
Munich Personal RePEc Archive

Temporal and design approaches and

yield-weather relationships

Tappi, Marco and Carucci, Federica and Gatta, Giuseppe

and Giuliani, Marcella Michela and Lamonaca, Emilia and

Santeramo, Fabio Gaetano

University of Foggia, University of Tuscia

13 May 2023

Online at https://mpra.ub.uni-muenchen.de/117488/

MPRA Paper No. 117488, posted 06 Jun 2023 06:39 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/117488/


Temporal and design approaches and yield-weather relationships 

 

Tappi, M.1, Carucci, F.2, Gatta, G.1, Giuliani, M.M.1, Lamonaca, E.1, Santeramo, F.G.1 

1 University of Foggia 

2 University of Tuscia 

Abstract 

 

The climate changes and the weather events affect agricultural production and farmers’ income. 

Several strategies may help improving the resilience of farms to climate change, and particular 

mention should be done to the weather index-based crop insurance schemes, as they rely on the yield-

weather relationship. A vast majority of studies investigate the limitation of the weather index 

insurance, due to the complex relationships linking weather events and yields and the difficulty to 

capture them with an index (i.e., the basis risk). The literature has not devoted sufficient attention to 

compare different specifications within the same statistical model in yield-weather estimation. Our 

study, conducted on durum wheat in Italy, shows how the identification (and design) of the 

phenological stages (i.e., temporal specifications) may help capturing or depicting the yield-weather 

relationships. The negative effects of the low temperatures, especially during the early stages of 

durum wheat, is remarkable. Our findings contribute to the debate on the design of triggers in weather 

indexes (e.g., for minimum temperatures), stimulating new research directions to assist stakeholders 

interested in planning agricultural risk management interventions. 
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Introduction 

 

Climate and extreme weather events such as drought, heat, and excess rainfall heavily affect 

agricultural production hampering the smallholder farmers on productivity-enhancing or technologies 

investments (Ceballos et al., 2019; Anghileri et al., 2022). Farmers may improve their resilience to 

climate change by implementing several agroecological practices, e.g., crop diversification, 

maintaining local genetic diversity, soil organic management and water conservation (Altieri et al., 

2015). Vroege and Finger (2020) provided an overview of risk management strategies to cope with 

climate risks, namely: on-farm strategies (e.g., risk prevention as irrigation, shading, pest control, 

financial savings, agricultural and structural diversification) and risk-sharing strategies (e.g., mutual 

funds, agricultural insurance, membership in cooperatives and producer organizations). Among these, 

crop insurance schemes may represent a suitable tool to mitigate unexpected losses and to stabilize 

farmers’ incomes (Di Falco et al., 2014; Shirsath et al., 2019; Vroege and Finger, 2020). In the past 

years, the focus on the weather index-based insurances (WIBIs) to manage climate and extreme 

weather-induced damage to crop has increased (Barnett and Mahul, 2007; Anghileri et al., 2022). In 

contrast to traditional insurance products which provide pay-outs based on yield losses experienced 

by farmers and on physical damage observations, WIBIs are based on an independent, objective, 

transparent, and manipulation free weather index that is heavily related to crop yields, rainfall or 

temperatures, recorded by specific weather stations (or other data sources)) during a certain time 

window. Indemnity is triggered whenever the value of the index exceeds or falls short of a 

predetermined threshold, e.g., deficit or excess rainfall, drought or extreme temperatures that may 

have a significative impact on crop yields (Barnett and Mahul, 2007; Conradt et al., 2015; Dalhaus 

and Finger, 2016; Dalhaus et al., 2018; Belissa et al., 2020; Shirsath et al., 2019; Vroege and Finger, 

2020; Bucheli et al., 2021). WIBIs may play a crucial role in overcoming some of the issues related 

to the traditional indemnity-based insurances, such as adverse selection1, asymmetric information2, 

and moral hazard3 (Conradt et al., 2015; Belissa et al., 2019, Bucheli et al., 2022). However, they 

present a major limit, namely basis risk: farmers may experience severe yield losses without any 

reimbursement (Conradt et al., 2015) or, on the contrary, they may obtain a compensation without 

any yield loss (Heimfarth and Musshoff, 2011) mainly due to the discrepancy between the pay-outs 

triggered by the weather index and actual losses. More specifically, basis risk can be decomposed in 

three parts: (i) spatial (or geographical) basis risk, due to the distance of weather stations from farms; 

 
1 Adverse selection occurs when risk exposed farms tend to subscribe insurances more often (Vroege et al., 2021) 
2 Asymmetric information occurs when farmers and insurers do not have the same information (Santeramo, 2018) 
3 Moral hazard occurs when farms purchasing insurance products are inclined to adopt riskier behaviours (Santeramo 

and Ramsey, 2017) 
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(ii) design basis risk, due to the inadequate choice of index to predict the yield losses; (iii) temporal 

basis risk due to the inaccurate choice of the time-period for index determination (Dalhaus et al., 

2016). Some authors proposed solutions to reduce basis risk. Focusing on spatial basis risk, Norton 

et al., 2013 suggested to ensure multiple weather stations in a single contract as “risk portfolio”, while 

Boyd et al., 2019 and Leppert et al., 2021 showed the advantages of using an interpolation approach 

that includes multiple weather stations into the estimate, rather than relying only on the closest 

available station to farms. Focusing on design basis risk, Abdi et al., 2022, conducted a systematic 

review of the last 20 years on weather index insurance design finding that rainfall and temperature 

indices were prevalent compared them to those based on droughts and floods, vegetation, soil 

moisture, humidity, and sunshine hours. Regarding the temporal basis risk, Dalhaus et al., 2016, and 

Dalhaus et al., 2018, highlighted the importance to consider the phenological observations provided 

by public bodies to catch the vulnerability of specific crop stages to weather events. Conradt et al., 

2015, proposed a more accurately flexible approach to identify crop growing stages rather than fixed 

calendar dates. Afshar et al., 2021 improved the performance of index insurance integrating 

biophysical process-based crop model, phenological monitoring through satellite remote sensing, and 

machine learning techniques). Other studies included simple indexes (e.g., rainfall or temperatures) 

by summing up the weather information within the crop stages in a specific territory (Turvey, 2001; 

Kellner and Musshoff, 2011). Black et al. 2015, investigated the role of temporal aggregation 

satellite-based weather data as crop yields are linked more closely to cumulative weather events than 

to instantaneous, e.g., soil moisture is affected by the accumulation of rainfall over weeks or months. 

Moreover, several authors synthetized different approaches in yield-weather relationships4: 

Auffhammer et al., 2020, identified five pitfalls that may lead to measurement errors in the 

econometric analyses of climate change, also deepening the issues on the disaggregation level of 

weather data (across space and time) and on climate models as global climate models that provide 

long-run predictions of climate; Carter et al., 2018, compared the most used methods (i.e., cross-

sectional and panel regression analysis) to assess the climate impacts on agricultural outcomes; 

Chavas et al., 2019, investigated the weather effects and their long-term impact on yields; Webber et 

al., 2020, used a novel combination of dynamic, processd-based crop model and data-driven machine 

learning approach to investigate the relationship between yield and weather, also considering the crop 

phenology based on a database. Conradt et al., 2015, showed the advantages of quantile regression to 

 
4 We gratefully acknowledge the comment raised by the reviewer. Although our paper shows similarities with cited 

studies on yield-weather relationships which deepened the issues on estimation models (e.g., global climate models, 

cross-sectional and panel regression analysis, quantile regression, long differences, etc.) and on some aspects such as 

nonlinearities, displacement, uncertainty, adaptation, and cross-study comparison, we used the same statistical method 

(i.e., panel regression) to assess how different specifications that also consider different phenological stages may show 

different results on yield-weather assessment.  
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design an effective insurance contract. However, the literature still neglects the role of the temporal 

and design specifications within the same econometric model that may lead to different results in 

yield-weather assessment, i.e., the working principle of index-based insurances. Our study aims to 

assess how different approaches for the phenological stages identifications (i.e., temporal 

specifications) and how different weather variables and combination of thereof (i.e., design 

specifications) within the econometric model may catch further relationships between yields and 

weather conditions otherwise not caught. We focused on durum wheat in Italy, the first world 

producer of pasta from durum and territory highly suited to produce of wheat (De Vita et al., 2007; 

ISTAT, 2020). Crop phenology is very important to evaluate the impacts of extreme weather events, 

e.g., drought and heat during flowering and grain filling stages may lead to heavily yield losses 

