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Abstract

We propose a bootstrap generalized Hausman test for the correct specification of

unobserved heterogeneity in fixed-effects panel data models. We consider as null hy-

potheses two scenarios in which the unobserved heterogeneity is either time-invariant

or specified as additive individual and time effects. We contrast the standard fixed-

effects estimators with the recently developed two-step grouped fixed-effects esti-

mator, that is consistent in the presence of time-varying heterogeneity under min-

imal specification and distributional assumptions for the unobserved effects. The

Hausman test exploits the general formulation for the variance of the vector of con-

trasts and critical values are computed via parametric percentile bootstrap, so as

to account for the non-centrality of the asymptotic χ2 distribution arising from the

incidental parameters and approximation biases. Monte Carlo evidence shows that

the test has correct size and good power in both linear and non linear specification.
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1 Introduction

Correct specification of unobserved heterogeneity is crucial in panel data modeling. For long,

empirical applications have only considered individual time-constant fixed effects, but the as-

sumption of time-invariant unobserved heterogeneity is often hardly tenable in practice, espe-

cially over a long time dimension. Therefore the current mainstream approach has become to

include both subject and time fixed effects, in order to achieve credible identification of the

effects of interest. The simplest and most widely employed setup is the specification of ad-

ditive individual and time heterogeneity, namely the two-way fixed-effects model, that in the

linear model is equivalent to the two-way correlated random effects approach (Wooldridge, 2021).

Fernández-Val and Weidner (2016) provide analytical and jackknife bias corrections for the max-

imum likelihood (ML) estimator of nonlinear models with additive fixed effects, which is plagued

by the incidental parameters problem.

While of simple implementation, the two-way fixed-effects specification fails to capture the

specific impact common factors may have on each subject. There is now an important stream

of literature on developing identification results and estimation strategies for models with inter-

active time and individual fixed effects. Contributions have been spurred by the seminal paper

of Bai (2009), who provides identification results along with the asymptotics for the interac-

tive fixed effect estimator in linear models. More recently, interactive fixed-effects have been

introduced in nonlinear panel data and network models by Chen et al. (2021).

Testing the assumptions on the specification of time-varying unobserved heterogeneity has

also received considerable attention in the recent econometric literature. Bartolucci et al. (2015)

propose a Hausman-type test for the hypothesis of time-constant unobserved heterogeneity in

generalized linear models where conditional ML estimators are compared with first-differences

or pairwise conditional ML estimators. In the context of large stationary panel models, the

factor specification could be tested by comparing additive with interactive fixed-effects models,

on the basis of the Hausman test illustrated by Bai (2009) and its fixed-T version, derived

by Westerlund (2019). However, as pointed out by Castagnetti et al. (2015b), the Hausman-

type test fails to reject the null hypothesis when individual factor loadings are independent

across equations. To overcome this issue, Castagnetti et al. (2015a) propose an alternative max-

type test for the null hypothesis of time-invariant unobserved heterogeneity. While general,

the interactive effects/factor specification imposes a parametric structure for the unobserved

heterogeneity that may or may not be true under the alternative hypothesis.

In this paper we propose a generalized Hausman test for the fixed-effects specification, in both

linear and nonlinear models and where the unobserved heterogeneity is either only individual

or additive. The test contrasts fixed-effects ML estimators with the Two-Way Grouped Fixed

Effects (TW-GFE henceforth) approach, recently put forward by Bonhomme et al. (2022a).

Their proposal is based on a first-step data-driven approximation of the unobserved heterogene-

ity, which is clustered by the kmeans algorithm that uses individual and time-series moments to

assign individual and time group memberships. Cluster dummies then enter the model specifica-

tion as interactive effects and the associated parameters are estimated along with the regression

coefficients in the second step. The resulting second-step estimator is consistent in the presence

of unspecified forms of the time-varying unobserved heterogeneity with minimal assumptions on

the unobserved components, which makes it a perfect candidate to contrast with the fixed-effects

estimators that are consistent only with time-constant or time-varying additive heterogeneity.
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Under specific choices for the number of clusters outlined by Bonhomme et al. (2022a) for

the first step, it can be shown that the TW-GFE estimator is asymptotically normal, so that the

