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Connectedness and risk spillovers between crude oil and clean energy stock markets

Abstract: This research investigates the relationship between clean energy stock and
oil market returns utilizing Granger predictability in distribution and quantile impulse response
analysis. We find that clean energy stock returns Granger predict oil price returns during
"normal times" based on the distribution's center, but not vice versa. During bullish market
episodes, there is bidirectional Granger predictability between the returns of clean energy
stocks and oil market returns. Nonetheless, we find that clean energy stock returns Granger
predict oil returns in bearish markets without any evidence of the contrary. This indicates that
oil returns cannot be used to hedge the downside risk associated with renewable energy
company purchases. Quantile impulse responses for the relationship between clean energy
stocks and the crude oil market reveal bidirectional and significant responses, where a negative
shock during an extremely down market reveals a negative response in the other market and a
positive shock during an extremely up market reveals a significant positive response. This
shows that neither market can be utilized to offset risks in the other market.
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1. Introduction

Since fossil fuels like coal, oil, and natural gas continue to be the main source of energy
for industry, transportation, and heating, there is a wealth of empirical literature describing the
significant effects of oil price shocks on post-World War II economic activity (Rasche and
Tatom 1981; Bruno and Sachs, 1982; Hamilton, 1983; Hamilton, 1988; and Mork, 1989 among
others). One of the topics that has received the most investigation in this area is how the price
of oil affects financial markets and other economic activities. Based on this, Chen et al. (1986),
Kaul and Jones (1996), Sadorsky (1999), Hammoudeh et al. (2004), Killian and Park (2009),
Cevik et al. (2018), Kirci-Cevik et al. (2021), and Cevik et al. (2021) demonstrated the
relationship between stock markets and oil prices.

Oil price shocks can have both direct and indirect effects on stock markets. While
changes in the price of oil have an immediate effect on the present and future cash flows of
businesses, the indirect effect is mediated by the interest rate channel (Ma et al. 2019). As a
result, changes in the price of oil affect the interest rates used to discount businesses' future
cash flows, which is expected to have a significant impact on stock prices. According to Zhang
et al. (2020), there is a resemblance between the relationship between oil prices and stock
indices for sustainable energy. However, as the number of petroleum-related derivative
products has increased, particularly after the Global Financial Crisis (GFC), the link between
oil prices and stock markets has grown stronger. Zhang (2018) claims that this is a result of the
financialization of the oil market. However, according to Dutta (2017), the association between
oil prices and the stock market is not uniform across all industries; as a corollary, there may be
differences between the relationship between oil prices and the renewable or clean energy
industry and other industries. This is because rising oil prices may encourage greater use of
alternative energy sources. The use of alternative or renewable energy may have expanded
recently due to environmental concerns.

Fluctuations in oil prices have an impact that goes beyond macroeconomic indicators
and financial markets. Due to the negative environmental effects of using crude oil, there is a
growing interest in alternative clean and sustainable energy sources. Consequently, an
expanding corpus of research examines the relationship between these so-called clean energy
sources and the financial markets, macroeconomic indices, and oil prices. Additionally,
investments are being put more into renewable energy sources. For instance, between 2014 and
2018, $1.5 trillion was invested globally in the clean energy sector (Zhang et al. 2020).
Furthermore, it is expected that by 2040, investments in renewable energy will make up two-
thirds of all energy investments worldwide. (IEA, 2018). As a result, the stock markets for
renewable energy have caught the attention of regulators as well as researchers and investors.
According to Dutta et al. (2020), the growing demand for investments in environmentally
friendly businesses is a result of the increasing popularity of companies that produce
environmentally friendly goods and services.

