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Abstract

A  popularly  used  PSI  treats  all  variables  as  categorical,  regardless  of bin
ordering.  Also, bin boundaries and the number of bins could affect the PSI
quantity.  We build our PSI without requiring binning, distinguishes numeric
shifts  from  categorical  redistribution,  and  unify  the  two  for  mixed
numeric/categorical variables.

Introduction

In modeling and analytics we are concerned with the stability of the data.  
Data instability may impact the generalization of a model or conclusion or 
inference in the presence of unforeseen data and distribution.  A population 
stability index (PSI) helps quantify the stability of a data attribute or variable.

One PSI in popular use is based on a symmetrized version of the information 
theoretic Kullback-Leibler (1951) divergence, nowadays called the Jeffreys 
(1948) divergence (JD).  This divergence is defined as a continuous integral 
for ideal analytic distribution functions.  For discrete data samples, there is a 
corresponding summation over contiguous ranges of an attribute.  Binning 
those ranges is a chore, and having a different number of bins could produce
substantially varying JD PSI which does not help to quantify stability.

Following our success to find a replacement for an information value (IV) 
measure of separation which is based on the same divergence measure, we 
would like to find a replacement for JD PSI.  In addition to avoiding binning, 
we would also like our PSI to have a few other desirable characteristics.  In 
particular, we would like our PSI to distinguish numeric shifts from 
redistribution in categories.  The discrete form of JD PSI essentially treats all 
binned ranges as categories irrespective of any ordering.

In this article, we revisit our search for a separation measure to replace IV.  
We compare and contrast IV with other measures of separation, note the 
advantages and disadvantages, and make our choice.  We take the learnings
from this exercise in searching for a replacement for JD PSI.  We list desirable
qualities, and embark on reviewing a number of measures and metrics.  We 
build our PSI for numeric variables separate from categorical variables, and 
show a simple shift test and an overlap test.  We create a mechanism to link 
the quantities for mixed variables (e.g., numeric with missing).  
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Distance and Divergence

Given two numbers we can get the distance between them by subtraction.  
Given two random variables we can compute a statistical distance between 
their probability distributions.  The Kullback-Leibler (KL) divergence is an 
information theoretic statistical distance (logarithmic difference) between 
two analytic (idealized) probability distribution functions p ( x ) and q ( x ):

∫
−∞

∞

p (x ) ln( p ( x )
q ( x ) )dx (1)

Jeffreys divergence (JD) is a symmetrized version of the information theoretic
Kullback-Leibler divergence: 

∫
−∞

∞

p (x ) ln( p ( x )
q ( x ) )dx + ∫

−∞

∞

q ( x ) ln( q ( x )
p (x ) )dx (2)

=∫
−∞

∞

( p ( x )−q ( x )) ln( p ( x )
q (x ) )dx (3)

As our data come in samples, the integral in JD is replaced by a discrete 
summation:

∑
k

( pk−qk ) ln ( pkqk ) (4)

Here pk and qk are the densities of the two probabilities.  JD PSI is a measure 
of instability of the distribution, where pk and qk are the densities at two 
different points in time.  With the same formulation, information value (IV) is 
a measure of separation of two distributions, where pk and qk are their 
respective densities.  As summation is commutative, JD is irrespective of 
numeric rank ordering, but otherwise is fine with categorical variables.

Frequently either pk or qk could be zero, making the quotient of the log term 
and therefore JD undefined.  A dubious practice zeros out the term so it 
would not ruin the whole summation.  Another fix utilizes contiguous ranges, 
making the bins fewer and wider until the numerator and the denominator 
are both non-zero.  It may work with one data sample, but could break again 
with another sample.  Neither remedy is satisfactory.  We know the number 
of bins affect the JD quantity – collapsing to one single bin would make JD 
exactly zero.  We learned that other metrics, e.g., the Hosmer and 
Lemeshow (HL) statistic, could also be impacted by binning.  Recent software
that allows changing the ranges and/or the number of bins shows highly 
varying HL statistics as a result.  
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Prior Research

Due to the challenges of computing JD, we have been seeking a replacement
for IV as a measure of separation for a modeling attribute.  Often, decile 
ranking procedures fail to produce ten bins as many of our attributes are 
highly skewed.  Manual binning is a chore.  Fundamentally binning is a noise 
generating irreversible quantization.  We want our measure of separation to 
require no binning, and be sensitive to rank ordering of numerical modeling 
attributes.

