Timiryanova, Venera (2022): Высокочастотные данные, характеризующие розничную торговлю: интересы государства, предприятий и научных организаций. Published in: Управленческое консультирование/Administrative Consulting , Vol. 3, (2023): pp. 34-45.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_115681.pdf Download (469kB) | Preview |
Abstract
Currently, there is a rapid development of technologies for collecting and analyzing big data, including those characterizing trade. This data, with a high degree of detail, takes into account the whole variety of consumer decisions, which allows to develop key management proposals on what, where and when to produce and sell. Banks, retail chains, and the state are actively interested in these data. At the same time, there is a weak use of big data in the activities of individual small and medium-sized enterprises. The purpose of this study is to highlight the problems and prospects for their application for management purposes, based on an analysis of the current practice of using high-frequency retail data. As a result of the study, the features of the available data of retail companies, payment systems and OFDs, which are manifested in their different structure and limitations for use. It is shown that big data characterizing retail trade is available to a narrow circle of people who, as a rule, have their own interests, which are not yet consistent with the idea of open publication of these data, even for scientific purposes. There are very few research publications based on high-frequency fiscal data. Сloseness of data determines the weak use of microdata for management purposes.
Item Type: | MPRA Paper |
---|---|
Original Title: | Высокочастотные данные, характеризующие розничную торговлю: интересы государства, предприятий и научных организаций |
English Title: | High-frequency retail data: the interests of the state, enterprises and scientific organizations |
Language: | Russian |
Keywords: | high-frequency data; fiscal data; data in management |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs D - Microeconomics > D2 - Production and Organizations > D29 - Other D - Microeconomics > D8 - Information, Knowledge, and Uncertainty |
Item ID: | 117540 |
Depositing User: | Venera TIMIRYANOVA |
Date Deposited: | 08 Jun 2023 20:44 |
Last Modified: | 08 Jun 2023 20:45 |
References: | Aladangady A., Aron-Dine Sh., Dunn W., Feiveson L., Lengermann P., Sahm C. From Transactions Data to Economic Statistics: Constructing Real-time, High-frequency, Geographic Measures of Consumer Spending // Finance and Economics Discussion Series 2019-057. Washington: Board of Governors of the Federal Reserve System, 2019. – 37p. DOI:10.17016/FEDS.2019.057 Andersen A. L., Hansen E. T., Johannesen N., Sheridan A. Consumer Responses to the COVID-19 Crisis: Evidence from Bank Account Transaction Data // CEPR Discussion Paper. 2020. No. DP14809. DOI: 10.2139/ssrn.3609814 Baker S. R., Farrokhnia R. A., Meyer S., Pagel M., Yannelis C. Income, Liquidity, and the Consumption Response to the 2020 Economic Stimulus Payments // NBER Working Paper. 2020. No. 27097. DOI: 10.3386/w27097 Bounie D., Camara Y., Galbraith J. W. Consumers' Mobility, Expenditure and Online-Offline Substitution Response to COVID-19: Evidence from French Transaction Data // SSRN Working Paper. 2020. No. 3588373. DOI: 10.2139/ssrn.3588373 Carvalho V.M., Garcia J.R., Hansen S., Ortiz Á., Rodrigo T., Rodríguez Mora J.V., Ruiz P. Tracking the COVID-19 crisis with high-resolution transaction data // Royal Society Open Science. 2021. 8: 210218. DOI: 10.1098/rsos.210218 Casey P., Castro P. Electronic Fiscal Devices (EFDs) An Empirical Study of their Impact on Taxpayer Compliance and Administrative Efficiency // IMF Working Papers. 2015. No. 073. DOI: 10.5089/9781475521023.001 Chacaltana J., Leung V., Lee M. New technologies and the transition to formality: The trend towards e–formality // Employment: Working Paper. International Labour Organization. 2018. No. 247. Chen H., Qian W., Wen W. The Impact of the COVID-19 Pandemic on Consumption: Learning from High Frequency Transaction Data // SSRN Working Paper. 2020. No. 3568574. DOI: 10.2139/ssrn.3568574 Clark S.D.; Shute B.; Jenneson V.; Rains T.; Birkin M.; Morris M.A. Dietary Patterns Derived from UK Supermarket Transaction Data with Nutrient and Socioeconomic Profiles // Nutrients. 2021. No. 13. 