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Abstract

Frydman and Jin (2022) ["Efficient coding and risky choice," Quarterly Journal of
Economics, 137, 161–213] present a model of efficient coding whereby decision makers
are Bayesian learners of a stochastic distribution. The model predicts that decision makers
will devote more cognitive resources to–and therefore be more sensitive to—values that
appear more frequently. The authors conduct two experiments where subjects make binary
choices between a certain amount and a lottery, where the trial-specific values are drawn
from a stochastic distribution. While unknown to the subjects, the distribution can be
learned over the course of the experiment. The authors conclude that the observations
are consistent with efficient coding. However, we note that the authors do not examine
observations across trials. When we examine the data from Experiment 1, we do not find
evidence that the relationship between sensitivity and frequency increased across trials.
When we include specifications that account for the parameters in the previous trial, the
treatment interaction estimates are no longer significant. The effects identified by Frydman
and Jin (2022) in Experiment 1 are simply a recency bias and not the result of Bayesian
learning. We find that subjects in Experiment 2 are less–not more–sensitive to values
they encounter more frequently. In summary, we do not find support for the central claims
made by the authors. Finally, we describe some unreported details in the preregistration
reports of Frydman and Jin (2022). We encourage economists to exercise more skepticism
until convinced by the authors’ arguments.
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I. Introduction

Nullius in verba is Latin and can be translated as "take nobody’s word for it."1 In other

words, regardless of the authority of a person making a scientific claim, one should only

consider whether their evidence and their arguments are compelling.

Frydman and Jin (2022), hereafter FJ, develop and test a model of efficient coding. On

page 162, FJ write, "...there is evidence that noise in perception of sensory stimuli–such as

light or sound–changes optimally with the environment. Specifically, a core principle from

neuroscience called efficient coding states that the brain should allocate resources so that

perception is relatively more precise for those stimuli that are expected to occur relatively

more frequently."

FJ also describe how their efficient coding decision maker comes to learn which stimuli oc-

cur more frequently. On page 173, FJ write, “Given the prior and likelihood functions defined

above, the DM proceeds by using Bayesian inference to compute a posterior distribution of

each payoff in the choice set.” Clearly, at the heart of efficient coding, is Bayesian learning

through experience.

FJ place subjects into stochastic environments and claim that subjects learn enough about

the stochastic distributions so that behavior is affected by the likelihood of outcomes. Because

subjects can only learn the distributions through experience, any learning must take place

over the course of the experiment. However, the authors do not analyze choices across trials.

Rather, FJ only analyze choices that have been averaged across trials and averaged across

other important trial-specific details.

To see the problem with making claims of learning without analyzing choices across trials,

consider Bob, who is engaged in a repeated guessing task. In the beginning of every trial, the

experimenter makes an identical and independent draw from a symmetric distribution on a

set of real numbers. Bob is asked to provide his best guess of that trial-specific draw. After

Bob’s guess, the trial-specific draw is revealed to Bob. While Bob is not explicitly given the

1This is the motto of the Royal Society (UK). From their website: The Royal Society’s motto ’Nullius
in verba’ is taken to mean ’take nobody’s word for it’. It is an expression of the determination of Fellows
to withstand the domination of authority and to verify all statements by an appeal to facts determined by
experiment (https://royalsociety.org/about-us/history/).
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distribution, it can be learned from experience.

However, suppose that Bob simply guesses the revealed draw from the previous trial.

Despite that the mean of Bob’s guesses will converge to the mean of the distribution, a

researcher should not claim that Bob has learned the distribution. We note that Bob’s guesses

do not become more accurate across trials. We also note that Bob’s trial-specific guesses do

not converge to the mean. In other words, measures of Bob’s performance do not improve

across trials.

Relatedly, when researchers place subjects into a stochastic environment, any claims that

subjects have learned aspects of the environment should be supported by analyzing behavior

across trials. Moreover, any standard by which learning is declared, should not conclude that

Bob has learned the distribution, otherwise it is vulnerable to the Bob Critique.2 Therefore,

the reader should be skeptical of the FJ claims of learning, even before analyzing the data:

the results of FJ are clearly vulnerable to the Bob Critique.

In support of the FJ claim that efficient coding is a "core principle" of neuroscience, the

authors cite Barlow (1961), Laughlin (1981), Girshick, Landy, and Simoncelli (2011), Wei

and Stocker (2015, 2017), Polanía, Woodford, and Ruff (2019), Heng, Woodford, and Polanía

(2020), and Payzan-LeNestour and Woodford (2022).

Barlow (1961) does not analyze data and Laughlin (1981) analyzes the effect of light on the

compound eyes of a blowfly. While the other more recent references analyze human behavior

in stochastic environments, we note that none of them support their claims of learning by

analyzing measures of performance across trials. Therefore, each of these references are also

vulnerable to the Bob Critique.3 It is surprising that current efforts would be vulnerable

to the Bob Critique since the classic psychology literature devoted considerable attention to

characterizing learning across trials.4

Further, Girshick, Landy, and Simoncelli (2011), Wei and Stocker (2015), and Polanía,

Woodford, and Ruff (2019) cite Körding and Wolpert (2004) as evidence that subjects use

2A version of the Bob Critique first appeared in Duffy, Hertel, Igan, Pinheiro, and Smith (2022).
3Heng, Woodford, and Polanía (2020) estimate model parameter estimates across trials (Figure 5c,d).

Further, “Figure 5-figure supplement 1” characterizes performance across trials and there does not appear to
be learning.

4See Bush and Mosteller (1955) for a notable reference.
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Bayes’ rule to improve judgments in stochastic environments. Körding and Wolpert (2004) is a

prominent contribution in the Bayesian judgments literature. However, it has recently emerged

that the data in Körding and Wolpert (2004) do not support claims of learning. Körding and

Wolpert (2004) also do not analyze data across trials and their claims of Bayesian learning

seem to be a statistical artifact of analyzing averaged data. Duffy, Hertel, Igan, Pinheiro,

and Smith (2022) find that the observations in Körding and Wolpert (2004) are explained by

a recency bias—like Bob—and subjects do not appear to be learning.5 However, Körding and

Wolpert (2004) remains uncorrected in the pages of Nature and continues to receive citations.6

II. Overview

Below, we examine the datasets from Experiments 1 and 2 in FJ. In both cases, we proceed

by describing their experimental design, making preliminary observations, reproducing the

analysis reported by FJ, and conducting new analyses.

In both Experiments 1 and 2, subjects make binary choices between a certain payment

amount and a simple lottery.7 The trial-specific values are drawn from a stochastic distrib-

ution. The distribution is unknown to the subjects but it can be learned over the course of

the experiment. Also in both experiments there are two within-subject stochastic distribution

treatments.

In Experiment 1, the values are drawn from two uniform distributions, where one distri-

bution has a larger variance than the other. From their analysis of the data, FJ report an

increased sensitivity for parameter values that the subjects encounter more frequently. Specif-

ically, for parameter values where the distributions overlap, subjects appear more sensitive to

the values in treatment with low variance than the treatment with high variance. FJ claim

that the subjects learned the distribution and this causes this difference in behavior. However,

5Duffy et al. (2022) also find that Körding and Wolpert (2004) mischaracterize key aspects of their exper-
imental design.

6There is a small literature that examines claims of learning that do not analyze data across trials. For
example, Duffy and Smith (2020a) reanalyze the replicated data from Huttenlocher, Hedges, and Vevea (2000).
Further, Duffy and Smith (2018) reanalyze the data from Duffy, Huttenlocher, Hedges, Crawford (2010).
Unfortunately, in the former case, the content also remains uncorrected in the pages of Journal of Experimental
Psychology: General.

7Experiment 1 also contains a separate set of perceptual tasks. In this paper, we do not analyze these
observations.
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FJ does not support their claim of learning with an analysis across trials.

In our analysis of the data from Experiment 1, we do not find evidence that this effect

increased across trials (Tables II, III, A3, and A4). It therefore seems as if the subjects did

not learn the distribution. When we include specifications that account for the parameters in

the previous trial, the treatment interaction estimates are no longer significant (Tables IV ,

A5, A6, A7, A8, and A9). We conclude that the effects identified by FJ in Experiment 1 are

simply a recency bias and not the result of Bayesian learning.

In Experiment 2, the values are drawn from two piece-wise uniform distributions, where

higher values are more likely in one distribution and lower values are more likely in the other.

From their analysis of the data, FJ report a difference in the behavior of subjects based on the

stochastic environment. However, although it seems to be an implication of their analysis in

Experiment 1, FJ do not analyze whether subjects are more sensitive to parameter values that

are encountered more frequently. We conduct such an analysis. We find the opposite: subjects

are less sensitive to parameters that they encounter more frequently (Tables V I and A11).

Further, consistent with the FJ analysis of Experiment 1, we restrict attention to trials before

a regime shift to a new stochastic distribution treatment. Here we do not find differences in

behavior reported by FJ (Tables V II, V III, A12, and A13).

To summarize, in our analysis of the data from Experiments 1 and 2, we do not find

support for the central claims made by FJ. Below we discuss these matters in more detail.