(Farooq et al., 2014; Zampieri et al., 2017). Therefore, we identified five phenological stages of 

durum wheat (i.e., starting, development, flowering, maturity, end) using two approaches, i.e., fixed 

time windows and Growing Degree Days (GDD), also including different sowing dates and varieties 

(i.e., early, middle, and late). This is because the timing of a crop’s susceptibility to weather events 

may differ across farms due to the differences in management practices leading to an inaccurate 

estimation of yield losses (Afshar et al., 2021). Furthermore, we included daily weather variables and 

combination of thereof in the econometric model to assess and compare their effects on yearly durum 

wheat yields: temperatures, precipitation, crop evapotranspiration, crop water deficit, and temperature 

range as difference of daily maximum and minimum temperature. In particular, crop 

evapotranspiration and crop water deficit, phenological phases-related and crop-specific variables, 

are very important components to evaluate possible drought stress conditions occurring during growth 

stages, which are the main limiting factors in durum wheat grain yield (Djaman et al., 2018; Zhang 

et al., 2021). Often, the policymakers encourage the participation in crop insurance schemes providing 

large subsidies recognising the gravity of climate changes impacts and investment in adaptation 

strategies (Collier et al., 2016; Santeramo et al., 2016). However, according to a survey conducted in 

2018 by the Institute of Services for the Agricultural Food Market (ISMEA) on risk management 

perceptions of Italian big insured farms, it emerged a low propensity to underwrite weather index 

contracts exists due to the distrust of the objectivity of the indices and parameters used. The deepening 

of the dynamics yield-weather is a key concept in improving the underwriting of insurance contracts, 

therefore, our contribution is at least twofold: first, we emphasize on how differences in design and 

temporal specifications, i.e., comparing different combinations of weather variables (design 

specifications) occurring in susceptible phenological stages of durum wheat (temporal specifications) 

may influence the yields-weather relationships, also highlighting further relationships otherwise not 
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caught; second, we animate the debate on how policymakers may make use of publicly available data 

to calibrate an effective weather index-based insurance. 

 

Data and method 

 

2.1. Empirical yield model  

Our regression model is based on a panel data as a suitable method to assess the impact of climate 

change on agriculture as includes fixed effects to control for unobservable heterogeneity (e.g., soil 

quality or management practices) across the space and time (Tack et al., 2015; Blanc and Schlemder, 

2017). This approach gives an estimate of the short-run response to weather variation (Kolstad and 

Moore, 2020). Merel and Gammans (2021) highlighted that the panel approaches with fixed effects 

widely used in short-run weather impacts estimation may also capture long-run climatic response. 

Our econometric regression is shown below: 

 𝑦𝑖𝑡 = 𝑓(𝑤𝑖𝑡) +  𝜃𝑖𝑡 + 𝜖𝑖𝑡 

 

where 𝑦𝑖𝑡 is the yield over the province (𝑖) and year (𝑡) as function (𝑓) of daily weather variables (𝑤𝑖𝑡), 𝜃𝑖𝑡 capture the fixed effects over the space (i) and time (t), and (𝜖𝑖𝑡) is the error term. Furthermore, 

we designed our econometric model identifying three specifications that include different weather 

variables and combinations of thereof: (i) specification A (baseline), in which the durum wheat yield 

is function of temperatures, precipitation, and their squares; (ii) specification B, in which the durum 

wheat yield is function of temperatures, precipitation, and their squares, crop evapotranspiration, and 

crop water deficit; (iii) specification C, in which the durum wheat yield is function of precipitation 

and its square, crop evapotranspiration, crop water deficit, daily temperature range and its square. We 

included the squares of weather variables to capture the nonlinearity, i.e., the trade-off between 

weather and yields (Blanc and Schlenker, 2020). For each temporal and design specification, we 

adopted the same econometric regression, i.e., multiple panel regression. Generally, multiple 

regression is used to assess the relationship between several independent variables (e.g., weather 

variables) and a dependent variable (e.g., yield). This approach may lead to a more accurate and 

precise understanding of the connections between variables, more specifically, multiple panel 

regression may capture the influence of all the independent variables together as well as separately 

on dependent variable examined rather than simple panel regression (Nageswara Rao, 1983). 

Although gridded datasets provide highly disaggregated weather observations, discrepancy with what 

really occur on the farms may emerge, e.g., adding or removing weather stations, missing values, and 
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the spatial correlation introduced by extrapolation algorithms may create potential biases in the 

econometric analysis (Auffhammer et al., 2020).  

 

2.2. Study area and collected data 

Durum wheat is the main cereal crop in Italy with a production of 4 million of tons cultivated in 1.2 

million of hectares (ISTAT, 2020). Production is concentrated in Southern and Central Italy, while 

Northern Italy produces slightly more than 10 percent of national production. Province of Foggia 

(Southern Italy) is the main durum wheat producer of Italy with 750,000 tons (Figure 1) 

 

Figure 1. Durum wheat Italian production by province 

 

Source: ISTAT, 2020 

 

We collected yearly durum wheat yields data (i.e., total production over area harvested) of 30 main 

durum wheat-producing Italian provinces5 from the National Institute of Statistics (ISTAT), from 

2006 to 2020. Moreover, for the same time-period, we collected daily weather data from Joint 

Research Centre - Agri4Cast Meteorological database of European Commission that includes daily 

weather observations (i.e., temperatures, precipitation, wind speed, vapour pressure, potential 

evapotranspiration, global radiation) from stations interpolated on a 25x25 km grid. We aggregated 

the weather variables by average for the 30 main durum wheat-producing provinces selecting those 

most impactful on the yields (Guasconi et al., 2011): maximum air temperature (T max), minimum 

air temperature (T min), diurnal temperature range (DTR)6, and precipitation (Prec). Moreover, wind 

 
5 The main durum wheat-producing Italian provinces in decreasing order are: Foggia, Campobasso, Palermo, Ancona, 

Potenza, Matera, Enna, Macerata, Avellino, Catania, Ferrara, Caltanissetta, Perugia, Bari, Viterbo, Bologna, Ravenna, 

Brindisi, Siena, Agrigento. Benevento, Grosseto, Pisa, Chieti, Trapani, Teramo, Roma, Barletta-Andria-Trani, Rovigo, 

Pesaro-Urbino (ISTAT, 2020). 
6 Lobell (2007) showed that increasing in diurnal temperature range (i.e., the difference between maximum and 

minimum temperature) may negatively affect rice and maize yields. 
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speed, vapour pressure and potential evapotranspiration variables have been included to calculate 

further variables that may affect the yields: crop evapotranspiration (𝐸𝑇𝑐)7 and crop water deficit 

(CWD)8.Descriptive statistics of collected variables are shown in the table 1: 

 

Table 1.  Descriptive statistic of collected variables 

Variables Obs. Mean Std. Dev. Min Max 

Durum wheat yield (tons/ha) 162,909 35.990 12.603 17 81.424 

T min (°C) 164,370 11.285 6.410 -11.650 29.938 

T max (°C) 164,370 20.123 7.829 -5.336 43.675 

Prec (mm) 164,370 1.686 4.080 0 86.938 𝐸𝑇𝑐 (mm) BGA 54,960 -3.128 2.222 -11.240 7.312 𝐸𝑇𝑐 (mm) FAO 56 108,120 -2.349 2.186 -11.240 7.312 𝐸𝑇𝑐 (mm) GDD 15 68,832 -1.376 1.013 -8.797 1.909 𝐸𝑇𝑐 (mm) GDD 25 67,784 -1.447 1.086 -9.248 1.909 𝐸𝑇𝑐 (mm) GDD EU 54,833 -1.305 1.011 -8.589 1.909 

CWD BGA 54,960 -0.930 9.441 -2046.190 360.241 

CWD FAO 56 108,120 -1.522 7.706 -2046.190 360.241 

CWD GDD 15 68,832 -1.920 5.686 -131.135 600.759 

CWD GDD 25 67,784 -1.882 9.349 -2046.190 309.273 

CWD GDD EU 54,833 -1.984 6.124 -285.070 600.759 

DTR (°C) 164,370 8.838 3.244 0.099 22 

Note: 𝐸𝑇𝑐 and CWD variables are phenological stage specific. BGA identifies the stages provided by Baldoni and Giardini 

(2000), and Angelini (2007); FAO 56 identifies stages provided by FAO Paper no.56; GDD 15, GGD 25, GDD EU 

identify stages calculated through Growing Degree Days approach at different sowing dates, November 15, November 

25, and sowing dates provided by Agri4Cast EU dataset, respectively.  