The large fluctuations in oil prices and concerns about global warming causes have
raised the popularity of clean energy sources and the companies that produce clean energy. As
such, there has been an increase in the formation of stock market indexes to track the
performance of clean energy firms such as the S&P Global Clean Energy Index, NASDAQ
Clean Edge Green Energy, WilderHill Clean Energy Index, and FTSE Environmental
Technology Index. These are the main indexes that track clean energy firms and their
performances in stock markets. The studies that focus on the relationship between clean energy
stock indexes and oil prices have gained momentum, especially after the GFC.
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The literature is opaque on the consensus regarding the relationship between oil prices
and stock prices for renewable energy sources. Bondia et al. (2016) and Dutta (2017)
highlighted the substitution effect of clean energy sources due to rising oil prices, and therefore
an inverse relationship between oil prices and clean energy stock prices, contrary to Zhang et
al. (2020), Jiang et al. (2019), and Basher and Sadorsky (2006) who claim increasing oil prices
decrease the cash flows of clean energy firms decreasing their stock prices. In other words,
rising oil costs may lead to higher stock prices for clean energy companies. This is not
unexpected given that the precise nature of the correlation between oil prices and the values of
clean energy stocks may shift across the distribution. For instance, the substitution impact
between oil prices and clean energy sources may cause an unbalanced link to exist between
clean energy stocks and oil prices. Additionally, because the substitution effect can produce
fluctuations in gains and losses in the crude oil and clean energy markets, the dynamic link
between oil prices and clean energy stock prices may not be the same across the different parts
of the distribution. Therefore, utilizing an econometric methodology that takes into account the
relationship between the variables' right and left tails of distribution as well as their means is
necessary to study the relationship between the price of renewable energy and the price of oil.

The principal objective of this paper is to revisit the relationship between clean energy
stocks and oil prices using Granger Predictability in the Distribution Test (hereafter GPDT)
proposed by Candelon and Tokpavi (2016) [hereafter CT]. Even though there are empirical
studies that focus on tail dependence between clean energy stocks and crude oil markets, these
studies generally use a copula approach. However, as Elie et al. (2019) emphasized, using
different copula functions may provide different results. Also, the copula approach allows for
examining tail dependence between the variables where dependence in the mean of variables
is ignored. CT’s (2016) approach can be used to investigate the existence of a relationship
between the variables for the whole distribution. To the best of our knowledge, the paper is the
first attempt to examine the presence of a dynamic relationship between oil prices and clean
energy stock prices by using the predictability in the distribution test. Also, we consider the
impacts of outliers and structural breaks in variance in the estimation since GARCH model
parameters are sensitive to these are sensitive to outliers and structural breaks. Proper
specification of the GARCH process is important not only for the predictability in the
distribution test but also for the copula approach because the marginal distribution of the series
is obtained by using the GARCH model in the copula approach. Finally, we also calculate the
quantile impulse responses proposed by White et al. (2015) to ascertain the magnitude of
responses of the clean energy stock market to a shock in the crude oil market for the different
regions of distribution.

The rest of the paper is organized as follows: We provide a brief literature survey on
the relation between the clean energy stock market and the crude oil market. We present
econometric methodology in section 3 and empirical findings in section 4. Section 5 is the
conclusion.

2. Brief Literature Review

The relationship between the stock markets for clean energy and crude oil has generally
been examined in terms of causality, reliance, and volatility spillovers. The literature has
employed a variety of methods for this purpose, including the VAR model, Markov Regime
Switching, BEKK, DCC, Threshold cointegration, cointegration with structural breaks,
Copula, and Wavelet methods. The relationship between alternative energy stock prices,
technology stock prices, oil prices, and interest rates was examined using a VAR model by
Henriques and Sadorsky (2008) and Kumar et al. (2012). According to Sadorsky's (2012)
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research, oil prices are not as closely associated with the stock prices of clean energy businesses
as they are with technology stocks. Using asset pricing models and time-varying conditional
correlation, Broadstock et al. (2012) examined how Chinese energy-related stock returns were
affected by global oil prices.