III. Experiment 1

III.A. Design

Subjects made 600 pairwise choices between a certain amount (C), and a lottery: amount X

with probability 0.5 and 0 with probability 0.5. Even though the probability of 0.5 is fixed

throughout the experiment, FJ often refers to this probability as p. FJ refer to the choice of

the lottery as the risky choice. In the high volatility treatment, X was drawn from a uniform

distribution on {8.00, 8.01, ..., 31.99, 32.00} and C was drawn from a uniform distribution on

{4.00, 4.01, ..., 15.99, 16.00}. In the low volatility treatment, X was drawn from a uniform
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distribution on {16.00, 16.01, ..., 23.99, 24.00} and C was drawn from a uniform distribution

on {8.00, 8.01, ..., 11.99, 12.00}.8

Subjects were presented with 300 consecutive trials in the high volatility treatment and

300 consecutive trials in the low volatility treatment. A total of 150 subjects participated in

the experiment: 75 were first given the high volatility treatment and 75 were first given the

low volatility treatment. Since there were 150 subjects each making 600 binary choices, the

dataset contains 90, 000 observations.

Within both blocks of 300 trials, the first 30 are referred to as adapt trials. The remaining

270 trials within the block of 300 are referred to as test trials. Within the test trials, 30 specific

and predetermined pairs of X and C were presented to every subject in both treatments.9 FJ

refer to the trials containing these 30 pairs as common trials. There are 4, 500 common trial

observations in both treatments for a total of 9, 000 common trial observations.

One of the 600 trials was randomly selected and the subject was paid based on the decision

in that trial. The average amount earned was $10.14. The reader is directed to FJ for further

details on the design.

III.B. Preliminary observations

FJ assert that subjects learn the stochastic distributions and this differentially affects choice.

FJ assume that subjects learn the distribution in the adapt trials and this affects choice in

the test trials. On page 202, FJ write, "...we have assumed that subjects in our experiments

are fully adapted to the population distribution after completing an initial set of preregis-

tered ’adaptation trials.’"10 However, we note that these adapt trials are neither analyzed nor

compared to the test trials. We address this matter in our analysis below.

8 In the appendix, we discuss some unexpected differences between the treatments.
9See the appendix or the FJ supplemental material for a list of these 30 pairs.
10The full quote is: Most empirical tests of efficient coding in sensory perception assume full adaptation

to the prior distribution (Laughlin 1981; Wei and Stocker 2015), and this assumption has also been recently
invoked in papers on efficient coding in value-based decisions (Rustichini et al. 2017; Polanía, Woodford, and
Ruff 2019). Following this literature, we have assumed that subjects in our experiments are fully adapted to
the population distribution after completing an initial set of preregistered "adaptation trials."
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III.C. Partial reproduction of Table I from FJ

Here we reproduce the first three columns from Table I in FJ. These regressions have a

dependent variable, which has a value of 1 if the risky option was selected in that trial and 0

otherwise. As an independent variable, FJ include the high dummy variable, which has a value

of 1 in the high volatility treatment, and 0 otherwise. Independent variables also include, X,

C, the interaction of X and high, and the interaction of C and high.

FJ run linear regressions for Table I.11 Correspondingly, we run linear regressions. How-

ever, we include the analogous logistic specifications in the appendix.

We attempt to replicate the technique employed by FJ to account for the panel data nature

of the observations. Our attempts are somewhat hampered by the fact that FJ did not report

fit statistics. In the end, we estimate a variance component model where the intercept, X,

and C are random.

Recall that the dataset contains 90, 000 choices between the certain option and the risky

option. FJ focus attention on the 9, 000 common trials. In specifications (1) and (2), FJ

further restrict the sample to the first half of the experiment. In specification (1), consistent

with their preregistration, FJ exclude the observations from subjects who selected the same

option within these trials. A single subject satisfied this condition in the first half of the

trials.12 In specification (2), FJ impose a further restriction, which was not preregistered:

they further exclude trials where the decision was faster than 0.5 seconds. We note that

this exclusion only affects fast decisions, and not the slow decisions, despite that response

time has a maximum of 104 seconds. We also note that this restriction excludes 6.7% of the

observations in specification (1).

In specification (3), FJ analyze the data from common trials in both halves of the ex-

periment.13 FJ Table I also includes specifications that analyze nonadjacent sets of trials

from both halves of the experiment. Specifically, FJ presents an analysis that excludes trials

11We note that the online appendix of FJ contains Table D.2, which is a logistic version of Table I in FJ.
12Our regressions have one more observation than those reported by FJ because one subject had two common

trial observations within a treatment.
13 It is not clear to us why our analysis of this specification has the same number of observations as reported

by FJ.
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301 − 450. In other words, the analysis contains observations only from trials 1 − 300 and

451 − 600. We admit that the change in the stochastic distribution poses challenges to the

analysis. Here we focus on the more straightforward analysis of the first 300 trials of the

experiment, rather than the ad-hoc analysis of non-adjacent trials.

Motivated by the nature of the response time exclusions in specification (2), in specification

(4), we only exclude decisions faster than 0.25 seconds. This restriction excludes only 0.87%

of the observations analyzed in specification (1). In specification (5), we include every first

half trial where both X and C fall within the domain of the low volatility treatment. In other

words, we only include trials where both 16.00 ≤ X ≤ 24.00 and 8.00 ≤ C ≤ 12.00, which

allows us to use more of the 90, 000 observations in the dataset. We refer to these observations

as common domain trials. In specification (6), we exclude first half common domain trials

with a response time less than 0.25 seconds. This restriction excludes 0.86% of trials analyzed

in specification (5).

These linear random-effects regressions are summarized in Table I.

Table I: Linear random-effects regressions of risky choice

(1) (2) (3) (4) (5) (6)
high 0.026 0.005 −0.025 0.013 0.159 0.134

(0.190) (0.199) (0.098) (0.189) (0.149) (0.146)
X 0.066∗∗∗ 0.074∗∗∗ 0.062∗∗∗ 0.067∗∗∗ 0.072∗∗∗ 0.072∗∗∗

(0.006) (0.006) (0.004) (0.006) (0.005) (0.005)
C −0.167∗∗∗ −0.186∗∗∗ −0.164∗∗∗ −0.168∗∗∗ −0.165∗∗∗ −0.166∗∗∗

(0.013) (0.012) (0.009) (0.013) (0.011) (0.011)
X*high −0.017∗ −0.023∗∗ −0.006† −0.017∗ −0.023∗∗ −0.022∗∗

(0.008) (0.008) (0.003) (0.008) (0.007) (0.007)
C*high 0.033† 0.049∗∗ 0.014† 0.034∗ 0.030∗ 0.031∗

(0.017) (0.017) (0.008) (0.017) (0.015) (0.015)
Interc. 0.772∗∗∗ 0.783∗∗∗ 0.826∗∗∗ 0.758∗∗∗ 0.640∗∗∗ 0.640∗∗∗

(0.166) (0.179) (0.106) (0.167) (0.120) (0.120)
AIC 3, 928.0 3, 552.3 6, 624.4 3, 832.2 18, 421.2 17, 941.2
Obs. 4, 471 4, 171 8, 257 4, 432 24, 679 24, 465

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We note the close agreement between our results and the first three columns of Table I
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in FJ. We also note that FJ argue that the significant interaction terms present evidence of

learning. Further, we note that the interaction terms in specification (4) are both significant

at 0.05. We also note that, in specifications (5) and (6), the interaction terms involving X

and C are significant (respectively) at 0.01 and 0.05. The results are largely unchanged when

we run logistic regressions, rather than the linear probability specifications presented by FJ.14

We also find analogous effects when we employ 0.5 ∗X −C as an independent variable, rather

than X and C.15

III.D. The search for evidence of learning

Here we investigate whether there is evidence of learning in the FJ dataset. In the body of the

paper, FJ do not appear to offer any evidence of learning by examining performance across

trials. In the FJ appendix, Table D.4 characterizes an analysis of test trials that fall among

the first 300 trials. The analysis includes a dummy variable indicating whether the trial is

between 166 and 300, or not. Their analysis does not find differences in sensitivity between

these two sets of trials.

It can seem surprising, if there is actually learning across trials, that there would not be

evidence of learning between trials 31 and 300. Below, we conduct a more detailed analysis

of common trials across observations. We offer specifications where we include trials between

31 and 300. However, it is possible that learning—if it exists—converged before the end of the

first half of trials. We therefore also conduct analyses of common trials that fall between 31

and 210, between 31 and 120, and between 31 and 90. In each of these regressions, we restrict

attention to observations with a response time greater than 0.25 seconds.

Because there might be differences in learning between the high and low volatility treat-

ments and additionally it is not straightforward to interpret a triple interaction, we restrict

attention to a volatility treatment. We analyze the model:

14We summarize this analysis in Table A1. In this and every logistic analysis, we conduct repeated measures
specifications. We report QIC (Pan, 2001) rather than AIC.

