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Abstract

Since many ecosystem services involve spatial scales beyond farm size, their preservation and 

management in agricultural systems depends on the interaction of the landowners. For the analysis 

of such interactive land use a dynamic generic land-use model is developed that considers different 

payoff structures in a systematic manner and relates land-use dynamics to payoff structure in a 

generic manner. A landowner’s own payoff depends on the land use on neighbouring land parcels. 

The landowners’ payoffs are interpreted in a game-theoretic manner which allows for a game-

theoretic classification of the different land-use dynamics generated by the model. The model is 

analysed to determine the proportion, spatial aggregation and temporal turnover of land-use 

measures. The model results are applied to a number of cases from the literature in which the 

management of ecosystem services involves a regional scale, including pollinator conservation, pest

control, and coordination incentives for the conservation of species in fragmented landscapes. Four 

main domains of model behaviour are identified, characterised by the proportions and temporal 

turnover of land-use measures, and whether the system has one or two stable equilibria. The borders

between different domains are characterised by high behaviour-induced spatial aggregation of land-

use measures.
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1 Introduction

The conservation and management of ecosystem services (ESS) is probably the biggest current 

challenge in agricultural systems, because on the one hand, the intensification of agricultural land 

use threatens the persistence of ESS, while on the other hand the decline of ESS threatens 

agricultural productivity as well as human welfare in general (Millennium Ecosystem Assessment 

2005).

Examples of ESS in agricultural landscapes include, among others, biodiversity, water quality, pest 

control, pollination, invasive species (as a disservice), and landscape aesthetics and recreation 

(Millennium Ecosystem Assessment 2005, Qiu 2019). The structure and dynamics of many, if not 

most, of these ESS operates on spatial scales extending those of single agricultural fields or even 

whole farms (Kremen et al. 2007, McKensie et al. 2013). This implies on the one hand that the 

management of these ESS involves multiple agents; while on the other hand, an agent’s action 

affecting an ES will, due to the ES’s spatial extent, affect the production conditions of other, 

neighbouring agents – causing a positive or negative spatial externality (Lewis et al. 2007). For 

instance, in half of the cases investigated by Lonsdorf et al. (2019), the positive externalities from 

pollinator conservation exceeded private costs. 

A popular approach to the analysis of interactions between agents is game theory. Classical games 

include, e.g., the prisoners dilemma, stag-hunt, and chicken/snowdrift, and are able to characterise, 

in an abstract manner, environmental problems (Colyvan et al. 2011). Originally formulated for the 

interaction of two players, various games have also been analysed in a spatial context (Nowak and 

Simund 1994, Brauchli et al. 1999, Koella 2000). These studies provide important general insights, 

such as those about the emergence of cooperation in a population of selfish individuals, but are 

rather abstract, providing no direct linkage to real environmental problems. 



On the opposite, a number of studies have analysed problems of ESS management in a game-

theoretic framework, such as Grogan and Goodhue (2012), Bell and Zhang (2016) and Singerman 

and Useche (2019) for integrated pest management, Bareille et al. (2021) for pollinator 

conservation, and Larhsoukanh and Wang (2019) for the management of eco-cultural tourism. 

These studies, however, are specific and their general insights about the land-use dynamics induced 

by the specific agent interactions are limited. Even more, each application – and associated game 

structure – is considered in separation, ignoring possible relationships with other applications and 

game structures. What would be desirable is a comprehensive and systematic analysis of different 

game structures and related spatial ESS management problems. 

The present study aims at the establishment of such a systematic, starting from the observation of 

Stark et al. (2008) that many 2-player games – in particular those mentioned above, can be 

formulated in a common framework, where each game is characterised by the values of three 

parameters. Here that framework is extended into an N-player framework that includes spatially 

explicit interactions among agents.

The obtained model is analysed through numerical simulation, focusing on the proportion of land 

parcels under ESS- preserving land use, their spatial aggregation, as well as the temporal turnover 

between the environmentally friendly land use and the “economic”, i.e. myopic and self-interested, 

land use. All the possible game structures included in Stark et al. (2008) are considered in a 

systematic manner. For the proportion of land parcels under ESS- preserving land use the 

simulation results are confirmed by a semi-analytical approximation.

The use of the framework is demonstrated in four applications. The first is the vase of pollinator 

conservation by Bareille et al. (2021) in which farmers can devote a certain share of their land to 



pollinator conservation. Due to their mobility, conserved pollinators benefit not only the conserving 

farmer but also neighbouring farmers.

The second application by Bell and Zhang (2016) considers the spraying of pests as well as the 

conservation of natural enemies in non-crop habitat. Among other things, the authors consider two 

opposing spatial externalities of pesticide use (Grogan and Goodhue 2012): a positive one that it 

reduces pest abundance both in the focal and neighbouring landholdings, and a negative one that it 

kills natural enemies both in the focal and neighbouring landholdings.

Third, area-wide pest management (Singerman and Useche 2019) considers only the positive 

externality of pesticide use but on a regional scale so that successful suppression depends on the 

sufficient number of participating farmers.

Fourth, many species require contiguous habitat for their survival. Coordination incentives (Nguyen

et al. 2022) have been introduced to induce the spatial agglomeration of biodiversity conservation 

measures. The most popular scheme here is the agglomeration bonus by Parkhurst et al. (2002) in 

which conservation earns a base payment that is raised by a bonus if the conserved land is adjacent 

to other conserved land. For some species such as species with territorial behaviour the spatial 

dispersion of habitat can be beneficial. Bamière et al. (2013) introduced an agglomeration malus 

that penalises adjacency to conserved land.

The paper is structured as follows. In the next section the “land-use game” is introduced which 

models the land use of multiple agents under spatially explicit interactions. The interactions are 

represented by game-theoretic parameters. In the two following sections the behaviour of the model

is analysed systematically in dependence of these game parameters. The four described applications



are embedded in the results of the general analysis, before the paper concludes with a discussion of 

the general and application-specific results.

