u;) K¢—1, all weighted at price P, : P.Cy + P;bs + Pitxy + PiV (uy) Ki—1, in which aggregate
capital utilisation function W (+) is such that ¥ (1) = 0 and ¥” (-) > 0.

Household nominal supply is the sum of aggregate labour [;, utilised aggregate capital u;K;_1, lagged
real government bond return rn;_1b;_1, household real profit IT5; and real transfers tf;, respectively
weighted at nominal wage Wn;, nominal capital return Rk;, lagged price P;_; and twice price P; :
Wnely + Rksus K1 + rny_1 Pr_1b_1 + PIlo; + Pt fy, in which endogenous variable rn;_; is the lagged
nominal interest rate.

The macroeconomic household’s nominal budget constraint can therefore be written as follows: P,C} +
Pby+ Pty + PV (uy) Ky—1 = Wyl + Reyu K1 +1rng—1 P11 + PIloy + Pitfy — P.Cy+ By +TX, =
Wntlt + [RktUthfl - Pt\:[/ (Ut) thl] + rnt,lBt,1 —+ Pt]._.[gt + TFt

On division by price P;, the macroeconomic household’s real budget constraint can be accordingly
written as follows: C; + %t + % = Wil + [rkue Kp—q — U (ug) Keq] + rnt_l% + Ty + T}f:t —
Cy+by +tay = Wil + [rkous Ky 1 — W (uy) Ky 1] 4+ 704175 'bs—1 + oy +tf;, in which endogenous variables
T = Pt__llpt, W, = Pt_IWnt and rk; = Pt_let are inflation, real wage and real capital return, respectively.

2https://en.wikipedia.org
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Aggregate capital K; equals the sum of lagged aggregate capital K;_1 weighted at 1 — ¢ and investment
parameter i : K; = (1 — &) Ky—1 + ¢, in which ¢ € Ry and capital depreciation rate § € (0, 1) C R4, the
equation in question being a law of motion for aggregate capital K.

The solvency supply constraint is such that the temporal limit of aggregate capital K; and nominal
government bond B; weighted at discount factor periodic product 8¢ and real shadow price Aq; is non-
negative, that is, their supply to the macroeconomic household exacts that their priced present value be
non-negative: limy oo B¢ A1: X¢11 > 0, in which A\j; € R and X = K, B.

The insolvency demand constraint is analogously such that the temporal limit of aggregate capital K}
and nominal government bond B; weighted at discount factor periodic product 8¢ and shadow price Ay, is
non-positive, that is, their demand by the macroeconomic household exacts that their priced present value
be non-positive: limy_, o B¢ A1: X1 < 0, ceteris paribus.

By anti-symmetry said two constraints are such that the temporal limit of aggregate capital K; and
nominal government bond B; weighted at discount factor periodic product 8¢ and shadow price Ay, is 0,
that is, the transversality condition: lim;_,oo BBt A1: X¢11 = 0, ceteris paribus.

3.3 Household optimisation problem. For non-negative arguments relative to the objective function,
the macroeconomic household’s optimisation problem is thus the maximisation of the macroeconomic
household’s utility function U (Cy, l;) subject to the macroeconomic household’s (i) real budget constraint
and (ii) the transversality condition:

U(Ci, 1) =By Y B'u(Ch, 1) =y Yy _ B

t=0 t=0
Cy + by + twy = Wily + [rkyue K1 — U (ug) Ky—1] + rg_imy "bem1 + o + tfe,
tlim Etﬁt)\ltXtH =0, VX =K, B,

{Tt (Ce—hCr)'™" —1 [ } ot

max
{Ct, le, ug, bt}fio

Ct; lta Ut, bt 2 0.

A necessary condition for optimal solutions is the invertibility of the objective function’s arguments, being
hereby met by construction. A sufficient condition for optimal solutions is convexity of the objective function,
being hereby translated into concavity of the macroeconomic household’s utility function U (Cy, ;) , met
by construction too, since the convexity requirement relative to the negative minimisation of a negative
objective function corresponds to a concavity requirement relative to the positive maximisation of a positive
objective function: —min [-U (Ct, )] = mazx U (Ct, 1) .

In detail, the macroeconomic household’s utility function is iso-elastic or one of constant relative risk
aversion (CRRA) and is as such homogeneous of first degree, continuous, increasing in consumption,
decreasing in labour and concave in both.

Such conditions speak to the renowned “Karush Kuhn Tucker (KKT) conditions™ for the optimisation
of standard non-linear programming problems.

The dynamic Lagrangian equation of said optimisation problem is such that discount factor periodic
product 3! weights the expectation of the constrained transfinite sum of household periodic utilities
E¢ Y20 [u(Cy, 1t) + A1e ()], in which shadow price Aj; weights the macroeconomic household’s real budget
constraint in turn:

Y (Ci—hCiy)' ™7 =1 1t
1—o, 140

Ly=TF> g {
t=0

+A1t [tht +rkou K1 — W (ug) K1 + Tntflﬂtilbtfl + 1o +tfy — (Cr + b + mt)]} .

First order conditions (FOCs) are:

Shttps://en.wikipedia.org
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oL Yi(1-00) (Cr—hCia) (1 -~
85t:0<—>5t t( )(1t ) ( )—Alt(l)‘| =0—T,(Cr — hCi—1) " = Ay;
t O
oLy —(L+o)ly" {
3ltt =0+ 3" [<1+(n)t AW | =0 — AeWe = 1
oL
3u1t =0« BN [rke (1) Koy — ' (ug) (1) K 1] = 0 — vk = O/ (uy)
t
oL . 4 2
(%lt =0+ B An(-1) + Et5t+1)\1t+1rntﬂt+11(1) =0 — A1 + EeBApeprnem ) = 0 — EBAiparnemy = A,
¢

recalling that E;x; = x4, in which z is any endogenous variable.
3.4 Household laws of motion. As a consequence, there firstly arises an indirect equation for
stochastic discount factor E;3’ Al_tl)\ltﬂ» :
Etﬁ)\lwﬁntﬂ;:l =Xy — Eymq = EtﬁAil)\ltJrlrnt — Eymyqy = Etﬁjkﬂl)\lwﬂnp

There subsequently arise the following laws of motion:

Y, (Cp — hCy_1) ™% = Ay and Ay Wy = 19— Ty (Cy — hCy1) ™7 W, = 150 —

— W, =T (C; — hC;_1)7¢ 17" (real wage or aggregate labour supply);

T (Ct — hCy—1)” 7 = Aig and EyBAippirmem, )y = Ay —

— Y (Cy — hCy—1) % =8 [Tt+1 (Cry1 — hC’t)_a“} rntﬂ;_ll (real consumption or consumption Euler equation);
rky = U’ (u;) (real capital return).

4. RETAILER

4.1 Retail nominal profit. As per standard NK-DSGE models, nominal profit P;I1y; proper to the
macroeconomic retailer or final goods or services macroeconomic producer equals the difference between
retail nominal marginal revenue P,Y; and retail nominal marginal cost fol P;;Y;idi, being a continuum of

priced wholesale real outputs in relation to their macroeconomic producers: Pill;; = PY; — fol P, Y. di.

Wholesale aggregate real output Y; equals a continuum of wholesale real outputs fol Y;:di exhibiting
1 \0
constant elasticity of substitution* (CES): Y; = ( fol Y.? dz’) , in which macroeconomic producer ¢ € [0, 1] C
R, and substitution elasticity § € (—oo, 1] C R such that
= 1, perfect substitutes
0 =0, imperfect complements
— —o0, perfect complements
relative to the continuum of wholesale real outputs fol Y. di.

4.2 Retail optimisation problem. For non-negative arguments relative to the objective function,
the optimisation problem of the macroeconomic retailer is thus the maximisation of retail nominal profit
P,I1;; subject to wholesale aggregate real output Y; :

4https://en.wikipedia.org
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1
max PtHu = Pth — / Pit)/itdi s.t.
{Yit}?io 0
Ty 0
([ 4).
0

Yy > 0.

The necessary condition of objective function argument invertibility and the sufficient condition of

objective function convexity for optimal solutions are analogously met by construction. The Lagrangian

equation of said optimisation problem is such that retail nominal profit P;II;; is optimised seeking retail
optimal input or wholesale optimal real output Y;; in the face of perfect competition:

1o, N\? 1 1 o
Lo=P, ( / Y;di) - [ PaYudi=p, ( / Yidz‘) P Yal} =
0 0 0
1, 0 1, 0
0 0

The FOC is

1
1 1 0o 1
and since V,? = [( Jy i di) } ;2 di it follows that

P*lp_ _ Y% 0_1}/# P*lp_ %_Y%(ﬁ)y
t it — t it _>( t Zt) = It

it —
_6 -1 1-0 _0 60
SN (Ptilpit) -0 :Y;I—Smt — Y:L't :Y;l—e (Ptil-ljit) -6 _ }/t (Ptilpit) -0

(wholesale real output demand).
In addition,

1 1 ST
—>1=/ (P71 Py) ™7 di—>1:Pt1*9/ Py ’di —
0 0
1

1 e 1 e 1-6
— P77 = /0 Py di— P, = </0 Pii‘edi) (wholesale real output aggregate price).



5. WHOLESALER

5.1 Price rigidity. As per Calvo [9], in period ¢ a random ¢ fraction of macroeconomic wholesalers or
intermediate goods or services macroeconomic producers fails to adjust wholesale real output price Py,
indexing it to lagged inflation m;_; at parameter 7: Py = 7]_{ Pit_1.