Our breakthrough comes when we encounter an existing score among the 
modeling attributes.  We can incorporate an existing score in a new model.  
Typically, for a score we compute the KS (Kolmogorov-Smirnov) statistic as a 
measure of separation.  When a score is used as a modeling attribute, there 
is no reason why we cannot compute IV.  Score or attribute, they are just 
numeric variables.  If we can compute IV, we can compute KS for an attribute
too.  In the same vein, we can also compute for an attribute or a score the 
Gini coefficient (GC, same as Somers’ D) often used in classification models.

When we compare IV, KS, and GC, we find desirable properties in some but 
not others.  KS fairs slightly better than IV in that no binning is required.  
However, it is insensitive to rank ordering on either side of the maximum 
separation, so it is a poor candidate to replace IV.  In contrast, the GC is 
sensitive to rank ordering everywhere, and requires no binning.  GC handles 
numeric data well and can even handle categorical variables as ranked log 
odds.  GC can be readily obtained from the CDFs (cumulative distribution 
functions) in a ROC (Receiver Operating Characteristics) chart, along with 
other association statistics like concordance, discordance, ties, and the c 
statistic.  GC is now our preferred measure of separation.

Examples below illustrate the similarities and differences among IV, KS, and 
GC.  Our first example shown in Exhibit A looks like a fairly good attribute 
with IV=0.860, KS=0.399, and GC=0.495:

Exhibit A
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Attribute % Class 0 % Class 1

0 9.8% 38.7%

1 9.8% 18.8%

2 10.1% 12.1%

3 10.0% 8.0%

4 10.1% 5.4%

5 9.9% 4.2%

6 10.0% 3.3%

7 9.9% 3.3%

8 10.1% 3.3%

9 10.3% 2.9%

All 100.0% 100.0%

The second example in Exhibit B has IV=0.860, KS=0.399, and GC=0.306.

Exhibit B

Attribute % Class 0 % Class 1

A 10.1% 12.1%

B 9.8% 18.8%

C 9.8% 38.7%

D 10.1% 3.3%

E 9.9% 3.3%

F 10.3% 2.9%

G 10.0% 3.3%

H 9.9% 4.2%

I 10.1% 5.4%

J 10.0% 8.0%

All 100.0% 100.0%

The attribute in the second example does not have as fat a separation in the 
ROC chart as the first.  GC shows decrease, yet IV and KS remain the same.  
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The third example in Exhibit C has IV=0.860, KS=0.236, and GC=0.053.

Exhibit C

Attribute % Class 0 % Class 1

I 10.1% 3.3%

II 10.3% 2.9%

III 9.8% 18.8%

IV 9.8% 38.7%

V 9.9% 3.3%

VI 10.0% 3.3%

VII 9.9% 4.2%

VIII 10.1% 5.4%

IX 10.0% 8.0%

X 10.1% 12.1%

All 100.0% 100.0%

The attribute in the third example looks even worse in the ROC chart.  
However, IV remains the same.  KS now shows a decrease.  GC decreases 
further.

The reader will notice the second and third examples are just row-
permutations of the first.  IV staying the same means it is insensitive to any 
rank ordering.  Between the first two examples, KS unchanging means it is 
insensitive to rank ordering on either side of the maximum separation.  GC is
the separation measure that is sensitive to rank ordering everywhere.  This is
the reason we choose GC and not IV or even KS. 

Design of a PSI

Following our prior success to replace IV with GC, we now turn our focus onto
designing a PSI that does not use JD or KL divergence.  We list desirable 
properties, and search the literature for existing measures and metrics.  If 
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nothing meets our requirements exactly, we adapt, modify, and/or adjust 
until we have a PSI that suits our needs.

Here are some desirable properties to have with our PSI: We like its 
computation to require no binning.  This also means it needs to work well 
with skewed distributions, and zeros densities which may often occur with 
smaller data samples or out-of-time data.  IV has no upper bound, but having
one would be useful so that it may be rescaled or normalized.  Along that line
we would need ranges that are comparable to the conventional definition of 
minor/medium/major instability.  We want the PSI to indicate redistribution in
a categorical variable to be distinct from a shift in a numeric variable.  For a 
mixed ordinal/categorical variable (e.g., numeric with missing) we need to be
able to unify the shift and redistribution concepts and generate a combined 
measure of population stability.