2 Methods

2.1 The land-use game

The analysis considers “land-use games” in which each player i has two choices xi: an ESS-

preserving land use xi = 1 (henceforth termed cooperative land use), and a conventional land use xi 

= 0 (henceforth, uncooperative land use). I start with the consideration of two players i = 1, 2. The 

interaction between the two players is symmetric, so that if both players choose the same land use, 

x1 = x2, each of them receives the same payoff; and if player 1 chooses some x1 = u and player 2 

chooses some x2 = v  u then player 1 receives the same payoff as player 2 would receive if s/he 

chose x2 = u and player 1 chose x1 = v. 

Without loss of generality I scale all payoffs relative to that associated with both players choosing 

the uncooperative land use, x = 0. This is achieved formally by setting that payoff to m = 1 if it is 

positive and to m = – 1 if it is negative. The associated payoff matrix is given in Table 1 with three 

continuous model parameters R, r1 and r2, and the binary parameter m. Here r1, is the payoff of 

choosing x = 1 while the other players chooses x = 0; r2 is the payoff of choosing x = 0 while the 

other player chooses x = 1; and R3 is the payoff if both players choose x = 1.

Table 1: Payoffs of player 1 (first number) and player 2 (second number) in a 2-player game, as a 

function of the chosen actions x1 and x2.

x2 = 1 x2 = 0

x1 = 1 R, R r1, r2

x1 = 0 r2, r1 m, m



In equation form, the payoffs can be written as

(1)

Now I extend the 2-player game into an N-player game. Each player i (henceforth termed a 

landowner) now interacts with a number of landowners j within some neighbourhood Mi (which 

may be the Moore neighbourhood of the eight adjacent grid cells (land parcels) in a square grid: 

Bareille et al. (2023), or the von-Neumann neighbourhood of the four adjacent grid cells to the 

north, south, east and west: Parkhurst and Shogren (2007), or else).

The interactions between the landowners are assumed isotropic and independent. The former means

that the interaction between two players depends on the distance between the two but is otherwise 

spatially homogenous. The latter means that the influences of neighbouring landowners on some 

focal landowners are additive. By these assumptions, the joint impact of the neighbours’ land-use 

choices xj on the payoff of landowner i can be modelled as dependent on the proportion qi of 

landowners with xj = 1 in the neighbourhood Mi:

, (2)

where M is the number of landowners or grid cells in the neighbourhood Mi (eight in the case of the 

Moore neighbourhood above, and four in the case of the von-Neumann neighbourhood). It is 

assumed assumed identical for all land parcels i. To allow for some non-linearity in the interactions,

I consider that the influence of the neighbours depends on qi
a, with a some positive real number. A 

value of a < 1 represents a concave relationship with diminishing marginal influence; while a > 1 

represents a convex relationship with increasing marginal influence.



Analogous to eq. (1) I assume that if landowner i chooses xi = 1, her payoff is given by Vi = R if all 

neighbours choose xj = 1, i.e. if qi = 1; while it equals Vi = r1 if all neighbours choose xj = 0, i.e. if qi 

= 0. The payoff for values of qi between zero and one is given by linear interpolation between r1 and

1.

And if landowner i chooses xi = 0 her payoff is given by Vi = r2 if all neighbours choose xj = 1, i.e. if

qi = 1; while it equals Vi = 1 if all neighbours choose xj = 0, i.e. if qi = 0. And analogously, the 

payoff for values of qi
a between zero and one is given by linear interpolation between 1 and r2. 

Altogether, the payoff of landowner i is given by

. (3)

To take the possibilities of a negative and a positive payoff Vi(xi = qi = 0) into account the last term 

in eq. (3) has the prefactor m  {–1, +1}. To add realism to the present land-use model (and to go 

beyond trivial model results), a random component sei is included in the payoff m:

. (4)

Here ei is as random deviate with mean zero and standard deviation one, so s > 0 measures the 

relative variation in m.

2.2 Model analysis

The land-use dynamics are simulated on a square grid with N grid cells (land parcels), i = 1,…, N, 

each of which can be used cooperatively (xi = 1) or uncooperatively (xi = 0). To eliminate boundary 



effects, boundaries are periodic, so that the eastern border joins the western border and the northern 

border the southern border and the “model world” has the shape of a torus). The simulation starts by

randomly sampling, with probability pinit, for each grid whether xi = 1; otherwise xi = 0. 

Each landowner i observes the proportion qi of land parcels with xi = 1 in its (eight-cell) Moore 

neighbourhood Mi and builds the payoff function, eq. (4). The payoff difference between land use xi 

= 1 and xi = 0 equals

. (5)

For r1 = 0, DVi depends two parameters: g and s. For r1  0, both sides of eq. (5) can be divided by 

s to obtain

, (6)

where DVi/s depends on two quantities: the payoff g scaled in units of s, and the difference between

the payoffs r1 and m  {– 1,+1}, also scaled in units of s. Such scaling methods help reducing the 

set of model parameters to the set of truly independent one (here from three parameters (g, r1, s) to 

two). The interpretation of the influences of g and r1 is not changed by the scaling, while an 

increase in s by some factor has the same effect as a decrease in g and (r1 – m) by the same factor.