Said random £ fraction lies in an open real interval between 0 and 1; accordingly, inflation indexation 7
lies in a closed real interval between 0 and 1: £ € (0, 1) C Ry4; 7 € [0, 1] C Ry. In period ¢ the other
1 — ¢ fraction of macroeconomic wholesalers adjusts wholesale real output price P;; with success: Py = Pj;.
In detail,

1—6 1-0

L 1-¢ 1 ! 1
P, = </ pﬁedz) = / (P})™7 di +/ (Pit)™? di
0 0
1 1—9
1-¢€ 1 —£ 4 1 =
[/ ()™ edH’/ (M1 Pi—1) ™ 1 [ (7)™ di+§<7TtT—1/ Pit—1di> ] =
0 1-¢ 0
—

1-¢
/ (Pf)™= 9dz—|—§(ﬂ't 1P 1) 9]
0
)
1

Il
L— |

1-6

|7 = [a-e-n @ ™ =

1

— P = [ (P*)l B |(1)7£+€(7TZ,1PF1 -6

_1
= {(1 -9 (Pt’“)ﬁ +¢£ (ﬂ'tllPt,l) 1*9} (aggregate price or wholesale real output aggregate price with rigidity),

: .
in which ( fl ¢ (771 Pi—1) 7 di = € (WZ_l fol Pit_ldi) " on account of random wholesale real

1 1
output price adjustment and a continuum of wholesalers and (ii) P,'7" = fol P, di on account of

1 1

P = fol P, =" di, the equation in question being a law of motion for aggregate price P;. It follows that a
macroeconomic wholesaler which adjusts its price P;; in period ¢t and which cannot adjust it until period
t + j, for any positive natural j, sets it throughout as follows: Vj € N,

Etpzt+1 = T Pm
EiPityo = Eymiyy Pigy1 = Byl 7] Pf,

j—1
. T T * T *
Etpit+j = ]Etﬂ't-l—j—l ce Ty Pit = ]Et H 7Tt+sz‘t-
k=0

5.2 Wholesale optimisation problem. Wholesale nominal profit P;Il3; equals the difference between
wholesale nominal marginal revenue P;;Y;; and wholesale nominal marginal cost &, : P Ils; = (Piy — &) Y.
On division by price P, there consequently follow wholesale real profit IIs; = (P — ®y) P* Y;: and
future wholesale real sub-profit E; Z;io(PitJ'_j — &4y 5) P anﬂ, which on being weighted at thChathC

discount factor E.37 /\1—t1)\1t+j and fraction periodic product &7/, on account of the price adjustment failure
throughout j periods on the part of the random ¢ fraction of macroeconomic wholesalers, gives rise to
future wholesale real profit I3, = I, Z;io &)’ ()\ﬂl)\ltﬂ) (Pitgj — Pisy) Pt+jyt+1

For non-negative arguments relative to the objective function, the optimisation problem
of the macroeconomic wholesaler is thus the maximisation of future wholesale real sub-profit
E,; Z;io (Pit+j — ®ryj) PtﬂYfH weighted at stochastic discount factor E;37 )\ﬂl/\ltﬂ subject to future
wholesale real output demand E;Yj;, provided wholesale real output price P;; have not been adjusted for
j periods, by means of fraction periodic product &’ :



oo

maz s =By > (68) (A Muty) (Pierj — ryy) Py Vg, =
(Pt §=0
) ) j—1
=E; Z sy (/\ftl/\ltﬂ P H T, Py — Gt | Yt st
=0 -

]—1 1—6
9
EYirr; = BeYer; (P Piers) ™" = EYeng (Ptjrlj H thkpiff) ;
k=0

£
in which (i) nominal marginal cost ®; = Py, (il) EtYirr; = EiYiy, (PtﬂPtﬂ) =% on account of
_ =5 j—1 "
Yie =Y; (P Py) ™7 and (ifi) E¢Piyyy = Ee [Th_o 77 P
The necessary and sufficient conditions for optimal solutions are again met by construction. The dynamic

Lagrangian equation of said optimisation problem is such that wholesale real profit IIs; is optimised seeking
optimal wholesale real output price P;; in the face of monopolistic competition:

6
> Jj—1 j—1 -0
Ly =B > (€8 (A Mus) | Py T] 7TinPis — b1as | Yiws (Pt;j 11 w;kp;;) =
j=0 k=0 k=0
o) J—1 -6 j—1 %
=B Y (68) (A M) (P el || KTy {2) — it <Pt+1j II WZ%B?) Yisj.
j=0 k=0 k=0
The FOC is
i—1 =
8£3 > . _ 1 R _ J— . -
8P*t =0 B Z (EB)J ()\1t1)\1t+j) (1 — 0) (Py)*=° <Pt+1j H 7rt+k> +
it j=0 pater

2]
-0
0 )
~Ou+i (1 - 0) ()T ( t+j H 7Tt+k> Yiej=0—

oo

— E, Z (SB)J (/\ftl)\lﬁj) (1i9> (P;

Jj=0

> ; 0
=B > (€8) (A Arss) b (19) (Pi)™
=0

— By Y (68 (A Auesy) <11_9> (Py)T
=0

=B Y (€8) (A Auts) b <1_9) (P
=0
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1
-0

— By (€8) (A" Aarss) < ) ( b+ H 7Tt+k> Yiyj =

§=0
£
o0 ) 0 1—6
=E, &y ()\El)\lt-&-j) Gitj (1_9) (Ph)~ < i+ H 7rt+k> Yip; —
§=0
0
[e%s} j — =)
* E ZJ':O (£8)’ (Altl)‘ltﬂ') Pr+j (%) ( t+j Hk 0 7Tt+k> Yiej
— P = —

B 250 (69)” (' Auers) <ﬁ> ( ) ) O7Tt+k) - Vit
Er 520 (€8) (At Aeas) b (125) ( MHHk LT P pt) Ve
SRR (€8)" () ( )( e o TP Pt) \
— Piply = Ee Xm0 (€8)” (Mii'Arees) b1 (ie) ( k= 07rt+k+177t+kp )1 Yiij —
B 22570 (€0 (i duers) (7"> ( k= 07t+k+1”t+kpil) T iy
— P = B2z (€8)” O Maees) Gurs (%) ( k= 07Tt+k:+17rt+’“>16 Yitj —
B S5%0 (€Y (M) (45) (THZb moderamion) T Yo
By 520 (€8) vt sns® (THZo 7t 7 ) =

1
[e%e] j —1 -0
E, ijo (56)] )\1t+j ( e 07Tt+k+1ﬂ—t+k> Y;Jrj

— P['PP;, =

> iy =

)

in which (i) optimal adjusted price or optimal wholesale real output price p}, = I;{t, (ii-a) led inflation

]Etﬂ-t+j = ]Etptilpt+j7 (ll-b) k = ]— 1 — ] =k +1 and thus (ll-C) Etﬂ—t+j = Et’frt+k+1 and (111)
111 _6_ 1 =6
P = [(P{l) 1‘9} (P17 = P77 P,/ It follows that optimal adjusted price pj, is
Ay
Pit = Ev

9 1

in which Ay = AugidY; + BB, (£ )" Avr and By = MYy + €88, (75 ) 7 Buya such that if
& =0 then p}, = 0¢,. In detail,

Tt41

2]
%) 7j—1 -0
At :]EtZ(gﬂ)J )\1t+j¢t+j9 (H 7Tt+1k,+17rz—+k> }/;5+] —

3=0 k=0
>0 - o
=B Y (€8) Musjeri0 [(mihml) - (rimly ;)] 77 Yigy =
j=0

o o
= A1ehe0Yy + EeBAe100110 (12 7) 77 Yigr + Ee (68)° Averader20 [(mym]) (miamia)] ™7 Yigo + ...

matches
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T

T
Ay = MYy + EBE, ( :
Te+1

T

=5
) Asp1 = MY + EBE, ( T

Tt41

% T %
) Mit101410Yi41 + EBE, <> Apo| =

Tt4-2

6

v T\ ' T o ™7
) Ai410i+10Yi 41 + EBE, ( ) AMi420i420Y1 40 + EBE, () Ay

Tt4+2 Tt43

T

T
= A ¢0Y; + EBE, ( :
Tt+1

}

and

(e’ 7—1
By =E Z (€B) Mt+j (H 7Tt+1k+177157+k> Yiyj =
=0 k=0

o0
Z /\1t+7 7Tt+117TtT) (ﬂ-t_jjﬂ-;rjfl)]m Yit; =
=0

1 1
=AY, + Et&ﬁx\uﬂ (77,;_1171'2) e Yip1 +Ey (55)2 )\1t+2 [(Wt__ﬁﬂf) (77;12772-4_1)] e Yiio+...

matches

T

By = MY + EPE, < T

Tt+1

1
T\
A1 Y1 + EOE, ( t+1> Bits

Tt42
} b

: DN j—1 __—1 T _ -1 —1 T _ -1 __r -1 _-+ _ e
since if j = 0 then T[] o 7 i1 77e = o Trpkir Tigr = (Tamr ) (77 '77_y) =0 and if j = 1 then
*1 -1 HO —1 T _ —1 T
=0 Tk Tk = =0 Topr1 Tian = T 7 -

= w7 S
) By = MYy + EBE < )

Tt+1

1
T -6
Miy2Yipo + EBE, ( t+2> Biys
Tt+3

7\ T\
= A\ Yy + £PE, Mit1Yi1 + EBE,

Tt4+1 Tt4+2

6. REAL PRODUCTION

6.1 Production function and real production cost. Along the lines of a neo-classical growth model
with stochastic technology, wholesale real output Y;; is equal to a CES production function of imperfect
complements®, being utilised capital K;;_; and labour l;;, shifted by real production technology a. :

Yie = ap (e Kip—1)® (Telin) ™" = a, K| (Teliy)' ™ (real production or production function),

in which (i) Kj—1 = wK;_1 and (ii) capital in output share o € [0, 1] € R,. Real production
technology a; can thus be said to be factor augmenting or “Hicks neutral”®. Confidence Y; shifts labour I;;
and can similarly be said to be labour augmenting or “Harrod neutral”.

Real production cost I'1; equals the sum of labour /;; weighted at real wage W; and utilised capital
K1 weighted at real capital return rk; : ['yy = Wil + mh Kip—1-

6.2 Real production optimisation problem. For non-negative arguments relative to the objective
function, the second optimisation problem of the macroeconomic wholesaler is thus the minimisation of
real production cost I'y; subject to real production Y :

Shttps://en.wikipedia.org
6https://en.wikipedia.org
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mZTL - Flt = thit + ’I’ktKit,1 s.t.
{lit, Kit—l}t:()
Yie = CLtkﬁf1 (Ttlit)lia )

lit, Kit—1 > 0.

The necessary and sufficient conditions for optimal solutions are afresh met by construction. The
Lagrangian equation of said optimisation problem is such that real production cost I'y; is optimised seeking
wholesale real production optimal inputs, being labour I;; and utilised capital K;;_1, in the face of perfect
competition, in which real marginal cost ¢; weights real production Yj; :

£4t - [thit + ’I“ktf(it_l] + ¢t |:Yz — atf(io;_l (Ttlit)l_a] .

FOCs are:
oL B i
al4t =0<+— Wi+ ¢, [—atht‘_l (1 — ) Ty (Toliz) a] 00—
it
— W, = (btatRﬁ,l (1 — Oé) T, (Ttlit)_a :
8£4t . S - -
GTM =0<+— 1k + ¢ {fataKit_l (Ttlzt) } —0

— rk = ¢tataf{f‘tj (Ttlit)lia ;

from which there follow

~ —a -1 = o —a _ -
7"]{725_1Wt = d)tataKf;:i (Ttlit)l :| [QStatKit—l (1 — a) Tt (Ttllt) :| = (Oélit) ! (1 — Q) Kitfl —
— Uy = (Wtoz)_l (1-a) rk Ky =a ! (1-a) Wt_lrktutKit_l (labour or labour demand),
Wt = (1 — Oé) atf(ioz_l (Ttlit)_a ¢tTt (Ttlit)_l (Ttlzt) = (1 — OZ) (Ttlit)_l thﬁtTt (average Wage) and

rk, = aatf(ﬁj (Ttlit)l_a (btf(i;ilf(it_l = af(;ilYit(bt (average capital return),

in turn implying

Yilit = (1 — @) Wy Y3, Yy and
K1 = ark; ' Yio

such that

—« _ « _ 11—«
Yie = arK§_y (Telie)' ™" = ay (arky Yaege)” [(1 — @) Wy Yiege Yo =

=a®(1—a)' " aYud Y} rk CWe™t —
— d=a (1 —a)* e YT koW,
being a law of motion for real marginal cost ¢;.
7. CENTRAL BANK AND TREASURY

7.1 Nominal interest rate. Nominal interest rate rn; is set according to a “Taylor rule””:

"https://en.wikipedia.org
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1 —Prn
e?