Here are a few of the distance measures we researched (in no particular 
order): Kullback-Leibler divergence, Jeffreys divergence, Fisher information 
metric, Hellinger distance, energy distance, earth movers distance, 
Wasserstein metric, total variation distance, Levy metric, Bhattacharyya 
distance, Mahalanobis distance, Minkowski distance, Kolmogorov-Smirnov 
statistic, Cramér-von Mises criterion, Anderson-Darling test, Wald test, chi-
squared tests, Gini coefficient (Somers’ D), mean absolute difference, 
Jensen-Shannon divergence.  

A number of the above statistical distance measures are either Bregman or 
f-divergences, or both in the case of KL divergence.  Notably the squared 
Euclidean distance is a Bregman distance but not an f-divergence.  Quite a 
few of them are cousins of KL and Jeffreys divergence, requiring a logarithm 
of a ratio so we have to be careful.  Earth movers and energy distances have
a physical analog to shifts in a numeric variable, which may be a useful 
concept to borrow.

PSI for a Categorical Variable

We choose a scaled version of the Jensen-Shannon (JS) divergence (Lin, 
1991) as the PSI for a categorical variable.  JS divergence is the average of 
the KL divergences between distributions p and m and between q and m, 
where the mixture m is the average of p and q.  In discrete summation form, 
JS divergence is:

1

2
∑
k

pk ln ( pkmk )+
1

2
∑
k

qk ln( qkmk ) (5)

mk=
1

2
( pk+qk ) (6)
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In (5), the denominator of the quotient could only be zero if both densities pk 
and qk are zero.  When the numerator pk (or qk) is zero, the multiplier outside 
the logarithm pk (or qk) ensures the term is zero.  Therefore, JS divergence is 
well-defined for data samples that may have zero densities.

Unlike JD, JS divergence is bounded from below and above.  JS divergence is 
zero when p = q.  When p and q are mutually exclusive, m=1/2, and JS 
divergence attains the maximum value of ln (2 ).  To normalize, we define 
JS PSI to be JS divergence divided by ln (2 ), so that 0 < JS PSI < 100%.  For 
small values, we observe JS divergence ≈ JD PSI/8.  

We display below a few overlap tests with a uniformly distributed categorical 
variable.  Different degrees of overlap between two time points (e.g., T0, T1) 
give different JS PSI values.  Full overlap means the distribution is stable, in 
which case JS PSI should be 0.  No overlap means completely unstable – 
JS PSI should be 100%.  These are the boundary cases.  The categories are 
not ordered, so there could be different permutations of a partial overlap 
with the same JS PSI.

(a) No categories overlap: JS PSI = 100%  

(b) 2 of 8 categories overlap: JS PSI = 75%
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(c) 4 of 8 categories overlap: JS PSI = 50%

(d) 6 of 8 categories overlap: JS PSI = 25%

(e) All categories overlap: JS PSI = 0% 

PSI for a Numeric Variable

There are a number of inspirations behind our definition of PSI for a numeric 
variable.  First, we follow our success using GC to replace IV.  GC is based on 
the ROC.  GC requires no binning, and so it is good for numeric variables.  GC
measures the area under ROC curve, but could be neutralized or negated by 
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negative area of flipped CDFs.  We want to measure upshifts and downshifts.
The Cramér-von Mises (CVM) criterion, an alternative to the KS statistic, uses
the squared distance between the ROC curves (Anderson, 1962).  CVM is not 
impacted by flipped CDFs, but the squaring skews it for larger differences.  
The earth mover’s distance or the first Wasserstein (Vaserstein, 1969) 
distance (W 1) has a physical analog of shifting a pile of earth shaped like one 
distribution to the other with minimum energy.  W 1 uses the absolute 
distance between the ROC curves which may suit our need.  We also need 
our PSI for numeric variable to be symmetric, therefore we employ the 
mid-CDF (Lancaster, 1961) popularized by Parzen (2009).  The mid-CDF of a 
distribution with cumulative distribution P ( x ) and density p ( x ) is P ( x )− p ( x )/2.

Our definition of PSI for numeric data is Absolute Area Between mid-CDFs 
(AABC PSI):

2∑
k

mk|P̊k−Q̊k| (7)

Here P̊ and Q̊ are mid-CDFs of the numeric variable’s distributions at two 
time points.  The mixture density mk is the same as (6).  Already scaled, we 
will see that AABC PSI is bounded by 0 and 100%.