To simulate the land-use dynamics, I assume that landowner i chooses xi = 1 if DVi > 0, and xi = 0 

otherwise. In the next time step the landowners observe the adapted xi, calculate their qi and DVi, 

adapt their xi, and so on. The dynamics are simulated over 100 time steps (a highly conservative 



choice) to reach a steady state. For the final 20 time steps, a temporal average is calculated for three

quantities that characterise the macroscopic behaviour of the model system. The first is the 

proportion p of cooperative land parcels, i.e. the grid cells with xi = 1; henceforth termed coop-

proportion:

. (7)

The second quantity of interest is the average proportion of land parcels with xj = 1 within the 

Moore neighbourhoods Mi of conserved land parcels i, where the average is taken over all land 

parcels in cooperative use, xi = 1: q0 = Si(xiqi)/Si(xi) = Si(xiqi)/p. However, this measure is 

confounded with the proportion p, because if a proportion p of all land parcels has x = 1 then for 

any land parcel the proportion of neighbours with x = 1 will, on average, be equal to p. To eliminate

this “statistical agglomeration” and only keep the “behaviour-induced” aggregation (henceforth 

termed bi-aggregation), I subtract p from q0 to obtain

 

(8)

A technical motivation for the use of q rather than q0 is that, for the above reasons, q0 quite strongly 

correlates with p. The results of the model analysis are presented below by coloured contour plots, 

and it turned out that these plots are for q0 difficult to distinguish from those for p, so little 

understanding is gained from showing q0. 



The last quantity of interest is the land-use turnover between consecutive time steps. Denoting by xi 

the current land use and by xi’ the land use in the next time step, this temporal turnover is calculated 

as

(9)

 

The term in brackets equals 1 if xi’  xi and 0 otherwise, so t represents the proportion of land 

parcels changing their state between two consecutive time steps.

Each simulation is replicated 200 times and averages are taken to account for the randomness ei in 

the payoffs. As noted above, the decisions of the landowners only depend on the sign of the payoff 

difference DVi. In the formulation if eq. (5) (used for the case of r1 = 0) this depends, next to the 

binary parameter m and the endogenous variable qi, on the model parameters g and s; while in eq. 

(6) it depends on g and (r1 – m), both scaled in units of s.

To analyse the model in wide generality, I analyse it, for a = 0.5, 1 and 2, 

(i) via eq. (5) with r1 = 0, systematically varying g  [–10, 10], s  [0, 0.8], and m  {–1, 1}, and

(ii) for r1  0 via eq. (6), systematically varying g/s  [–10, 10] and (r1 – m)/s  [–5, 0].

The bounds are motivated as follows. For analysis (i), the upper bound on the variation, s = 0.8 

represents a relative payoff variation of 80 percent, which may be regarded as large in an 

agricultural context. For s within that range, DVi of eq. (5) is of the order of magnitude of one, so 



raising g to its upper or lower bounds of 10 and –10, respectively represents a very strong change of

DVi.

For analysis (ii), at the upper and lower bounds of g/s = 10 a variation of qi between zero to one 

affects DVi much more than does the variation in the ei (which has standard deviation one). 

Regarding r1 – m, at its upper bound of zero we have DVi = ei and even qi = 0 implies a 50-percent 

probability of landowner i choosing xi = 1. So after the first simulation time step pN landowners 

have chosen x = 1. As argued above, this implies an aggregation of q0 = p = 0.5. Since q0 is the 

average over all qi, in the next time step we have on average DVi = 0.5 + ei, implying even more 

landowners choosing x = 1, and after another few time steps all landowners will eventually choose x

= 1. A the lower bound of r1 – m = –5 we have, for qi = 0, DVi = ei – 5, which is negative with an 

extremely high probability.

Preliminary analyses, motivated by Drechsler (in press) reveal that for some model parameter 

combinations there are two possible steady-state solutions, one with a rather high p and one with a 

rather low p – whose emergence depends on the initial proportion pinit of land parcels with x = 1. To 

detect this bistability in the model behaviour, I consider two levels for the initial proportion: pinit = 0 

and pinit = 1.

To confirm the simulation results, the steady state behaviour of the model dynamics is determined 

semi-analytically via a mean-field approximation (Online Appendix A). By the nature of this kind 

of approximation, only the coop-proportion p can be determined and analysed.

2.3 Applications

2.3.1 Pollinator conservation



As the first example, Bareille et al. (2021) consider a public good problem that arises from the fact 

that conserving land for pollinators incurs local costs while benefits spread over a larger spatial 

scale. Their bio-economic model, based on Cong et al. (2014), considers that each landowner 

partitions their land for three mutually exclusive land-use types: fruit production (orchards), crop 

production (arable land), and land conserved for pollinators. While the share of land devoted to fruit

production is exogenous, the landowner can choose how much land to devote for crop production 

(to gain economic benefits) and how much to set aside for pollinator conservation. The latter 

increases the abundance of pollinators and the fruit yield of the focal landowner as well as the fruit 

yield in the orchards of neighbouring landowners, providing a positive externality. 

Since the present modelling framework allows only for two land-use types, I simplify the model of 

Bareille et al. (2021), still capturing its essence, i.e. the spatial interactions between the landowners,

and adopting their terminology as far as possible for easy reference. The main change is that I 

ignore crop production and assume (may be somewhat unrealistically at least on short time scales) a

varying extent of fruit production, so that in each time step landowner i reserves a share of land, ei, 

for pollinator conservation and uses the rest, 1 – ei, for fruit production. The second simplification is

that the choice of ei is not continuous but binary, where ei has either a positive value 0 < E ≤ 1 or is 

zero. The choice ei = E represents the cooperative land use xi = 1 in the present framework, while 

the choice ei = 0 represents the uncooperative use, xi = 0.

According to Bareille et al. (2021), the fruit gross margin on farm i is given by

(10)

where p is the fruit price, y the reference fruit yield and C the cost of fruit production. The total fruit

yield is the product of the reference yield y and a linear function, a + bJi where



(11)

is the immigration of pollinators into farm i (cf. the ecological metapopulation theory of Hanski 

(1999)) and a and b some positive coefficients. The first line of eq. (20) considers that pollinators 

emigrate from farms j, with their number proportional to the reserve size ej.  They reach farm i with 

probability exp{-ldij}, where dij is the Euclidean distance between farms i and j, and l is the inverse

of the mean dispersal distance of the pollinator (Hanski 1999).

The second line of eq. (20) is a simplification of the first line, assuming that pollinators can reach 

farm i only if they emigrate from a farm j within the neighbourhood Mi of farm i, and that these 

pollinators all have the same probability exp{-ld} of reaching farm i. Parameter d can be regarded 

as the mean of the distances dij over all farms in the neighbourhood Mi, and g = bMexp{-ld}.