)

()= [(G) ()™ () (324

in which interest rate persistence, inflation coefficient, inflation gap coefficient, output coefficient and
output gap coefficient prn, ¢r, ¢r,, ¢y, ¢y, € Ry4 and monetary policy parameter ¢ € R.

All endogenous variables are divided by their values at the steady state, thereby representing non-linear
deviations from it. The deviation of nominal interest rate rn; from its steady state is therefore the weighted
product of (i) exponentiated monetary policy parameter e¥, (ii) the deviation of lagged nominal interest
rate rn;_; from its steady state and (iii) that of a product of inflation 7, aggregate real output Y; and their
respective gaps ;Y7 and Y;}Y;. Such a “Taylor rule” is a law of motion for nominal interest rate rn;.

7.2 Public finance. The treasury’s nominal budget constraint is the equality between its nominal
demand and its nominal supply. In detail, the treasury’s nominal demand is the sum of real fiscal policy or
government expenditure parameter g weighted at price P, lagged real government bond return rn;_1b;_1
weighted at lagged price P;_; and real transfers tf; weighted at price P, : Prg + rng_1P;_1b;—1 + Pitf;, in
which g € Ry 4.

The treasury’s nominal supply is the sum of real government bond return b; and real taxation tx;, both
weighted at price P; : P;b; + Pitx;. The treasury’s nominal budget constraint can therefore be written as
follows: Ptg + ’I"ntflptflbtfl + Pttft = Ptbt + Pttl't — Ptg + Tntlet,l + TFt = Bt + TXt

On di}\g/ision by price P, the treasury’s real budget constraint can be accordingly written as follows:

™mi—1bt—1

g+ —5—+ T?IZ‘ = %: + T?)f‘ — g+ rnt_mt_lbt_l + tfy = by + txy. Such in turn implies an equation
for real government bond b; : by = g + Tnt_mt_lbt_l +tfy — tay.

8. AGGREGATION

8.1 Household real profit. Owing to market clearing, aggregate labour l; equals a continuum of labour
fol l;+di and utilised aggregate capital K;_; equals a continuum of utilised capital fol Ky_di: Iy = fol lipdi
and K;_| = fol Ki;_1di. Such implies the following aggregation:

1 1
/ litdi = Oé_l (1 — Oé) Wt_lTthut/ Kit_ldi —
0 0
— lt = Oé_l (1 — Oé) Wt_l’l“]{}tUth_l,

being a law of motion for aggregate labour or aggregate labour demand [;. Household nominal profit
P,I1,; is consequently aggregated as follows:

1
Pyl = / [PaYi — Wiy — RkoKoy 1] di —>
0
1 ~
— Iy = / [Pt_lpitYit — Wil — TktKit—l] di —
0

2]
T—

1
L Tly = / [P;lPith (P7'Py) ™7 — Wiliy — rktf{it,l} di =
0

1 —(1-60)—6  (1-0)+6 -
= / |:Pt 1=0 Pit =0 }/t — thit — T‘ktKit_1:| di —
0

1 I 1 1

— Hgt = Ptl_e)/t / F’ii_e di — Wt/ lltdl — Tkt/ Kit_ldi —

0 0 0

=1 1 .

— Iy = Pt179}/tPt179 — tht — ’I“]{Zth_l —

— Iy = Y, — Wily — rky Ky = Yy — Wily — rkyu K1 (household real profit),
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_6 ~
in which (i) Yy = Y3 (P71 P) 77, (if) Iy = fol lidi, (i) K1 = fol st—1di and (iv) P~ ™ fo P~ =

8.2 Aggregate capital utilisation. The substitution of real government bond b; and household real
profit Ily; into the macroeconomic household’s real budget constraint gives rise to a law of motion for
aggregate capital utilisation W(u;) K1 or aggregate resources Y; :

Ct + by + tay = Wil + [rkyug K1 — W (ug) K1)+ rng_ymy "oy + oy + tfy —

— Oy + (g +rng_amy Ty 1 +tfy — tay) +tay =

= Wils + [rkeue Koy — W (u) Kooa] + rngamy ooy + (Ve = Wiy — rhyug K1) +tfy —
— Ci+g=-V(u)K;-1+Y: —

— Y, =Ci+ g+ V(ug) Ky,

in which (1) bt =g+ ’I"Tlt_lﬂ't_lbt_l + tft — ty and (11) Hgt = }/t — tht — ’I”ktuth_l.

8.3 Aggregate real production. Real production Yj; is analogously aggregated in the following
manner:

Y = atK'f;,1 (Ttlit)lia —
1
—>/ Y;tdlz/ ath 1(T lzt) *di —
—>/ Y, (P Py) " edz—atTl a/ K§_ 7 %di —

1
— n/ (Pt_lpit)m dl = }/tpdt = atkf‘_l (Ttlt)l_a —
0
— Yy = pd; ta K (Tele)'

_6 ~ ~
in which (i) Yie = Y; (7 Pi) ™7, (ii) s = [ ludi, (iii) Kooy = [, Ky—1di and (iv) price dispersion

pdy = fo ( 1Pn) ™7 di, the equation in question being a law of motion for aggregate real production or
aggregate productlon function Y;.

8.4 Price dispersion and optimal adjusted aggregate price. Price dispersion pd; naturally
follows aggregate price P; :

4 1-0 1—¢ . 1 . 1-6
P = (/ Pi;edz) - V (Pr)™? di+/ (Py)™ di] —
0 0 1-¢

! o 1=¢ o 1 o
— pdy = / (P Py) ™7 di = / (PP ™7 di +/ (P Py) ™7 di =
0 0 1-¢

1-¢ e 1 e 1-¢ 6 1
_ / (P P5) ™ di + / (P w Py ) ™ di = / (PP ™ di+§(Pt_17rtT_1 / R-t_ldi)
0 1-¢ 0 0

9
=0

1-¢
:/ (PrY Py ) ™7 (BP0 di+ (PLPy) ™0 "§<P_ . 1/ Py 1dz> -
0

1-¢ 1 1
:/ (n;tmy) 7 "dz—i—f( AT oy i 1/ Pitldi> -
0 0
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e _0
Z(”t_l :(t)19|é£+§/ Pt 1Plt 1) edl( Ynl 1) =(1-¢- 0)(_1 *)19+§Pdt 1( ;i 1)179:

:(17£)< s )1 7 4+ ¢pd, 1( i 1) 2 = ¢pdy_q <7T;:1)19+(1£) <7Tt>19’

_0
in which ( fl ¢ (P_ 71 Pyo1)’ = di =¢ (Pt_lﬂ’tr_l fol Pit_ldi> " on account of random wholesale

real output price adjustment and a continuum of wholesalers and (ii) 71';% = (P[lPt,l) = on account of
T 1 PflPt,l, the equation in question being a law of motion for price dispersion pd;.

Owing to market clearing, optimal adjusted aggregate price p; accordingly equals a continuum of
optimal adjusted prices fol phdi: py = fol phdi = fo gtd =4t \0 =(1-0)%5 At = %:, ceteris paribus. It
follows that the law of motion for optimal adjusted aggregate prlce py is

* At
pt - Bta
all else equal.

9. EQUILIBRIUM

9.1 Price equilibrium with transfers. A price equilibrium with transfers is a pair of feasible
allocation {U (Ct, lt), Tt, Ct, lt, Ut, Kt, \I/(ut), bt, Hgt, H1t7 }/t; Y;t, H3t, Flt, lit7 Kit}:io and pI‘iCGS
{Ne, Wi, vk, T, P, P, Pj, 1, pdy, 7} }ie, such that retail nominal profit PII;; and wholesale real
profit IIs, real production cost I';; and household utility U (Cy, ;) (i.e. preferences) are optimal and
markets clear: ceteris paribus,

(household utility optimisation)
o g § Te(Co—hCro) T 1
U(Ci, I;) =E t - t
(Ct, 1y) t;ﬂ{ o, 11 o) s
Oy + by + toy = Wily + [rkeu K1 — W (ug) Ky—1] 4+ rng_ymy Yop1 + oy + s,
Ki=(1-90) K1 +1,
tli>m Etﬁt)\ltXtJrl =0, VX =K, B,

max
{Ct, e, ug, bt}fio

Cta lta Ut, bt Z 07

(retail nominal profit optimisation)

1
max Ptl_-[lt = Pt}/t — / PZtY;tdZ s.t.
0

{Yie}iZo
N
v ([ via)
0
Yie > 0;
(wholesale real profit optimisation)
o) j—1

{g}C}‘?; Hg = K, Z (gﬁ)J ()‘ﬂl)‘ltﬂ t+] H 7rt+kP;2<£ Gt | Yityj st

it fi—o 7=0 k=0

)

j—1 T—0
9
_ — —1 T *
Yitg; = Yiq (PtJrthJrJ) = Yii <Pt+j H 7Tt+lcPit> ’
k=0

P >0;
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(real production cost optimisation)

mm - Flt = thit + T‘]ﬂtKit,1 s.t.

{lit7 Kit71}t:0

Y = atf(fzfl (Ttlit)lia ,

lig, Kit—1 > 0;

1-0
(aggregate price) P, = [E(ﬂz—_lpt_l)Tle +(1- 5)(Pt*)ﬁ] :

T_q = i\ 0
(price dispersion) pd; = Epdy—q ( > +(1-¢) () ;
¢ Tt

confidence) Yy = (ptitng)”;

(

(permanent technology) pt; = pt;_1ertrtt;

(transitory technology and noise technology) x; = pgai_1€75=°*t, Vo = t, n;
(

real production technology) a; = e pgai—1pti—1t1—1;

o g1 \Pr | [ T)T & ) " (Y, Y)Y\ o
(nominal interest rate) (—) = ( ) — — e?;
™ rn /T T_1 /T Y Yi1/Y
(aggregate capital utilisation) ¥; = Cy + g + ¥ (uy) Ki—1.
9.2 Feasible Pareto efficient allocation. Endogenous variables can be sub-
divided as follows. Consumption, endowment and production endogenous variables:

{U (Ct, lt), Ti, Gy, by, ug, Ky, ‘I’(Ut), by, oy, Iy, Yy, Yig, I3e, Dag, Lty Kit}?i(y

Price endogenous variables: {A\1;, Wy, rky, my, Py, Py, P, ¢, pdy, ﬂf}fio. Technology endogenous
variables: {pt;, ny, ty, ai}oe, . Policy endogenous variables: {rnq, tf:, txt}oe, .-

Parameters are {/Ba ha Oc, 01, 67 ia 07 57 T, & 7, Opty Pny Ony Pty Oty Ky Pas Prn, d)Tﬁ ¢7r97 ¢ya ¢yg’ ®; g}

The feasible allocation is characterised by consumption, endowment and production endogenous variables.
Prices are characterised by price endogenous variables. Technology endogenous variables should be feasible
allocation endogenous variables, but are recorded separately for scopes of clarity.