Hausman statistic (Hausman, 1978) has asymptotic χ2 distribution. However, as it might be dif-

ficult to verify which estimator is more efficient than the other under the null hypothesis, we rely

on the generalized estimator for the variance of the vector of contrasts proposed by Bartolucci

et al. (2015). In addition, the asymptotic χ2 distribution is non-central because of two sources

of asymptotic bias: the incidental parameters problem, that in nonlinear models plagues both

estimators, and the approximation bias, that affects the TW-GFE. We therefore compute critical

values of the test statistic distribution by means of parametric percentile bootstrap (MacKin-

non, 2006). The main advantage of this procedure lies in the bootstrap distributions correctly

capturing the non-centrality without the need for any bias correction of either estimator. The

proposed strategy exploits the results on bootstrap inference for fixed-effects models provided

by Kim and Sun (2016) and Higgins and Jochmans (2022).1

Literature review This paper relates to the stream of literature that has studied fixed-effects panel

data models with grouped structures for the unobserved heterogeneity. Discrete heterogeneity

has long been considered within the random-effects approach (Heckman and Singer, 1984),

especially by a large body of statistical literature; see, for instance, MacLahlan and Peel (2000)

on finite-mixture models and Bartolucci et al. (2012) on latent Markov models. On the contrary,

the investigation of grouped patterns of heterogeneity in fixed-effects models is relatively recent

in the econometric literature.

Hahn and Moon (2010) study the asymptotic bias arising form the incidental parameters

problem in nonlinear panel data models where unobserved heterogeneity is assumed to be discrete

with a finite number of support points. Bester and Hansen (2016) investigate the asymptotic

behavior of the ML estimator for nonlinear models with grouped effects, under the assumption

that subjects are clustered according to some external known classification. Models with un-

known grouped membership are studied by Su et al. (2016), who propose penalized techniques

for the estimation of models where regularization by classifier-Lasso shrinks individual effects to

group coefficients, and by Ando and Bai (2016) who consider unobserved group factor structures

in linear models with interactive fixed effects.

Discrete unobserved heterogeneity can serve as a regularization device that allows to iden-

tify the parameters of interest in panel data models with time-varying individual effects but not

necessarily characterized by a factor structure. In this vein, Bonhomme and Manresa (2015)

introduce a GFE estimator for linear models where the discrete heterogeneity is assumed to

follow time-varying grouped patterns and cluster membership is left unrestricted. By contrast,

the TW-GFE estimator by Bonhomme et al. (2022a) is consistent even with unspecified forms

of time-varying unobserved heterogeneity. While using discretization as an approximation de-

vice introduces an asymptotic bias, the function of the unobserved heterogeneity they consider

encompasses a variety of specifications, such as additive and interactive effects, under minimal

distributional assumptions. This makes the TW-GFE estimator a simple and potentially very

attractive tool for practitioners.

Outline The rest of the paper is organized as follows: Section 2 briefly outlines the fixed-effects

models with individual and additive unobserved heterogeneity and recalls Bonhomme et al.’s

1As the test statistic is non-pivotal, pairs bootstrap cannot be used for asymptotic refinement in this
case, unless a pre-pivoting strategy is applied (Cavaliere et al., 2022).
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TW-GFE estimator. Section 3 illustrates the proposed approach. Section 4 presents the results

of the simulation study. Finally, Section 5 concludes.

2 Background

Consider a panel data setup where subjects are indexed by i = 1, . . . , N and time occasions are

indexed by t = 1, . . . , T . Throughout the paper, we assume that observations are independent,

conditional on the observed covariates and unobserved heterogeneity, and that the models are

static. The traditional specification of fixed-effects models depicts unobserved heterogeneity as

individual-specific intercepts, so that the conditional distribution of the response variable yit
given an r-vector exogenous covariates xit is of the type

yit|xit, θ0, αi0 ∼ f(·|x′itθ0 + αi0), (1)

where θ0 is the vector of parameters of interest, αi0 denotes the permanent individual effect, and

f(·) is a generic known density function, as in Chen et al. (2021). When (1) is a linear regression

model, consistent OLS estimators of θ can be trivially obtained on the basis of standard de-

meaning or first-differences transformations, whereas ML estimators in non-linear models are

consistent but exhibit a bias in their limiting distribution under rectangular array asymptotics

(Li et al., 2003), unless probability formulations admit sufficient statistics for the individual

intercepts (Andersen, 1970; Chamberlain, 1980). Therefore bias reduction techniques, such as

analytical or jackknife corrections, are required (Hahn and Newey, 2004). These estimators are

usually referred to as the one-way fixed-effects (OW-FE) estimators.

In order to account for time-varying heterogeneity, the widespread approach is to include

common time effects, that enter the specification in an additive manner. The model is then of

the type

yit|xit, θ0, αi0, ζt0 ∼ f(·|x′itθ0 + αi0 + ζt0), (2)

where ζt0 represents such time-varying heterogeneity. Similarly to the case with only individ-

ual effects, a consistent estimator of θ can be obtained under suitable transformations when a

linear regression model is specified, while bias corrections have to be implemented for ML esti-

mators Fernández-Val and Weidner (2016). We denote them as two-way fixed-effects (TW-FE)

estimators.