Shift tests are shown below with different degrees of shift.  With no shift, the 
distributions are identical (i), and AABC PSI = 0.  When all shifted out (ii), we 
get AABC PSI = 100%.  These are the boundary cases.  We show three others
(iii), (iv), and (v) with AABC PSI at 75%, 50%, and 25%.  Note that (iii) may 
look like (c) for JS PSI shown above, however JS PSI is for a categorical 
variable.  If we have (iii), (iv), and (v) as categorical distributions, JS PSI 
would have the same 50% value.

(i) AABC PSI = 0%
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(ii) AABC PSI = 100%

(iii) AABC PSI = 75%

(iv) AABC PSI = 50%

(v) AABC PSI = 25%
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PSI for a Mixed Ordinal/Categorical Variable

Mixed ordinal/categorical variable occur frequently in our data as numeric 
variables with missing values.  Considerable number of missing values may 
arise from a default in derivation (e.g., computing a ratio when encountering 
zero in either the numerator or the denominator or both).  Redistribution of 
non-missing vs missing categories can be measured by JS PSI.  Shift in a 
numeric variable may be measured by AABC PSI.  Since both AABC PSI and 
JS PSI are scaled between 0 and 100%, we can unify the two.  We define a 
PSI for a mixed ordinal/categorical variable to be an interpolation between 
two categorical scenarios by the actual degree of ordinal shift.  

Take the case of a numeric variable with missing.  AABC PSI measures the 
degree of shift a in the numbers.  In the base scenario, JS PSI measures the 
stability b of the non-missing (numbers) and missing categories.  In the 
contrasting scenario, we create a new category to house all the numbers at 
time T1.  Here JS PSI measures the stability c with this new distribution.  With
interpolation, PSI for a numeric variable with missing is b+a (c−b ).

In the example below we calculate the PSI of a numeric variable with 20% 
missing unchanged from T0 to T1, and the non-missing bears a shift in 
example (iv) above with AABC PSI = 50% (a=0.5).  Since there is no 
redistribution between the missing and non-missing, b=0 in the base 
scenario.  For the contrasting scenario, we put all the numbers in a new 
category at T1, giving c=0.8.

a=0.5 (AABC PSI)

b=0 (JS PSI base scenario) c=0.8 (JS PSI contrasting scenario)
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Post interpolation, PSI for this example numeric variable with missing is
b+a (c−b )=0+0.5 (0.8−0 )=0.4 = 40%.  A pseudo-spreadsheet is in the Appendix.

After reviewing hundreds of actual numeric variables, we establish 15% and 
30% as our reference boundaries between minor, medium, and major 
instability.  These are not direct equivalents of the customary 0.1 and 0.25 JD
PSI cutoffs, but they provide roughly the same trigger frequencies.  We hope 
our readers find these references useful in their population stability work.

Conclusion

In this article we analyze the disadvantages of the conventional population 

stability index, list the qualities of a desirable one, research the literature for 

a suitable substitute, and end up building our own.  We define our PSI to 

require no binning.  For ordinal variables we have a shift sensitive AABC PSI 

as: 2∑ mk|P̊k−Q̊k| where P̊ and Q̊ are mid-CDFs of the variable’s distributions 

at two time points, and mk is the average mixture density ( pk+qk )/2.  For 

categorical variables we have JS PSI between distributions p and q as:

(∑ pk ( ln pk− lnmk )+∑ qk ( ln qk− lnmk ) )/ (2 ln 2 ).  For mixed ordinal/categorical 

variables (e.g., numeric variable with missing) we interpolate between the 

base categorical scenario JS PSI (b) and contrasting new category scenario 

JS PSI (c) by the ordinal AABC PSI (a) in the numbers.  The resulting 

interpolated PSI is b+a (c−b ).
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Appendix

Here we provide an example to calculate PSI for a numeric variable with 
missing values.  

We first construct a table with missing and sorted numeric values {1}.  We 
count the population at T0 {2}, and also at T1 {3}.  For the non-missing 
numeric portion we compute the distribution density at T0 {4}, and at T1 
{5}.  We compute the missing and non-missing {6} categorical densities at 
T0 {7}, and at T1 {8}.