With these assumptions, the payoff (fruit gross margin) of landowner i equals

(12)

with u = pya – C the “unilateral” net revenue per unit orchard area if no neighbour conserves their 

pollinators (qi = 0), and v = pybag the added revenue per pollinator habitat area (E) if all neighbours

conserve their pollinators (qi = 1).

To add spatial variation, I assume that the net revenues vary among landowners with a relative 

variation of size s, which is achieved by multiplying u by (1 + sei). Since u can be positive or 



negative, I write it as the product u = sgn(u)|u| with |u| the absolute value and sgn(u) the sign of u. 

Dividing both sides of eq. (12) by |u|E, i.e. measuring Vi in units of |u|E then yields for the 

difference DVi = Vi(xi = 1) – Vi(xi = 0):

(13)

where the right-hand side is equivalent to eq. (5) with g = –vE/|u|, r1 = 0 and m = –sgn(u).

2.3.2 Pest control

Bell and Zhang (2016) is an experimental study about integrated pest management in Southeast 

Asia. Each of the subjects in the game experiment manages a square of nine grid cells (agricultural 

fields) of size one, and choose for each grid cell one out of four options (Table 1 in Bell and Zhang 

(2016)): (i) planting crops without spraying (payoff P = 5), (ii) planting crops with light spraying to

kill pests (P = 6), (iii) planting crops with heavy spraying (P = 10), and (iv) non-crop habitat to 

protect natural enemies of the pests (P = 0). Options (iii) and (iv) generate external effects to 

neighbouring grid cells, such that option (iv) raises the payoffs in all grid cells with distance up to 

two by a magnitude DP = 2 (positive externality), while option (iii) erases this non-crop externality 

in all adjacent grid cells (short-range negative externality).

Since the present framework considers only two land-use options, the model of Bell and Zhang 

(2016) has to be simplified by assuming that each 9-cell block is managed as a single entity; and 

each block is surrounded by eight blocks, each owned by a neighbouring farmers. Two “subgames” 

are considered:

1. No spraying and protecting enemies (x = 1) or not (x = 0)



To protect enemies, analogous to the previous application, landowner i can devote a share E of their

land for non-crop habitat, which reduces the payoff from P = 5 to P = 5(1 – E). Each neighbour 

who protects natural enemies raises the payoff of landowner i by 2E. Variation among the 

landowners is introduced by multiplying the unilateral payoff, 5(1 – xiE), by (1 + sei), so that

(14)

and

, (15)

and the right-hand-side of eq. (15) is equivalent to eq. (5) with g = 16/5, r1 = 0 and m = 1.

2. Conserving a share E of land for natural enemies and use light spraining (x = 1) or heavy 

spraying (x = 0)

According to the payoffs listed above, the local payoff of farmer i equals 6(1 – E) for light spraying 

and 10(1 – E) for heavy spraying. To introduce variation among the landowners, these two payoffs 

are multiplied by (1 + sei). If all neighbours apply light spraying farmer i receives, analogous the 

previous case, an externality of size 16E. As outlined above, Bell and Zhang (2016) assume the 

range of the positive externality larger than that of the negative one. Since the present framework 

considers only one spatial range (neighbourhood size), I consider the smaller range of the negative 

externality such that it does not erase the entire positive externality of the protecting neighbours in 

the neighbourhood, but instead if ni farmers in the neighbourhood spray heavily this multiplies the 

magnitude of the positive externality with a factor (1 – ni/8) < 1. Equivalently, if a proportion qi of 



neighbouring farmers applies light spraying rather than heavy spraying (i.e., choose land use xi = 1) 

the positive externality (16E) is multiplied by qi.

The payoff of landowner i thus equals 

. (16)

and

, (17)

so the right-hand side of eq. (17) is equivalent to eq. (5) with g = r1 = 0 and m = 1.

2.3.3 Area-wide pest management

Singerman and Useche (2019) present a case of area-wide pest management (AWPM) in which a 

pest can be eradicated only if a sufficient number of landowners participates in the control effort. 

The authors model this by assuming that the payoff of a landowner i not participating in pest 

management (xi = 0) equals z. The payoff of participation (xi = 1) is zero if less than kc landowners 

participate, and equal to p if at least kc landowners participate. Note that in Singerman and Useche 

(2019), z does not differ among landowners. In the present framework I consider variation in z by 

multiplying it with (1 + sei).

The type of management problem considered by Singerman and Useche (2019) is a threshold public

good problem that slightly differs from the present framework in which payoffs depend on the 

neighbouring land use and not the land use in the entire region. To translate the essence of 



Singerman and Useche (2019) into the present framework I approximate it by considering that it 

represents an extreme case of increasing marginal benefit of pest control effort: The benefit is very 

small if only few landowners participate in pest control but strongly increases as the number of 

participants grows towards the threshold. In the present framework this can be modelled by raising 

the proportion qi to the power of a, with a > 1. With this approximation the payoff of landowner i 

becomes

, (18)

implying

, (19)

so that the right-hand side of eq. (19) is equivalent to eq. (5) with g = p/z, r1 = 0 and m = 1.

2.3.4 Agglomeration bonus and agglomeration malus

The agglomeration bonus (Parkhurst et al. (2002) rewards biodiversity conservation (xi = 1) by a 

base payment P0 and incentivises the spatial agglomeration of conservation efforts by offering an 

additional bonus b for each conserved land parcel in some neighbourhood Mi. Economic use (xi = 0)

generates a payoff of size c, independent of the neighbours’ land use. Variation among landowners 

is here included by multiplying c with (1 + sei).The payoff of landowner i then is given by

, (20)

implying



, (21)

so that the right-hand side of eq. (21) is equivalent to eq. (6) with g = (b/c)M and r1 = P0/c and m = 

1.