Policy endogenous variables should be both feasible allocation and price endogenous variables, but are
recorded separately for identical scopes. Strictly speaking, in fact, endowment endogenous variables should
have to be transfers ¢ f; and taxation tx; alone, being there none in the feasible allocation.

A feasible allocation is Pareto efficient if and only if there exists no other feasible allocation such that
almost all agents prefer it to the given one and at least one agent strictly prefers it to the given one. By
construction, markets are complete. The first fundamental theorem of welfare economics consequently
applies, whereby a price equilibrium with transfers in a complete market system is a feasible Pareto efficient
allocation.

10. LAWS OF MOTION AND NORMALISATION

10.1 Laws of motion. There thus emerge the following laws of motion:

pty = pty_1e7°pt°Pt* (permanent technology);
Tt = ppi_1€7%°=t Yo =, n (transitory technology and noise technology);
ar = e*pgai_1pti_1t:—1 (real production technology);

rky = U'(u;) (real capital return);

1-6
Pr= |&(r]_ P1)T7 + (1 - €)(P)T7|  (aggregate price);

A
Py = Etr (optimal adjusted aggregate price), for
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T
Ay = Mp0Y + EBE,

0
1—6
) A¢yq and

-
t
Tt4+1
1
.

7Tt 1—6
By = A\ Yy + EPE, Biya;
Tt41

772—_1 % ﬂ-zk % . . .

pdy = Epdy_1 +1-9(— (price dispersion);
Tt Tt

W, =Y, HCr — hCy_1)7¢17" (real wage);

i = a (1 — )W, rkyusk; 1 (aggregate labour);
Ct+1 — th)_UcTnt

Tt4+1

(rnt> B (rntfl)Prn l( T/ >¢7\' ( ™/ >¢7rg (Yt)% ( Y,/Y >¢yg
n ™ /T 1 /T Y Yi1/Y

Y, = pd; ta, K& (Y4l,)' ™ (aggregate real production);

T; = (ptiting)” (confidence);

by =a (1 —a)* Lo, 'Y kWA (real marginal cost);

Ky = (1—06)K;_1 + i (aggregate capital);

Y: = Ci+ g+ U(us) Ky—1 (aggregate capital utilisation).

T
Ti(Cy — hCi_1)7%¢ = E:f8 [ 41 } (real consumption);

1—=prn

€¥ (nominal interest rate);

10.2 Normalisation. Certain endogenous variables, being real consumption C;, aggregate capital Ky,
aggregate real output Y; and real wage W;, abide by the permanent changes to the steady state dictated
by permanent technology pt; and are normalised thus: X; = zpt;, in which X =C, K, Y, W.

11. LOG-LINEARISATION

The DSGE model at hand is solved by resorting to a first order linear approximation whereby its laws of
motion are log-linearised about the steady state of each endogenous variable. Specifically, a first order Taylor
expansion is conducted about the logarithmic form of each law of motion: f (z) = f (a) + # (r—a)=
f(a)+ f'(a) Z, in which a is the endogenous variable’s steady state and Z is its deviation therefrom.

Permanent technology:

pty = pty_1e7pt

pt = pte=rtrt (steady state);

pt = pt (steady state, in which e, = 0, admitting pt = 1);
Inpt = Inpt + o, Ept;

Pty
pt
— pty =ply_y + 0, Ept —

Inpt + = Inpt + +0c,.Ept +0c,, (Eptt — Ept) —

Pty
4
— pt, = pty_y + epe (imposing o, , = 1).

Transitory technology and noise technology:

=1, n;
Ty = ppap-1€77

OcpCa

T = ppxe (steady state);
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x = p,x (steady state, in which ¢, = 0, admitting « = 1);

1=p, but p, <1, s01=ppe?®=® — p, = 7= <1 —

— —0.,exlne < Inl — —o. e, <0 —> &, > 0 (steady state, being there an attendant shock);
Inx = pzplne + 0. €g;

pa:j:t—l

Tt
Inx + — = pylnz + +0c,60+ 0, (Ext —Ez) —
x

— By = peBi_1 + Oc €xt —

— Ty = peBi_1 + €t (impOSing O, = 1)

Real production technology:

a; = e'paa_1pti_1ti_1;

a = e pgaptt (steady state, admitting a = 1);
pal = e (steady state, in which pt =t = 1);
—Inp, = plne — p = —Inp, (steady state);

Ina = p + pglna + Inpt + Int;

ay— t by
Pali-1 +lnpt—|—pt7t1+lnt+tTl—>
p

at

Ina+ — =+ pglna +
a

— Gt = paly—1+ pty_q + 1.

Real capital return:

rky = U (ug);

rk =V’ (u) (steady state);

rk =V’ (1) (steady state, imposing u = 1);
Inrk = In¥’ (u);

_ - N
— rk, = W N
et (o= 28)

— ’[Lt = wrk‘t.

One notices that parameter w models capital utilisation adjustment cost inverse elasticity, being a
positive real number: w € Ry .
Aggregate price:
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Pt 1i9 772-_1Pt—1 1i9 Pt* 1ie
. — 1— _t —
(Pt> < < Py 1= Py

T

= 1
+—1=¢ (Ftl> + (1 —¢&)(p;)™7 (standardisation);

— ()7 0077 (seady state)

1=+ (1-¢) (p*)ﬁ (steady state, imposing = = 1);
1-6=(1-8 @)™ —
— 1= ()T —
L 11-0
— 117 = [(p*)m] —

— 1 =p* (steady state);

NELIE )=,

T(1—0) r ey, —e(1—0) gy
RS (1-9) - =1 £(1-10) d t
1-1+46 T—146 —1 - —1-146
(1=& 172 p*p; &1 710 1T=0qm_y E17-0171-0 7wy . )
— 0= — hich m=p*=1) —
=0y | (-6x i—g . (nwhichm=p"=1)

(1_5)13;:k ETy 1 . ETy
(1-0) (1-6) (1-9)
— (1 =& p; =& (Fe — Th-1) —

f(ﬁ‘t — Tﬁ't_l)

— 0=

(in which r =p* =1) —

— Ht —
HT =g
Optimal adjusted aggregate price:
Numerator:

2]
T\ 1-0
Ay = 09, + {PE, ( Ie ) Apyr;

Tt41

T

A=0¢p+E&8 (1) w A (steady state);

A =06+ {BA (steady state, in which 7 = 1);

(1-¢B)A=00 —
— A= (1—¢8)"" ¢ (steady state);
InA=In 9¢+£5(7;_T>19A ;

At _ " = qut
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n 0T (1 —9)71 F%_lﬂ'%ﬁt —£66(1 —9)71 771%99#1%99_1153,57?”1 S/BW%T(%EtAt+1

borens 99+ €54 v pa
b -1 _— -1 _
A, = eth " 80T (1;:) T £60 (1 — 911)17r TE T n fﬁE’tAt+1 (in which 7 = 1)
A 060, €560 (t7s — Esfteiq) R
— At - A A (1 — 9) + EBEtAt-‘,-l-
Denominator:

T

m; =
B, =1+ ¢0E, < > Biiq;

Tt41

T

B:1+§ﬁ(

B =1+ £8B (steady state, in which = = 1);
(1-¢8)B=1—
—+ B=(1-¢B)"" (steady state);

-0
) B (steady state);
71'

T\ 17
InB =In 1—|—§ﬁ(ﬂ-> B|;
T
B, 7\ T BT (1 — 9)71 Wﬁflﬂﬁfrt
InB+ — =1In|1 — B
nB+ o =ln +55(7r> + 1+ ¢6B
LIS 0) ' nTm e \Emyy  AnTI TR, By
1+¢6B 1+¢6B
. 1-0) ' nx 1-6)"" 7Ex -
B = Ppr—0) "mm  EH(L-0) mEimin + £BE By, (in which 7 = 1) —»
Br B
N Th — E7 A
— By = b <(1 — g)tBHl) + EBE By
Fraction:
« Ar
pt Bt7
A
p* = B (steady state);
A
1= B (steady state, in which p* = 1, admitting A = B = 1);
Inp* = InA — InB;
* Z?tk At Bt
l — =InA+— —InB—- —
np er* nA + P n B —

—)ﬁ::At—Bt—>

o 000, | EBO (17 — Eytyrs) A EB (T — Eyfreqr) A
= E;A — E.B :
Dy Vi A0 =0) + PR Aryq 1-0)B + P By | ;
. 0¢d  EB(L—0)Ei BO-0)ri O . -
pt = A ! (A (1 — ot) s - ((1 — 0)>B t + fﬂEtpt+1 (ln Wthh Etpt+1 = ]EtAt+1 — EtBt+1) —

21



f(ﬁt - 7'7A1't71) _ 9¢¢3t + fﬁEtﬁ't+1 . EBTﬁ't f(Etﬁ'tJrl - Tﬁ't)

RS A A B TYTng
—_ 7ATt - T'ﬁ'tfl = (1 _51)49¢¢t + (1 — g)jEtﬂ—t+1 — (1 _ 2577& + fﬁ (Et'ﬁ-tJrl — Tﬁt) —_
(1) 06,

— ’ﬁ't — Tﬁ't,1 = + (1 — f)ﬁ (A_lEtﬁ'tJrl — B_lTﬁ't) +55 (]Etﬁ't+1 — Tﬁ't) —

€A
—)ﬁ't —Tfl't_1 = (l_i)admbt—‘rﬁ(ﬂ‘:tﬁ't.H —Tﬁt) (iIl which A =B = 1) —
(1—€) 090,
¢
A (1—€) 00,  BEifri TR—1
L o= i G Iy = Sl SRy
(1-¢) (1_§ﬂ)¢€£t+ﬁEtﬁt+l n TRE—1
(1+p7)&0 (1+p7)  (1+p7)
[in which A= (1-€8)""10¢ — 1=(1-€B)""0p — 0=0¢""(1-€8)] —
(1—5)(1—55)<f;t+5Etﬁt+1 n TR—1
(1+p7)¢ (L+p81)  (1+p87)