 

For our purpose, we used data provided by recognised authorities which are available both to public 

bodies and private citizens9 

 

 

 

 
7 The Food and Agriculture Organization (FAO) defines the crop evapotranspiration as “the rate of evapotranspiration 

from an extensive surface of 8 to 15 cm tall, green grass cover of uniform height, actively growing, completely shading 

the ground and not short of water” (Xiang et al., 2020). 
8 Crop water deficit is defined as “consequence of water loss from the leaf as the stomata open to allow the uptake of 

carbon dioxide from the atmosphere for photosynthesis” (Turner, 1986). 
9 We gratefully acknowledge the comment raised by the reviewer. The understanding of yield-weather relationships using 

spatially (i.e., NUTS 3) and temporally (i.e., daily, or yearly) refined data publicly available represents a limit. Although 

the analysis of yield-weather relationships using weather stations at farm-level could be a suitable solution for further 

empirical estimates, the limits associated with the spatial distribution still remain (i.e., private weather station are not 

widely distributed). Moreover, farm-level data are not available to public bodies to plan further policies on agricultural 

risk management. 
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2.3. Impacts of weather conditions on durum wheat yields 

The durum wheat crop is more susceptible to specific weather events in certain phenological stages, 

more specifically, cold sensitivity is higher during the starting and development stages, in which 

temperatures of 0 °C may cause growth arrests and considerable damages, especially when the soil is 

moist (Baldoni and Giardini, 2000; Angelini, 2007). Tack et al., 2015, found that freezing temperature 

in the fall season is one of the biggest drivers of wheat yield losses until 9 percent. Although many 

cultivars have high levels of frost tolerance, cold stress (<0 °C) during the vegetative stage may lead 

to a reduction in the rate of photosynthesis or even leaf, root, and plant death, also threatening seedling 

survival (Whaley et al., 2004; Barlow et al., 2015). Moreover, the flowering stage is susceptible to 

frost (Baldoni and Giardini, 2000; Makinen et al., 2018). Heat and drought occurring in the flowering 

and grain-filling stages (i.e., maturity-end) may lead leaf senescence, pollen sterility, oxidative 

damages, reduction in photosynthesis, adversely affecting the yields (Farooq et al., 2014; Rezaei et 

al., 2015; Zampieri et al., 2017; Makinen et al., 2018). High temperatures during Spring season (> 

34°C) concomitant with flowering and grain filling stages may reduce yields until 7.6 percent (Tack 

et al., 2015). Moreover, higher temperatures increase the evapotranspiration demand, reduces the crop 

water use efficiency, causes water stress or its scarcity, and is highly related to yield losses (Saadi et 

al., 2015; Zampieri et al., 2017). Additionally, heavy rainfall may cause significant production losses 

due to the proliferation of pathogens, nutrient leaching, soil erosion, inhibition of oxygen uptake by 

roots (i.e., hypoxia or anoxia), waterlogging, and lodging (Zampieri et al., 2017; Makinen et al., 

2018). However, rainfall in the Spring may partially offset negative warming effects on yields (Tack 

et al., 2015). 

 

2.4. Phenological stages identification 

We identified five phenological stages of durum wheat: (i) starting, from sowing to leaf development; 

(ii) development, from leaf development to anthesis; (iii) flowering, from anthesis to seed fill; (iv) 

maturity, from seed fill to dough stage; (v) end, maturity complete. Each phase has been identified 

through two approaches: (a) fixed time windows provided by Baldoni and Giardini, 2000, and 

Angelini, 2007, which indicated the time-period of crop phenology; (b) GDD, i.e., the summatory of 

mean daily temperatures starting from sowing dates. This is computed by assigning a heat value to 

each day, giving an estimate of the amount of seasonal growth of plants, and is commonly used to 

predict events and schedule management activities (Miller et al., 2001). The formers are reported in 

the table 4, while the latter in the table 2:  

 

 



8 

 

Table 2. Phenological stages of durum wheat identified by fixed time windows 

Stage BGA (Macro-region) FAO 56 

Starting 

2nd - 3rd decade of October (Northern Italy) 

1st - 2nd decade of November (Center of Italy) 

2nd - 3rd decade of November (Southern Italy and Islands)  

November 15 – December 14 

Development 2nd - 3rd decade of March – by the end of April December 15 – May 03 

Flowering 2nd - 3rd decade of May May 04 – May 14 

Maturity  3rd decade of May – by the end of June May 15 – June 12 

End 3rd decade of June –1st decade of July June 13 – July 12 

Note: BGA identifies phenological stages provided by Baldoni and Giardini (2000), and Angelini (2007). Flowering stage 

has been identified in FAO 56 as the first 10 days of maturity stage (Angelini, 2007). 

 

For GDD calculation, we considered the following sowing dates: November 15 (Allen et al., 1998), 

November 25 (10-days shift)10, and sowing dates of wheat provided by EU JRC Agri4Cast dataset 

for each province investigated, therefore, GDD 15/25/EU will identify the sowing dates for the 

calculation of GDD. Furthermore, we included three durum wheat varieties (i.e., early, middle, and 

late) based on GDD centigrade ranges to assess the responsiveness of varieties to change in weather 

in specific phenological stages.  

 

Table 3.  Durum wheat varieties and phenological stages identified by GDD ranges 

Stage  Growing Degree Days (°C) 

 Early varieties Middle varieties Late varieties 

Starting  0-169  0-189  0-208  

Development  169-807 189-854  208-901  

Flowering  807-1068  854-1121  901-1174  

Maturity  1068-1434  1121-1495  1174-1556  

End  1434-1538  1495-1602  1556-1665  

Notes. GDD 15/25/Agri4Cast identifies the sowing dates for the calculation of Growing Degree Days: November 15 

(GDD 15); November 25 (GDD 25); sowing dates provided by Agri4Cast dataset.  

Source: Allen et al., 1998; Miller et al., 2021; Agri4Cast winter soft wheat phenological database for Europe. 

 

Results  

Our main results show irregularities in high temperatures and precipitation among different 

specifications: pooled seems to catch a nonlinear negative effect of maximum temperatures on yields, 

while panels, on the contrary, catches a nonlinear positive effect. Precipitation seems to have a 

 
10 Nowadays, the wheat cultivation practices commonly in use postpone sowing date to response to climate change; in 

this way would be possible to increase the received precipitation by the crop during the early growth phase (Nouri et al., 

2017). 
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nonlinear positive impact on yields both in pooled specification and in panels that include fixed 

effects by year, exclusively (table 4).  

 

Table 4. General regressions on yields-weather relationships  

VARIABLES Pooled Panel Panel year FE Panel time trend Panel 

Year FE Prov FE 

Panel 

Prov FE 

Time trend 

       

T min -0.87797*** -0.08726*** -0.03715*** -0.07950*** -0.03692*** -0.07926*** 

 (0.02471) (0.01063) (0.01008) (0.01058) (0.01007) (0.01058) 

(T min)2 -0.00182* 0.00310*** 0.00103** 0.00215*** 0.00103** 0.00215*** 

 (0.00103) (0.00044) (0.00042) (0.00044) (0.00042) (0.00044) 

T max -0.47194*** 0.08261*** 0.04532*** 0.05839*** 0.04546*** 0.05854*** 

 (0.02922) (0.01248) (0.01185) (0.01244) (0.01184) (0.01243) 

(T max)2 0.02647*** -0.00159*** -0.00080*** -0.00077** -0.00081*** -0.00077** 

 (0.00070) (0.00030) (0.00029) (0.00030) (0.00029) (0.00030) 

Prec 0.44666*** -0.00143 0.01133* -0.00071 0.01120* -0.00085 

 (0.01479) (0.00636) (0.00603) (0.00633) (0.00603) (0.00633) 

(Prec)2 -0.00810*** 0.00004 -0.00041* -0.00004 -0.00041* -0.00004 

 (0.00053) (0.00023) (0.00021) (0.00022) (0.00021) (0.00022) 

year FE   Yes  Yes  

prov FE     Yes Yes 

year    Yes  Yes 

Obs. 162,909 162,909 162,909 162,909 162,909 162,909 

No. of prov  30 30 30 30 30 

Notes: we also provided stand-alone estimations for each weather variables. Although some relationships are captured 

through the analyses of a single independent variable, multiple regression that includes multiple weather variables 

considers their combined effect on yields since it can capture the effects of temperatures (both minimum and maximum), 

otherwise not caught by single variable analyses, which represent the main challenge of grain producers under climate 

change scenarios (Barlow et al., 2015). 