In its original version of Parkhurst et al. (2002), the bonus b is positive. As a variant, Bamière et al. 

(2013) proposed an agglomeration malus, b < 0, to incentivise the spatial dispersion of conservation

measures, addressing the conservation of territorial species.

3 Results

3.1 Major domains of model behaviour

As a reference for the results of the simulation analysis, note that the payoffs in Table 1 allow for 

four major types of model behaviour: (a) R > r2 and r1 > m: x = 1 is a dominant strategy 

(“cooperation game”); R > r2 and r1 < m: two Nash equilibria exist with either both players choosing

x = 1 or both players choosing x = 0 (coordination game); R < r2 and r1 > m: two Nash equilibria 

exist with both players choosing opposite strategies (anti-coordination game); and R < r2 and r1 < m:

x = 0 is a dominant strategy (for R > m representing a prisoners dilemma).

Translating these distinctions into the space of g and r1 leads to the behaviour shown in Fig. 1. For g

> 0 and r1 > m (upper right quadrant) the model is a “cooperation game”, while for g < 0 and small 

r1 < m (lower left quadrant) the choice of x = 0 is dominant. For g < 0 and r1 > m (upper left 

quadrant), there is a cooperation game for large r1 above the diagonal and an anti-coordination game

below it. And for g > 0 and r1 < m (lower right quadrant) x = 0 is dominant for small r1 below the 

diagonal, while there is a coordination game for r1 above the diagonal.



3.2 Model analysis

For the model simulation (i) with a = 1 and m = 1, described in section 2.2, Figure 2 shows the 

upper steady-state solution in the upper panels and the lower steady-state solution in the lower ones 

(if both panels show the same value only one solution exists). For (large) positive g and large s the 

coop-proportion p of land parcels is about one (upper right in Figs. 2a,d), while for negative g and 

small s (lower left) it is near zero. The associated levels of bi-aggregation q Figs. 2b,e and temporal

turnover t (Figs. 2c,f) are small.

Figure 1: Major domains of model behaviour as a function of the payoffs g and r1 – m, derived from

the payoffs of the 2-player game of Table 1 and the transformation g = R – r1 – r2 + 1(cf. eq. (5)).

Brown colour: x = 0 is a dominant strategy; light green colour: coordination game; dark green

colour: anti-coordination game; purple colour: x = 1 is a dominant strategy.

For negative g and large s (upper left in Fig. 2) the coop-proportion p is of medium size, bi-

aggregation q is small but there is also some turnover t. A large negative g means that in a 

neighbourhood of many sites with x = 1 (large qi in eq. (5)) choosing x = 1 is disadvantageous. In 

contrast, in a neighbourhood of sites with many x = 0 (small qi) a sufficiently large random payoff 

sei can render the choice of xi = 1 advantageous (eq. (5)). Thus, for sufficiently large s the 

landowners are in an anti-coordination game, as in the upper left of Fig. 1. The positive turnover 

indicates that some land parcels switch their land use between time steps: If landowners observe a 



small qi they choose xi = 1. This implies an increased qi for some of those who had chosen xi = 1 

before, who therefore switch to xi = 0, and so on.

Figure 2: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover t

(right panels) in the steady state of simulations based on eq. (5) with a = 1, r1 = 0 and m = 1, as

functions of the payoff parameter g and the payoff variation s. Upper solution in the upper panels

and lower solution in the lower panels (if both panels show the same value, only a single solution

exists). The white lines mark the boundary between the existence of one and two solutions.

For positive g and small s (lower right in Fig. 2) the model behaviour depends on the initial 

condition. If initially there are only very few or zero land parcels with xi = 1, gqi << 1, for most i 

and large random payoffs sei would be required to render xi = 1 profitable (eq. (5)). These, however,

are excluded by small s, so the land use choice xi = 1 cannot spread in the landscape and p stays 

small. In contrast, if there are many land parcels with xi = 1, gqi is large for many i and a high coop-

proportion p of land parcels is sustained. The landowners are thus in a coordination game, as in the 

lower right of Fig. 1.

As is argued in section 2.2, the average proportion q0 of cooperative land parcels around 

cooperative land parcels strongly correlates with the coop proportion p. Thus, the parameter 



combinations that lead to high/medium/small p also lead to high/medium/small q0. To gain 

additional understanding, Figs. 2b and 2e therefore focus on the behaviour-induced (bi-) 

aggregation q. As the figures show, this is small where the coop-proportion is large or small, but 

quite high for g around 1–4 and s above 0.4, i.e. at the boundary between the two domains of anti-

coordination game on the one side (g < 0)and the dominance of land use x = 1 o the other side (g > 

4).

The model behaviour changes substantially when the value of m is changed from +1 to –1 (Fig. 3). 

The payoff variation s here has only a minor effect while the model behaviour strongly depends on 

the payoff g: If that is larger than about –1 the land use is stable with all land parcels in cooperative 

use (p = 1), and with small little bi-aggregation and zero turnover. For large negative g the coop-

proportion p is about 0.5, bi-aggregation q is small and turnover very high – an extreme case of an 

anti-coordination game. As in Fig. 2, the two domains are separated by a region around g  [1, 4] 

with quite high bi-aggregation (Figs. 3b,d).

Figure 3: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover t

(right panels) in the steady state of simulations based on eq. (5) with a = 1, r1 = 0 and m = –1, as

functions of the payoff parameter g and the payoff variation s. In contrast to Fig. 2, only a single

solution for p, q and t exists.

Now turn to the case of r1  0 which is considered in eq. (6). Similar to Figs. 1 and 2, Fig. 4 shows 

four major domains. For large payoffs g/s and (r1 – m)/s (upper right in the panels) the coop-



proportion p is high, while bi-aggregation q and turnover t are low. Reducing from here the payoff 

g (for given s) leads into the domain (upper left) of reduced p but increased t – again the case of an 

anti-coordination game. Reducing, from the upper right, the payoff (r1 – m) (for given s)  leads into 

a coordination game (lower right in the panels) with two solutions (a large p and a small p, 

depending on the initial proportion of land parcels with xi = 1). Reducing, from the upper right, both

payoffs (which is equivalent to increasing the payoff variation s) leads into the domain (lower left) 

with small or zero p, q and t. Similar to the analyses above, the domains are separated by areas of 

increased bi-aggregation q.