In this paper, we use the TW-GFE estimator to contrast with the OW-FE and TW-FE

estimators so as to perform specification tests and possibly detect more sophisticated structures

for the unobserved heterogeneity. Consider the following model formulation

yit|xit, θ0, αit0 ∼ f(·|x′itθ0 + αit0). (3)

The time-varying unobserved heterogeneity αit0 is characterized by Assumption 1(b) in Bon-

homme et al. (2022a), which states that there exist two vectors ξi0 of dimension dξ and λt0

of dimension dλ, and a Lipschitz-continuous function in its first argument α(·), such that

αit0 = α(ξi0, λt0). In order to extend the assumptions made by Bonhomme et al. (2022a)

to the structures for the unobserved heterogeneity in models (1) and (2), let us reconcile the
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three specifications under the following characterization for the latent traits:

αit0 :





αi0 ≡ α(ξi0) in (1)
αi0 + ζt0 ≡ α(ξi0, λt0) in (2)
αit0 ≡ α(ξi0, λt0) in (3)

(4)

α(·) satisfies the requirements in Assumption 1(a) and 1(b) in Bonhomme et al. (2022a), that

will be discussed later in more detail. It is also important to the GFE strategy that covariates are

affected by the same source of heterogeneity, so that xit depends on µit0, where µit0 = µ(ξi0, λt0),

with µ(·) satisfying the same requirements as α(·). The vectors ξi0 and λt0 are low-dimensional,

with dξ = dλ = 1 as a leading case.

The first-step estimation of the TW-GFE approach deals with the classification of sub-

jects and time occasions into two different sets of groups. Classification relies on perform-

ing kmeans clustering twice, using the vectors of moments hi = 1
T

∑T
t=1 h(yit, xit) and wt =

1
N

∑N
i=1w(yit, xit) of fixed dimensions, satisfying Assumption 2 in Bonhomme et al. (2022a) and

the conditions for Lemma S1 in Bonhomme et al. (2022b). In particular, both vectors have to be

informative about ξi0 and λt0, respectively, meaning that ξi0 can be uniquely recovered from hi
for large T and λt0 can be uniquely recovered from wt for large N .2 The two kmeans clustering

procedures return a number of K groups for the subjects and a different number of L groups for

the time occasions, from which two sets of dummies identifying the related group memberships

are created.

Cluster dummies for the cross-sectional and time dimensions are then interacted and enter

the linear index of the model specified for the response variable as (grouped) fixed effects.

Under the regularity conditions collected in Assumption S2 and the requirements in Lemma

S1 of Bonhomme et al. (2022b), the two-step TW-GFE estimator is then proved (Corollary S2

ibidem) to have asymptotic expansion

θ̃ = θ0 + J(θ0)
−1 1

NT

N∑

i=1

T∑

t=1

sit(θ0) +Op

(
1

T
+

1

N
+

KL

NT

)
+Op(K

− 2
dξ +L

− 2
dλ ) + op

(
1√
NT

)
,

(5)

as N,T,K,L tend to infinity, such that KL/(NT ) tends to zero. In the above expression, J(·)
and sit are the expected Hessian and the score associated with the likelihood function. Three

main different sources of bias can be identified: the 1/T and 1/N terms depend on the number

of time occasions and subjects used for hi and wt in the classification step; the KL/NT term

reflects the estimation ofKL group-specific parameters usingNT observations; theK
− 2

dξ +L
− 2

dλ

terms refer to the approximation bias arising from the discretization of ξi0 and λt0 via kmeans.

The Op(·) terms in the above expansion can be shown to become Op(1/T + 1/N) under

suitable choices for the number of groups, K and L, and for dξ = dλ = 1. In particular,

Bonhomme et al. (2022a) suggest the following rules:

K̂ = min
K≥1

{K : Q̂(K) ≤ γV̂hi
}, L̂ = min

L≥1
{L : Q̂(L) ≤ γV̂wt}, (6)

where Q(·) is the objective function of the kmeans problem, Vh and Vw are the variability of

2In practice, plim
T→∞

hi = ϕ(ξi0) and plim
N→∞

wt = φ(λt0), where ϕ(·) and φ(·) are unknown Lipschitz-

continuous functions.
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the moments hi and wt, respectively, and γ ∈ (0, 1] is a user-specified parameter. Smaller

values of γ yield a larger number of groups: lowering this value is suggested if moments are

weakly informative about unobserved heterogeneity. In our simulation study we experiment

with different values of γ.

3 Specification tests

We propose a generalized Hausman test for the specification of the unobserved heterogeneity

considering, as null hypotheses, the model specifications portrayed by Equations (1) and (2).

The OW-FE and TW-FE estimators are consistent, with an asymptotic bias in case of nonlinear

models. The TW-GFE estimator is also consistent but always asymptotically biased. In the

presence of more sophisticated forms of unobserved heterogeneity – different from those in (1)

and (2) – such as a factor structure, only the TW-GFE estimator is consistent.

To state our main theorem we make the following assumptions.