15We summarize this analysis in Table A2.
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Risky = α+ βX ∗X + βC ∗ C + βf ∗ f(trial) + γX ∗X ∗ f(trial) + γC ∗ C ∗ f(trial) + ε,

for various specifications of f(trial). We analyze a linear specification, a square root specifi-

cation, and a dummy variable indicating the second half of the set of trials. Similar to Table

I, we estimate a variance component model where the intercept, X, and C are random.

The estimates of γX and γC for the 24 regressions are summarized in Table II. Each

estimate of βX is positive and each estimate of βC is negative. Therefore evidence of increased

sensitivity across trials would be identified by a positive and significant estimate of γX and a

negative and significant estimate of γC .

Table II: Estimates of γX and γC from 24 linear random-effects regressions on common trials

Trial Sqrt. Trial Second Half Obs.
γX γC γX γC γX γC

High −0.00004 0.00005 −0.0009 0.0011 −0.005 0.0018 2, 239
31-300 (0.00004) (0.0001) (0.0010) (0.002) (0.006) (0.011)

Low −0.00006 0.00005 −0.0014 0.0015 −0.008 0.012 2, 193
31-300 (0.00005) (0.0001) (0.0012) (0.0021) (0.007) (0.014)

High 0.0001 0.0001 0.0012 0.0022 0.003 0.014 1, 508
31-210 (0.0001) (0.0001) (0.0014) (0.0027) (0.007) (0.015)

Low −0.0001 −0.00013 −0.0025 −0.0017 −0.019∗ −0.027† 1, 471
31-210 (0.0001) (0.00015) (0.0018) (0.0031) (0.008) (0.015)

High 0.0002 0.0003 0.0037 0.0046 0.015 0.021 771
31-120 (0.0002) (0.0005) (0.0033) (0.0077) (0.010) (0.023)

Low 0.0002 0.0007 0.0035 0.014† 0.0084 0.0076 734
31-120 (0.0002) (0.0004) (0.0041) (0.007) (0.013) (0.022)

High 0.0003 −0.0005 0.0035 −0.009 0.014 −0.033 512
31-90 (0.0003) (0.0008) (0.0052) (0.012) (0.014) (0.027)

Low −0.0001 0.0021∗ −0.0008 0.034∗ −0.015 0.060† 481
31-90 (0.0004) (0.0009) (0.0057) (0.013) (0.014) (0.030)

We provide the coefficient estimates and the standard errors in parentheses. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Among the 48 coefficient estimates, only three are significant at 0.05, however each of

these are the opposite sign as predicted by learning across trials. There are two estimates

10



significant at only 0.1, however one is opposite sign as predicted by learning. In fact, among

the 48 estimates, 30 have the opposite sign from that predicted by learning across trials.

Our results are similar when we perform logistic regressions rather than the linear probability

model employed by FJ.16 In other words, we do not find evidence of learning when we examine

only common trials.

Despite that our analysis of common trials in Table II fails to find evidence of learning,

we note that the vast majority of the trials are not common trials. Next, we examine whether

we can find evidence of learning in common domain trials.

Recall that common domain trials have X and C that fall in the domain of both volatility

treatments. Specifically, we include all trials where both 16.00 ≤ X ≤ 24.00 and 8.00 ≤ C ≤

12.00. We can therefore include the first 30 trials (the adapt trials) in this analysis. We

can also include even more granular partitions of the data. We offer specifications where we

analyze data on trials 1 − 300, 1 − 210, 1 − 120, 1 − 90, and 1 − 60. We exclude excessively

fast decisions in these common domain trials: our dataset is identical to that analyzed in

specification (6) in our Table I.

The techniques of analysis are similar to those summarized in Table II, but we also include

a specification that indicates whether the trial was after the first 30 trials. In other words, our

After First 30 dummy variable indicates that the observation was from a test—and not adapt—

trial. These specifications allow us to learn how decisions in the adapt trials are different than

the test trials.17

The estimates of γX and γC for the 38 regressions are summarized in Table III. Again,

each estimate of βX is positive and each estimate of βC is negative. Likewise, evidence of

increased sensitivity across trials would be identified by a positive and significant γX and a

negative and significant γC .

Table III presents 76 coefficient estimates, where 20 are significant at 0.1 or greater: 7

16We summarize this analysis in Table A3. Our results are largely not changed.
17Note that the Second Half and After First 30 specifications are identical on trials 1 − 60. Therefore, we

only report the former.
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Table III: Estimates of γX and γC from 38 linear random-effects regressions on common domain trials

Trial Sqrt. Trial Second Half After First 30 Obs.
γX γC γX γC γX γC γX γC

High −0.00003 0.00003 −0.0004 0.001 −0.005 0.005 0.005 −0.005 2, 468
1-300 (0.00003) (0.00007) (0.0007) (0.001) (0.006) (0.010) (0.012) (0.019)

Low −0.00005∗∗ 0.00004 −0.0012∗∗ 0.0009 −0.009∗∗ 0.007 −0.010∗ 0.016† 21, 997
1-300 (0.00002) (0.00005) (0.0004) (0.0010) (0.003) (0.008) (0.004) (0.010)

High 0.00007 0.00005 0.001 0.001 0.006 0.013 0.012 −0.006 1, 737
1-210 (0.00006) (0.0001) (0.001) (0.002) (0.007) (0.012) (0.013) (0.020)

Low −0.00007∗∗ 0.00005 −0.0012∗∗ 0.001 −0.007∗ 0.003 −0.009∗ 0.014† 15, 486
1-210 (0.00003) (0.0001) (0.0005) (0.001) (0.003) (0.008) (0.004) (0.009)

High 0.0002 0.00005 0.002 0.0002 0.014 −0.012 0.011 −0.016 1, 000
1-120 (0.0002) (0.0003) (0.002) (0.004) (0.010) (0.018) (0.013) (0.022)

Low −0.00008 0.00007 −0.0013† 0.0011 −0.004 0.008 −0.007† 0.014† 8, 873
1-120 (0.00005) (0.00013) (0.0007) (0.0017) (0.004) (0.008) (0.004) (0.008)

High 0.0001 −0.0004 0.002 −0.004 −0.007 −0.027 0.004 −0.026 741
1-90 (0.0002) (0.0004) (0.003) (0.005) (0.012) (0.023) (0.014) (0.025)

Low −0.0001 0.0004∗ −0.001 0.004∗ −0.002 0.022∗∗ −0.006† 0.019∗∗ 6, 656
1-90 (0.0001) (0.0002) (0.001) (0.002) (0.004) (0.008) (0.003) (0.007)

High −0.0004 0.0001 −0.003 0.001 −0.007 −0.012 − − 476
1-60 (0.0005) (0.0010) (0.005) (0.009) (0.017) (0.031)

Low −0.0002† 0.0002 −0.0023∗ 0.0015 −0.007† 0.010 − − 4, 440
1-60 (0.0001) (0.0003) (0.0011) (0.0026) (0.004) (0.009)

We provide the coefficient estimates and the standard errors in parentheses. ∗∗∗ denotes p < 0.001,
∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.
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are significant at only 0.01 and each has a sign opposite to that predicted by learning; 6 are

significant at only 0.05 and each has a sign opposite to that predicted by learning; and 7 are

significant at only 0.1 and each has a sign opposite to that predicted by learning. Moreover,

among the 76 coefficient estimates, 55 have a sign opposite to that predicted by learning.

Perhaps most surprisingly, low volatility adapt trials appear to be significantly more sensitive

to X and C then low volatility test trials. Our results are largely unchanged when we perform

logistic regressions rather than the linear probability model employed by FJ.18

In Tables II, III, A3, and A4, we report 248 coefficient estimates from 124 regressions. A

total of 44 of these coefficient estimates are significant at 0.05, however each have the opposite

sign as predicted by learning across trials. We also find that 19 are significant at only 0.1,

however 18 have the opposite sign as predicted by learning. Further, 178 of the 248 estimates

have the opposite sign as predicted by learning across trials. In light of our analysis, we fail

to find any evidence of learning across trials.

III.E. The evidence for recency effects

As we cannot find any evidence that subjects learned the distribution, here we seek other

mechanisms to explain the apparent differential sensitivity to parameter values. Recall that

Bob displayed a recency bias: simply guessing the number from the previous trial. When Bob’s

responses are averaged across trials, a researcher could mistake the behavior for evidence of

learning.

Here we ask whether recency effects could produce a candidate for explaining the apparent

differential sensitivity to X and C. Perhaps when X and C from the previous trial are different

than X and C in the current trial, subjects are less sensitive to the values in the current trial.

It is also the case that in high volatility trials, the distance between the current X (C) and

the X (C) in the previous trial will be larger than that in low volatility trials. This suggests

a natural measure of the difference between the parameters in the previous trial (t − 1) and

those in the current trial (t):19

18We summarize this analysis in Table A4. Our results are largely not changed.
19 In the dataset, this appears as PrevX2CDist.
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Prev1 =

√
(Xt −Xt−1)

2 + 2 ∗ (Ct − Ct−1)
2.