Figure 4: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover t

(right panels) in the steady state of simulations based on eq. (6) with a = 1, as functions of the

scaled payoffs g/s and (r1 – m)/s. Upper solution in the upper panels and lower solution in the lower

panels (if both panels show the same value, only a single solution exists). The white lines mark the

boundary between the existence of one and two solutions.

The analyses above assumed a value of a = 1 for the exponent at the proportion qi (eq. (4)). A 

change in a does not change the general behaviour of the model but shifts the locations and sizes of 



the discussed domains of model behaviour. The results for the coop-proportion p are shown for a = 

2 in Fig. 5 (for a = 0.5 and for bi-aggregation q and turnover t, see Online Appendix B).

Figure 5: Coop-proportion of land parcels p as a function of the payoff g and the payoff variation s

(panels a,b,d,e) and as a function of the scaled payoffs g/s and (r1 – m)/s (panels c,f). Panels a and d

refer to eq. (5) with m = 1, panels b and e refer to eq. (5) with m = –1, and panels c and f refer to eq.

(6). Upper solution in the upper panels and lower solution in the lower panels (if both panels show

the same value, only a single solution exists). The exponent at the proportion qi of neighbours with

x = 1 (eq. (4)) is set to a = 2. The white lines mark the boundary between the existence of one and

two solutions.

Comparing Figs. 5a,d with Figs. 2a,d (which represents eq. (5) with m = 1) reveals that the domain 

in the lower right with two solutions of p has expanded both upwards and leftwards, so that bi-

stability occurs already at smaller g and larger s than at a =  1. Comparing Figs. 5b,e with Figs. 

3a,d (which represent eq. (5) with m = –1) reveals no measurable influence of a. And comparing 

Figs. 5b,f with Figs. 4a,d (which represent eq. (6)) reveals an expansion of the b-istability upwards, 

so that it occurs already at larger payoffs (r1 – m)/s than at a = 1. Altogether, increasing a seems to 



turn some areas of the parameter space associated with high coop-proportions p into parameter 

combinations associated with bi-stability.

The results of Fig. 5, as well as those for the coop-proportions shown in Figs. 2–4, are confirmed by

the semi-analytical analysis in Online Appendix A. Even in a quantitative sense, deviations between

numerical simulation and semi-analytical analysis are small.

3.3 Applications

3.3.1 Pollinator conservation

According to eq. (13), g is negative and its magnitude given by vE/|u| which is the ratio of the 

externality from neighbours’ pollinator conservation (v) and the focal landowners net revenue in the

absence of pollination service. If u > 0, represented by m = 1 (Figs. 6a,d), the benefit of fruit 

production ceteris paribus exceeds the costs, so it is beneficial for the landowner to maximise the 

fruit production area by choosing x = 0. If the neighbours behave the same, everybody looses the 

externality from pollinator conservation, so the landowners are in a prisoners dilemma and the 

coop-proportion p of landowners conserving their pollinators is zero or very small. Non-zero p are 

obtained only where a large payoff variation s leads to negative u for some landowners – for whom 

pollinator conservation then can be beneficial (see below). 

If u < 0, represented by m = –1 (Figs. 6b,e), fruit production without the externality from 

neighbours’ pollinator conservation is associated with a negative net revenue. Thus it is profitable to

minimise the fruit production area by choosing xi = 1 and conserve the pollinators. However, if all 

landowners behave the same, they generate a large positive externality which pushes the net 

revenue per fruit production area of some landowners to a positive value. For these landowners it is 

then profitable to maximise their fruit production areas by disengaging from pollinator conservation

(xi = 0) – which turns the revenue u to a negative value and favours pollinator conservation. The 



landowners are thus in an anti-coordination game with medium levels of p and high turnover t 

(Figs. 3c,f).

This outcome “softens” a little if the magnitude of g is small, i.e. if the externality v is small and/or 

the magnitude of the net benefit, |u| very large. Here the turnover is reduced and there is a small 

level of bi-aggregation q.

Figure 6: Coop-proportion p of landowners as a function of the payoff g and the payoff variation s,

for different levels of a and m (compiling Figs. 3a,b, 4a,b, and 5a,b). For the shaded areas and the

black dashed lines, see the text. The white lines mark the boundary between the existence of one

and two solutions.

3.3.2 Pest control

The two cases outlined in section 2.3.2 are represented by the vertical black dashed lines in Figs. 

6a,d. For the first variant with g = 16/5, the landowners protect the natural enemies (xi = 1), 

implying high p, if the payoff variation s exceeds about 0.4. For smaller s the landowners are in a 

coordination game, so that if only few landowners protect the natural enemies it is profitable to 

reduce the area for enemy protection (xi = 0), while if many landowners protect the natural enemies 



it is profitable to protect the own natural enemies, as well. A high payoff variation obviously 

unlocks the landowners from their coordination problem. In the second case of pest control, with g 

= 0, it is profitable to use heavy spraying, so the coop-proportion p of landowners using light 

spraying is zero or very small. 

3.3.3 Area-wide pest management

As derived in section 2.3.3, the payoff g is positive and increases with increasing ratio p/z, where p 

is the landowner’s benefit of cooperation (participating in pest control) if sufficiently many 

landowners participate, too (while p = 0 if there are not enough participants); and z is the unilateral 

landowner’s benefit of not participating in pest control. The exponent at the proportion qi of 

neighbours engaging in pest control is assumed a = 2 (Figs. 6c,f).