—)(14*,87’)7?}2 +BEt7ATt+1 +Tfrt_1—>

— T =

—)ﬁ't:

Price dispersion:

= ot (F21) T v ()

'/TT % ,n_* 1—6

pd = &pd () +(1-9¢) () (steady state);
T T

pd =Epd+ (1 — &) (steady state, in which 7 = 7* = 1);

(1-&pd=(1-¢) —
— pd = 1 (steady state);

Inpd = In l@“pd (i;) o +(1-9 (7::) 1_9] :

§W%W%ﬁdt_1 . &0 (1 — 9)_1pd771%99_177m7_rt_1

+

— 0 2]
o (T e (2)
lnpd+pd—ln[§pd<w> +(1 §)<7T> i -

6

-1 -z %6—1— -1 151 %9—* -1 *\To0 79 —
+—§9(1—0) pdr1-0 TT-0 7Tt+(1—§)9(1—0) (r*)T-0" " g1 97rt+—(1—§)9(1—0) (m*)T-0 r1-0

v v Vi
—pd, = Epd,_ +ETO(L—0) "7 —E0(1—0) A+ (1601 —0) A —(1-€)0(1L—0) "7
(in whichpd=n=7"=1) —
—pdy =Epdy_ +ETO(1—0) " H + (1 -6 01 —0) Ay —0(1—0) 7 —

—pdy = Epdy_y +0(1—0) 1 [ErRty + (1— &) 77 — 7]

Since (1 = &)py =& (7 —TRy—1) = €7y — ETRp—y — {7y = €y — (1 = &) Dy

pd, = Epd,_ +0(1—0) " [er, — (L= &) p; + (1 — &) 7 — 1) —
—pdy = Epdy_ +0(1—0)" (€~ 1) 7 — (1— &) p} + (1 - &) #7].
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Since #7 = Py — P,_y and p} = Py — P,

pdy = pdy 1 +0(1=0)" [~ VA - (10 (B = P)+ (1= (B~ At )| —
— iy = &pd,y +0(1=0) " (€= DR+ (1-9) (A— A )]

Since 7ATt = Pt —Pt,1

pd, =Epd,_ +0(1—0)" [(E— 1) 7+ (1— &) 7] —
— pdy = Epdy_; +0(1—0)"" (1= &) (A — 7)) —>
— pd, = Epd,_;.

Since pd, ; = 0 (zero inflation steady state)

pd, = 0.

Real wage:

W, =Y, (Cy — hCy_1) 7 17

wypty = T;l (cipty — hey_1pti—1)°° 17" (normalisation);

wpt = Y1 (ept — hept)< 17 (steady state);

w = (c— he)?¢ 17 (steady state, in which T = pt = 1);

Inw + Inpt = —InY + o.ln (cpt — hept) + oylnl;

X ocptey

(cpt — hept)

0 ot T
Inw+ 28 4 inpt + 24 = InY — 2L 4+ ouin (ept — hept) +
w pt T

oecpt, _ ochpteiy ochept, ol + oils .
(cpt — hept)  (ept — hept)  (ept — hept) l
wy ]& B _E Optes oecpt, _ochpte1 ochept, &L
w  pt T  ept(l—h) ept(l—h) cpt(l—h) cpt(l—nh) l
. s ¢ ot hé,_1  ochpt -
— ’Li)t ertt = 7Tt + Tl —+ TPl — Teltli—1 - ¢ Phi—1 —+ O'llt —

(1=h) (@=n) (A=h) (1-h)

i) o)) .
- - — Y — pt,.
— Wy = oyl + 1—h) (1—h) t = Pl

Aggregate labour:

Iy =a ! (1-a) W;lrktutkt,l;

Iy =a " (1-a) (wtptt)fl rkyuiki—1pti—1 (normalisation);

l=a ' (1—a)(wpt) " rkukpt (steady state);

l=a "' (1-a)(w) " rkuk (steady state, in which pt = 1);

Inl = —lna+1In (1 — a) — lnw + Inrk + lnu + Ink + Inpt — Inpt;

ki1 Pty i

l 0 k u
lnl+7t:flnonrln(lfoz)—lnwf%+lnrk+r—]{f+lnu+ﬁ+lnk+ + Inpt +
w r u
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l w rk U k pt pt

— Zt = *’UAJt —+ TAkt =+ 'ilt —+ ]Aft,1 — ];tt71 *pAtt —
— Zt = T’Akt + (A.JT’Akt + ]%t—l — ﬁtt—l — ﬁ)t — I;tt —

— Zt = (1 + W) TAkt + Et—l 7I;tt—1 — Wy 71;tt

Real consumption:

Y (Cy — hCi_y) 7 =Ef3

Tt4+1

Tt+1 (CtJr]_ - th)_UC Tnt‘| .

Yi (eepte — hegoapti—1) 7° = K3

normalisation);
Tt4+1

Yyt (crp1ptisr — hepty) 7 Tnt] (

Y (cpt — hept)” " rn

Y (cpt — hept) 7 = 3
T

1 (steady state);

(c—he) % = B(c—he) °° rn (steady state, in which T = pt = 7 = 1);
1=prn —

— rn = B! (steady state);

InY — ocdn (ept — hept) = InB + InY — odn (cpt — hept) 4 Inrn — In;

T, o.ptey oecpt, o.hptci_1 ochept,
InY + — —o.l t — hept) — — =1
nl Y o (cp pt) (cpt — hept)  (ept — hept) + (ept — hept) * (cpt — hept) nb+
E.Y Eio.pte Eo.cpt
+InY + = o In (ept — hept) — TPl TPl
T (cpt — hept)  (ept — hept)
chpte chept 7 E, 7
gelptet TPty + Inrn + e Inm — i
(cpt — hept) — (ept — hept) rn
T, optey oecpt, ochpte,_1  ochept,
T ept(1—h) cept(l—h) ept(1—h) cpt(l—h)
_ Ei Y1 _ Eoeptegr Eiocepty, achpte ochept, g Bt
T ept(1—h) ept(l1—h) cept(l—h) cpt(1—h) rn T
< O.Ct acﬁtt ochti_q achpAttfl B

T T aon T aon Taow

o Eioebipr  Eioept,y ochéy ochpt, N R
=E,Y — — —E
T T Ty T =) Ta—n T T M
_O'C (ét +];tt) O'Ch, (étfl +pAtt71) _ _]EtO'C (6t+1 +pAtt+1) O'Ch (615 +pAtt)
(1—h) (1—h) N (1—h) (1—h)

(in which IEt'YH_l =0, but EtpAtﬂ_l #£0) —

+ r%t — ]Etﬁ't+1 — Tt

(1—h) (mt By — Yt)

Oc

—r — (ét +pAtt) + h (étfl +pAtt71) == —]Etét+1 - EtpAtlH,l + h (ét +pAtt) + —
(]. — h) (’I"%t — Et’ﬁ't+1 — Tt>

—_—r — (1 + h) (ét +]5tt) = e —h (ét—l +pAtt_1) — (Etét-‘rl + Etﬁtt—&-l) —
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(I=h) (Tt + B — mt) h(G—1+pt_y)  Eeror +Eepty,

— &+ pty = +
R oo (1+ 1) T+ h) (1+h)
- (1=n) (Tt + Eyftoq1 — rm) N h(ém1+pti_q)  Eiepr +Eptyyy
— Ct = B :
t oo (1 +h) (1+h) 1+ h) Pt

As mentioned above, one notices the following;: Eth+1 = 0 and E;pt, 41 7 0 imply E¢Zy1 # O,
whereby, Vv € (0, 1] C Ryy, Eeyligr + Eeyiusr = v (Eefey1 + Evfugr) = —Epypt, g = —yEipt,, 4, since
EiYep1 =B [y (ptioq + E1 + ug1)] = Byt + Bevbegn + Eoyiegr = (Beptyy g + Eefeyr + Eefggn)

Nominal interest rate:

(@) B (rnt_l)ﬂrn /T & /T O Y; Py Y:/Y g
m/  \ rn /T Te_1 /T Y Yi1/Y
17p'r'n
g\ (g1 \Pre | (/T b (mfm N (gt yepte/ypt \ " ° TR
(*) = ( ) €¥ (normalisation);
n ™ /T 1/ ypt Ye—1Dti—1/ypt

()= G ()" (20 ()" ()] e o e

l1=¢¥Y —

1—=prn
e?-

b

— 0 = @ (steady state);
Inrn — Inrn = ppy, (Inrn — Inrn) + (1 = prn) [¢r (Inm — Inm + Inm — Inw) + ¢, (InT — Inm + Inm — InT) +
+ ¢y (Iny + Inpt — Iny — Inpt) + ¢y, (Iny + Inpt — Iny — Inpt + Iny + Inpt — Iny — Inpt)| + ¢ —

7 prnrhtfl

s Irn+ 2 en = Prn (Inrn — Inrn) + +
™ ™
+ (1= prn) |&x (Inm — Inm + Inm — Inm) + On Ty + ¢n, (InT — Inm + Inm — InT) + On, Tt _ Py Mem +
T : 71' T
¢ygt ¢yp_tt
+¢, (Iny + Inpt — Iny — Inpt) + + ==+ ¢y, (Iny + Inpt — Iny — Inpt + Iny + Inpt — Iny — Inpt) +

pt

+¢y9gt n ¢ygptt _ ¢yggt—1 B +¢ygptt71
Y pt Y ot
— 1y = pratu—1 + (1= prn) [Onfte + On, (Fe — Fem1) + &y (9¢ + Dt,) + by, (G¢ + Pty — D1 — Pt,_1)] -

+to—

Aggregate real production:

Yy = pd; Ky (Toly) ™ —
— Y, = pd; 'y (ueki—1)" (Ttlt)l_a ;
11—«

yepty = pd;lat (urhks—1pti—1)™ (Tily) (normalisation );

ypt = pd~'a (ukpt)® (T1)' ™" (steady state);
y = a(uk)® '™ (steady state, in which ¥ = pt = pd = 1);
Iny + Inpt = —lnpd + Ina + o (Inu + Ink + Inpt) + (1 — ) (InY + Inl);

_ A 9 _
lny—l—%—klnpt—l—& :—lnpd—&—klna%—%—!-
Y pt pd a
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aki_1  apt,_y

_ 1
+a(lnu+lnk+lnpt)+%+ +(1—-a) (lnT+lnl)—|—(

k pt
— o+ pt, = —pd, + @ + a (ﬂt + ke +Z;tt—1) +(1-a) (Tt + Zt) —

— = +a (ﬁt + ke +;§tt_1> +(1-a) (Tt + l}) —pd, — pt, —

— = ay + awrk, + a (]Aftfl +Z?Att,1) +(1-a) (Tt + l}) — pt, (in which pd, = 0).