Building on Henriques and Sadorsky (2008), Managi and Okimoto (2013) used a
Markov Regime Switching Model to analyze the relationship between oil prices, clean energy
stock prices, and technology stock prices. After controlling for structural breaks, they discover
a positive relationship between oil prices and clean energy prices. According to Reboredo
(2015), the volatility of oil prices accounts for about 30% of the upside and downside risk faced
by renewable energy enterprises. The return and volatility spillover impact between the stock
prices of Chinese new energy and fossil fuel businesses was examined by Wen et al. in 2014.
They discovered that equities of fossil fuels and new energy are frequently viewed as rival
investments. Oil prices, technology stocks, and the global stock market index were all
examined by Inchauspe et al. (2015) in relation to their effects on renewable energy equities.
The findings demonstrate a strong correlation between stock returns for renewable energy
companies and those of technology companies, with some contribution from oil prices.
According to Bondia et al. (2016), while oil prices, interest rates, and stock prices for
technology companies have a short-term impact on the stock prices of alternative energy
companies, there is no long-term causal relationship between these variables and the stock
prices of alternative energy companies.

Dutta (2017) discovered that the crude oil volatility index (OVX) shocks had a
significant impact on clean energy stock returns. Using wavelets and linear and nonlinear
Granger causality tests, Reboredo et al. (2017) revealed that the reliance between oil and
renewable energy returns is minimal in the short run but gradually becomes stronger in the long
run. According to Ahmad's (2017) analysis of the directional spillover between crude oil prices
and the stock prices of technology and renewable energy businesses, the two sectors are
interdependent. According to Lundgren et al. (2018), the stock prices of renewable energy
companies have a significant impact on the European stock market. As per Ahmad et al. (2018),
VIX offers cleaner energy equities better hedging prospects than crude oil and OVX.

The temporal and frequency dynamics of the relationships between the stock prices of
US clean energy businesses, crude oil prices, and many significant financial indicators were
studied by Ferrer et al. in 2018. The empirical findings indicate that whereas return and
volatility connectivity has a little impact over the long run, it has a major impact over the very
short run. Crude oil and gold are both weak safe-haven assets for clean energy indexes,
according to Elie et al. (2019). The cross-quantile reliance of stock returns for renewable
energy sources on total stock returns, changes in the price of gold and oil, and exchange rates
is examined by Uddin et al. (2019). The findings demonstrate that there is an imbalance in the
relationship between the quantities, which is more pronounced at longer delays. Wavelet
coherency was used by Nasreen et al. (2020) to establish the existence of a tenuous correlation
between oil prices and renewable energy stock returns. According to Zhang et al. (2020), the
effect of exogenous structural shocks to oil prices on clean energy equities differs by quantile
and investment horizons, and is asymmetric at larger oil shock quantiles over the long term. In
the first and second moments, Yahya et al. (2021) discovered evidence in support of a non-
linear, regime-dependent long-term connection between renewable energy stock and crude oil
price.



3. Econometric Framework

In order to examine the dependence between the clean energy stocks and the crude oil
market, we first use the nonparametric GPDT proposed by CT (2016). We also calculate
quantile impulse responses based on a multivariate quantile vector autoregression model
suggested by White et al. (2015) to ascertain the size of tail dependence between clean energy
stocks and the crude oil market.

3.1. Nonparametric Granger Predictability in Distribution Test

CT’s (2016) test statistic is a multivariate generalization of the test procedure so-called
predictability in risk proposed by Hong et al. (2009) in which the relationship between two
random variables such as Y; and X; is examined in the left tail of the distribution. Since it is
necessary identifying regions of the distribution for each series in the GPDT, CT (2016)
suggested using a value-at-risk (VaR) approach at a specific risk level a.

A setof A={ai, ..., am+1} of m+1 VaR risk levels cover the distribution support of both
variables X; and Y; with 0 < a1 < ... < am+1 < 100%. The relevant VaRs at time t for the X; are
VaR%, (03 ,as) s=1, ..., m+1, with

VaRg,(l(e)? ,0(1) << VaRg,(m+1(9)? :am+1) (1)

where the vector 69 is the true unknown finite-dimensional parameter set related to the VaR
model for X;. If the distribution support of X; is divided into m disjoint regions, each region
associated with the indicator variable may be stated following:

zE69) = {(1) if X, = VaRX (63, ay) a:l?eXt < VaR¥ 1 (62, agry) o

where s =1, ...,m. If m +1 =5, the set A is A = {a, 02, 03, 04, 05} = {0%, 20%, 40%, 60%,
80%}. Let HX (9)?) be vector (m, 1) and components of the m event variables