We investigate whether our Prev1 variable can explain the differential sensitivity better than

the volatility treatment dummy employed by FJ. We perform the analysis on the data analyzed

in specifications (1), (4), (5), and (6) of our Table I. Within each of these four specifications,

we include a specification (a) without the high volatility dummy, and a specification (b) with

the high volatility dummy. These regressions are summarized in Table IV . Note that the

observations of specifications (5) and (6) in Table I and Table IV are not identical, because

83 common domain trials do not have a previous trial.

Table IV : Linear random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − 0.02 − 0.01 − 0.33∗ − 0.32∗

(0.22) (0.22) (0.16) (0.16)
X 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
C −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.19∗∗∗ −0.20∗∗∗ −0.20∗∗∗ −0.20∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
X*high − −0.009 − −0.009 − −0.013† − −0.013†

(0.009) (0.009) (0.008) (0.008)
C*high − 0.0178 − 0.018 − −0.006 − −0.005

(0.0185) (0.019) (0.015) (0.015)
Prev1 0.005 0.004 0.003 0.002 −0.026† −0.037∗ −0.030∗ −0.039∗∗

(0.021) (0.023) (0.021) (0.023) (0.014) (0.015) (0.014) (0.015)
X*Prev1 −0.002∗∗ −0.002∗ −0.002∗∗ −0.002∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.0007) (0.0008) (0.0008) (0.0008) (0.0004) (0.0004) (0.0004) (0.0004)
C*Prev1 0.005∗ 0.003† 0.005∗ 0.003† 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
Interc. 0.75∗∗∗ 0.75∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.83∗∗∗ 0.77∗∗∗ 0.84∗∗∗ 0.79∗∗∗

(0.20) (0.19) (0.20) (0.19) (0.13) (0.14) (0.13) (0.14)
AIC 3, 939.0 3, 954.0 3, 843.0 3, 857.9 18, 293.2 18, 303.8 17, 812.8 17, 823.8
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes

p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Of the 16 estimated interaction terms involving Prev1, 14 are significant at 0.05. However
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none of the 8 estimated interaction terms with high are significant at 0.05. These results clearly

demonstrate that the recency effects do a better job explaining the data than the volatility

treatment dummy. Our results are largely unchanged when we perform logistic regressions

rather than the linear probability model employed by FJ.20 We also find analogous effects

when we employ 0.5 ∗X − C as an independent variable, rather than X and C.21

Additionally, we note that our results are not sensitive to the specification of the recency

effects. We consider alternate specifications of the recency effects:

Prev2 =

√
(Xt −Xt−1)

2 + (Ct − Ct−1)
2,

Prev3 = |Xt −Xt−1|+ 2 ∗ |Ct − Ct−1| , and

Prev4 = |Xt −Xt−1|+ |Ct − Ct−1| .

Our results are largely unchanged when we use Prev2, Prev3, or Prev4.
22

In Tables IV , A5, A6, A7, A8, and A9, we conduct 24 "(b)" specifications where we

account for both recency effects and the volatility treatment. These analyses produce 44

estimates of sensitivity for both recency effects and the volatility treatment. We find that 24

of the estimates involving recency effects are significant at 0.05. By contrast, we find that

only 2 of the 44 estimates involving the volatility treatment are significant at 0.05.

Further, consider that in every (5b) and (6b) specification (employing more that 24, 000

observations) the 22 estimates involving recency effects for both X and C are each significant

at 0.001. However, for these corresponding 22 estimates for the volatility treatment dummy,

only 2 are significant at 0.05. Our analysis strongly suggests that the differential sensitivity

to parameter values is driven by recency effects, rather than Bayesian learning.

20This analysis is summarized in Table A5.
21This analysis is summarized in Table A6.
22These analyses for Prev2, Prev3, and Prev4 are summarized respectively in Tables A7, A8, and A9. These

variables appear in the dataset respectively as PrevXCDist, Sum2PrevAbs, and SubPrevAbs.
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III.F. Summary of the results

After carefully analyzing the FJ data, we do not find evidence of Bayesian learning. Rather,

we find that the effects are driven by a bias toward the parameters in the previous trial.

IV. Experiment 2

IV.A. Design

Similar to Experiment 1, subjects made 600 pairwise choices between a certain amount (C),

and a lottery: amount X with probability 0.5 and 0 with probability 0.5. In this experiment,

X and C were drawn from piece-wise uniform distributions. In the increasing treatment, X

was drawn from a distribution with density:

f(X) =






1

125
if 2 ≤ X ≤ 4.5

7

25
if 4.5 < X ≤ 8

and C was drawn from a distribution with density:

f(C) =






1

125
if 1 ≤ X ≤ 2.25

7

25
if 2.25 < X ≤ 4

.

In the decreasing treatment, X was drawn from a distribution with density:

f(X) =






7

25
if 2 ≤ X ≤ 5.5

1

125
if 5.5 < X ≤ 8

and C was drawn from a distribution with density:

f(C) =






7

25
if 1 ≤ X ≤ 2.75

1

125
if 2.75 < X ≤ 4

.

A total of 200 subjects participated in the experiment, which was administered online. Also

similar to Experiment 1, subjects were presented with 300 consecutive trials in the increasing
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treatment and 300 consecutive trials in the decreasing treatment. There were 102 subjects

who were first given the increasing treatment and 98 were first given the decreasing treatment.

Since 200 subjects each made 600 choices, the dataset has 120, 000 observations.

Within both blocks of 300 trials, the first 60 are considered adapt trials, and the remaining

240 trials are considered test trials. Within the test trials, 8 specific and predetermined pairs of

X and C were presented to every subject in both treatments. Each common pair has C = 2.70

and X ∈ {7.13, 7.26, 7.37, 7.49, 7.62, 7.76, 7.87, 7.99}. A randomly selected common pair

was presented to subjects on trial 90 then every 30 trials until trial 300. There were 1, 600

common trials in both treatments for a total of 3, 200 common trials.

Decisions that were not completed within 10 seconds were not recorded. There were 13

common trials that had a response time that exceeded this limit, so there are 3, 187 common

trial observations.

With the exception of the common trials, the dataset lists X and C to 5 decimals. We

assume that subjects were presented with values rounded to the nearest $0.01. A randomly

selected trial was selected for payment, in addition to a $6.50 show up fee. The average amount

earned in the experiment was $9.27. The reader is directed to FJ for further details on the

design.

IV.B. Preliminary observations

Recall that the online experiment involved 120, 000 pairwise choices, however there are 3, 187

common trial observations. Based on preregistered exclusion criteria, FJ exclude an additional

909 observations, which account for 28.5% of common trial observations. Therefore, FJ present

an analysis of 2, 278 observations.

IV.C. Reproduction of Table III from FJ

The analysis in FJ Table III is similar to that in FJ Table I, with the following exceptions.

Because C is constant at 2.70 in the common trials, the authors do not include C as an inde-

pendent variable. The analysis contains a dummy variable indicating whether the observation
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was made in the increasing treatment. Note, we do not repeat the use of the term “prior” as

the variable name because this seems to assume the conclusions of the efficient coding model.

Rather, we refer to the treatment dummy variable as increasing. Further, we note that the

analysis summarized in FJ Table III also does not include interaction terms.

Specifications (1) and (2) analyze the full set of 2, 287 observations. Specification (3)

only analyzes the first half of observations within each block of 300, and specification (4) only

analyzes the second half of each block. These linear random-effects regressions are summarized

in Table V .

Table V : Linear random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.075∗∗∗ 0.075∗∗∗ 0.088∗∗ 0.070∗∗

(0.022) (0.022) (0.029) (0.024)
X − 0.045† − −

(0.024)
Interc. 0.690∗∗∗ 0.351† 0.684∗∗∗ 0.695∗∗∗

(0.029) (0.188) (0.032) (0.030)
AIC 1, 717.5 1, 719.7 827.4 1, 091.9
Obs. 2, 278 2, 278 862 1, 416

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We note that our results closely match those in FJ Table III. Specifically, we observe that

the increasing dummy estimate is positive and significant in every specification.23

IV.D. Differences between the FJ analyses of Experiments 1 and 2

There appears to be two important differences between the FJ analyses of Experiments 1 and

2. First, the analysis of Experiment 1 examined the relationship between the sensitivity to a

value and the frequency with which it was encountered. However, the analogous sensitivity

relationship was not examined in the analysis of Experiment 2. Second, the analysis of Ex-

periment 1 focused on the first 300 trials within a treatment because it is difficult to interpret

23We include the logistic specification in Table A10.
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learning after a change in regime across treatments. However, the analysis of Experiment 2 ex-

amines data from both treatments in all 600 trials and does not contain an analysis restricted

to a treatment in the first 300 trials. In this section, we address these two differences.