Assumption 1. Asymptotics: as N,T → ∞, N/T → ρ2, with 0 < ρ < ∞.

Assumption 2. Unobserved Heterogeneity:

(i) There exist ξi0 of fixed dimension dξ and λt0 of fixed dimension dλ and two functions α(·)
and µ(·) that are Lipschitz continuous in their first argument, such that αit0 = α(ξi0, λt0) and

µit0 = µ(ξi0, λt0); (ii) the supports of ξi0 and λt0 are compact.

Assumption 3. Sampling: (i) (yit, x
′
it)

′, for i = 1, . . . N and t = 1, . . . T , are i.i.d given ξi0 and

λt0; (ii) ξi0 and λt0 are also i.i.d.

Assumption 4. Regularity: Let ℓit(αit, θ)= ln f(Yit|Yi,t−1, Xit, αit, θ) and let
1

NT

∑N
i=1

∑T
t=1 ℓit(ᾱ(θ, ξi0, λt0), θ) be the target likelihood (Arellano and Hahn, 2007) and ᾱ(θ, ξ, λ) =

argmax
α

Eξi0=ξ,λt0=λ(ℓit(α, θ)):

(i) ℓit(θ, α) is three time differentiable in (θ, α); θ0 is an interior point of the parameter space

Θ; Θ is compact;

(ii) ℓit is strictly concave as a function of α, infξ,λ,θEξi0=ξ,λt0=λ

(
−∂2ℓit(ᾱ(θ,ξ,λ),θ)

∂α∂α′

)
> 0;

E[ 1
NT

∑N
i=1

∑T
t=1 ℓit(ᾱ(θ, ξi0, λt0), θ)] has an unique maximum at θ0 on Θ, and it’s second deriva-

tive is −J < 0

(iii) Regularity conditions on boundedness of moments and asymptotic covariances in Bonhomme

et al. (2022b) Assumption S2 (iv,v) apply.

Assumption 1 depicts rectangular array asymptotics, which is required for the characteri-

zation of the asymptotic normal distribution of the considered estimators. Assumption 2 gives

the minimal properties of the unobserved heterogeneity in the Bonhomme et al. (2022a) set-

ting. Assumption 3 is more restrictive than that usually required to characterize the asymptotic

distribution of ML estimators under rectangular-array asymptotics for fixed-effects models with

time heterogeneity. For example, Fernández-Val and Weidner (2016) assume independence over

i while relaxing time independence by allowing for α-mixing.3 Assumption 3 is instead required

3See Fernández-Val and Weidner (2016), Assumption 4.1 (ii).
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for consistency of the TW-GFE, which effectively rules out the possibility of applying the pro-

posed test to models with (i) feedback effects and (ii) unobserved heterogeneity that depends

on dynamic factors . The conditions stated in Assumption 4 are standard requirements for a

well-posed maximization problem.

Under Assumptions 1-4 the OW-FE and TW-FE estimators of θ, θ̂, for models (1) and (2),

respectively, have the following asymptotic distribution

√
NT (θ̂ − θ0)

d→ N(B; I(θ0)
−1),

where B is constant and equal to ρC for the OW-FE estimator, while it is equal to ρC1+ρ−1C2

for the TW-FE estimator. Notice that, in the case of informational orthogonality between the

structural and nuisance parameters, B = 0, such as in the linear model. Finally, I(θ0) is the

Information matrix.

Consistency of the TW-GFE estimator relies on Lemma S1 in Bonhomme et al. (2022b)

and Assumptions 3 - 4. The resulting asymptotic expansion in Corollary S2 is the one reported

in Equation (5). In order to derive the asymptotic distribution of the TW-GFE estimator θ̃,

we need to provide minimal characterization of the Op(1/T + 1/N) term in said asymptotic

expansion, under the appropriate choices for the number of groups suggested by Bonhomme

et al. (2022a).

Assumption 5. The Op(1/T + 1/N) term takes the form

D1

T
+

D2

N
+ op

(
1

T
∨ 1

N

)
,

where D1 and D2 are constant.

This assumption is in the spirit of Corollary 2 in Bonhomme et al. (2022a), according to

which the Op(1/T ) term in the asymptotic expansion for the one-way GFE estimator with only

time-constant unobserved heterogeneity is E/T +op(1/T ), where E is constant. The asymptotic

distribution of θ̃ can now be characterized by the following theorem, the proof of which follow

from standard arguments of ML estimation.

Theorem 1. Suppose that Assumptions 1-5 and Lemma S1 and Corollary S2 of Bonhomme

et al. (2022b) hold, and let dξ = dλ = 1 then

√
NT (θ̃ − θ0)

d→ N
(
D; J(θ0)

−1
)
,

where D = D1ρ+D2ρ
−1.