  

Focusing on nonlinear effects of temperatures in the specification which control by fixed effects and 

time trend, it emerged that low temperature negatively affects durum wheat yield until 19 °C, while 

high temperatures positively affect yields until 39 °C11. In general, the results highlight a strong 

relationship between durum wheat yields and weather variables, more specifically, low temperatures 

negatively affect the yields, while high temperatures seem to have a positive effect, both in a nonlinear 

way. According to the literature, frost during the crop cycle of wheat may cause spikelets death and 

limited internode extension leading to yield losses (Whaley et al., 2004), while heat stress may affect 

both quality and grain yields up to 50% due to rapidly senesced of leaves (Asseng et al., 2011). 

Changing in design (i.e., including further agrometeorological variables such as 𝐸𝑇𝑐, CWD, and DTR 

to assess yields-weather relationships) and in temporal specifications (i.e., using different approaches 

to identify the phenological stages also related to 𝐸𝑇𝑐) of our econometric model seems to have no 

effect on the negative relationship low temperatures-yields and on the positive relationship 𝐸𝑇𝑐-

yields. However, the positive effects of high temperatures and the negative effects of precipitation on 

 
11 The thresholds have been calculated by turning point method. 
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yields are strongly related to the design of specifications as they can be captured only in FAO 56 (i.e., 

specification B) and in GDD EU (i.e., specifications B and C), respectively (Table 5).  
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Table 5. Relationship among durum wheat yields and weather conditions using different temporal and design specifications 

  BGA FAO 56 GDD 15 GDD 25 GDD EU 

 Baseline  B C B C B C B C B C 

            

T min -0.07926*** -0.05365**  -0.07592***  -0.05392***  -0.04081**  -0.05372***  

 (0.01058) (0.02432)  (0.01202)  (0.01595)  (0.01602)  (0.01804)  

(T min)2 0.00215*** 0.00133  0.00219***  0.00021  -0.00101  0.00052  

 (0.00044) (0.00101)  (0.00062)  (0.00116)  (0.00115)  (0.00137)  

T max 0.05854*** 0.02770  0.03399**  0.02017  -0.01226  -0.00448  

 (0.01243) (0.02962)  (0.01491)  (0.02326)  (0.02248)  (0.02609)  

(T max)2 -0.00077** 0.00013  0.00025  0.00111  0.00236***  0.00231**  

 (0.00030) (0.00069)  (0.00042)  (0.00082)  (0.00077)  (0.00093)  

DTR   0.01593  0.03735***  0.04951***  0.04290***  0.03904*** 

   (0.01376)  (0.00887)  (0.01127)  (0.01139)  (0.01315) 

DTR2   0.00044*  0.00012  0.00004  0.00042  0.00069 

   (0.00026)  (0.00021)  (0.00038)  (0.00037)  (0.00044) 

(Prec) -0.00085 -0.00612 -0.00780 -0.00502 -0.00936 -0.00411 -0.00557 -0.00983 -0.01178 -0.02373* -0.02580** 

 (0.00633) (0.01217) (0.01213) (0.00829) (0.00825) (0.01085) (0.01081) (0.01015) (0.01013) (0.01250) (0.01244) 

(Prec)2 -0.00004 -0.00039 -0.00034 -0.00020 -0.00010 -0.00008 -0.00007 0.00003 0.00006 0.00039 0.00041 

 (0.00022) (0.00044) (0.00044) (0.00031) (0.00031) (0.00035) (0.00035) (0.00038) (0.00038) (0.00040) (0.00039) 

ETc  0.05072*** 0.04162*** 0.07332*** 0.04434*** 0.12368*** 0.11906*** 0.12728*** 0.12684*** 0.16193*** 0.14932*** 

  (0.01396) (0.01304) (0.01312) (0.01165) (0.02567) (0.02528) (0.02500) (0.02434) (0.03137) (0.03073) 

CWD  -0.00282 -0.00284 -0.00113 -0.00166 0.00020 -0.00062 -0.00106 -0.00152 0.00168 0.00058 

  (0.00248) (0.00247) (0.00238) (0.00237) (0.00573) (0.00570) (0.00248) (0.00248) (0.00616) (0.00613) 

Obs. 162,909 54,472 54,472 107,159 107,159 68,299 68,299 67,271 67,271 54,300 54,300 

Notes: temperatures are not shown in the specification C due to the collinearity with daily range temperature variable which seems to have a positive effect on yields. We also 

provided an assessment of quality of estimation through R2 measurement. The inclusion of variables is slightly increasing the R2, in other terms, the R2 of the restricted 

specifications never exceed the R2 of unrestricted.
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In terms of phenological stages (Tables 9-13 in Appendix), our results show high susceptibility for 

any change in design and temporal specifications. Interesting evidence emerged, e.g., in starting stage 

(table 9 in Appendix), minimum and maximum temperatures seem to have negative and positive 

nonlinear effects on yields, respectively, both in FAO 56 and in GDD 15 which share the same sowing 

date (i.e., November 15). According to Baldoni and Giardini (2000), low temperatures during the first 

stages, especially in conditions of high humidity, may cause major damages. The implication is that 

the choice of sowing date is relevant because it can capture temperature relationships regardless of 

the approach used to identify starting stage. To confirm this, shifting the sowing dates by 10 days 

using the same approach (i.e., GDD 15 and GDD 25), different evidence emerged, i.e., the effect of 

low temperatures is captured only in GDD 15. High temperatures seem to have no effect in 

development stage (table 10 in Appendix), and irregularities emerged in BGA which captures the 

opposite relationship of low temperature and precipitation to the other specifications and, likewise, 

for DTR. Moreover, using the same temporal approach (i.e., GDD) but changing the sowing dates, 

the negative effect of low temperatures is always captured.. The effect of 𝐸𝑇𝑐 on yields is positive 

and it is independent of the approaches used. Again, it highlights that any change in the design or 

temporal approach to assess the effects of weather variables on yields may lead to different results, 

and that sowing dates are relevant. Precipitation seems to have no effect in the flowering stage (table 

11), while regularities emerge among design approaches, within the temporal specifications: the 

effects of temperatures and 𝐸𝑇𝑐 on yields are the same among A-B, and B-C specifications. However, 

irregularities emerge among temporal approaches: high temperatures positively affect the yields 

except in GDD EU where, according to the literature (Farooq et al., 2014; Zampieri et al., 2017), the 

relationship is negative. Temporal and design approaches heavily affect the relationship yields-

weather in maturity stage (table 12): the negative effect of low temperatures and precipitation is 

captured only in BGA and GDD EU, respectively, while the effect of high temperature is captured 

both in FAO 56 and GDD 15, although there are irregularities between specification. Moreover, the 

negative effect of cws is shown only in BGA. Finally, DTR seems to have a nonlinear negative effect 

on yields in the end stage, while BGA specifications capture more relationships yields-weather than 

others(table 13).  