According to Figure II, Panel B in FJ, the apparent predictions of efficient coding for

the increasing treatment in this setting are both a larger propensity to risk and a greater

sensitivity toward X than the decreasing treatment. Specifically, for values of X between 7.13

and 7.99, the difference between the increasing and decreasing treatments are both positive

and increasing in X. On page 199, FJ write, "Figure II, Panel B shows that under efficient

coding, the decreasing distribution of X generates perception that is insensitive and biased

downward for large values of X."24

The relationship between sensitivity and frequency seems to be a fundamental prediction

of efficient coding. In the abstract, FJ write, "In our first experiment, we find that risk

taking is more sensitive to payoffs that are presented more frequently." However, the analysis

summarized in FJ Table III does not permit an analysis of the sensitivity to X and it is not

clear to us why this prediction was not tested in the analysis of Experiment 2. Below, we

supplement the analysis in our Table V , with an interaction between the increasing treatment

dummy and X. In an effort to aid the interpretation of the increasing dummy variable, we

normalize X by subtracting the mean (7.5).

In specifications (1) and (2), we conduct our analysis on the 2, 278 common trials that were

not excluded by FJ. In specifications (3) and (4), we analyze the 3, 187 common trials in the

dataset. We use the random-effects specifications from Table V . This analysis is summarized

in Table V I.

24On page 179, also FJ write, "...for the decreasing distribution, the DM allocates little coding resources
toward large values of X. As a result, the DM is insensitive to high values of X."
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Table V I: Linear random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.075∗∗∗ 0.080∗∗∗ 0.054∗∗ 0.059∗∗∗

(0.022) (0.023) (0.017) (0.017)
X-7.5 0.045† 0.091∗∗ 0.039∗ 0.080∗∗

(0.024) (0.034) (0.018) (0.027)
increasing*(X-7.5) − −0.094∗ − −0.082∗

(0.042) (0.033)
Interc. 0.687∗∗∗ 0.684∗∗∗ 0.627∗∗∗ 0.625∗∗∗

(0.029) (0.029) (0.028) (0.028)
AIC 1, 719.7 1, 720.0 2, 065.9 2, 065.9
Obs. 2, 278 2, 278 3, 187 3, 187

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find that on both datasets of common trials, the increasing treatment is less—not more—

sensitive to X than the decreasing treatment. This is the opposite of the prediction of efficient

coding in this setting.25

As stated before Table V , there can be confounding aspects of interpreting claims of

learning across a regime change. It was for this reason that the analysis of Experiment 1 largely

focused on the first half of trials. Here we make a similar restriction. We analyze the 1, 143 first

half common trial observations that were not excluded by FJ and the 1, 594 first half common

trial observations in the dataset. In the dataset with exclusions, we find that the fraction

of risky choice in the first half common trials in the increasing treatment (mean = 0.769,

SE = 0.0179) is greater than the fraction of common trials in the decreasing treatment

(mean = 0.750, SE = 0.0178), although the difference is not significant (t(1139.6) = −0.73,

p = 0.46).26 In the dataset without exclusions, we find that the fraction of risky choice in

common trials in the increasing treatment (mean = 0.647, SE = 0.0168) is less than—not more

than—the fraction of common trials in the decreasing treatment (mean = 0.698, SE = 0.0164)

and the difference is significant (t(1592) = 2.20, p = 0.028).27 However, below we conduct an

25We include the logistic specification in Table A11. Our results are not changed.
26The analogous Wilcoxon test also has a p-value of 0.46.
27The analogous Wilcoxon test also has a p-value of 0.028.
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analysis similar to that in Table V I, but restricted to first half trials. This is summarized in

Table V II.

Table V II: Linear random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.011 0.018 −0.051 −0.044

(0.054) (0.054) (0.057) (0.055)
X-7.5 0.065∗ 0.123∗ 0.052∗ 0.106∗

(0.033) (0.052) (0.026) (0.041)
increasing*(X-7.5) − −0.119† − −0.107∗

(0.065) (0.051)
Interc. 0.738∗∗∗ 0.734∗∗∗ 0.695∗∗∗ 0.692∗∗∗

(0.036) (0.037) (0.037) (0.037)
AIC 830.8 830.9 1, 042.2 1, 041.8
Obs. 1, 143 1, 143 1, 594 1, 594

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Although the evidence is weaker than in Table V I, here we also find that the increasing

treatment is less sensitive to X than the decreasing treatment. In addition, in these first half

common trials, we do not find a positive and significant estimate of the increasing dummy. In

other words, in the first half trials, we do not find evidence of either of the two predictions of

efficient coding.28

We admit that the number of first half common trials is not large. In an effort to further

test the robustness of our results, we consider every first half trial such that X > 5.5 and

2.25 < C < 2.75. On this set, there are no differences in the likelihood of C, yet these values

of X are more likely in the increasing treatment than the decreasing treatment. We note that

these are the attributes of the designated common trials. We conduct an analysis on the 5, 235

first half trials in this region that were not excluded by FJ and on the 7, 542 first half trials

in the dataset. This analysis is summarized in Table V III.

28We include the logistic specification in Table A12. Again, our results are largely not changed.
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Table V III: Linear random-effects regressions of risky choice

(1) (2) (3) (4) (5) (6)
increasing −0.126 −0.009 −0.036 −0.135† −0.063 −0.068

(0.083) (0.052) (0.056) (0.074) (0.053) (0.057)
X-7.5 0.128∗∗∗ 0.074∗ 0.089∗∗ 0.094∗∗∗ 0.064∗∗ 0.067∗

(0.017) (0.031) (0.033) (0.014) (0.024) (0.028)
C-2.5 −0.068∗ −0.063† −0.215 −0.030 −0.027 −0.056

(0.033) (0.033) (0.136) (0.024) (0.024) (0.127)
increasing*(X-7.5) − 0.065† 0.050 − 0.037 0.034

(0.037) (0.039) (0.029) (0.032)
increasing*(C-2.5) − − 0.158 − − 0.030

(0.140) (0.129)
Interc. 0.812∗∗∗ 0.754∗∗∗ 0.781∗∗∗ 0.740∗∗∗ 0.703∗∗∗ 0.708∗∗∗

(0.050) (0.035) (0.040) (0.048) (0.036) (0.041)
AIC 3, 890.6 3, 891.2 3, 892.1 4, 510.2 4, 513.6 4, 515.8
Obs. 5, 235 5, 235 5, 235 7, 542 7, 542 7, 542

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We do not find any positive and significant estimates of the increasing dummy coefficient.

Further, we find that 1 of 4 estimates of the sensitivity of X are significant, but it is only

significant at 0.1.29 In conclusion, we do not find evidence in support of the predictions of

efficient coding.

IV.E. Summary of the results

Despite being a key prediction of efficient coding, we do not find that subjects are more

sensitive to parameters they are more likely to encounter. In fact, in some specifications, we

find that subjects are less sensitive to parameters they are more likely to encounter. When

we restrict attention to trials before the stochastic distribution regime shift, we also do not

find differences in choices between the treatments.

V. On the preregistration of FJ

29We include the logistic specification in Table A13. Our results are similar, but we do not find significance,
even at 0.1.
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The appendix of the final draft of FJ contains two preregistration reports. This fact is

mentioned 12 times throughout FJ—including the abstract—in attempt to convey the integrity

and transparency of the paper.

The appended report for Experiment 1 (both risky and perceptual choice) was created on

February 9, 2020 and shared on July 17, 2020. The appended report for Experiment 2 was

created on February 21, 2021 and was shared on March 1, 2021. Both of these reports respond

to the item, "1. Have any data been collected for this study yet?" with, "No, no data have

been collected for this study yet." The ReadMe file, posted on August 12, 2020, indicates that

the data for Experiment 1 was collected in February 2020 and that the data for Experiment

2 was collected in February 2021.

The publicly circulated drafts of FJ–dated 2018 and 2019–report on the data from two

experiments, neither of which were preregistered. We also note that these two experiments

are similar to–but nonetheless different than–the two components which form Experiment

1 in the version published in 2022. Neither the Experiment 1 preregistration report nor the

body of the paper notes that data from designs similar to Experiment 1 had previously been

analyzed and apparently discarded.

Moreover, the publicly circulated draft of FJ–dated August 7, 2020–contains a prereg-

istration report of Experiment 2, which was created on February 27, 2020 and shared on July

17, 2020. We note that the design in this preregistration report is similar to–but again differ-

ent than–the design in the preregistration report appended in the version published in 2022.

Neither the reported Experiment 2 preregistration report nor the body of the paper notes

that data from a design similar to Experiment 2 has previously been analyzed and apparently

discarded.30

In other words, neither these appended preregistration reports nor the body of FJ mention

previous versions of the paper that analyzed data from different designs. If transparency is

the goal, then it is our view that the final preregistration reports and the final version of the

paper should have disclosed these previous designs and that data were collected, analyzed,

30We note that the unreported preregistration report of Experiment 2 and the reported preregistration report
of Experiment 1, were both shared on July 17, 2020.
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and apparently discarded.

VI. Conclusions

We have analyzed the datasets from Experiments 1 and 2 in FJ. In both cases, we do

not find support for their main claims. Efficient coding predicts that subjects use Bayesian

learning over the course of the experiment to better allocate cognitive resources. This implies

that subjects will be more sensitive to parameter values that appear more frequently.