Asymptotic normality of both estimators allows us to derive a Hausman test to contrast θ̂

and θ̃. Under the null hypothesis of correct specification for the unobserved heterogeneity we

have

H = NT δ̂′Ŵ−1δ̂
d→ χ2

r,ω, (7)

where δ̂ = θ̂ − θ̃ and Ŵ is a consistent estimator of its variance W . Under H0, plim
N,T→∞

δ̂ = δ,

where δ = B − D. Therefore the limiting distribution is a χ2 with r degrees of freedom and

non-centrality parameter ω = δ′δ.
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A test for H0 based on H poses two problems. First, there is no guarantee that using the

traditional formulation of the Hausman test (Hausman, 1978) will provide a positive definite Ŵ ,

as it is difficult to establish which estimator is more efficient under the null hypothesis. Secondly,

quantiles of the limiting distribution of H are unknown because of the non-centrality parameter

ω. In order to tackle the first issue, we rely on a generalized formulation for the variance of δ̂,

put forward by Bartolucci et al. (2015). In particular, let us denote the estimator of the variance

of δ̂ as

Ŵ = NT
[
MV̂ (θ̂, θ̃)M ′

]
,

where M = [Ir,−Ir], Ir is an identity matrix, and

V̂ (θ̂, θ̃) =

(
I(θ̂) 0
0 J(θ̃)

)−1

S
(
θ̂, θ̃

)(
I(θ̂) 0
0 J(θ̃)

)−1

,

with

S
(
θ̂, θ̃

)
=

N∑

i=1

T∑

t=1

(
git(θ̂)
sit(θ̃)

)(
git(θ̂)

′, sit(θ̃)
′
)
,

where git(θ̂) and sit(θ̃) are the scores of the observational log-likelihoods associated to the OW-

FE (or TW-FE) and TW-GFE approaches, respectively.

We address the second issue concerning the non-centrality of the limiting chi-square distri-

bution by performing parametric percentile bootstrap (MacKinnon, 2006). This approach is in

the spirit of Kim and Sun (2016) and Higgins and Jochmans (2022). In particular, they both

outline general conditions that guarantee the asymptotic validity of the bootstrap test. We

assume these conditions hold in the present context as well, most of which overlap with those

used for the above results.

Bootstrap observations, y∗it, are generated under the null hypotheses of correct specification,

depicted by Equations (1) or (2). Accordingly, samples are obtained using the OW-FE or TW-

FE estimates, with the exogenous covariates held constant. Under the assumptions 1-5 and

Lemma 1 and Corollary 1 of Bonhomme et al. (2022b) hold, the bootstrap statistic H∗ becomes

H∗ = NT δ̂∗
′
(
Ŵ ∗

)−1
δ̂∗

d∗→ χ2
r,ω,

where
d∗→ denotes convergence in distribution of the bootstrap measure. Therefore, percentiles

can be obtained as

q∗1−α = inf {q∗ : Pr∗ (H∗ ≤ q∗) ≥ (1− α)} ,

where Pr∗ denotes the probability conditional on the bootstrap sample.

4 Simulation study

In the following, we describe the design and report the results of an extensive simulation study

where we investigate the test empirical size and power properties for the linear and probit model.
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4.1 Linear model

We design a Monte Carlo experiment where observations are generated by a linear regression

model with two exogenous covariates. We consider two scenarios for the null hypotheses, where

the unobserved heterogeneity is specified as in models (1) and (2).

In particular, in the case of only individual time-constant effects, for i = 1, . . . , N and

t = 1, . . . , T , we generate samples according to the following equation, which we denote as

DGP1:

yit = xit1θ1 + xit2θ2 + αi + εit, (8)

xitj = Γi +N(0, 1), for j = 1, 2,

where αi = ̺Γi +
√
(1− ̺2)Ai , with Ai,Γi ∼ N(0, 3), and ̺ = 0.5. Finally, εit is an id-

iosyncratic standard normal error term. We let the coefficients θ = (θ1, θ2)
′ = (1, 2)′. With

this design we explore the size properties of the proposed test comparing the OW-FE with the

TW-GFE estimators. Similarly, when we allow for additive individual and time effects, samples

are generated according to:

yit = xit1θ1 + xit2θ2 + αi + ζt + εit, (9)

xitj = Γi + ζt +N(0, 1), for j = 1, 2,

where ζt ∼ N(0, 1). This design is denoted by DGP2 and it will be used to contrast the TW-FE

with the TW-GFE estimators under the null hypothesis of additive effects. In order to investigate

the power of the proposed test, the scenario generated under the alternative hypothesis is a linear

panel data model with interactive fixed effects. Specifically, samples are generated according to

a simplified version of the design outlined by Bai (2009), with one latent factor:

yit = xit1θ1 + xit2θ2 + αiζt + εit, (10)

xit = Γiζt +N(0, 1).

We denote the above design as DGP3.