T
HEOD) = {Z11(09), 2856, .., ZEn(6)} (3)
Similarly, the vector of HY (6y) is written for the Y; following:
T
HY (69) = {Z11(69), Z{,(6), ..., Z{m(6)} )

The null hypothesis of no Granger predictability from Y; to the X; in distribution is written
following:

Ho: E[H¥ (69 | F&Y] = E[HF (0D | FE4] (5)

Suppose HY = H¥(8y) and HAY = HY(8y) are the estimated counterparts of the
multivariate process of event variables HX (62) and HY (69) respectively and 8y and 8y are V'T

consistent estimators of the true unknown parameter vectors 65 and 9. Let A(j) be the sample
cross-covariance matrix between HX and H} with

o (T (AE - M) (A = Ty) 0<j<T -1

A() = _ SN (6)
Tyl (BE - A)(AY - 0) 1-T<j<0

where the vector of [Ty (or ITy) of length m is the sample mean of HX (or AY). [Ty and [T, are
replaced by [Ty = E(HZ(6Y)) and Iy = E(HZ(6y)), respectively. The sample cross-
correlation matrix is written following:

R(j) =D(Z)

-1/2 -1/2

A(HD(Zy) (7)



with D () is the diagonal form of a matrix and £y and Xy are the sample covariance matrices
of HY and H}. The test statistic can be expressed in weighted quadratic form that relates the
current value of H and the lagged values of H}

7 =31 (3 om) (8)
where « (.) is a kernel function, and M is the truncation parameter. Q(j) is obtained by:

A . S . T A= = — =~ .

0() = Tvec (R()) (57 ® Iy *)vec (R()) 9)

where I and [} are the sample correlation matrices of HX and HY respectively. Noted that the
constraints for M and the « (.) are identical as in Hong et al. (2009). CT (2016) establihed the
test statistic following:

Vyoy = % (10)
where Cr(M) and Dy (M) are:

Cr(M) = X]21(1 = j/T)x*(j/M) (11)

Dr(M) = 2¥[21(1 —j/T)A = ( + 1)/T)k*(/M) (12)

CT (2016) indicated that the test statistic follows a standard Gaussian distribution.
3.2. Quantile Impulse Responses Analysis

White et al. (2015) proposed a multivariate regression quantile model called the VAR
for VaR model to investigate tail dependency between variables using impulse-response
analysis. The multivariate quantile regression model is based on estimating the following
multivariate multi-quantile conditional autoregressive value at risk framework (MVMQ-
CAViaR), which is a bivariate modification of Engle and Manganelli's (2004) CAViaR model:

Gy = c1(0) + ay1(O)Ye—1| + a12(O)|Xe—1| + b11(0)qy -1 + b12(0)qx -1 (13)
qxt = €2(0) + az (O)NYe—1| + a2 (0)1Xe—1| + b21(0)qy e—1 + b22(0)qx -1 (14)

where 0 is the risk level. Y; and X; are e.g., clean energy stock returns and oil returns
respectively and gy and gy are the quantile functions at the risk level 8 for clean energy stock
index and oil returns series.

Equation (13) and (14) can be represented in matrix notation as follows:

qe =c+A|Zi_1| + Bge—q (15)

such that q;, Z:1, and ¢ are vectors where q; = (qy, qx), Z; = (Y;,X;), and ¢ = (¢4, ¢,). A and
B indicate the coefficients matrix for a; and b;; that are defined in Equations (13) and (14).
Equation (15) shows that quantiles of clean energy stock (oil) returns can be estimated by using
its lag, lag of oil (clean energy stock index) returns, and also lag of the quantiles of clean energy
stock index (oil) returns. Note that, whereas the diagonal members of matrix B indicate
persistency in the risk at a certain risk level, the off-diagonal members show risk spillovers
across the clean energy and crude oil markets.