1481. DOI: 10.3390/nu13051481 Cotti Ch. D., Courtemanche Ch. J., Maclean J. C., Nesson E. T., Pesko M. F., Tefft N. The effects of e-cigarette taxes on e-cigarette prices and tobacco product sales: evidence from retail panel data // NBER working paper series. 2020. No. 26724. DOI: 10.3386/w26724 Dubois P., Griffith R., O'Connell M. The Use of Scanner Data for Economics Research // CEPR Discussion Paper. 2022. No. DP16954 Gelman M., Kariv S., Shapiro M. D., Silverman D., Tadelis S. Harnessing naturally occurring data to measure the response of spending to income // Science. 2014. Vol. 345(6193). Pp. 212–215. DOI:10.1126/science.1247727 Implementing Online Cash Registers: Benefits, Considerations and Guidance. Paris: OECD, 2019. Kokh L.V., Kovaleva Ju.V., Ivanova O.P. Big Data in Public Administration // Proceedings of International Scientific and Practical Conference “Russia 2020 - a new reality: economy and society” (ISPCR 2020). 2021. Pp. 250-254. DOI: 10.2991/aebmr.k.210222.049 Linden G., Smith B., York J. Amazon.com recommendations: item-to-item collaborative filtering // IEEE Internet Computing. 2003. Vol. 7, No. 1. Pp. 76-80. DOI: 10.1109/MIC.2003.1167344 Lovics G., Szőke K., Tóth C. G., Ván B. The effect of the introduction of online cash registers on reported turnover in Hungary // MNB (Magyar Nemzeti Bank ) Occasional papers. 2019. No. 137. – 24p. Muth M. K., Okrent A., Zhen C., Karns Sh. Using Scanner Data for Food Policy Research. Elsivier Academic Press. 2020. DOI: 10.1016/C2017-0-01027-3 Rogoff K., Scazzero J. Covid Cash // Cato Journal. 2021. Vol. 41. No. 3. Pp.571-592. DOI:10.36009/CJ.41.3.6 Trivedi M. Regional and Categorical Patterns in Consumer Behavior: Revealing Trends // Journal of Retailing. 2011. No. 87. Pp. 18-30. DOI:10.1016/J.JRETAI.2010.11.002 Waldenström D., Angelov N. The Impact of COVID-19 on Economic Activity: Evidence from Administrative Tax Registers // CEPR Discussion Paper. 2021. No. DP16332. Zhang L.-Ch. Proxy expenditure weights for Consumer Price Index: Audit sampling inference for big-data statistics // Journal of the Royal Statistical Society Series A. 2021. No. 184(2). Pp. 571-588. DOI: 10.1111/rssa.12632 Андрианова И.Д., Рябинина Е.В. Налоговый контроль в период цифровой трансформации в России и зарубежных странах // Ключевые проблемы социально-гуманитарных наук в современной России: сборник научных трудов по материалам Международной научно-практической конференции. Под общей редакцией Е.П. Ткачевой. 2018. С. 99-103. Жабин Д.В., Турков М.М., Волков Д.В. Потенциал использования информации оператора фискальных данных // Социальная политика и социология. 2017. Т. 16. № 5 (124). С. 25-33. DOI: 10.17922/2071-3665-2017-16-5-25-33 Использование больших данных в финансовом секторе и риски финансовой стабильности: доклад для общественных консультаций. – М: Центральный банк Российской Федерации, 2021. - 31с. Кудашкин А.В., Мохов А.С. Кластеризация клиентов банка на основе их персональных данных и банковских транзакций // Информационные системы и технологии ИСТ-2020. Сборник материалов XXVI Международной научно-технической конференции. Нижегородский государственный технический университет им. Р.Е. Алексеева. 2020. С. 780-785. Никитин А.П. Анализ транзакционных данных и определение количественных критериев лояльности клиентов // Экономика. Налоги. Право. 2012. № 2. С. 113-124. Ткачёв И., Скобелев В., Старостина Ю., Агеева О. Контрольно-кассовая инфляция // Газета РБК. 2020. № 102 (3269). [Электронный ресурс]. URL:https://www.rbc.ru/newspaper/2020/11/30/5fc0c9fe9a79472cdddcbd2f Турдыева Н., Цветкова А., Мовсесян Л., Поршаков А., Чернядьев Д. Использование данных отраслевых финансовых потоков в качестве высокочастотного индикатора экономической активности // Деньги и кредит. 2021. Т. 80. № 2. С. 28-49. DOI: 10.31477/rjmf.202102.28 Шигильчева С.А., Христофорова А.В., Смирнова Е.Н. Особенности бизнес-модели АО "Тинькофф банк" как субъекта электронного бизнеса // Вестник Российского университета кооперации. 2020. № 2 (40). С. 113-117. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117540 |
Available Versions of this Item
-
Высокочастотные данные, характеризующие розничную торговлю: интересы государства, предприятий и научных организаций. (deposited 16 Dec 2022 21:23)
- Высокочастотные данные, характеризующие розничную торговлю: интересы государства, предприятий и научных организаций. (deposited 08 Jun 2023 20:44) [Currently Displayed]