For each scenario, we consider N = 50, 100, T = 10, 20, and 399 bootstrap draws for each

of the 1000 Monte Carlo replications. Only for DGP1 we add T = 5 to better highlight our

results. It is worth recalling that the performance of the TW-GFE estimator is closely linked

to the number of groups chosen for the first-step kmeans clusterings. Even under rule (6), this

number depends on the variability in the data, which affects how informative hi, wt are about

the unobserved heterogeneity, and the user-defined parameter γ. We account for the former

by allowing for large variances in the stochastic components of the data generating processes,

and for the latter by running scenarios where γ = 1, 0.5, 0.05, resulting in the selection of an

increasing number of clusters.

Tables 1 and 2 report the results of the Monte Carlo experiments in four cases. First we

compare the OW-FE and the TW-GFE estimators using DGP1 to study the empirical size,

while the power of the proposed test is investigated under the alternative process described by

DGP3. We then turn to the comparison between the TW-FE and the TW-GFE estimators

in the setting where heterogeneity is specified as additive effects under the null hypothesis in
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DGP2 and that of DGP3 under the alternative. The tables report the average of the Hausman

test H in (7) across simulations, along with the empirical size based on the quantile of a central

χ2
2 (A p.05) and the bootstrap rejection rate (B p.05). We also present the average bias (Bias),

standard deviation (SD) and ratio between standard error and SD for both elements of θ̂ and θ̃.

For the TW-GFE estimator, we also report the average selected number of groups according to

(6) (Avg K̂ and Avg L̂).

As expected, the empirical rejection rate based on the asymptotic percentile of the centered

chi-square distribution does not attain the nominal size (5%), as it fails to account for the

noncentrality parameter arising from the approximation bias in the TW-GFE. It is in fact

worth to notice that, even with the large number of groups obtained with γ = 0.05, the bias of

the TW-GFE is sensibly larger than that of the OW-FE, and TW-FE estimators. Indeed the

bias of the TW-GFE worsens with fewer clusters, as testified by the results with γ = 0.5, 1 and

the resulting values of the Hausman test. We highlight that γ parameter seem to have no effect

on the test value. Nonetheless, the bootstrap distribution is able to mimic the non-centrality

of the chi-square, giving rise to a rejection rate close to the nominal one, with a improving

performance as T increases. The bootstrap test also presents good rejection rates when the true

data generating process has a factor structure for the unobserved heterogeneity. Increasing the

number of individuals or enriching information embodied in factors may give power to our test.

The performance of the proposed test can be compared with that of the max-type test put

forward by Castagnetti et al. (2015a) to detect factor structures in a linear framework. In the

context here considered, the CRT test can be implemented by considering the null hypothesis of

no factor structure as a model nested within DGP3 and defined by H0 : ζt = ζ. 4 The max-type

test statistics is

S = max1≤t≤T

[
N(ζ̂t − ˆ̄ζ)′Σ̂−1

t (ζ̂t − ˆ̄ζ)
]
.,

where factors are estimated using the common correlated effects approach by Pesaran (2006),5

ˆ̄ζ is the sample mean of ζ̂t and the Σ̂t is and estimate of the asymptotic factor covariance matrix

(crf Equation 10 in Castagnetti et al., 2015a). The test statistic S has an asymptotic Gumbel

distribution. Table 3 reports the empirical size and power of the CRT test under the hypothesis

of no factor structure (DGP1) and the alternative hypothesis of a factor model with 1 latent

factor (DGP3). As also confirmed by the Authors, the test attains the correct size only for

larger values of T (approximately T = 30), which rules out the CRT test as a viable alternative

to our approach in short panels.

4Castagnetti et al. (2015a) also proposed a max-type test for H0 : Γi = Γ, that is expression 10
collapsing to a model with only time effects only.

5It is worth recalling that the approach by Castagnetti et al. (2015a) can in general be implemented
in models with heterogeneous slopes.
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Table 1: Simulation results: Linear model, OW-FE vs TW-GFE

DGP1 DGP3

γ = 0.05 γ = 0.5 γ = 1 γ = 0.05

T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20 T=10 T=20

N 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

Hausman H 1.276 1.498 1.515 1.724 1.987 2.200 2.779 4.371 3.865 5.952 5.624 7.953 3.160 4.732 4.794 7.704 7.048 11.081 13.471 25.311 25.654 45.201

A p.05 0.018 0.018 0.024 0.034 0.064 0.075 0.119 0.258 0.208 0.420 0.338 0.525 0.152 0.299 0.298 0.501 0.421 0.641 0.503 0.659 0.644 0.729

B p.05 0.042 0.042 0.048 0.042 0.045 0.059 0.045 0.036 0.047 0.040 0.044 0.048 0.033 0.033 0.047 0.046 0.052 0.050 0.542 0.662 0.676 0.748