Focusing on durum wheat varieties (table 6), starting from the same sowing date (i.e., November 15) 

and approach (i.e., GDD), it emerged that the relationships yields-weather is not affected by the 

variety in starting, development, and flowering stages. However, maturity and end stages showed 

clear differences in catching relationships. More specifically, late varieties in maturity stage and early 

varieties in end stage may catch the negative relationship of high temperature on yields. In general, 

low temperatures seem to have a negative effect during the early stages (i.e., starting and 



13 

 

development), while the negative effect of high temperatures is always caught during the flowering 

phase, regardless of the varieties (Farooq et al., 2014; Rezaei et al., 2015; Zampieri et al., 2017; 

Makinen et al., 2018). 
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Table 6. Relationships among durum wheat yields and weather conditions among durum wheat varieties during crop cycle 

 Starting Development Flowering Maturity End 

 early middle late early middle late early middle late early middle late early middle late 

T min -0.15404* -0.16897** -0.17878** -0.07727*** -0.07318*** -0.06639*** 0.08320 0.10570 0.09917 0.07934 0.08918 0.04993 0.24944 0.04270 0.32460 

 (0.08242) (0.07602) (0.07034) (0.02191) (0.02160) (0.02144) (0.06113) (0.06890) (0.07273) (0.08097) (0.08439) (0.08996) (0.21432) (0.22877) (0.27129) 

(T min)2 0.00685 0.00678 0.00663 -0.00117 -0.00090 -0.00067 -0.00298 -0.00565 -0.00637 -0.00749 -0.00702 -0.00529 -0.01452 -0.00608 -0.01378 

 (0.00548) (0.00511) (0.00479) (0.00214) (0.00211) (0.00209) (0.00496) (0.00534) (0.00542) (0.00497) (0.00494) (0.00505) (0.01114) (0.01147) (0.01283) 

T max 0.31774** 0.23426* 0.25097* 0.06570 0.03823 0.02060 -0.25329*** -0.29323*** -0.17960** -0.01475 -0.05627 -0.18812* -0.68208*** -0.20209 -0.05940 

 (0.14581) (0.13782) (0.13102) (0.04244) (0.04118) (0.03986) (0.07862) (0.08304) (0.08507) (0.09672) (0.10024) (0.10657) (0.23904) (0.27092) (0.29382) 

(T max)2 -0.00689 -0.00378 -0.00433 0.00010 0.00128 0.00178 0.01152*** 0.01160*** 0.00729*** 0.00064 0.00176 0.00684** 0.02239*** 0.01259* 0.00528 

 (0.00525) (0.00500) (0.00479) (0.00196) (0.00187) (0.00178) (0.00272) (0.00276) (0.00275) (0.00281) (0.00284) (0.00293) (0.00621) (0.00686) (0.00713) 

Prec  -0.04284 -0.04768* -0.04354 -0.01746 -0.01864 -0.01563 -0.00884 0.01779 0.00761 -0.03290 -0.08944** -0.08828** -0.30095*** 0.07902 0.08993 

 (0.02985) (0.02861) (0.02745) (0.01532) (0.01494) (0.01474) (0.02866) (0.03065) (0.03137) (0.03349) (0.03481) (0.03541) (0.08871) (0.06774) (0.06887) 

(Prec)2  0.00124 0.00142 0.00142* -0.00013 -0.00002 -0.00006 0.00066 -0.00025 -0.00012 0.00081 0.00194 0.00177 0.01290*** -0.00287 -0.00215 

 (0.00091) (0.00088) (0.00086) (0.00053) (0.00052) (0.00052) (0.00105) (0.00115) (0.00117) (0.00143) (0.00151) (0.00159) (0.00482) (0.00300) (0.00278) 

prov FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 4,891 5,576 6,231 27,951 28,963 29,924 8,511 8,320 8,173 9,341 9,178 9,030 2,272 2,263 2,211 

No. of prov 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

Notes: phenological stages have been identified by GDD EU. 
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We also provided further estimates that include spatial clusters (i.e., coastal and internal provinces, 

northern and southern provinces) to assess whether the location may affect the relationship between 

durum wheat yield and weather conditions12. The results remain robust among the specifications and 

the effects of weather variables on yields are statistically significant (table 14, in the online appendix). 

More specifically, clustering for coastal provinces, the yield-weather relationships are captured only 

in Northern provinces. Clustering for coastal and internal provinces, the yield-weather relationships 

are captured only in Northern provinces. Clustering for northern and southern provinces, the effects 

of low temperatures on yields is captured both in coastal and internal provinces, while the effects of 

high temperatures is captured in the internal provinces, and the effect of precipitation is captured only 

in the coastal provinces. These results (showed in the table 15, online appendix) suggest that the 

weather indexes could be different based on the spatial locations, in other words, some weather 

variables are more important in some provinces than others, despite the relationships are stable 

between specifications.  

 

Conclusions 

 

Weather conditions severely affect crop yields. Crop insurance schemes may mitigate unexpected 

yield losses, thus stabilizing farmers’ incomes (Di Falco et al., 2014; Shirsath et al., 2019; Vroege 

and Finger, 2020). In particular, WIBI, which’s working principle is based on yield-weather 

relationship, seems to be a promising risk management tool (Barnett and Mahul, 2007; Anghileri et 

al., 2022) although it presents a major limitation (i.e., basis risk). Some authors provide solutions to 

reduce the basis risk (Norton et al., 2013; Conradt et al., 2015; Dalhaus et al., 2016; Dalhaus et al., 

2018; Boyd et al., 2019; Afshar et al., 2021; Leppert et al., 2021). Other authors provided empirical 

evidence on approaches to yield-weather assessment (Carter et al., 2018; Chavas et al., 2019; 

Auffhammer et al., 2020). However, literature is still lacking in studies that compare specifications 

within the same econometric model to assess yield-weather relationships. Focusing on durum wheat 

in Italy, we investigate how weather events that occur in phenological stages identified by different 

approaches (i.e., temporal specifications) and how different weather variables and combination of 

thereof (i.e., design specifications) of the econometric model may lead to different results in the yield-

weather assessment. We found several connections among weather and yields. The evidence suggests 

that the number of observations is not related to the number of yields-weather relationships, e.g., 

comparing starting and development stages characterized by 4,520 and 22,746 observations, 

 
12 We gratefully acknowledge the comment raised by the reviewer. 
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respectively, it emerged that the former captured more. In general, 𝐸𝑇𝑐 and DTR positively affect the 

yields in all phenological stages, and they are the only variables that do not seem to be affected by 

changes in temporal and design specifications. The choice of sowing dates may play a crucial role: a 

10-days shift, using the same temporal and design approaches, may lead to a different estimation of 

yield losses due to changes in weather. Clustering for spatial dummies among provinces, it emerged 

that some weather variables are more important in some provinces than others. This should be 

considered by policymakers to plan risk management tools as weather insurances based on indexes 

which may be different depending on the location. Another implication is that the choice of 

specifications of the econometric model is very important to catch the relationships weather-yields. 

The negative effect of low temperatures, especially during the early stages, is always caught, 

regardless of specifications. GDD EU provided by Agri4Cast dataset seems to be the best model that 

is likely closest to what could happen on farms supported by the agronomic literature: minimum 

temperatures negatively affect the yields when they occur in the starting and development stages 

(Baldoni and Giardini, 2000; Whaley et al., 2004; Angelini, 2007; Barlow et al., 2015), maximum 

temperatures negatively affect the yields when they occur in the flowering stage (Farooq et al., 2014; 

Rezaei et al., 2015; Zampieri et al., 2017; Makinen et al., 2018), heavily precipitation negatively 

affect the yields when it occurs in the maturity stage (Zampieri et al., 2017; Makinen et al., 2018). 

Changes in design and temporal specifications seem to have no effect on the negative relationship 

low temperatures-yields and on the positive relationship 𝐸𝑇𝑐-yields. This result may contribute to 

establish a triggering index (i.e., for minimum temperatures) that represent a main challenge for 

agricultural policy focused on agricultural risk management. Given the importance of weather 

conditions on crop yields, financial insurance for extreme weather events is a key challenge to manage 

the risks threatening smallholder farmers. Therefore, understanding the dynamics of yields-weather 

relationship is essential to calibrate the WIBIs, and increased both its effectiveness and attractiveness. 

Policymakers, who already provide large subsidies to improve crop insurance participation, may 

make use of publicly available data (i.e., Agri4Cast datasets) to develop an effective tool for 

agricultural risk management. Unfortunately, farm-level weather data are not available to public 

bodies. Although the analyses of more refined data (i.e., at farm level) could be a suitable solution 

for further empirical estimates also representing a next step of our approach, the limits related to the 

spatial distribution of the weather station still remain (i.e., private weather stations are not widely 

distributed). 
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Online appendix 

 

Below the method for 𝐸𝑇𝑐 identification: 

 𝐸𝑇𝑐 is highly crop- and phenological stage-specific and it is one of the main factors determining how 

much precipitation remains in the soil available for the crops (Enenkel et al., 2019). 𝐸𝑇𝑐 has been 

identified by the following formula: 

 𝐸𝑇𝑐 =  𝑘𝑐 ∗  𝐸𝑇0 

 

where, 𝑘𝑐 is the crop coefficient specific (i.e., property of plant used in predicting evapotranspiration) 

for durum wheat and 𝐸𝑇0 is the daily potential evapotranspiration (i.e., amount of water that would 

be evaporated and transpired by a specific crop) included into Agri4Cast dataset.  