For small ratios p/z the landowners are in a prisoners dilemma with small or zero p. For large p/z 

the situation is similar to that in the previous section: At small payoff variation s the landowners are

in a coordination game between a large and a small possible proportion of landowners participating 

in pest control; at large s they all participate in pest control.

3.3.4 Agglomeration bonus and agglomeration malus

In this application the payoff r1 is non-zero (so eq. (6) is used for the model analysis) and given by 

the ratio of the base payment P0 and the mean economic profit c (associated with x = 0). A value of 

(r1 – 1)/s = k means that the base payment is k standard deviations below the mean economic profit.

The payoff g measures the additional payment if neighbours conserve their land parcels, too. 

If that additional payment is positive (agglomeration bonus, g > 0) three outcomes are possible. If 

base payment and bonus are small the landowners use their land economically (small coop-

proportion p). At large base payments and large bonuses they conserve their land (large p). And for 



large bonuses and small base payments (lower right of Figs. 7a,b) the landowners are in a 

coordination game where conservation is profitable if and only if sufficiently many other 

neighbouring landowners conserve, too.

Figure 7: Coop-proportion p of landowners as a function of the scaled payoffs g/s and (r1 – 1)/s

(adopting Figs. 4a,b).

Between these domains of model behaviour there is a boundary of high bi-aggregation where the 

size of the bonus b sensitively affects both the coop-proportion p and the bi-aggregation q.

If the additional payment is negative (agglomeration malus, g < 0) a small base payment implies – 

not unexpectedly – that the landowners use their land economically (lower left in Figs. 7a,b). In 

contrast, if the base payment is high and near the mean economic profit (upper left) the landowners 

are in an anti-coordination game with medium coop-proportion p and high turnover t (cf. Fig. 4e,f).

4 Discussion

Land use often creates spatial externalities, so that it affects the decision environment of 

neighbouring landowners and in particular the profitabilities of their land-use measures. Such 

externalities include, among other things, the economic benefits from pollinators, benefits from 

(collaborative) pest management, as well as payments for the conservation of land for biodiversity.



A generic model is constructed that captures these interactions. It starts from a general game-

theoretic classification of possible interactions between two agents and extends this into a multi-

agent system. This also involves the introduction of heterogeneity among the different agents or 

landowners.

The model is analysed for a wide range of environmental conditions to determine the steady-state 

proportion of landowners engaging in cooperative land use, and the spatial aggregation and 

temporal turnover of land-use measures. Cooperative land use here is defined as a land use that 

(generally positively) affects the profitability of the neighbours’ land-use measures.

Four major domains of system behaviour are identified: (i) with a low proportion and aggregation 

of cooperative land use and a low turnover between land-use measures (related to the prisoners 

dilemma in game theory); (ii) with a high proportion (and necessarily also aggregation) of 

cooperative land use and a low turnover between land-use measures (related to cooperation games); 

(iii) with the existence of two steady states: one with a low and one with a high proportion and 

aggregation of cooperative land use (related to coordination games); and (iv) with a medium 

(temporal average) proportion of cooperative land use, low aggregation and high turnover (related 

to anti-coordination games). 

Often the boundaries between the different domains are characterised by a high level of “behaviour-

induced” spatial aggregation, i.e. where the spatial aggregation exceeded the level that can be 

expected for mere statistical reasons (the latter meaning that a comparatively high proportion of 

cooperative land use implies a comparatively high spatial aggregation of this land use).

The boundaries between the domains are determined by the relative payoffs of the land-use 

measures and their dependence on the proportion of neighbours engaging in cooperative land use, 



as well as the spatial variation between the landowners’ payoffs. The practical meanings of these 

payoffs are demonstrated on a number of applications from the literature, covering pollinator 

conservation, pest control (through spraying or the conservation of natural enemies), area-wide pest 

management where management success requires a minimum number of participating landowners, 

and the agglomeration bonus and agglomeration malus that reward or penalise, respectively, the 

spatial aggregation of conservation measures.

In particular, in the case of pollinator conservation the landowners were either in a state of low 

proportion of cooperative land use or in an anti-coordination game with high turnover between 

land-use measures. Similar was found for the case of pest control. The landowners in the area-wide 

pest management, in contrast, where either in a state of low proportion of cooperative land use, a 

state of high proportion of cooperative land use, or in a coordination game. Similar was found for 

the landowners in an agglomeration bonus scheme; while in an agglomeration malus scheme the 

landowners were either in a state of low proportion of cooperative land use, a state of high 

proportion of cooperative land use, or in an anti-coordination game with low spatial aggregation 

and high turnover of conservation efforts. In particular the results for the agglomeration bonus agree

with previous studies like Parkhurst and Shogren (2007), Drechsler (2023) and Drechsler (in press) 

that landowners are confronted with a coordination problem because conservation of costly and 

spatially connected sites is beneficial only if a sufficiently many other landowner conserve, too.

To allow for a general and systematic analysis, the model involves a number of simplifying 

assumptions that may be relaxed in future research. Obvious limitations include that only two land-

use measures are considered (cooperative use and uncooperative use), the landowner interactions 

are based only on a single factor (ecosystem service or conservation payment), ignoring the 

presence of multiple factors with multiple spatial ranges, as well as spatial correlations and 

temporal changes in payoff parameters.



The interactions between landowners are symmetric, so that the influence of one landowner on 

another landowner equals that of the latter landowner on the former. Dynamic and strategic decision

behaviour are ignored, as well as evolutionary aspects and learning and risk aversion. The 

landowners are rational in the sense that they maximise their profit under complete information of 

their neighbours’ land use  (although their decisions are myopic). 

Lastly, ecological dynamics are considered only as far as they determine the payoffs g, r1 m in eq. 