θ̂1 Bias1 0.005 0.001 0.001 0.000 -0.002 0.000 0.005 0.001 0.001 0.000 -0.002 0.000 0.005 0.001 0.001 0.000 -0.002 0.000 0.403 0.403 0.406 0.406

SD1 0.072 0.052 0.047 0.034 0.033 0.023 0.072 0.052 0.047 0.034 0.033 0.023 0.072 0.052 0.047 0.034 0.033 0.023 0.075 0.054 0.057 0.040

SE/SD1 0.982 0.966 1.009 0.988 0.979 1.017 0.982 0.966 1.009 0.988 0.979 1.017 0.982 0.966 1.009 0.988 0.979 1.017 0.861 0.846 0.771 0.794

θ̂2 Bias2 -0.001 -0.001 -0.001 -0.001 0.002 0.000 -0.001 -0.001 -0.001 -0.001 0.002 0.000 -0.001 -0.001 -0.001 -0.001 0.002 0.000 0.403 0.406 0.405 0.409

SD2 0.071 0.051 0.047 0.032 0.033 0.023 0.071 0.051 0.047 0.032 0.033 0.023 0.071 0.051 0.047 0.032 0.033 0.023 0.075 0.052 0.055 0.040

SE/SD2 1.001 0.980 0.999 1.029 0.973 1.010 1.001 0.980 0.999 1.029 0.973 1.010 1.001 0.980 0.999 1.029 0.973 1.010 0.855 0.874 0.810 0.780

θ̃1 Bias1 -0.001 -0.005 -0.002 -0.004 -0.005 -0.003 -0.017 -0.032 -0.018 -0.025 -0.016 -0.017 -0.018 -0.034 -0.023 -0.036 -0.023 -0.028 0.332 0.328 0.334 0.336

SD1 0.078 0.056 0.050 0.035 0.035 0.024 0.092 0.066 0.062 0.045 0.046 0.030 0.109 0.080 0.077 0.057 0.055 0.037 0.114 0.097 0.094 0.088

SE/SD1 0.993 0.970 0.998 0.998 0.946 1.004 0.951 0.958 0.910 0.906 0.810 0.870 0.868 0.859 0.792 0.778 0.735 0.779 0.564 0.465 0.474 0.358

θ̃2 Bias2 -0.013 -0.014 -0.008 -0.009 -0.003 -0.005 -0.049 -0.065 -0.033 -0.044 -0.017 -0.025 -0.049 -0.077 -0.038 -0.059 -0.026 -0.040 0.327 0.324 0.331 0.335

SD2 0.077 0.055 0.051 0.034 0.035 0.024 0.091 0.064 0.064 0.043 0.047 0.030 0.105 0.080 0.075 0.055 0.055 0.038 0.115 0.103 0.101 0.093

SE/SD2 1.005 0.983 0.981 1.030 0.949 0.990 0.970 0.993 0.887 0.943 0.790 0.883 0.907 0.864 0.822 0.807 0.733 0.753 0.561 0.440 0.442 0.340

AvgK̂ 45.347 85.877 46.200 88.350 47.304 91.572 26.755 40.726 29.483 46.521 33.799 56.047 18.355 24.706 21.429 30.020 26.408 39.381 9.487 12.929 8.789 10.227

AvgL̂ 1.269 1.222 1.364 1.324 1.436 1.395 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4.041 3.930 5.480 5.374

1000 Monte Carlo (MC) replications. “H” is the average of the Hausman test statistic, across MC replications. “p.05” denotes the rejection rate for a nominal size of 5%. “A p.05”
is based on the 95th percentile of central a χ2

2 distribution. “B p.05” is based on the 95th percentile of the empirical distribution determined via 399 bootstrap replications. “Bias” is
the mean bias, “SD” and “SE” denote the standard deviation over the MC replications and the average estimated standard error, respectively, those are reported for two regressors.

“Avg K̂” and “Avg L̂” report the average number of groups for individuals and time occasions obtained in the first step.

1
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4.2 Probit model

We also investigate the small sample properties of our test in a nonlinear setting, specifically

considering the probit model. For i = 1, . . . , N and t = 1, . . . , T , we generate samples according

to the following equation, which we denote as DGP1-NL:

yit = I (xitθ + αi + εit ≥ 0) , (11)

xit = κ [Γi +N(0, 1)] ,

where I(·) is an indicator function, αi = ̺Γi +
√

(1− ̺2)Ai, Ai,Γi ∼ N(1, 1), ̺ = 0.5, and εit is

an idiosyncratic standard normal error term. The slope parameter θ is set equal to 1. Following

Hahn and Newey (2004), the variance contributions of the three elements in the linear index are

roughly 0.2, 1, and 1, respectively, so that we rescale the variance of xit by letting κ =
√
(1/10).