 

We identified 𝑘𝑐 variable through the following formula proposed by Allen et al., 1998 for the 

correction of climatic factors: 𝑘𝑐 = 𝑘𝑐(𝑇𝑎𝑏) + [0.04 (𝑢2 − 2) − 0.004 (𝑅𝐻𝑚𝑖𝑛 − 45)] (ℎ3)0.3
 

where  𝐾𝑐(𝑇𝑎𝑏) is a table crop coefficient highly related to each phenological stages (table 7), 𝑢2 is 

wind speed at 2 meters high, 𝑅𝐻𝑚𝑖𝑛 is mean value of minimum daily relative humidity, and ℎ is plant 

height.  

 

Table 7. Crop coefficient values (𝐾𝑐(𝑇𝑎𝑏)) by phenological stage of durum wheat 

 Starting Development Flowering Maturity End 𝐾𝑐(𝑇𝑎𝑏) 0.7 0.7 1.15 1.15 0.30 

Source: Allen et al., 1998. Flowering is identified as the first 10-days of maturity stage (Angelini, 2007). 

 

Since Agri4Cast dataset includes wind speed variable at 10 meters high (𝑢10), we used the following 

formula to convert 𝑢10 in 𝑢2: 𝑢2 =  𝑢10 ∗ 4.87ln[67.8 ∗ (10 − 5.42)] 
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Moreover, since Agri4Cast dataset includes vapour pressure (𝑣𝑝) variable, we used the following 

formulas (Wang et al., 2007; Suzuki et al., 2012) to calculate saturated vapour pressure (formula 1) 

and thus to identify the relative humidity variable (formula 2):  

 

Formula 1. Saturated vapour pressure (𝑠𝑣𝑝) calculation 𝑠𝑣𝑝 = 0.6108 ∗ 𝐸𝑥𝑝 17.27 ∗ 𝑎𝑣𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑣𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 237.3  
 

Formula 2. Relative humidity (𝑅𝐻) calculation 𝑅𝐻 = 𝑣𝑝𝑠𝑣𝑝 ∗ 100 

 

The heights for the growing stages of durum wheat are shown below (table 8): 

 

Table 8. Wheat height by phenological stage 

 Starting Development Flowering Maturity End 

Plant heights (meters) 0.2 0.5 1.00 1.00 1.00 

Source: Song et al., 2019 
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Table 9. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in starting stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.07707 -0.03676  -0.14455*** -0.12045***  -0.18915*** -0.17006***  0.00047 0.03226  -0.16897** -0.13179*  

 (0.09958) (0.10202)  (0.04170) (0.04260)  (0.05257) (0.05399)  (0.03756) (0.03948)  (0.07602) (0.07763)  

(T min)2 -0.00455 -0.00614  0.00597** 0.00498*  0.01298*** 0.01191***  -0.00735** -0.00895***  0.00678 0.00596  

 (0.00565) (0.00575)  (0.00288) (0.00291)  (0.00364) (0.00368)  (0.00317) (0.00322)  (0.00511) (0.00514)  

T max -0.10743 -0.12262  0.18507** 0.15493*  0.33811*** 0.31198***  0.16984** 0.11281  0.23426* 0.20127  

 (0.17007) (0.17425)  (0.07913) (0.08040)  (0.09905) (0.10026)  (0.07360) (0.07605)  (0.13782) (0.13915)  

(T max)2 0.00706 0.00826  -0.00596** -0.00449  -0.01237*** -0.01125***  -0.00562* -0.00266  -0.00378 -0.00166  

 (0.00561) (0.00574)  (0.00296) (0.00301)  (0.00375) (0.00379)  (0.00339) (0.00352)  (0.00500) (0.00509)  

DTR   0.11978**   0.09014***   0.07863*   0.02376   -0.00044 

   (0.06052)   (0.03088)   (0.04162)   (0.03477)   (0.05367) 

DTR2   0.00063   -0.00222*   -0.00306*   0.00224   0.00495** 

   (0.00237)   (0.00132)   (0.00174)   (0.00170)   (0.00229) 

Prec 0.05852** 0.08664 0.06849 0.02213 0.08883** 0.09531*** 0.00823 0.07888* 0.09914** 0.03043 0.14545*** 0.15287*** -0.04768* -0.01368 0.00543 

 (0.02814) (0.06061) (0.05951) (0.01870) (0.03449) (0.03398) (0.02496) (0.04493) (0.04444) (0.02651) (0.05115) (0.04975) (0.02861) (0.06048) (0.05992) 

(Prec)2 -0.00148* -0.00171** -0.00173** -0.00073 -0.00101 -0.00103 -0.00034 -0.00053 -0.00062 -0.00107 -0.00157* -0.00164* 0.00142 0.00114 0.00108 

 (0.00077) (0.00078) (0.00078) (0.00062) (0.00063) (0.00063) (0.00079) (0.00080) (0.00080) (0.00092) (0.00093) (0.00093) (0.00088) (0.00089) (0.00089) 

ETc  1.60408** 1.68510**  0.95394** 0.85173**  0.64023 0.18005  1.47130** 1.94526***  1.81301** 1.45603** 

  (0.71628) (0.71445)  (0.41759) (0.40811)  (0.63563) (0.61859)  (0.61330) (0.59757)  (0.74246) (0.72742) 

CWD  0.01058 -0.00349  0.03380** 0.03738**  0.03800* 0.04891**  0.05105** 0.05375**  0.01203 0.02275 

  (0.03751) (0.03643)  (0.01674) (0.01642)  (0.02099) (0.02071)  (0.02174) (0.02115)  (0.03341) (0.03309) 

Obs. 4,520 4,520 4,520 13,380 13,380 13,380 7,472 7,472 7,472 9,342 9,342 9,342 5,576 5,576 5,576 

 

Focusing on the starting stage, FAO 56 and GDD 15 are the specifications which capture more relationships. In general, minimum temperatures have 

a nonlinear negative effect on yields, while maximum temperatures showed irregularities: their impact on yields seems to be positive in FAO 56 and 

GDD 15 specifications and negative in GDD 25 specifications. Precipitation, evapotranspiration crop water deficit and temperature range seem to 

have positive effects on yields among specifications. The interesting evidence is that choice of sowing date is relevant because it can capture 

temperature relationships regardless of the approach used to identify the starting stage: shifting the sowing dates by 10 days using the same temporal 

approach (i.e., GDD 15 and GDD 25), different evidence emerged, i.e., the effect of low temperatures is captured only in GDD 15.  
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Table 10. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in development stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min 0.04932 0.09701**  -0.05969*** -0.04633***  -0.05224*** -0.04028**  -0.07089*** -0.05924***  -0.07318*** -0.06211***  

 (0.04598) (0.04692)  (0.01581) (0.01596)  (0.01929) (0.01954)  (0.02069) (0.02097)  (0.02160) (0.02186)  

(T min)2 -0.00270 -0.00498*  0.00136 0.00061  -0.00413** -0.00511***  0.00011 -0.00068  -0.00090 -0.00210  

 (0.00277) (0.00281)  (0.00116) (0.00117)  (0.00171) (0.00173)  (0.00185) (0.00188)  (0.00211) (0.00214)  

T max 0.00010 0.07379  0.02729 0.01204  0.00387 -0.01970  -0.01202 -0.02930  0.03823 0.00814  

 (0.06146) (0.06569)  (0.02270) (0.02360)  (0.03472) (0.03566)  (0.03492) (0.03587)  (0.04118) (0.04219)  

(T max)2 0.00060 -0.00081  0.00015 0.00151*  0.00269* 0.00440***  0.00259* 0.00403***  0.00128 0.00327*  

 (0.00178) (0.00187)  (0.00078) (0.00082)  (0.00150) (0.00157)  (0.00144) (0.00150)  (0.00187) (0.00196)  

DTR   -0.06203***   0.02928**   0.06807***   0.05656***   0.07059*** 

   (0.02286)   (0.01181)   (0.01596)   (0.01629)   (0.01799) 

DTR2   0.00305***   0.00088**   0.00081   0.00044   0.00044 

   (0.00067)   (0.00042)   (0.00076)   (0.00074)   (0.00090) 

Prec -0.03440* -0.02545 -0.00537 -0.01655 0.02867* 0.02511 -0.01122 0.05282** 0.03626 -0.02074 0.02424 0.01177 -0.01864 0.05558* 0.04522 

 (0.02035) (0.03980) (0.03860) (0.01032) (0.01576) (0.01531) (0.01428) (0.02682) (0.02625) (0.01369) (0.02551) (0.02501) (0.01494) (0.03026) (0.02956) 