Quantile impulse response functions (QIRF) are calculated via the estimated parameter
in Eq. (15). The QIRF assumes that there is one intervention d in the observable Y; at time ¢



Only (Yt = Yt + 6) {, Yt—Z’ Yt—l’ Yt, Yt+1’ Yt+2’ } and {...,Yt_z, Yf—l’ YL" Yt+1l
Y; 42, ... } indicate the time-series properties of Y; with and without intervention respectively.

The pseudo QIRF is defined by White et al (2015) following:
Ai,s(ZNit) = qi,t+s - Qi,t+s' s = 1' 2! 3! (16)

where §; 445 , and q; .4 are the conditional quantiles of the affected and unaffected series
respectively. The pseudo QIRF for the first and second variables is defined following:

Ay (V) = an (|7 = 1)) + a2 (|Xe| = 1Xe1), fors=1 (17)
Ay s(V2) = biaBy s 1(Y:) + bioBxs—1(Y:), fors>1 (18)
Ax1(Y:) = ap (|%e] = IV21) + aga (| Xe| = 1Xe]), fors=1 (19)
Dy s(V,) = by1Ay 51 (V) + bpoBy 51 (V,), fors>1 (20)
We can define the QIRF as:
Ay s(T,)

=[]
If we define D; as |V;| — |V, ], after that the pseudo QIRF is following:

As(Y,) = AD,, fors=1 (22)
As(Y,) = BS=VAD,, fors>1 (23)

We employed the Cholesky decomposition for orthogonalizing the shocks.
4. Data and Empirical Results

We use daily data for clean energy stock indexes and crude oil prices from November
21, 2003 to August 6, 2021 where total number of observations is 4621. We consider S&P
Global Clean Energy Index (GCE), WilderHill Clean Energy Index (ECO), and FTSE
Environmental Technologies Index (ET50) as a benchmark for clean energy stocks and spot
prices of West Texas Intermediate (WTI) and Brent for the crude oil market. All data are
collected from Refinitive Eikon Datastream. We calculate daily log difference for each series
to obtain returns series.

We start our empirical analysis by first investigating the presence of outliers in the data
because large number of studies showed that the GARCH model parameters are adversely
affected from outliers (see Charles and Darne, 2005; Franses and van Dijk, 2011; Behmiri and
Manevra, 2015 and Grane and Veiga, 2014). We use an outlier detection test suggested by
Bruffaerts et al. (2014) which depends on calculating the box plot for the return series (and
hence its simplicity). The test performs reasonably well for series that have skewed or heavy-
tailed distributions. The latter is very important because the distribution of financial return
series 1s generally leptokurtic. The test results indicate 62 outliers in the GCE returns, 53
outliers in the ECO returns, and 45 outliers in the ET50 return series. On the other hand, we
find 58 and 39 outliers in WTI and Brent return series, respectively. We follow Bodart and
Candelon (2009) and Warshaw (2020) and adjust the returns by considering outlier dates where
each outlier is replaced by a 10-day average centered around the abnormal observation.



We present descriptive statistics for adjusted returns in Table 1. The mean returns are
positive for all series during the sample except for ECO and WTI. Crude oil returns are more
volatile than clean energy stock returns according to standard deviations. The skewness and
kurtosis statistics indicate that the distributions for all returns are leptokurtic. This is confirmed
by the Jarque-Bera normality test where the null hypothesis of normality is rejected at the 1%
significance level. The ARCH LM test and the Box-Pierce Q statistics suggest volatility
clustering in all returns. Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) unit root test results indicate all returns are
stationary in levels.

<Insert Table I here>

The well-documented literature reveals that the structural breaks in variance cause to
overestimation of the GARCH parameters (Ewing and Malik, 2017 and Malik, 2021).
Therefore, we examine regime changes in variance of returns by using structural breaks in
variance test suggested by Sanso et al. (2004). We present the test results in Table 2 and Figure
1. According to the results in Table 2, we find three regime shift points in the variance of ET50
return series. ECO has eight sudden change points between 2007 and 2021 where most are
related to the GFC and the Covid-19 outbreak. Brent has nine sudden change points. The
highest regime shifts in the variance of returns are in GCE and WTI where 12 sudden change
points are statistically significant. Indeed, results in Table 2 point to two global episodes where
structural breaks occur, and these are clustered around the GFC and the Covid-19 global
pandemic. Also, ET50 index seems to have the lowest number of structural breaks and more
stable than the other clean energy indexes.