In the data from Experiment 1, we do not find evidence that the predictions of efficient

coding are increasing across trials. It therefore seems as if the subjects did not learn the

stochastic distribution. When we include specifications that account for the parameters in

the previous trial, the treatment interaction estimates are no longer significant. The effects

reported by FJ in Experiment 1 are apparently just a recency bias and not the result of

Bayesian learning.

In the data from Experiment 2, we do not find evidence that subjects are more sensitive to

parameter values that are encountered more frequently. Also, consistent with the FJ analysis

of Experiment 1, we restrict attention to trials before a regime shift to a new stochastic

distribution treatment. Using these observations, we do not find treatment differences in

behavior reported by FJ.

To summarize, in our analyses of the data from Experiments 1 and 2, we do not find

support for the central claims made by FJ.

A key reason that claims of learning without an analysis across trials was not deemed

suspicious, was that it appears in prestigious journals, such as Nature. Our efforts testify

to the corrosive effects of incorrect content in the scientific literature. Körding and Wolpert

(2004)—published in Nature—is a prominent contribution in the Bayesian judgments literature.

Duffy, Hertel, Igan, Pinheiro, and Smith (2022) reported that their claims of Bayesian learning

were a statistical artifact of analyzing averaged data. We note that an earlier version of Duffy

et al. (2022) was submitted to Nature. We regret that Nature—despite being confronted with

incorrect content in its pages—elected to leave the content unaddressed. It is not clear how

science can proceed under these circumstances. Further, discussions on the improvements
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of science–appearing in Nature partner journals–can appear insincere when the journal is

apparently indifferent to incorrect content in its pages.31

In addition to these problems it will likely surprise the economist reader that the vast

majority–and perhaps all–of the Bayesian judgments literature seems unaware of the im-

plications of Bayesian learning found in Savage (1954) and Blackwell and Dubins (1962):

Bayesians have beliefs that converge to the truth. Specifically, Savage (1954) shows that, as

long as the truth is considered possible, when a Bayesian observes draws from a stochastic dis-

tribution posterior beliefs will converge to the true distribution. Blackwell and Dubins (1962)

show that two Bayesians with different priors will eventually agree about the distribution after

observing enough information. We cannot locate a single example in the Bayesian judgments

literature that cites these works. This omission can be difficult to understand because these

insights have been in the brain science literature for 60 years (Edwards, Lindman, & Savage,

1963).32

Nullius in verba: our advice is for the reader to maintain a skeptical posture until suffi-

ciently convinced by the arguments of the authors.
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Supplemental appendix for online publication only

Experiment 1 common trial values of (X,C)

(17.30, 11.20) (18.64, 11.16) (20.04, 11.22) (21.34, 11.23) (22.69, 11.21) (23.98, 10.37)
(17.38, 10.38) (18.72, 10.44) (20.03, 10.40) (21.30, 10.39) (22.71, 10.42) (23.97, 11.18)
(17.31, 9.62) (18.68, 9.61) (19.96, 9.62) (21.34, 9.58) (22.62, 9.62) (23.96, 9.55)
(17.34, 8.75) (18.63, 8.79) (19.99, 8.81) (21.29, 8.82) (22.66, 8.79) (23.99, 8.84)
(17.32, 8.04) (18.68, 8.03) (19.98, 8.01) (21.38, 8.00) (22.67, 8.04) (23.98, 8.03)

Experiment 1 treatment differences

The specification of the stochastic environment warrants comment. On page 180, FJ write,

"...we keep the mean of each payoff distribution constant across conditions. The mean of

X is fixed at 20, and the mean of C is fixed at 10." Later on the same page, FJ write,

"...the distributions of X and C are independent, and pX and C are identically and uniformly

distributed." However, FJ do not offer tests of these claims.

We find significant differences in the means of these variables by treatment. When ex-

amining trials before the common trials, we find that the mean of X in the high volatility

treatment (mean = 20.3563, SE = 0.1036) and the mean in the low volatility treatment

(mean = 20.1190, SE = 0.0339) are significantly different (t(5, 450.3) = −2.18, p = 0.0295).

On the same set of trials, the mean of C in the high volatility treatment (mean = 9.8293,

SE = 0.0519) and the mean in the low volatility treatment (mean = 9.9467, SE = 0.0172) are

significantly different (t(5, 475.5) = 2.15, p = 0.0317). Finally, on the same set of trials, the

mean of 0.5 ∗X − C in the high volatility treatment (mean = 0.3489, SE = 0.0732) and the

mean in the low volatility treatment (mean = 0.1128, SE = 0.0245) are significantly different

(t(5, 494.1) = −3.06, p = 0.0022).

We note that these tests were conducted on 9, 005 trials, because there were 5 instances

where the common pair was given twice to the same subject within the same volatility treat-

ment. We also note that the Wilcoxon sum rank tests for X, C, and 0.5∗X−C (respectively)

have p-values of 0.003, less than 0.001, and less than 0.001.

Therefore, we conclude that there appear to be differences between the treatments beyond
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simply the volatility.

Robustness

We conduct a robustness check on the analysis summarized in Table I. Because of the discrete

dependent variable, we conduct a logistic specification. We estimate an exchangeable log

odds ratio, clustered by subject. In other words, we assume a unique relationship between

any two observations involving a particular subject. However, we assume that observations

involving two different subjects are statistically independent. The regressions are estimated

using Generalized Estimating Equations (GEE). Since GEE is not a likelihood-based method,

Akaike’s Information Criterion is not available. Therefore, we provide the Quasilikelihood

information criterion (QIC), Pan (2001). We summarize these regressions in Table A1.

Table A1: Logistic random-effects regressions of risky choice

(1) (2) (3) (4) (5) (6)
high 0.101 0.022 −0.082 0.045 0.796 0.692

(0.848) (0.917) (0.428) (0.846) (0.661) (0.655)
X 0.325∗∗∗ 0.379∗∗∗ 0.299∗∗∗ 0.331∗∗∗ 0.318∗∗∗ 0.320∗∗∗

(0.038) (0.040) (0.025) (0.039) (0.032) (0.032)
C −0.800∗∗∗ −0.913∗∗∗ −0.755∗∗∗ −0.806∗∗∗ −0.714∗∗∗ −0.719∗∗∗

(0.086) (0.090) (0.055) (0.087) (0.067) (0.067)
X*high −0.104∗ −0.149∗∗ −0.045∗ −0.105∗ −0.093∗ −0.090∗

(0.048) (0.050) (0.019) (0.048) (0.043) (0.043)
C*high 0.209∗ 0.315∗∗ 0.098∗ 0.217∗ 0.112 0.116

(0.105) (0.110) (0.044) (0.107) (0.090) (0.091)
Interc. 1.092 1.074 1.209∗ 1.032 0.435 0.436

(0.746) (0.829) (0.478) (0.754) (0.538) (0.543)
QIC 5, 350.2 4, 824.3 9, 609.3 5, 283.8 27, 402.2 27, 026.9
Obs. 4, 471 4, 171 8, 257 4, 432 24, 679 24, 465

We provide the coefficient estimates and the standard errors in parentheses.
QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

With the exception of the estimates of the intercept, our results from Table I are largely

unchanged.
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Here we conduct another robustness check of the analysis summarized in Table I. Rather

than independent variables of X and C, we use the expected value (EV) of the risky minus

sure choice (0.5 ∗X − C). We summarize this in Table A2.

Table A2: Linear random-effects regressions of risky choice

(1) (2) (3) (4) (5) (6)
high 0.020 0.032 −0.001 0.021 0.011 0.011

(0.046) (0.045) (0.013) (0.046) (0.043) (0.043)
EV 0.149∗∗∗ 0.161∗∗∗ 0.142∗∗∗ 0.150∗∗∗ 0.154∗∗∗ 0.155∗∗∗

(0.010) (0.009) (0.007) (0.010) (0.009) (0.009)
EV*high −0.033∗ −0.043∗∗ −0.012∗ −0.033∗ −0.038∗∗ −0.037∗∗

(0.014) (0.013) (0.005) (0.014) (0.013) (0.013)
Interc. 0.417∗∗∗ 0.406∗∗∗ 0.426∗∗∗ 0.416∗∗∗ 0.424∗∗∗ 0.424∗∗∗

(0.027) (0.027) (0.023) (0.028) (0.025) (0.025)
AIC 3, 698.1 3, 385.8 6, 450.9 3, 593.3 19, 039.3 18, 563.1
Obs. 4, 471 4, 171 8, 257 4, 432 24, 679 24, 465

We provide the coefficient estimates and the standard errors in parentheses.
AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes
p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find that subjects in low volatility trials are more sensitive to the parameters than

those in the high volatility trials. As such, our results from Table I are largely unchanged.