(4). The explicit consideration of the dynamics of ecosystem services and species populations 

would considerably complicate the model and its analysis but can also be expected to deliver 

important insights. Nevertheless, viewing problems of interacting land use and management of 

ecosystem service through the lens of (spatial) game theory appears to be a helpful approach to 

identify differences and similarities between different types of spatial environmental problem and 

develop a general understanding of the management of spatial ecosystem services.
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Appendix A: Semi-analytical model analysis

The temporal average of the coop-proportion p of land parcels with x = 1 can be determined using a 

so-called man-field approximation. It is frequently used to analyse complex spatially structured 

physical systems like magnetic materials in which the atomic spins can be ordered (magnetic state) 

or disordered (non-magnetic state) Schinckus 2018), but also social systems (Phan et al. 2003) like 

voter models in which individuals can choose between two (political) opinions and are influenced 

by their neighbours or peers (Grabowski and Kosiński 2006). For the agglomeration bonus it has 

been applied by Drechsler (in press).

In a mean-field approximation (Phan et al. 2003) the interaction of an agent with its neighbours is 

simplified by assuming that the agent does not react on each neighbour individually but only on the 

average behaviour of all neighbours (the “mean field” that the focal agent is subjected to), and that 

this field is identical for all agents. By this, the approach is unable to detect small-scale 

heterogeneities but focuses on the average behaviour of the macroscopic system (magnetic or non-

magnetic; opinion A outweighs opinion B; large or small proportion of conserved land parcels).

Considering eq. (5), the probability of landowner i choosing xi = 1 is the probability of DVi being 

positive:

. (A1)

As described in section 2.1, the ei are normally distributed with mean zero and standard deviation 

one. This normal distribution can be approximated by the logistic distribution,

, (A2)

with b = p/3(1/2) (Phan et al. 2003), so eq. (A1) becomes

(A3)

The mean-field approximation is now represented by the assumption that qi of eq. (A3) is identical 

for all i, and equal to the proportion p of land parcels with xi = 1 in the model region. Due to the 

identity of the qi for all land parcels, eq. (A3) further applies to all landowners i in the same manner 

and gives the probability of any land parcel i having xi = 1. On the other hand, if the probability of a

land parcel being in state xi = 1 is the same for all land parcels, the proportion of land parcels with xi

= 1 equals p = Pr(xi = 1). So we have qi = p = Pr(xi = 1) and eq. (A3) becomes

(A4)



An analytical solution of eq. (A4) for p is impossible, so the solution p* is determined numerically 

by determining the roots of the equation 1/(1 + exp{…}) – p = 0. Depending on the values of the 

model parameters g, r1, m and s there can be one or two stable roots. They are determined for the 

same parameter ranges as in the simulation described in section 2.2. The results are given in Figs. 

A1–A3 for a = 0.5, a = 1 and a = 2. They are, even quantitatively, nearly identical to their 

simulation counterparts (Figs. B1a,d, B2a,d, B3a,d for a = 0.5; Figs 2a,d, 3a, 4a,d for a = 1; and 

Fig. 5 for a = 2) – with one exception: In the simulation analysis (i) (eq. (5) with m = 1, a = 2: Figs. 

5a,d) a large g and s is leads to a single solution with large coop-proportion; while the mean-field 

approximation (Fig. A3a,b) has a large and a small solution. Interestingly, this bi-stability occurs in 

the mean-field approximation only for a > 1.9, while for smaller a there is only a single solution, 

too.

Figure A1: Coop-proportion of land parcels (solution p* of eq. (A4) as a function of the payoff g

and the payoff variation s (panels a,b,d,e) and as a function of the scaled payoffs g/s and (r1 – m)/s
(panels c,f). Upper solution in the upper panels and lower solution in the lower panels (if both

panels show the same value, only a single solution exists). The exponent at the proportion qi of

neighbours with x = 1 (eq. (4)) is set to a = 0.5.



Figure A2: Coop-proportion of land parcels (solution p* of eq. (A4) as a function of the payoff g

and the payoff variation s (panels a,b,d,e) and as a function of the scaled payoffs g/s and (r1 – m)/s
(panels c,f). Upper solution in the upper panels and lower solution in the lower panels (if both

panels show the same value, only a single solution exists). The exponent at the proportion qi of

neighbours with x = 1 (eq. (4)) is set to a = 1.

Figure A3: Coop-proportion of land parcels (solution p* of eq. (A4) as a function of the payoff g

and the payoff variation s (panels a,b,d,e) and as a function of the scaled payoffs g/s and (r1 – m)/s
(panels c,f). Upper solution in the upper panels and lower solution in the lower panels (if both

panels show the same value, only a single solution exists). The exponent at the proportion qi of

neighbours with x = 1 (eq. (4)) is set to a = 2.



Appendix B: Simulation results for a = 0.5 and a = 2

Figure B1: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (5) with a = 0.5, r1 = 0 and m = 1, as

functions of the payoff parameter g and the payoff variation s. Upper solution in the upper panels

and lower solution in the lower panels (if both panels show the same value, only a single solution

exists).

Figure B2: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (5) with a =0.5, r1 = 0 and m = –1, as

functions of the payoff parameter g and the payoff variation s. In contrast to Fig. B1, only a single

solution for p, q and t exists.



Figure B3: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (6) with a = 0.5, as functions of the

scaled payoffs g/s and (r1 – m)/s. Upper solution in the upper panels and lower solution in the lower

panels (if both panels show the same value, only a single solution exists).

Figure B4: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (5) with a = 2, r1 = 0 and m = 1, as

functions of the payoff parameter g and the payoff variation s. Upper solution in the upper panels

and lower solution in the lower panels (if both panels show the same value, only a single solution

exists).



Figure B5: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (5) with a  = 2, r1 = 0 and m = –1, as

functions of the payoff parameter g and the payoff variation s. In contrast to Fig. B5, only a single

solution for p, q and t exists.

Figure B6: Coop-proportion p (left panels) bi-aggregation q (middle panels) and temporal turnover

t (right panels) in the steady state of simulations based on eq. (6) with a = 2, as functions of the

scaled payoffs g/s and (r1 – m)/s. Upper solution in the upper panels and lower solution in the lower

panels (if both panels show the same value, only a single solution exists).
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