Confidence:

T; = (ptetene)”;

Y = (pttn)” (steady state);

1 =1 (steady state, in which pt =t =n = 1);

InY =5 (Inpt + Int + Inn) ;

lnT+& zv(lnpt—l—lnt—i—lnn)—&-@—&-ﬂ—i—ﬂ —
T pt t n

_>?t:7(ﬁtt+ft+ﬁt)

Real marginal cost:

a—1 —l~a—1_jayyl—a.
a; YT rkfWe T,

pr=a (1
pr=a (1
p=a"1—a) a Tk (wpt)' ™ (steady state);

d=a"%(1—a) " rk®w' ™ (steady state, in which Y = pt = a = 1);

Ing = —adna+ (e« —1)In(l —a) —Ilna+ (o — 1) InT + alnrk + (1 — «) (Inw + Inpt) ;

— a) -
B a>a—1 a;ngﬁlrk? (wtptt)l_a (normalisation);
1—
1—

lnqﬁ—i—%:—alna+(a—1)ln(1—a)—lna—%—i—(a—l)lnT—}—
a

-1 'k 1—a)w,  (1—a)pt
+u+alnrk+art+(lfoz)(lnw+lnpt)+( oz)thr( a)pt_>
T rk w pt

— = —ar+ (a— D) Ty + arke + (1 — o) oy + (1 — o) pt, —>

— Qgt = OZT’A:ZCt + (1 — Oé) (ﬁ)t +pAtt — ’Yt) — &t.

Aggregate capital:

Ky = (1—6)Ki_q +;

kipty = (1 — 0) ky—1pti—1 + i (normalisation);

kpt = (1 —0) kpt + i (steady state);

0k =i (steady state, in which pt = 1) —

— k = 6 ' (steady state);

Ink + Inpt = In[(1 —9) kpt + ] ;

k (1= 08)pthy_y (1 —0)kpt,_,
(1—=0)kpt+i (1—0)kpt+i

k t
lnk+i+lnpt+p—tt:Zn[(l—é)kpt+i]+
p
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& + pty _ (1= 6) pthy L (1—96)kpt,_,

k pt kpt kpt
— ke +pt, = (1-0) (‘2375—1 +25tt—1) —

— k= (1-90) (]%t—l +PAtt—1) — ply.

Aggregate capital utilisation:

i =Ci + g9+ Y (ug) Ki—1;

Yoty = eipty + g + ¥ (ug) ki—1pti—1 (normalisation);
ypt = cpt + g + U (u) kpt (steady state);
y=c+g+ V(1) k (steady state, in which pt = 1);
y = ¢+ g [steady state, in which ¥ (1) = 0];

Iny + Inpt = In[cpt + g + U (u) kpt] ;

Ui pt, ptc cpty
Iny + =4+ Inpt+ — =In|cpt + g+ ¥ (u) kpt| + + +
Yoy T [ept + 9+ (u) kpt] pt+g+ U (u)kpt | cpt+g+ U (u)kpt
kpt®’ (u) (1) uy U (u) pth_y U (u) kpt,_,

ept+ g+ 0 (u)kpt  ept+g+ U (u)kpt  cpt+ g+ ¥ (u) kpt
_>@+@_£+@+k‘l’/(l)ﬂt+‘I’(1)kt—1+‘1/(1)kptt—1

y pt ypt  ypt ypt ypt ypt
. e copt,  krkuu, (1) kki_y U (1) Ekpt,_
Gt = t+pt+ t (1) =1 (1) kpty_y
Y yu yk y

N N c\ /. N k . N N
— gt +pt, = (y) (ct —&—ptt) + (y) [rkut +U(1) (kt_l —&—ptt_l)} —
N c\ /. N k A A
— g = |- (ct —|—ptt) + | — | rkwrk; — pt,.
Yy Yy
One notices that parameters 7k, y~'c and y~'k respectively model steady state capital return, con-
sumption to output ratio and capital to output ratio, being positive real numbers: 7k, y~tc, ylk € Ry .
12. PARAMETRISATION AND SOLUTION

12.1 Calibration. The log-linearised laws of motion of the economy are consequently the following:

pt, = pt,_1 + pre (permanent technology);
it = ppiit—1 + €nt (noise technology);

t; = piti—1 + 4 (transitory technology);
at = pats_1 + pt, | + 11 (veal production technology);
1-8)(1—¢8)¢ E.# Th_
(1-¢( Eﬂ)¢t+ﬂtt+1+ t—1

_ inflation);
=TT Ane s T (g (iR

o atit) oheai)

Wy = oyl + (L= h) =D ¢ — pt, (real wage);

Iy = (1 +w)rke + ke — pt, | — 0 — pt, (aggregate labour);
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(1-h) (?t + Eifreqn — r%t) N h(é—1+pt_y)  Eiérer +Ept, iy
oc (14 h) (1+h) (14 h)

e = praru—1 + (1 = pra) [afte + Gx, (e — Re—1) +

+éy (9t + pt;) + ¢y, (9 + Pty — Ge—1 — Pt;_1)] (nominal interest rate);

G = Gy + awrk; + o (l%t,l —|—pAtt71) +(1-a) (Yt + Zt> — pt, (aggregate real production);

~

& = — pt, (real consumption);

T, =7 (pt; + t, + 7,) (confidence);
by = ark, + (1 — a) (ﬁ)t + pt, — Yt) — dy (real marginal cost);
k= (1-0) (l%t_l —|—]3tt_1) — pt, (aggregate capital);
“ k N N
G = <c) (& + pt,) + (> rkwrk; — pt, (aggregate capital utilisation).
Y Y
_ Endogenous variables, exogenous shocks and parameters can be thys collected. Endogenous variables:
{Tta ét7 lt7 kt7 gh ﬁ]ta rkta ﬁ-h (bta ptta ﬁta tt> &ta r/’ht}?i()-

Exogenous shocks: {eptt Ents et 120 Parameters: © =
{67 h7 Oc, 01, 57 {a T, & 7, Pny Pty Pas Prns ¢7\'7 d)ﬂ'ga ¢y7 ¢y97 w, Tkv y_lca y_lk} €R++.

Table 3: Calibration

Parameter USA EA Name
15} 0.99 0.99 Discount factor
h 0.69 0.573 Consumption habit
Oc 1.62 1.353 Inter-temporal substitution inverse elasticity
oy 2.45 2.4 Labour inverse elasticity
) 0.025 0.025 Capital depreciation rate
13 0.87 0.908 Price adjustment failure fraction
T 0.66 0.469 Inflation indexation
« 0.24 0.3 Capital in output share
¥i 1=H, M, L +1=H, M, L Volition regime
Pn 0.65 0.65 Noise technology shock persistence
Dt 0.95 0.95 Transitory technology shock persistence
Pa 0.822 0.823 Production technology shock persistence
Prn 0.88 0.961 Interest rate persistence
O 1.48 1.684 Inflation coefficient
O, 0.24 0.14 Inflation gap coefficient
by 0.08 0.099 Output coefficient
Gy, 0.24 0.159 Output gap coefficient
w 3.23 5.917 Capital utilisation adjustment cost inverse elasticity
rk 0.0351 0.0351 Steady state capital return
yle 0.65 0.6 Consumption to output ratio
vk 6.8 6.8 Capital to output ratio

Note. Calibration of parameters for the USA and the EA, in which volition regimes ~; are calibrated as outlined in Table 2.
Such laws of motion can be cast into a linear rational expectations (LRE) model:

Q©O)zy = R(©)x4_1 + Sey,

in which endogenous variables z; € R+, exogenous shocks e; € R"=, companion matrices @ (©), R(0O) €
R™=*"= and exogenous shock matrix S € R™=*"= being composed of zeros and ones.
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In the spirit of the Lucas critique®, whereby space-time independence is necessary for policy robustness,
parametrisation follows calibration over maximum likelihood® or Bayesian estimation'® of parameters and
is according to the aforementioned parameter specifics and common sense at large; its exploitation of Smets
and Wouters [20]’s Bayesian estimation is thus only auxiliary and subordinated to the aforementioned
parameter specifics and common sense at large, as formalised by the pertinent economic literature.

Bayesian estimation of parameters also noteworthily conflicts with log-linearisation of laws of motion,
for its idiosyncratic spirit would require a correspondence in non-linear laws of motion, instead lost before.
An ulterior reason for which calibration is preferred to maximum likelihood or Bayesian estimation of
parameters concerns the desire to merely replicate the empirical SIRF patterns in question all else remaining
equal. Calibration, in the regards of the USA and the EA, is reported in Table 3.

12.2 Unique and stable solution. As per Blanchard and Kahn [8], the LRE model in question
evolves as follows:

Qxy = Rry_1 + Sey «—

Q11 Q12 T1t Ry Ryo T1t—1 Sy
(nml anl) (nzl ><n22) (nzlxl) . (nm anl) (nm ><nI2) (nzlxl) (nmlxns)
— E - R R E S &t
Q21 Q22 tT2t+1 21 22 t—1T2¢ 2
(nagxnay ) (nay X1y ) (nay x1) (Pag Xnay ) (Nay XTny ) (nag x1) (g xne)
in which non-expectational or past endogenous variables T1t =
A A A A A~ A A~ T
[Tt Ct Ut ke Gp Wy vy T Pr Pty Ng tr Gy rAnt} , expectational or future endogenous  variables
. N ~ T T )
Eiroy1 = I:]EtCt+1 Eiftean Etpttﬂ] and exogenous shocks & = [epu Eneen] , that s,
z, € R4 ¢, ¢ R3, Q, R € ROU4EIxA443) 4pnd § e REI4AH3X3. gne notices that sub-matrices
Q21 and Rgs are selector matrices and sub-matrix Qoo = Ro1 = 0, since, Vi = 1, ..., n,,, non-

expectational endogenous variable x1;; = E;_12;, having observed no exogenous shock or no longer being
there uncertainty in period t.
A generalised Schur decomposition solves the generalised eigenvalue problem Qv = ARwv such that

matrices Q = HJgK T and R = HJgK " and generalised eigenvalue \; = ig”’ matrices Jg and Jg

eigenvalues being situated along the respective diagonals.