{1} {2} {3} {4} {5} {6} {7} {8} {0}

Value Count

#T0

Count

#T1

Numeric

dist. %T0

Numeric

dist. %T1

Value Categorical

dist. %T0

Categorical

dist. %T1

 

Missing 2 2 N/A N/A Missing 20% 20%  

0 1 12.5% Non-

Missing

80% 80%  

1 1 12.5%

2 1 1 12.5% 12.5%

3 1 1 12.5% 12.5%

4 1 1 12.5% 12.5%

5 1 1 12.5% 12.5%

6 1 12.5%

7 1 12.5%

8 1 12.5%

9 1 12.5%

10 1 12.5%

11 1 12.5%

Total 10 10 100% 100% Total 100% 100%  
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Compute AABC PSI

With the non-missing portion we compute the numeric shift AABC PSI.  We 
obtain the cumulative distributions at T0 {9} and at T1 {10}.  Then we 
compute the mid-CDFs at T0 {11} and at T1 {12}, and the absolute 
difference between the mid-CDFs {13}.  The average mixture density {14} 
is calculated based on the distribution densities at T0 and at T1.  The 
AABC PSI {15} is computed element-wise per numeric value and then 
summed up.

{1} {4} {5} {9} {10} {11} {12} {13} {14} {15}

Value Numeric

dist. %T0

Numeric

dist. %T1

Cumulative

dist. %T0

Cumulative

dist. %T1

Mid-CDF

T0

Mid-CDF

T1

Mid-CDFs

Absolute

Difference 

Average

Mixture

Density

AABC PSI

by numeric

value 

accum. {4} accum. {5} {9} - {4}/2 {10} - {5}/2 abs({11}-{12}) ({4}+{5})/2 2*{13}*{14}

0 12.5% 12.5% 0% 6.25% 0% 6.25% 6.25% 0.78125%

1 12.5% 25.0% 0% 18.75% 0% 18.75% 6.25% 2.34375%

2 12.5% 12.5% 37.5% 12.5% 31.25% 6.25% 25.00% 12.5% 6.25000%

3 12.5% 12.5% 50.0% 25.0% 43.75% 18.75% 25.00% 12.5% 6.25000%

4 12.5% 12.5% 62.5% 37.5% 56.25% 31.25% 25.00% 12.5% 6.25000%

5 12.5% 12.5% 75.0% 50.0% 68.75% 43.75% 25.00% 12.5% 6.25000%

6 12.5% 87.5% 50.0% 81.25% 50.00% 31.25% 6.25% 3.90625%

7 12.5% 100% 50.0% 93.75% 50.00% 43.75% 6.25% 5.46875%

8 12.5% 100% 62.5% 100% 56.25% 43.75% 6.25% 5.46875%

9 12.5% 100% 75.0% 100% 68.75% 31.25% 6.25% 3.90625%

10 12.5% 100% 87.5% 100% 81.25% 18.75% 6.25% 2.34375%

11 12.5% 100% 100% 100% 93.75% 6.25% 6.25% 0.78125%

Total of {15} AABC PSI a = 50.0%
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Compute Base JS PSI

Next we compute the base scenario categorical redistribution JS PSI (b):

{6} {7} {8} {16} {17} {18} {19}

Value Categorical

dist. %T0

Categorical

dist. %T1

Average

Mixture

Density

({7}+{8})/2

{7}*

ln({7}/{16})

{8}*

ln({8}/{16})

JS PSI 

by catetory

({17}+{18})

/(2*ln(2))

Missing 20% 20% 20% 0.000 0.000 0%

NonMissing 80% 80% 80% 0.000 0.000 0%

Total of {19} Base Scenario JS PSI b = 0.0%

Compute Contrasting Scenario JS PSI

We construct a contrasting scenario by moving the non-missing at T1 into a 
new category to compute categorical redistribution JS PSI (c):

{6} {7} {8} {16} {17} {18} {19}

Value Categorical

dist. %T0

Categorical

dist. %T1

Average

Mixture

Density

({7}+{8})/2

{7}*

ln({7}/{16})

{8}*

ln({8}/{16})

JS PSI 

by catetory

({17}+{18})

/(2*ln(2))

Missing 20% 20% 20% 0.000 0.000 0%

NonMissing 80% 40% 0.555 40%

New 80% 40% 0.555 40%

Total of {19} Contrasting Scenario JS PSI c = 80.0%

{17} is blank where {7} is blank, based on multiplier before ln(); similarly for {18}.

Compute Composite PSI

PSI for a numeric variable with missing is obtained by interpolating between 
the base and contrasting JS PSI scenarios using AABC PSI as the interpolation
factor:

a b c  

AABC PSI JS PSI 

base

scenario

JS PSI 

contrasting

scenario

Composite PSI

b+a*(c-b)

50.0% 0.0% 80.0% 40.0%
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