Here we conduct a robustness check of Table II. However we employ a logistic specification

rather than a linear probability model.
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Table A3: Estimates of γX and γC from 24 logistic random-effects regressions on common trials

Trial Sqrt. Trial Second Half Obs.
γX γC γX γC γX γC

High −0.0003 0.0003 −0.0056 0.0079 −0.0274 0.0248 2, 239
31-300 (0.0002) (0.0004) (0.0050) (0.0093) (0.0299) (0.0563)

Low −0.0003 0.0004 −0.0076 0.0113 −0.0434 0.0768 2, 193
31-300 (0.0003) (0.0005) (0.0068) (0.0128) (0.0387) (0.0786)

High −0.0001 0.0007 −0.0015 0.0147 −0.0214 0.1109 1, 508
31-210 (0.0003) (0.0006) (0.0064) (0.0132) (0.0305) (0.0724)

Low −0.0007 −0.0002 −0.0140 0.0022 −0.0866† −0.0974 1, 471
31-210 (0.0005) (0.0009) (0.0099) (0.0186) (0.0505) (0.0887)

High 0.0008 0.0005 0.0138 0.0046 0.0036 0.1188 771
31-120 (0.0010) (0.0022) (0.0162) (0.0362) (0.0483) (0.1003)

Low 0.0006 0.0044† 0.0071 0.0876∗ 0.0332 0.0492 734
31-120 (0.0015) (0.0025) (0.0251) (0.0430) (0.0793) (0.1382)

High 0.0015 −0.0024 0.0216 −0.0401 0.0768 −0.1722 512
31-90 (0.0016) (0.0038) (0.0236) (0.0574) (0.0681) (0.1272)

Low −0.0030 0.0140∗∗ −0.0480 0.2324∗∗ −0.1643† 0.5098∗ 481
31-90 (0.0024) (0.0050) (0.0367) (0.0787) (0.0963) (0.2017)

We provide the coefficient estimates and the standard errors in parentheses. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Among our 48 estimates, here we find 4 significant at 0.05. However, each are the wrong

sign as predicted by learning across trials. Further, 34 of our 48 estimates have the opposite

sign as predicted by learning.

In Table A4, we conduct an analysis as summarized in Table III, but with logistic regres-

sions.

In Table A4, we find that 25 of our 76 estimates are significant at 0.05, however each are

the opposite sign as predicted by learning. Additionally, 59 of these 76 estimates have the

opposite sign as predicted.

Here we conduct an analysis similar to that summarized in Table IV , however with logistic

regressions.
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Table A4: Estimates of γX and γC from 38 logistic random-effects regressions on common domain trials

Trial Sqrt. Trial Second Half After First 30 Obs.
γX γC γX γC γX γC γX γC

High −0.0002 0.0003 −0.0037 0.0062 −0.0347 0.0454 −0.0056 0.0151 2, 468
1-300 (0.0002) (0.0003) (0.0036) (0.0071) (0.0275) (0.0523) (0.0562) (0.0993)

Low −0.0004∗∗∗ 0.0005† −0.0093∗∗∗ 0.0120† −0.0641∗∗ 0.0732 −0.0973∗∗∗ 0.1739∗ 21, 997
1-300 (0.0001) (0.0003) (0.0026) (0.0066) (0.0199) (0.0495) (0.0258) (0.0641)

High 0.0000 0.0004 0.0010 0.0076 −0.0017 0.0765 0.0208 0.0048 1, 737
1-210 (0.0003) (0.0005) (0.0054) (0.0086) (0.0320) (0.0590) (0.0610) (0.0987)

Low −0.0006∗∗∗ 0.0007 −0.0105∗∗∗ 0.0141† −0.0559∗∗∗ 0.0645 −0.0865∗∗∗ 0.1601∗∗ 15, 486
1-210 (0.0002) (0.0005) (0.0030) (0.0082) (0.0176) (0.0486) (0.0253) (0.0610)

High 0.0007 −0.0004 0.0101 −0.0055 0.0668 −0.1156 0.0350 −0.0408 1, 000
1-120 (0.0007) (0.0013) (0.0099) (0.0182) (0.0483) (0.0882) (0.0628) (0.1134)

Low −0.0009∗ 0.0013 −0.0128∗∗ 0.0195† −0.0499∗ 0.1055† −0.0723∗∗ 0.1472∗∗ 8, 873
1-120 (0.0003) (0.0008) (0.0048) (0.0112) (0.0254) (0.0555) (0.0254) (0.0546)

High 0.0004 −0.0015 0.0059 −0.0166 −0.0314 −0.0994 −0.0018 −0.0538 741
1-90 (0.0011) (0.0021) (0.0136) (0.0257) (0.0584) (0.1164) (0.0679) (0.1313)

Low −0.0011∗ 0.0031∗∗ −0.0147∗ 0.0365∗∗ −0.0470† 0.1775∗∗ −0.0654∗∗ 0.1690∗∗∗ 6, 656
1-90 (0.0005) (0.0010) (0.0060) (0.0125) (0.0284) (0.0544) (0.0245) (0.0508)

High −0.0024 0.0021 −0.0190 0.0205 −0.0786 0.0476 - - 476
1-60 (0.0024) (0.0044) (0.0240) (0.0441) (0.0826) (0.1582)

Low −0.0018∗ 0.0029† −0.0191∗∗ 0.0250 −0.0594∗ 0.1130∗ - - 4, 440
1-60 (0.0007) (0.0018) (0.0069) (0.0174) (0.0242) (0.0552)

We provide the coefficient estimates and the standard errors in parentheses. ∗∗∗ denotes p < 0.001,
∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.
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Table A5: Logistic random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − −0.036 − −0.059 − 1.257∗ − 1.120∗

(0.960) (0.959) (0.708) (0.71)
X 0.34∗∗∗ 0.35∗∗∗ 0.34∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.352∗∗∗ 0.36∗∗∗ 0.35∗∗∗

(0.037) (0.040) (0.037) (0.041) (0.032) (0.034) (0.032) (0.03)
C −0.79∗∗∗ −0.84∗∗∗ −0.80∗∗∗ −0.85∗∗∗ −0.81∗∗∗ −0.82∗∗∗ −0.82∗∗∗ −0.83∗∗∗

(0.080) (0.091) (0.082) (0.093) (0.072) (0.076) (0.07) (0.09)
X*high − −0.067 − −0.067 − −0.031 − −0.031

(0.054) (0.054) (0.043) (0.043)
C*high − 0.147 − 0.149 − −0.064 − −0.059

(0.114) (0.115) (0.087) (0.087)
Prev1 0.046 0.042 0.035 0.035 −0.026 −0.101 −0.039 −0.110

(0.090) (0.094) (0.091) (0.096) (0.064) (0.064) (0.064) (0.064)
X*Prev1 −0.011∗∗ −0.008∗ −0.010∗∗ −0.008∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002)
C*Prev1 0.017∗ 0.011 0.018∗ 0.012 0.028∗∗∗ 0.031∗∗∗ 0.028∗∗∗ 0.031∗∗∗

(0.008) (0.009) (0.008) (0.009) (0.006) (0.006) (0.006) (0.006)
Interc. 0.833 0.877 0.815 0.852 0.587 0.8107 0.638 0.852

(0.850) (0.843) (0.862) (0.853) (0.693) (0.6241) (0.698) (0.628)
QIC 5, 325.2 5, 348.1 5, 259.5 5, 282.1 27, 241.9 27, 327.8 26, 868.5 26, 953.0
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes

p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The results involving the parameters of interest are not changed.

Below we conduct an analysis similar to that summarized in Table IV , but with EV as

an independent variable, rather than X and C.
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Table A6: Linear random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − 0.018 − 0.018 − −0.0003 − −0.0003

(0.047) (0.047) (0.0430) (0.043)
EV 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.17∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.18∗∗∗

(0.010) (0.011) (0.010) (0.011) (0.009) (0.010) (0.010) (0.01)
EV*high − −0.020 − −0.019 − −0.010 − −0.009

(0.015) (0.015) (0.013) (0.013)
Prev1 0.001 0.0001 0.001 0.0004 0.002† 0.002† 0.002† 0.002†

(0.002) (0.0022) (0.002) (0.0022) (0.001) (0.001) (0.001) (0.001)
EV*Prev1 −0.004∗∗∗ −0.003∗∗ −0.004∗∗∗ −0.003∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Interc. 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.025) (0.029) (0.026) (0.029) (0.024) (0.026) (0.024) (0.027)
AIC 3, 703.4 3, 712.4 3, 598.2 3, 607.4 18, 904.6 18, 915.2 18, 429.8 18, 440.5
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes

p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Here we find that there is a decreasing sensitive to parameter values that are different than

the parameter values in the previous trial. In specifications that include the high volatility

dummy variable, we find that these estimates are not significant. We conclude that the

previous trial parameters better explain the differential sensitivity than the high volatility

dummy variable.