<Insert Table 11 here>

<Insert Figure I here>

Since the Granger predictability in distribution test relies on calculating VaR for each
return series, we first use a GARCH class model to estimate the time-varying VaR. In this
regard, we consider several volatility models such as GARCH, EGARCH, GJR-GARCH,
IGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH and HYGARCH and find out that
the FIAPARCH model provides a better fit for clean energy stock returns according to the
Akaike Information Criterion (AIC). On the other hand, the FIEGARCH model outperforms
others for oil returns. As in Ewing and Malik (2017) and Malik (2021), we construct dummy
variables according to structural break dates and include these dummies in the variance
equations to account for structural breaks. Hence, we estimate two volatility models (with and
without dummy variables) for each return series and present the results in Table 3. The results
in Table 3 show that the beta parameter (measuring persistence in volatility) and the long
memory parameter (d) decrease substantially when the effect of structural breaks is considered
and these results are in line with the empirical literature. According to a likelihood ratio (LR)
test results in Table 3, the null hypothesis of no systematic difference between parameters of
volatility models with and without dummy variables is rejected in favor of volatility models
with dummy variables at the 1% significance level. As such, taking into account structural
breaks significantly improves model fit. It is evident that the existence of structural breaks
causes to overestimate of GARCH parameters and hence they can cause to spurious integrated
GARCH and long memory processes.



<Insert Table I1I here>

Before proceeding with the GPDT, we define the borders of tails and the center of the
distribution. We follow CT (2016) and set as A" = {0%, 1%, 5%, 10%} and AR = {90%, 95%,
99%, 100%} for the left and right tail of the distribution respectively. For the center of
distribution, the VaR risk levels are set as A€ = {20%, 30%, ..., 70%, 80%}. As in CT (2016),
the truncation parameter is calculated as [1.5 7°3] which corresponds to 19 and a Daniel kernel
is used for the weighting scheme. The test results in Table 4 show that the relationship between
clean energy stocks and the crude oil market varies not only depending on the regions of the
distribution but also the clean energy stock index used. For example, while we find only
unidirectional Granger predictability from GCE and ECO to WTTI in the center of distribution,
we cannot detect a predictability between ET50 and WTI. On the other hand, there is
unidirectional Granger predictability from all clean energy indexes to WTI in the left tail of
distribution. Also, there is strong bidirectional Granger predictability between clean energy
indexes and WTTI in the right tail of the distribution. Furthermore, we find similar results for
Brent where there is strong feedback between clean energy stock returns and Brent in the right
tail of distribution. However, the test results show that all clean energy stock indexes Granger
predict Brent in the left tail of distribution. In the center of distribution, only GCE returns
Granger predict Brent returns.

The GPDT results show that unexpected gains in the clean energy stock return Granger
predict unexpected gains in oil returns and vice versa. Therefore, the link between clean energy
stock market and crude oil market is very strong during bullish market episodes. On the other
hand, unexpected loses in clean energy stocks Granger predict unexpected loses in the oil
market, which indicates that clean energy stocks are more dominant in the price transmission
process in bearish market episodes. This finding is very important in terms of risk management
because investors are keen on the relationship between the variables in the left tail of
distribution to minimize portfolio risk. In this vein, the empirical result implies that oil returns
cannot be used to hedge the downside risk of clean energy stock investments and it is consistent
with empirical findings of Elie et al. (2019) found that WT1 is weak safe haven for clean energy
stock return.

The test results for the center of distribution indicate the Granger predictability in the
mean of the variables where clean energy stock prices have an edge in affecting oil prices and
this finding is consistent with empirical results of Geng et al. (2021) and Yahya et al. (2021).
Specifically, Yahya et al. (2021) indicated that while crude oil market plays a dominant role
on the clean energy market before the GFC period, clean energy market is the main driver of
crude oil prices after the GFC period.