Matrices Jg and Jg are upper triangular and matrices HH ' = HH ! = KK = KK~! = I; in detail,
matrices Jg, Jg € R™*™ H, K € R%>*™ and KT, H' € R™X"e,

Matrices Jg and Jgr are additionally reordered such that sub-matrices Jgi1 and Jgri1 respectively
contain all eigenvalues smaller than one in modulus; accordingly, sub-matrices Jg22 and Jga2 are reordered
to contain all eigenvalues no smaller than one in modulus: modulus eigenvalues |A Jol( x| <1in Jgi and
Ao | = 1in Jgag for characteristic polynomial Jg (A) = Jq — Al in determinant det [Jg (\)] = 0; modulus
eigenvalues [\, (| < 1in Jri1 and [Aj, x| > 1in Jreo for characteristic polynomial Jg (A) = Jr — Al in
determinant det [Jg (A)] = 0. Formally:

[ Qn Q12 T [ Hypy Hyp ] Jou Jo12 Ku Kz
(nmIanl) (nm1><nz2) o (nmIanl) (nm1><nxz) (n)\lxn)\l) (nAIanz) (n)*l anl) (n)\lxnwz)
Q21 Q22 Ho Hja 0 JQao Ko Ky
L (anXnml) (nm2><nn2) ] L (nm,zxn)\l) (nw2 ><7L>\2) 4L (n)\gan2) ] (”Azxnm) (nxzxnzz) ]
Ry Rig ] [ Hu Hi 7 Jernn Jriz 1| EKn Ko
(nmlxnml) (nmlxan) o (nmlxnh) (nmlxnkz) (n>\1><n>\1) (n>\1><n>\2) (TL>\1 Xnml) (TL>\1><nw2>
Ry Ras Ho, Ha, 0 JRo2 Koy Koo
L (an Xnml) (nm2 Xnn2) ] L (an ><n>\1) (nm2 anz) 1 L (nAQ ><n>\2) 41 (nAQ ><n1,1) (n>\2 ><n,,,2) ]

8https://en.wikipedia.org
Yhttps://en.wikipedia.org
Ohttps://en.wikipedia.org
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The LRE model in question thus continues to evolve as follows:

Qry = Rry_ 1 + Sey —

— HIgK "2y = HIRK "4y + Se; —

— HJgz = HJRzt—1 + Se¢, in which 2z = Kz —»
— Jozt = Jrzi—1 + H' Sep +—

J. J z J J 216 H H S
U [ R b S R R S
- [ Jlgll fﬁlﬁ ] [ ZZ: } + [ g; }5,:7 in whichU=H'S —

— Joi121t + Jgi222t = Jr11214—1 + JRr12%2t—1 + Uig; and
JQoozor = Jraszar—1 + Usey —

— JRo222t—1 = JQa222s — Uy —

— 2011 = Jpgn Qo — JpgaUser —

— 294 = JggngQzQEtzth - J§§2U2Et€t+1 =

= Jra2JQ22 [Traad@aaBizarro — JppUsEreria] — JpgyUsBier 1 =

_ 2 _ _
= (Jp2aJg22) Erzarso — JrayJgaUsBier o — JpapUsBier 1 —

o0
— 29 = lim (JpayJo22) Bezorrs — Y JragJoUsEiesj =0
22t Jggo ( R22 sz) t22t+j z:l R22YQ22U215¢E¢ 45 )
j=
noticing the following facts. Expectational endogenous variable stationarity: lim; o Eiz0:4; < 00.
Eigenvalue instability: lim;_, Jz3, = 0. Exogenous shock zero mean (i.e. white noise): Z;’;l Eiee4; = 0.
For clarity, matrices U; € R™1 %" and Uy € R™*2 %"= Since matrix

Rn f(lz L1t 21t 21t
(n>\1 anl) (n>\1><nm) (n1~1><1) _ (nz1><1) o ("r1><1)
Kgl K22 ]Etx2t+1 22t 0 ’
(nAQXnml) (n>\2><n$2) (nxle) (nzz ><1) ("12X1)

there arise the following manipulations:

0= Korz1t + KooEixor1 —
— flezu = *KzzEtIQtH —
— Biory1 = — K5y Koy = — Loy,
in which Ly = Ky, Koy, provided ny, = n,,, and
21t = K1z + K1oEywor 1 = Ky + Ko (—Kﬁ1K21$1t) =
= (Ku - K12K2_21K21> Ty = (IA{H - K12K2_21K21> 21 = Lz,
in which L1 = Kll - Klgkilkgl.
In detail, condition ny, = n,, signifies that the cardinality of unstable generalised eigenvalues equals
that of expectational endogenous variables, to the end of a unique and stable solution. Indeed, condition

Ny, < Ng, is indicative of indeterminacy and condition ny, > n,, is indicative of no solution. The LRE
model in question consequently finalises its evolution thus: since zo; = 0 and z1; = Lix1y,
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Jou1z1t + Jgi1222e = Jr1121e—1 + Jriz2zze—1 + Urey —
— Jou1z1t = Jru1z1e—1 + U1gg —

— Jou L1z = Jpinlazi—1 + Urgy —

— Jouri = Jruwi—1 + Ly 'Ure, —

— Tt = JélllJRllxltfl + JélllLflUlEt and

E¢zoi41 = —Lox1y = — Lo (JélllJRn!Euq + JélllLflUﬁt) —

1 -1 r—1

L1t JQHJRII 0 T1t—1 JQllLl U1

— = v + i €4
[ Eizoi41 } [ *LQJQlllJRn 0 Ei—172¢ *LQJQ111L11U1 !

T1¢ A 0 T1t-1 B
“— = “—
[ Ezoi4q } [ A2 0 ] [ Ey ot ] + [ By ]Et
— Tt = Al'tfl + BEt.

13. IRF's

13.1 IRF construction. Such a solution proper to the LRE model in question, computed in MATLAB
or OCTAVE by means of CEPREMAP [1]’s dynare, is more specifically identified as the transition or state
equation of a linear time invariant (LTT) state space representation in discrete time, being itself a first order
linear heterogeneous difference equation: Vn > 1, function f : R™ — R"™ such that, Vt € Z, x; = Axy_1+ Bey,
in which states x; € R, inputs ¢; € R"s, companion matrix A € R"**"= and input matrix B € R"=*"=,
It is also a fundamental VAR (1) process, because of companion matrix A’s stability, thereby bearing the
potential to be rewritten as a causal VM A (c0) process:

x¢ = Axy_1 + Bey [fundamental VAR (1)] —
— (I — AL)z; = A(L) 2y = Bey,

in which operator L : R™ — R" such that L = x[lxt,l —

— a2y =A"(L)Be, = Z AL/ Bey = Z A’ Be,y_j [causal VM A (c0)],
=0 =0

since, V|s| < 1 and operator k : R — R, lim,, 0 S = lim, oo Z;l;ol skl = (1 —sk)™" (1 —s"k") =

(1—sk)™", because S — Ssk = (1—sk) S = Z;L:_g sTkI — Z;:_()l SIHRITL = SO0 — gngn = 1 — s7n,

thus, Y72 AL/ = (I — AL)™' = A7 (L) if and only if modulus eigenvalues |\ a(y)| < 1 for characteristic

polynomial A (A) = A — AI in determinant det[A (A)] = 0, which is equivalent to stating if and only if trace
tr (AAT) =320 agjaj; = 30— af; < 0o, whence

8.’Et

86,5_3'

= A B (IRF coefficients).

In fact, first order IRFs are analytically constructed thus: V4§ € N and exogenous shock &; ~ N (07 02) ,
IRF Z,, := Esxsy; — Bt 1244 4]e; = &, in which £ is a realisation of &;.
Assuming that exogenous shock realisation € = o, the following unfolds:

Etxt = Et (A.Ift_l + B€t) = ]Et (A.’Et_l + Bé) = Et (Aast_l + BU) - A$t_1 + BO’,

since E;z;—1 = 241 and E;0 = o (observations),

Exi1 = By (Azy + Beyyq) = Az = A(Azy_1 + Bo) = A%z, + ABo,
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Eixiro = Et (Axi1 + Beryo) = B Az = A (Azxt,l + ABO’) = A3z,_1 + A%Bo,

Eizyy; = Ay, | + AIBo, since, Vj € N4y, Eigry; = 0 (white noise);
Ei_12y = Eyy (Azi—1 + Bey) = Ay,

Ei_12441 = Ey—1 (Azy + Bey) = Axy = A(Axyq) = A2y,

Ei 12442 =Ei1 (Axeqr + Beygo) = Az = A (AQiUtfl) = Az,

Ei 1244 = ATy, | since, Vj € N4y, Ei—16¢4; = 0 (white noise),

whereby 7, = Eyayqj — By_ya4; = A7 2y + AV Bo — A7 e,y = AV Bo such that Z,, = A°Bo =
Bo, T,, = ABo, I,, = A’Bo, ... and Iy, = A’ Bo.

13.2 IRF commentary. The empirical SIRF patterns presented in Table 1 are all replicated by
accounting for all exogenous shocks underlying changes in confidence T, and all volition regimes . This
establishes volition v as the ultimate determiner of fluctuations in real economic activity in the face of
changes in confidence Y,. For clarity, fluctuations in real economic activity refer to its cycle component,
rather its trend component, which instead refers to the economy’s balanced growth or decline path.

Figure 1: USA and EA IRFs
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Note. IRFs for aggregate real production g (y) and real consumption é; (c), relative to the USA and the EA, given exogenous shocks
at a standard deviation of 0.01 in permanent technology €p:+ (ep), transitory technology e+ (et) and noise technology en+ (en), under
a high (black), medium (red) and low (blue) volition regime ~.

A pattern of immediate irreversibility is exhibited by a combination entailing an exogenous shock in
permanent technology €,;; and a high or medium volition regime vg, 7. A pattern of delayed irreversibility
is exhibited by a combination entailing an exogenous shock in permanent technology €, and a low volition
regime ~yy,.

At one order of magnitude below the others, a pattern of immediate reversibility is exhibited by a
combination entailing an exogenous shock in noise technology e,; and a high or medium volition regime
v, M- A pattern of delayed reversibility is exhibited by a combination entailing an exogenous shock in
transitory technology €4 and any volition regime .

The regime of volition «y therefore gives rise to a compromise between endogenous growth and a “boom
and bust” cycle. An exogenous shock in noise technology e, gives rise to a “boom and bust” cycle whenever
the regime of volition v be non-negligible. On the other hand, an exogenous shock in permanent technology
ept¢ in the face of a non-negligible regime of volition « causes endogenous growth.

Correspondingly, a “boom and bust” cycle is avoided in the face of an exogenous shock in noise
technology &,; whenever the regime of volition v be negligible, although avoiding endogenous growth too in
the face of an exogenous shock in permanent technology €ps.
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14. MINIMAL POOR MAN’S INVERTIBILITY CONDITION

14.1 Poor man’s invertibility condition. For a selector matrix suitably composed of zeros and ones
there arises a measurement or observation equation proper to an LTI state space representation in discrete
time: Mxy = MAxy_1 + M Bey — yy = Cxy_1 + Degy, in which selector matrix M € R™*"=  outputs or
observables y; € R™v, companion matrix C € R™*"= and input matrix D € R™*"=. Assume input matrix

. T
D to be invertible and thus square: dimension n, = n. < n, € Ni; in fact, y; = [Tt Gt gjt} . Then,

ys = Cxy_1 4+ Dey —

— Dey =y — Cry_1 —

— =D (y, — Cxy_1) —

—s 2= Axy_1 + BD7! (yr — Cxyq) —

— a2y =(A-BD 'C)ay_1 + BD 'y, = Fx,_1 + BD 'y, —
—a;—Fr; 1= —FL)x; = F(L)x; = BD 'y, —

— 2y =F"'(L)BD 'y, =Y F/L’BD 'y, =) FIBD 'y,_;
j=0 j=0

if and only if modulus eigenvalues [Ap(y)| < 1 for characteristic polynomial F (\) = F—\I in determinant
det [F (A\)] = 0, being Fernandez-Villaverde et alii [12]’s poor man’s invertibility condition (PMIC), which

is equivalent to stating if and only if trace tr (FFT) = Zl =1 fij fﬂ = Z?zj 1 fj < oo, whence

=Cx4_1 + Dey = C’Z FIBDYy,_;_1 + De; [fundamental VAR (c0)],
=0

being a VAR representation of states x; in outputs y;.