Here we conduct a version of Table IV , but with Prev2 not Prev1.
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Table A7: Linear random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − 0.015 − 0.012 − 0.361∗ − 0.351∗

(0.215) (0.215) (0.159) (0.157)
X 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.005) (0.006)
C −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.012) (0.013) (0.012) (0.013)
X*high − −0.010 − −0.010 − −0.016∗ − −0.016∗

(0.009) (0.009) (0.008) (0.008)
C*high − 0.020 − 0.020 − −0.003 − −0.003

(0.018) (0.018) (0.015) (0.015)
Prev2 0.005 0.005 0.002 0.002 −0.037∗∗ −0.048∗∗ −0.041∗∗ −0.052∗∗∗

(0.022) (0.023) (0.022) (0.023) (0.014) (0.015) (0.014) (0.015)
X*Prev2 −0.002∗∗ −0.002∗ −0.002∗∗ −0.002∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.0004) (0.0004) (0.0004) (0.0004)
C*Prev2 0.005∗ 0.003 0.005∗ 0.003† 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
Interc. 0.75∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.86∗∗∗ 0.80∗∗∗ 0.87∗∗∗ 0.81∗∗∗

(0.183) (0.184) (0.185) (0.186) (0.123) (0.136) (0.123) (0.136)
AIC 3, 940.3 3, 954.4 3, 844.4 3, 858.4 18, 309.1 18, 317.7 17, 827.1 17, 836.1
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes

p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Two high volatility estimates involving X are significant at 0.05 and have the sign pre-

dicted by efficient coding. However, in these specifications, the estimates involving C are not

significant. Also in these specifications, both of the Prev2 estimates involving both X and C

are significant at 0.001.

We conduct an analysis similar to that in Table IV , but with Prev3 not Prev1.
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Table A8: Linear random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − 0.026 − 0.018 − 0.213 − 0.198

(0.222) (0.220) (0.160) (0.158)
X 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.005) (0.006) (0.005) (0.006)
C −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.011) (0.013) (0.012) (0.013)
X*high − −0.011 − −0.011 − −0.011 − −0.011

(0.009) (0.009) (0.008) (0.008)
C*high − 0.021 − 0.022 − 0.001 − 0.0015

(0.019) (0.019) (0.015) (0.014)
Prev3 0.002 0.0004 0.0009 −0.0002 −0.004 −0.009 −0.006 −0.010

(0.014) (0.0153) (0.0141) (0.0155) (0.009) (0.009) (0.009) (0.009)
X*Prev3 −0.001∗∗ −0.0008 −0.001∗∗ −0.0008 −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005) (0.0003) (0.0003) (0.0003) (0.0003)
C*Prev3 0.003∗ 0.002 0.003∗ 0.0018 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.0012) (0.001) (0.0012) (0.0011) (0.0007) (0.0007) (0.0007) (0.0007)
Interc. 0.77∗∗∗ 0.77∗∗∗ 0.76∗∗∗ 0.76∗∗∗ 0.73∗∗∗ 0.69∗∗∗ 0.73∗∗∗ 0.70∗∗∗

(0.190) (0.187) (0.192) (0.189) (0.124) (0.135) (0.124) (0.135)
AIC 3, 945.7 3, 959.2 3, 850.1 3, 863.3 18, 300.3 18, 313.4 17, 820.3 17, 833.6
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes

p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We do not find the differential sensitivity is related to the high volatility treatment. In

several specifications, we find that evidence that Prev3 is related to the differential sensitivity.

We conduct an analysis similar to Table IV , but with Prev4 not Prev1.
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Table A9: Linear random-effects regressions of risky choice

(1a) (1b) (4a) (4b) (5a) (5b) (6a) (6b)
high − 0.019 − 0.016 − 0.307† − 0.298†

(0.216) (0.216) (0.159) (0.157)
X 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.006) (0.007) (0.006) (0.007) (0.005) (0.006) (0.005) (0.006)
C −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.011) (0.013) (0.012) (0.013)
X*high − −0.011 − −0.011 − −0.015† − −0.014†

(0.009) (0.009) (0.008) (0.008)
C*high − 0.021 − 0.021 − −0.0004 − −0.0004

(0.018) (0.018) (0.0147) (0.0148)
Prev4 0.004 0.003 0.001 0.001 −0.020† −0.028∗ −0.023∗ −0.031∗∗

(0.018) (0.019) (0.018) (0.019) (0.011) (0.012) (0.011) (0.012)
X*Prev4 −0.002∗∗ −0.001† −0.002∗∗ −0.001† −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0003) (0.0003) (0.0003) (0.0003)
C*Prev4 0.004∗ 0.0021 0.004∗ 0.0023 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.0014) (0.0016) (0.0014) (0.001) (0.001) (0.001) (0.001)
Interc. 0.75∗∗∗ 0.75∗∗∗ 0.75∗∗∗ 0.75∗∗∗ 0.81∗∗∗ 0.75∗∗∗ 0.82∗∗∗ 0.76∗∗∗

(0.184) (0.184) (0.186) (0.186) (0.122) (0.135) (0.122) (0.134)
AIC 3, 943.7 3, 957.1 3, 848.1 3, 861.3 18, 313.3 18, 323.5 17, 831.3 17, 841.8
Obs. 4, 471 4, 471 4, 432 4, 432 24, 596 24, 596 24, 382 24, 382

We provide the coefficient estimates and the standard errors in parentheses.

AIC refers to the Akaike information criterion. ∗∗∗ denotes p < 0.001, ∗∗ denotes

p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Again, our results are similar to those summarized in Table IV .

We conduct a version of the analysis summarized in Table V , but with logistic regressions.

Table A10: Logistic random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.387∗∗∗ 0.388∗∗∗ 0.448∗∗ 0.366∗∗

(0.114) (0.114) (0.149) (0.123)
X − 0.239∗ − −

(0.121)
Interc. 0.795∗∗∗ −1.011 0.771∗∗∗ 0.820∗∗∗

(0.136) (0.927) (0.146) (0.142)
QIC 2, 613.8 2, 613.2 1, 001.7 1, 613.5
Obs. 2, 278 2, 278 862 1, 416

We provide the coefficient estimates and the standard errors in parentheses.
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QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Our results are largely unchanged from those in Table V .

Here we conduct a version of the analysis summarized in Table V I but with logistic re-

gressions.

Table A11: Logistic random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.388∗∗∗ 0.411∗∗∗ 0.240∗∗ 0.260∗∗∗

(0.114) (0.115) (0.076) (0.0770)
X-7.5 0.239∗ 0.432∗∗ 0.173∗ 0.342∗∗

(0.121) (0.159) (0.082) (0.115)
increasing*(X-7.5) − −0.449∗ − −0.354∗

(0.212) (0.149)
Interc. 0.779∗∗∗ 0.771∗∗∗ 0.518∗∗∗ 0.511∗∗∗

(0.137) (0.137) (0.120) (0.120)
QIC 2, 613.2 2, 611.8 4, 112.9 4, 111.4
Obs. 2, 278 2, 278 3, 187 3, 187

We provide the coefficient estimates and the standard errors in parentheses.
QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Our results are largely unchanged from those in Table V I.

We conduct an analysis similar to that in Table V II but with logistic regressions.

Table A12: Logistic random-effects regressions of risky choice

(1) (2) (3) (4)
increasing 0.086 0.091 −0.211 −0.199

(0.286) (0.287) (0.248) (0.249)
X-7.5 0.363∗ 0.675∗ 0.235∗ 0.513∗∗

(0.176) (0.273) (0.116) (0.197)
increasing*(X-7.5) − −0.653† − −0.514∗

(0.344) (0.236)
Interc. 1.022∗∗∗ 1.020∗∗∗ 0.813∗∗∗ 0.808∗∗∗

(0.188) (0.189) (0.173) (0.174)
QIC 1, 277.8 1, 277.2 2, 033.5 2, 032.2
Obs. 1, 143 1, 143 1, 594 1, 594
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We provide the coefficient estimates and the standard errors in parentheses.
QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The results seem to be unchanged from those in Table V II.

We conduct a version of Table V III but with logistic regressions.

Table A13: Logistic random-effects regressions of risky choice

(1) (2) (3) (4) (5) (6)
increasing −0.182 −0.074 −0.243 −0.371 −0.329 −0.362

(0.260) (0.271) (0.305) (0.235) (0.240) (0.257)
X-7.5 0.587∗∗∗ 0.377∗∗ 0.470∗∗ 0.395∗∗∗ 0.295∗∗ 0.314∗

(0.080) (0.142) (0.164) (0.058) (0.105) (0.124)
C-2.5 −0.279† −0.274† −1.194† −0.116 −0.112 −0.299

(0.150) (0.151) (0.715) (0.099) (0.100) (0.563)
increasing*(X-7.5) − 0.252 0.156 − 0.118 0.099

(0.169) (0.188) (0.124) (0.141)
increasing*(C-2.5) − − 0.954 − − 0.193

(0.732) (0.572)
Interc. 1.180∗∗∗ 1.119∗∗∗ 1.284∗∗∗ 0.886∗∗∗ 0.859∗∗∗ 0.892∗∗∗

(0.192) (0.187) (0.232) (0.174) (0.172) (0.195)
QIC 6, 444.2 6, 441.3 6, 441.1 10112.6 10113.5 10, 114.0
Obs. 5, 235 5, 235 5, 235 7, 542 7, 542 7, 542

We provide the coefficient estimates and the standard errors in parentheses.
QIC refers to the Quasi-likelihood information criterion (Pan, 2001). ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

Similar to Table V III, we do not find the increasing dummy variable to be significant in

any of our specifications. Also similar to Table V III, we do not find any interaction terms to

be significant at 0.05.
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