<lInsert Table IV here>

Note that the structural break in variance tests in Table 2 shows both clean energy stocks
and crude oil are affected by the GFC and the recent Covid-19 global pandemic because the
breaks dates are related to these global developments. Hence, it is noteworthy to examine
predictability between clean energy stock returns and crude oil returns during the GFC, and the
Covid-19 global pandemic. To that end, we split the sample accordingly and employ GPDT.

The findings in Table 5 indicate that the predictability link at the center of the
distribution depends on the particular clean energy stock index used during the GFC. For
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example, we find Granger predictability running from GCE to WTI, but not the other way
around. However, neither ECO nor ET50 Granger predicts WTI at the center of the distribution
while WTI Granger predicts ECO. On the other hand, we cannot find any Granger
predictability between ET50 and WTI. Similarly, the mixed results during the GFC for BRENT
and clean energy stocks are obtained at the center of the distribution. Although it is determined
bidirectional Granger predictability between GCE and BRENT, there is unidirectional Granger
predictability from BRENT to ECO. However, ET50 Granger predicts BRENT during the GFC
according to the center of the distribution. However, the relationship in the tails between the
variables is consistent for all the clean energy indexes and oil prices during the GFC with
bidirectional Granger predictability.

When we look at the results for the Covid-19 global pandemic, there is unidirectional
Granger predictability from clean-energy stock indexes to oil prices at the center and left tail
of the distribution. The test results for the right tail of distribution suggest bidirectional Granger
predictability between clean-energy stock indexes and oil prices during the Covid-19 global
pandemic. It seems the relationship between the oil market and clean energy stocks is different
during the most recent global crises. This is not surprising because the origins and
consequences of these two global crises are different. While the GFC emerged due to lax
lending standards and risk management in the financial system, the Covid-19 global pandemic
emerged severe threat to public health. Since the financial system collapsed during the GFC,
our results show bidirectional Granger predictability between clean energy stocks and oil
markets in the left tail of the distribution. As such, unexpected losses in the stock market can
be predicted by unexpected losses in the crude oil market during the GFC and vice versa. On
the other hand, the Covid-19 global pandemic first affected financial markets negatively due
to investor concerns, then commodity markets were affected due to the disruptions in the supply
chain. Therefore, unexpected losses in stock return preceded oil market developments during
the Covid-19 global pandemic.

<lInsert Table V" here>

Finally, we use quantile impulse responses for the relationship between clean energy
stocks and the crude oil market and present the results in Figure 2 and Figure 3. Note that
although the studies in the literature have generally used quantile impulse response analysis to
examine tail dependence between the variables, we consider the whole distribution in
estimating impulse responses to better describe the relationship between clean energy and
crude oil markets. ! The results in Figure 2 and Figure 3 give the cumulative responses of oil
returns (clean energy) to a 2-standard-deviation shock in clean energy returns (oil returns).>

While the left panel of Figure 2 and Figure 3 show the responses of WTI and Brent to
a shock in clean energy returns at different quantiles, the responses of clean energy returns to
a shock in WTI and Brent returns are given in the right panel of Figure 2 and Figure 3,
respectively. The results in Figure 2 show that the relationship between clean energy and the
crude oil market is symmetric in right and left of distribution as the responses of WTI to an
unexpected extreme negative (positive) shock in clean energy returns at lower (higher)

! The impulse response results with confidence bands for the left and right tails are available upon request.

2 The QIRF is calculated by using bivariate VAR for VaR model. To estimate the responses of oil returns to a
shock in clean energy returns, the quantile of clean energy return series is estimated in the first equation and the
quantile of oil return series is estimated in the second equation. To estimate the responses of clean energy
returns to a shock in oil returns, the quantile of oil return series is estimated in the first equation and the quantile
of clean energy return series is estimated in the second equation.
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quantiles are negative (positive) and statistically significant. Similarly, clean energy returns
react negatively (positively) and significantly to an unexpected negative (positive) shock in the
WTT at lower (higher) quantiles. This finding is consistent with all clean energy stock returns.
When we look at the center of distribution (50 quantile), the responses of WTI to a shock in
clean energy returns are generally positive but statistically insignificant. Similarly, the
responses of clean energy returns to a WTI shock are not statistically significant at the median.