(Prec)2 0.00057 0.00044 0.00074 0.00023 0.00027 0.00028 -0.00010 -0.00024 -0.00027 0.00040 0.00031 0.00029 -0.00002 -0.00005 -0.00006 

 (0.00092) (0.00107) (0.00105) (0.00041) (0.00041) (0.00041) (0.00055) (0.00056) (0.00056) (0.00051) (0.00052) (0.00052) (0.00052) (0.00052) (0.00052) 

ETc  0.46315*** 0.41526***  0.26413*** 0.25985***  0.39320*** 0.43532***  0.34540*** 0.35045***  0.38343*** 0.38349*** 

  (0.07092) (0.06859)  (0.04400) (0.04298)  (0.11347) (0.11229)  (0.10206) (0.10097)  (0.14019) (0.13852) 

CWD  0.01520 0.06053  0.05088*** 0.04741***  0.05481** 0.03882*  0.04049* 0.02777  0.06316*** 0.05421** 

  (0.07528) (0.07166)  (0.01539) (0.01476)  (0.02189) (0.02124)  (0.02274) (0.02211)  (0.02406) (0.02341) 

Obs. 22,746 22,746 22,746 62,559 62,559 62,559 35,215 35,215 35,215 34,060 34,060 34,060 28,963 28,963 28,963 

 

Focusing on the development stage, high temperatures seem to have no effect and irregularities emerged in BGA specification which captures the 

opposite relationship of low temperature and precipitation to the other specifications and, likewise, for DTR. The negative effect of low temperatures 

(clearly, excluding BGA specifications) is always stable among specifications. The effect of crop evapotranspiration is always positive, and it is 

independent of the approaches used.  
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Table 11. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in flowering stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

                

T min -0.00611 0.07508  0.09715 0.18535  0.13949** 0.14277**  0.26033*** 0.27162***  0.10570 0.11048  

 (0.14895) (0.15072)  (0.11433) (0.11528)  (0.06170) (0.06173)  (0.07543) (0.07552)  (0.06890) (0.06891)  

(T min)2 -0.00331 -0.00631  -0.00693 -0.01025**  -0.00865* -0.00865*  -0.01990*** -0.02011***  -0.00565 -0.00536  

 (0.00558) (0.00565)  (0.00448) (0.00452)  (0.00455) (0.00455)  (0.00507) (0.00507)  (0.00534) (0.00534)  

T max 0.59654*** 0.69347***  0.53529*** 0.67048***  0.01816 0.03664  0.20011** 0.25175**  -0.29323*** -0.26843***  

 (0.15739) (0.16004)  (0.13078) (0.13295)  (0.08382) (0.08469)  (0.09928) (0.10084)  (0.08304) (0.08356)  

(T max)2 -0.01228*** -0.01456***  -0.01059*** -0.01382***  0.00028 -0.00013  -0.00585* -0.00720**  0.01160*** 0.01106***  

 (0.00337) (0.00343)  (0.00286) (0.00291)  (0.00274) (0.00275)  (0.00308) (0.00311)  (0.00276) (0.00277)  

DTR   0.22450***   0.15151***   -0.07859**   -0.00022   -0.13133*** 

   (0.04830)   (0.03767)   (0.03219)   (0.03533)   (0.03796) 

DTR2   -0.00451***   -0.00255***   0.00365***   0.00078   0.00648*** 

   (0.00102)   (0.00081)   (0.00112)   (0.00115)   (0.00130) 

Prec -0.00864 -0.00635 -0.01925 -0.00877 -0.00639 -0.01764 0.02479 0.02765 0.02593 0.03729 0.04096 0.03361 0.01779 0.02309 0.02479 

 (0.03223) (0.03223) (0.03190) (0.02634) (0.02633) (0.02611) (0.02226) (0.02279) (0.02275) (0.02582) (0.02683) (0.02679) (0.03065) (0.03115) (0.03113) 

(Prec)2 0.00091 0.00073 0.00081 0.00046 0.00024 0.00020 -0.00030 -0.00041 -0.00038 -0.00107 -0.00130 -0.00115 -0.00025 -0.00049 -0.00047 

 (0.00127) (0.00127) (0.00127) (0.00104) (0.00104) (0.00104) (0.00075) (0.00076) (0.00076) (0.00099) (0.00100) (0.00100) (0.00115) (0.00115) (0.00115) 

ETc  0.22025*** 0.14044**  0.31185*** 0.22138***  0.16555 0.13164  0.28979*** 0.22201**  0.33541** 0.38240*** 

  (0.06449) (0.06171)  (0.05579) (0.05367)  (0.10877) (0.10620)  (0.10037) (0.09745)  (0.13072) (0.12813) 

CWD  -0.00134 -0.00159  -0.00138 -0.00165  -0.00140 -0.00120  -0.00457 -0.00351  -0.00372 -0.00429 

  (0.00252) (0.00252)  (0.00251) (0.00251)  (0.00745) (0.00745)  (0.01266) (0.01267)  (0.00736) (0.00735) 

Obs. 9,366 9,366 9,366 13,826 13,826 13,826 10,523 10,523 10,523 9,733 9,733 9,733 8,320 8,320 8,320 

 

Focusing on the flowering stage, precipitation seems to have no effect, while regularities emerge among design approaches, within the temporal 

specifications: the effects of temperatures and crop evapotranspiration on yields are the same among A-B, and B-C specifications. Irregularities emerge 

among temporal approaches: high temperatures positively affect the yields except in GDD EU specifications in which, according to the literature 

(Farooq et al., 2014; Zampieri et al., 2017), the relationship is negative. 
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Table 12. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in maturity stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.37334*** -0.37913***  -0.13784 -0.10064  -0.02572 -0.01137  -0.09798 -0.06438  0.08918 0.11826  

 (0.11263) (0.11265)  (0.12993) (0.13138)  (0.07999) (0.08000)  (0.08796) (0.08804)  (0.08439) (0.08494)  

(T min)2 0.01023*** 0.01060***  0.00220 0.00100  -0.00162 -0.00171  0.00360 0.00242  -0.00702 -0.00810  

 (0.00347) (0.00348)  (0.00463) (0.00467)  (0.00469) (0.00469)  (0.00482) (0.00482)  (0.00494) (0.00495)  

T max -0.01358 0.01765  0.65506*** 0.70619***  -0.15447 -0.06513  -0.27295*** -0.17456  -0.05627 -0.02941  

 (0.12090) (0.12211)  (0.14099) (0.14383)  (0.09737) (0.09884)  (0.10581) (0.10694)  (0.10024) (0.10080)  

(T max)2 0.00089 0.00033  -0.01328*** -0.01444***  0.00456* 0.00236  0.00931*** 0.00687**  0.00176 0.00114  

 (0.00227) (0.00229)  (0.00288) (0.00295)  (0.00274) (0.00277)  (0.00283) (0.00285)  (0.00284) (0.00285)  

DTR   0.05376   0.19044***   0.04800   -0.03622   0.00446 

   (0.03723)   (0.04125)   (0.03427)   (0.03586)   (0.04059) 

(DTR2   -0.00032   -0.00384***   -0.00078   0.00317***   0.00026 

   (0.00064)   (0.00080)   (0.00102)   (0.00100)   (0.00116) 

Prec -0.00074 -0.03811 -0.04444 0.03846 0.03815 0.02097 -0.03247 -0.03272 -0.03021 -0.01711 -0.00480 -0.00067 -0.08944** -0.08145** -0.08118** 

 (0.02437) (0.03251) (0.03245) (0.02753) (0.02755) (0.02708) (0.02520) (0.02695) (0.02687) (0.02692) (0.02699) (0.02685) (0.03481) (0.03583) (0.03583) 

(Prec)2 -0.00080 -0.00132 -0.00136 -0.00094 -0.00102 -0.00079 0.00017 -0.00041 -0.00046 -0.00005 -0.00067 -0.00074 0.00194 0.00161 0.00163 

 (0.00092) (0.00097) (0.00096) (0.00099) (0.00100) (0.00099) (0.00102) (0.00103) (0.00103) (0.00111) (0.00111) (0.00111) (0.00151) (0.00152) (0.00152) 

ETc  0.01991 0.01393  0.09875* 0.03310  0.40524*** 0.42765***  0.47143*** 0.50595***  0.28030*** 0.27057*** 

  (0.01865) (0.01850)  (0.05283) (0.05023)  (0.08132) (0.07906)  (0.07901) (0.07705)  (0.09531) (0.09333) 

CWD  -0.13153* -0.15214**  -0.00153 -0.00177  -0.02463 -0.02628  -0.00110 -0.00123  0.00048 0.00019 

  (0.07681) (0.07590)  (0.00251) (0.00252)  (0.01993) (0.01988)  (0.00255) (0.00255)  (0.01759) (0.01756) 

Obs. 18,286 18,286 18,286 12,934 12,934 12,934 12,073 12,073 12,073 11,332 11,332 11,332 9,178 9,178 9,178 

 

 

Focusing on the maturity stage, temporal and design approaches heavily affect the relationship yields-weather: the negative effect of low temperatures 

and precipitation is captured only in BGA and GDD EU, respectively, while the effect of high temperature is captured both in FAO 56 and GDD 15, 

although there are irregularities between specification. Moreover, the negative effect of crop water deficit emerged only in BGA.  