14.2 Minimality. For controllability matrix C = [B . ~A”x*1B] and observability matrix O =

[C’ e CA"zfl} " the LTI state space representation is minimal if and only if dimension n, = r¢ = rep. If it
is non-minimal it is then discretionally reduced to minimality as follows:

(i) if dimension n, > r¢ (i.e. non-controllable) one then constructs similarity transformation matrix 7~ =
[Cretn, —re] for vector Zeg = T 'a; and matrices Az = T AT, Bee =T 'B, Cez = CT, C =T~ c
and O,z = OT, in which the first r¢ states are controllable, namely, vector Z.; and matrices A., B., C., C.
and OC, if dimension n, = r¢ (i.e. controllable) one then directly acknowledges vector Z.; and matrices
A., Be, Ce, Cc and O;

( i) if dimension nz, > rs_(i.e. non-observable) one then constructs similarity transformation matrix

= [(’_) ero, Una.—ro ] for vector Zeesr = T ‘e and matrices Aeos = T AT, Beos = T 'Be, Ceos =
C.T, Coos =T~ 1C and O.p5 = O.T, in which the first 73, are controllable and observable (i.e. minimal),
namely, vector Zeot = Tt and matrices Ao = A, Beo = Bm, Ceo = Crm, Ceo = Crp and O = O,y,; if
dimension nz, > rp_ (i.e. controllable and observable, minimal ) one then directly acknowledges vector
Zeot = Ty and matrices Ay = Am, Beo = Bm, Ceo = Cpmy Coo = C and Opp = O,,.

It follows that minimal transition and measurement equations

Tmt = AmTmi—1 + Bréer and
Yt = CrnTmi—1 + Dey,
in which dimension n,, = rc, = ro,,, give rise to minimal fundamental VAR (c0) 4 =
Cn Z;io F,J,'LBmD_lyt,j,l + D¢, for minimal matrix F,, = A,, — B D~ 1C,,.

In minimal LTI state space representations the IRFs of the transition equation and the coefficients of the
VAR representation of states z; in outputs y; are invariant, as especially remarked by Franchi [13]: Vj €
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N,, CA'B = C,,, A}, B,, # 0, from z; = Z;’io AIBey_j —s yp = Cxy_q + Dey = CZ;’;O AV Bey_j + Dey,
and CF'B = C,,F}, B, # 0, from y, = C,, Z;io Fi B D7y, j_1 + De;. Absent loss of generality, one
can therefore conduct suitable evaluations in terms of the minimal poor man’s invertibility condition
(mPMIC).

As borne out by the attendant eigenvalues in the annexed code, the mPMICs for the USA and the EA
hereby computed fail to give rise to a VAR representation of states z; in outputs y; across all three volition
regimes vy except for a medium volition regime 7yy; with regard to the EA.

14.3 Discussion. As implicitly shown by Sims [19], if the mPMIC fails it need not mean that states x;
may not be practically represented in outputs g; by means of VARs, thereby recovering the nature of the
underlying exogenous shocks in the observed endogenous variables under consideration all the same.

In fact, Saccal [18] showed that for any minimal transition equation the VM A (0) representation of
the form y; = De; is almost sure, in all of its empirical futility, whereby the adjunction of other VAR
representations of states x; in outputs vy, is probabilistically negligible. The recovery of the underlying
exogenous shocks in the observed endogenous variables is consequently almost always tied to a structural
model other than that of the transition equation.

The unique and stable solution of the first order approximation of the present NK-DSGE model is
consequently salvaged by recourse to axiomatic abstraction, deeming it logically valid and its hypotheses no
less than probable, which judgement appears to be confirmed by the successful replication of the empirical
SIRF patterns at hand.

15. CONCLUSION

Economic literature exhibits a variety of empirical SIRF patterns in real economic activity in the face of
changes in confidence or sentiment, with particular regard to the USA and the EA. This work successfully
endeavoured to replicate them in the orbit of a NK-DSGE model especially characterised by macroeconomic
agents and derived from start to end. Confidence Y; has been specifically modelled as an endogenous
variable characterised by a coalescence of two technology processes pt; and t;, permanent and transitory,
and one noise process ny, being globally regulated by a degree of volition 7. The first two processes affect
real production technology a; with a lag delay, while the third does not. Short run responses to changes
in confidence Y; are therefore displayed whenever confidence Y; shift real consumption ¢; and aggregate
labour ;. In turn, confidence Y shifts real consumption ¢; and aggregate labour [; whenever volition v be
not infinitesimal. Whenever volition « were infinitesimal, by contrast, exogenous shocks in noise n; would
not cause fluctuations in real economic activity at all.
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APPENDIX

This is the dynare code for a unique and stable solution of the first order approximation of the NK-DSGE
model at hand.

/*A role for confidence: volition regimes and news (Alessandro Saccal) x/
var w 1 ¢ pt rk rn pi y phi a k Upsilon t n; // Endogenous variables

varexo e_pt e_t e_n; // Exogenous shocks

N o O A W N e

parameters sigma_l sigma_c h omega rho_rn phi_pi phi_y phi_pi_g phi_y_g beta tau xi a
rkss alpha c_y k_y rho_a rho_t rho_n gamma; // Parameters

o

9 /+EA parameters

10 rho_t=0.95; // Transitory technology persistence
11 rho_n=0.65; // Noise technology persistence

12 rho_a=0.823; // Production technology persistence
13 gamma=1l; // Volition regime; 1, 0.5, 0.0001

14 beta=0.99; // Discount factor

15 tau=0.469; // Inflation indexation

16 x1=0.908; // Price adjustment failure fraction

17 sigma_l1=2.4; // Labour inverse elasticity

18 sigma_c=1.353; // Inter-temporal substitution inverse elasticity
19 h=0.573; // Consumption habit

20 omega=5.917; // Capital utilisation adjustment cost inverse elasticity
21 rho_rn=0.961; // Interest rate persistence

22 phi_pi=1.684; // Inflation coefficient

23 phi_y=0.099; // Output coefficient

24 phi_pi_g=0.14; // Inflation gap coefficient

25 phi_y _g=0.159; // Output gap coefficient

26 4=0.025; // Capital depreciation rate

27 rkss=0.0351; // Steady state capital return

28 alpha=0.3; // Capital in output share

20 c_y=0.6; // Consumption to output ratio

30 k_y=8.8; // Capital to output ratiox/

31

32 // USA parameters

33 rho_t=0.95; // Transitory technology persistence
34 rho_n=0.65; // Noise technology persistence

35 rho_a=0.822; // Production technology persistence
36 gamma=1; // Volition regime; 1, 0.5, 0.0001

37 beta=0.99; // Discount factor

38 tau=0.66; // Inflation indexation

30 x1=0.87; // Price adjustment failure fraction
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sigma_1=2.45; // Labour inverse elasticity

sigma_c=1.62; // Inter temporal substitution inverse elasticity
h=0.69; // Consumption habit

omega=3.23; // Capital utilisation adjustment cost inverse elasticity
rho_rn=0.88; // Interest rate persistence

phi_pi=1.48; // Inflation coefficient

phi_y=0.08; // Output coefficient

phi_pi_g=0.24; // Inflation gap coefficient

phi_y_g=0.24; // Output gap coefficient

A=0.025; // Capital depreciation rate

rkss=0.0351; // Steady state capital return

alpha=0.24; // Capital in output share

c_y=0.65; // Consumption to output ratio

k_y=6.8; // Capital to output ratio

model (linear) ;

pt=pt (-1) +e_pt; // Permanent technology
t=rho_t*t(-1)+e_t; // Transitory technology
n=rho_nxn(-1)+e_n; // Noise technology
a=rho_axa (-1)+pt (-1)+t(-1); // Production technology

pi=(((1l-xi) * (1-betaxxi))/ ((l+beta*tau) *xi)) xphi+ (beta/ (l+betaxtau)) *xpi (+1)+ (tau/ (l+betaxtau))
// Inflation

w=sigma_lx*1+ (sigma_c/ (1-h))* (c+pt)—(sigma_c+h/ (1-h))*(c(-1)+pt(-1))-Upsilon-pt; // Real wage
1=(l+omega) xrk+k (-1)+pt (-1)-w-pt; // Aggregate labour

c=((1-h)/ (sigma_c* (1+h))) * (Upsilon+pi (+1)-rn)+ (h/ (1+h)) *x (c(=1)+pt (=1))+(1/ (1+h) ) (c(+1)+pt (+1
// Real consumption

rn=rho_rn*rn(-1)+(l-rho_rn) * (phi_pi*pi+phi_pi_g* (pi-pi(-1))+phi_y=* (y+pt)+phi_y_g=* (y+pt-y (-1) -
// Nominal interest rate

y=at+alphaxomega*rk+alphax (k (-1)+pt (-1))+ (1l-alpha) = (Upsilon+l) -pt; // Aggregate real
production

Upsilon=gammax* (pt+t+n); // Confidence

phi=alphaxrk+ (l-alpha) = (w+pt-Upsilon)-a; // Real marginal cost
k=(1-a) x (k (-1)+pt (-1))-pt; // Aggregate capital

y=c_yx* (c+pt) +k_y*rkss+omega*xrk-pt; // Aggregate capital utilisation

end;

initval;

w=0; 1=0; c=0; pt=0; rk=0; rn=0; pi=0; y=0; phi=0; a=0; k=0; Upsilon=0; t=0; n=0;
end;

steady;
check; // Rational expectations stable unique solution check

shocks;

var e_pt; stderr 0.01;
var e_t; stderr 0.01;
var e_n; stderr 0.01;
end;

stoch_simul (irf=40, order=1) c y; // graph_format=(none) and nograph can be added to
omit first order IRF graphs
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*pi(=1);

) ) —pt;

pt (=1)));




102 varobs Upsilon c y;
103 [result, eigenvalue_modulo, A, B, C, D]=ABCD_test (M_, options_, oo_, 0); // 0 can be
changed to 1 for minimality
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