<Insert Fignre I here>

The results in Figure 3 show similar relationships to those in Figure 2. For example, the
responses of Brent to an extreme negative (positive) shock in clean energy returns at lower
(higher) quantiles are negative (positive) and statistically significant. Also, clean energy returns
react negatively (positively) and significantly to a negative (positive) shock in Brent at lower
(higher) quantiles. These results confirm a bidirectional relationship between clean energy
returns and Brent returns.

<Insert Figure 11 here>

The impulse responses for the relationship between clean energy and crude oil markets
indicate the responses of oil returns to unexpected losses in clean energy returns are negative
and vice versa. Also, the responses of oil returns to unexpected gains in clean energy returns
are positive and vice versa. Impulse responses show bidirectional relationship between clean
energy stock returns and oil returns in the left tail of the distribution. In addition, impulse
responses show the effects of shocks are long-lasting in the right tail of distribution as the
responses in the left tail die out after the 15" lag but remain statistically significant up to the
30" lag in the right tail. By way of comparison, the effects of unexpected losses in clean energy
markets on the losses in crude oil markets are temporary but the impact of unexpected gains in
clean energy markets on the gains in the crude oil market is somewhat persistent and vice versa.
The responses of the variables to an extreme shock in the left tail of distribution are
considerably higher than the responses to an extreme shock in the right tail. As such, the link
between crude oil and clean energy markets is stronger in bearish markets than bullish markets.

5. Conclusion and Policy Implications

The paper aims to revisit the relationship between clean energy stocks and oil prices
using GPDT and the QIR analysis based on the multivariate quantile vector autoregression.
Our results can be summarized as follows: there is some evidence that clean energy stock
returns Granger predict oil price returns during “normal times” but not the other way around.
During bullish market episodes, we determine bidirectional Granger predictability between
clean energy stock returns and oil market returns. However, we find clean energy stock returns
Granger predict oil returns in bearish markets with no evidence of reverse predictability. This
implies that oil returns cannot be used to hedge the downside risk of clean energy stock
investments. Focusing on the GFC and the recent Covid-19 pandemic, the right tail of the
distribution shows bidirectional predictability during both the GFC and the Covid-19
pandemic. However, we find bidirectional predictability during the GFC but predictability
running from clean energy stock returns to oil returns during the Covid-19 pandemic at the
lower quantiles of the distribution. Again, oil returns cannot be used to hedge the downside
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risk of clean energy stock investments during extreme bearish market episodes. We also use
quantile impulse responses for the relationship between clean energy stocks and the crude oil
market. Impulse responses indicate bidirectional and significant responses where a negative
shock during an extremely down market elucidates a negative response in the other market and
a positive shock in an extreme upside market elucidates a significant positive response. This
indicates that neither market can be used to hedge risks in the other market.

The empirical results of the study provide several implications for both policymakers
and investors. First, at the center of the distribution, we find unidirectional Granger
predictability from the clean energy stock index to the crude oil price. Since the Granger
predictability at the center of distribution means predictability in the mean of variables,
movements in the oil price are affected by clean energy investments. Therefore, the change in
clean energy investments has a direct effect on oil prices. Secondly, we obtain different results
at the tails of the distribution and this finding implies that the relationship between clean energy
investments and oil prices changes during the bullish and bearish market periods, and hence
the relationship between the variables changes according to the market conditions. The
presence of unidirectional Granger predictability from the clean energy stock market to the
crude oil price at the left tail of distribution indicates that unexpected losses in the clean energy
stock market can be used to predict unexpected losses in the crude oil market. We determine
bidirectional Granger predictability between clean energy stock market and crude oil market at
the right tail of the distribution and this finding suggests the presence of comovement between
the markets. These findings are important for policymakers to conduct sustainable energy
policies because policy implications require taking market conditions into account. Finally, our
results are important for investors their investment decisions and to reduce their portfolio risk.
Hence, investors should use a dynamic risk management practice closely watching market
conditions.
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