 

 

 

 

 

 

 



30 

 

Table 13. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in end stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.89806*** -0.90668***  -1.07104*** -0.97157***  -0.33464* -0.29524  0.15128 0.13080  0.04270 0.11882  

 (0.24879) (0.25268)  (0.19485) (0.19768)  (0.20040) (0.20200)  (0.25445) (0.25550)  (0.22877) (0.23223)  

(T min)2 0.02657*** 0.02678***  0.03009*** 0.02769***  0.01595 0.01315  -0.00765 -0.00739  -0.00608 -0.01025  

 (0.00668) (0.00677)  (0.00533) (0.00539)  (0.01008) (0.01017)  (0.01158) (0.01163)  (0.01147) (0.01164)  

T max 0.61715** 0.80632***  0.12082 0.21623  -0.21556 -0.12902  0.15077 0.27495  -0.20209 -0.19573  

 (0.25485) (0.27820)  (0.19883) (0.21949)  (0.21750) (0.22654)  (0.24956) (0.26278)  (0.27092) (0.28746)  

(T max)2 -0.00855** -0.01166**  -0.00030 -0.00208  0.00983* 0.00923  -0.00080 -0.00285  0.01259* 0.01364*  

 (0.00430) (0.00468)  (0.00340) (0.00373)  (0.00549) (0.00565)  (0.00595) (0.00618)  (0.00686) (0.00714)  

DTR   -0.35830***   -0.19934***   -0.13960*   -0.06303   -0.17483* 

   (0.06415)   (0.05091)   (0.07397)   (0.08239)   (0.09170) 

DTR2   0.00788***   0.00496***   0.00967***   0.00489**   0.01316*** 

   (0.00105)   (0.00084)   (0.00208)   (0.00212)   (0.00255) 

Prec -0.11547** -0.34154** -0.19514 -0.01553 0.06087 0.09715 0.00649 0.00404 0.00490 -0.15376** -0.23842** -0.20973* 0.07902 0.17782 0.17620 

 (0.05688) (0.15870) (0.15350) (0.03583) (0.08889) (0.08584) (0.04762) (0.09549) (0.09416) (0.06278) (0.11386) (0.11205) (0.06774) (0.11794) (0.11474) 

(Prec)2 0.00391 0.00269 0.00536 -0.00145 0.00040 0.00175 -0.00035 -0.00007 0.00006 0.00671** 0.00596* 0.00644* -0.00287 -0.00095 -0.00095 

 (0.00340) (0.00350) (0.00346) (0.00173) (0.00232) (0.00225) (0.00183) (0.00204) (0.00203) (0.00302) (0.00332) (0.00330) (0.00300) (0.00337) (0.00336) 

ETc  0.03537 0.03429  0.16767*** 0.19978***  0.40697*** 0.43824***  0.21101 0.18342  0.37090** 0.37985** 

  (0.05960) (0.05677)  (0.04730) (0.04537)  (0.14773) (0.14569)  (0.14738) (0.14628)  (0.17731) (0.17338) 

CWD  -1.62832 -0.20619  0.72720 1.19979*  0.07984 0.10319  -0.35360 -0.18636  0.56697 0.56275 

  (1.08240) (1.02036)  (0.67277) (0.63120)  (0.39077) (0.38214)  (0.48807) (0.47327)  (0.48333) (0.46774) 

Obs. 8,920 8,920 8,920 13,380 13,380 13,380 3,016 3,016 3,016 2,804 2,804 2,804 2,263 2,263 2,263 

 

Focusing on the end stage, DTR seems to have a nonlinear negative effect on yield, while BGA specifications seem to capture more relationships 

yields-weather than others. More specifically, minimum temperatures and precipitation have a negative effect on yields, while maximum temperatures 

have a positive effect. Although the effect of precipitation seems not to be influenced by design specifications (e.g., GDD 25), the relationships are 

not captured among temporal specifications. 
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Table 14. Spatial clusters among Italian provinces 

 all provinces 

VARIABLES baseline NS CI  NSCI 

     

T min -0.03692*** -0.03692*** -0.03692*** -0.03692*** 

 (0.01007) (0.00082) (0.00539) (0.00361) 

(T min)2 0.00103** 0.00103*** 0.00103 0.00103 

 (0.00042) (0.00039) (0.00167) (0.00136) 

T max 0.04546*** 0.04546*** 0.04546*** 0.04546*** 

 (0.01184) (0.00075) (0.01535) (0.00996) 

(T max)2 -0.00081*** -0.00081*** -0.00081 -0.00081 

 (0.00029) (0.00021) (0.00105) (0.00082) 

Prec 0.01120* 0.01120*** 0.01120 0.01120 

 (0.00603) (0.00101) (0.01288) (0.00935) 

(Prec)2 -0.00041* -0.00041*** -0.00041* -0.00041** 

 (0.00021) (0.00004) (0.00022) (0.00020) 

Obs. 162,909 162,909 162,909 162,909 

No. of prov 30 30 30 30 

Notes: baseline shows the general relationships yield-weather variables. NS includes clusters Northern and Southern provinces; CI includes clusters Coastal and Internal 

provinces; NSCI includes a combination of thereof. Robust standard errors in parentheses:    *** p<0.01, ** p<0.05, * p<0.1 

 

We provide spatial clusters among Italian provinces. The results remain robust among specifications, the effects of weather on yields are statistically 

significant, and the relationships on the first moment of the distribution (i.e., the estimated coefficients of the first order variables) are confirmed.   
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Table 15. Further combinations of clusters among Italian provinces 

 All provinces CI provinces NS provinces 

VARIABLES Baseline  N S C I  

      

 min -0.03692*** -0.03705*** -0.04145 -0.03761*** -0.04193*** 

 (0.01007) (0.00433) (0.02565) (0.00839) (0.00559) 

(T min)2 0.00103** 0.00114*** 0.00192 -0.00155** 0.00227 

 (0.00042) (0.00027) (0.00366) (0.00072) (0.00148) 

T max 0.04546*** 0.04061*** 0.04165 0.02751 0.05693*** 

 (0.01184) (0.00498) (0.03049) (0.02339) (0.01245) 

(T max)2 -0.00081*** -0.00072*** -0.00111 0.00094 -0.00156 

 (0.00029) (0.00014) (0.00209) (0.00072) (0.00096) 

Prec 0.01120* 0.01088*** 0.01287 0.03079*** 0.00176 

 (0.00603) (0.00210) (0.01330) (0.00125) (0.00539) 

(Prec)2 -0.00041* -0.00043*** -0.00034 -0.00081*** -0.00025* 

 (0.00021) (0.00006) (0.00033) (0.00024) (0.00013) 

Obs. 162,909 71,227 91,682 42,371 120,538 

No. of prov 30 13 17 8 22 

Notes: baseline shows the general relationships yield-weather variables. CI includes Coastal and Internal provinces clustered by Northern (N) and Southern (S); NS includes 

Northern and Southern provinces clustered by Coastal (I) and Internal provinces. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

Focusing on the further combinations of spatial clusters among Italian provinces, interesting evidence emerged. Clustering for coastal and internal 

provinces (CI provinces), the yield-weather relationships are captured only in Northern provinces. Clustering for northern and southern provinces (NS 

provinces), the effects of low temperatures on yields is captured both in coastal and internal provinces, while the effects of high temperatures is 

captured in the internal provinces and the effect of precipitation is captured only in the coastal provinces. These results suggest that the weather 

indexes could be different based on the spatial locations, in other words, some weather variables are more important in some provinces than others. 