When we allow for additive individual and time effects, samples are generated according to

yit = I (xitθ + αi + ζt + εit ≥ 0) , (12)

xit = κ [Γi + ζt +N(0, 1)] ,

where ζt ∼ N(1, 1) and the sum αi + ζt is rescaled to have unit variance. This design is denoted

by DGP2-NL. We evaluate the power of the proposed test in scenarios generated under the

alternative hypothesis of interactive fixed effects with one latent factor, that is

yit = I{xitθ + αiζt + εit ≥ 0}, (13)

xit = κ[Γiζt +N(0, 1)],

where again the product αiζt is rescaled to have unit variance. We refer to this design as DGP3-

NL. For each experiment, we consider N = 50, 100, T = 10, 20, and 399 bootstrap draws for

each of the 1000 Monte Carlo replications. When dealing with DGP1-NL, we try different values

of γ = 0.25, 0.5, 1 in order to evaluate sensitivity of the test to number of groups.

Tables 4 and 5 show the simulation results for experiments where we compare the OW-

FE with TW-GFE estimators under DGP1-NL and DGP3-NL, and the TW-FE and TW-GFE

estimators under DGP2-NL and DGP3-NL, respectively. As expected, the bootstrap test ap-

proaches the correct size under smaller values of γ, i.e. when we impose greater number of

groups, while the one based on the asymptotic critical value fails to account for the noncentral-

ity parameter of chi-square distribution. The power analysis shows that our test behaves well

when OW-FE is contrasted with TW-GFE under DGP3-NL, while the power decreases drasti-

cally when TW-FE is contrasted with TW-GFE under the same scenario. This is due to the

ability of two-way fixed effects specification to approximate a model with interacted effects, as

the relatively small bias of TW-FE estimator with respect to TW-GFE makes clear. TW-GFE

is less biased with respect to OW-FE under both DGP1-NL and DGP3-NL and under all values

of γ, while, under DGP2-NL TW-GFE exhibits a larger bias than its counterpart due to the

approximation issues mentioned above.

12



Table 2: Simulation results: Linear model, TW-FE vs TW-GFE

DGP2 DGP3

γ = 0.05 γ = 0.05

T=10 T=20 T=10 T=20

N 50 100 50 100 50 100 50 100

Hausman H 3.195 3.397 3.269 3.082 13.445 24.429 22.660 44.798
A p.05 0.145 0.156 0.147 0.126 0.533 0.631 0.618 0.720
B p.05 0.042 0.041 0.054 0.039 0.550 0.642 0.657 0.737

θ̂1 Bias1 0.001 -0.001 -0.000 -0.000 0.408 0.403 0.409 0.408
SD1 0.048 0.034 0.032 0.024 0.076 0.054 0.057 0.041
SE/SD1 1.003 0.989 1.024 0.955 0.855 0.854 0.788 0.778

θ̂2 Bias2 -0.000 -0.001 0.001 -0.000 0.401 0.404 0.407 0.408
SD2 0.048 0.033 0.034 0.023 0.072 0.054 0.056 0.042
SE/SD2 0.993 1.003 0.978 0.992 0.906 0.856 0.791 0.755

θ̃1 Bias1 0.011 -0.003 0.010 0.002 0.334 0.333 0.344 0.337
SD1 0.094 0.068 0.057 0.041 0.118 0.099 0.095 0.092
SE/SD1 0.916 0.893 0.869 0.880 0.549 0.457 0.468 0.345

θ̃2 Bias2 -0.006 -0.022 0.004 -0.006 0.322 0.326 0.339 0.334
SD2 0.096 0.068 0.056 0.043 0.115 0.104 0.096 0.095
SE/SD2 0.894 0.896 0.888 0.848 0.565 0.438 0.462 0.334

AvgK̂ 42.512 78.067 44.353 83.367 9.753 12.726 8.724 10.724

AvgL̂ 7.037 7.777 11.232 12.698 4.084 3.918 5.342 5.350

1000 Monte Carlo (MC) replications. “H” is the average of the Hausman test statistic, across MC replications. “p.05”

denotes the rejection rate for a nominal size of 5%. “A p.05” is based on the 95th percentile of a central χ2
2 distribution.

“B p.05” is based on the 95th percentile of the empirical distribution determined via 399 bootstrap replications. “Bias” is

the mean bias, “SD” and “SE” denote the standard deviation over the MC replications and the average estimated standard

error, respectively (reported for two regressors) . “Avg K̂” and “Avg L̂” report the average number of groups for individuals

and time occasions obtained in the first step.

Table 3: CRT test for no factor structure

DGP1 DGP3

N T = 5 T = 10 T = 20 T = 10 T = 20

50 1.000 0.623 0.043 1.000 1.000
100 1.000 0.823 0.028 1.000 1.000

13



Table 4: Simulation results: Probit model, OW-FE vs TW-GFE

DGP1-NL DGP3-NL

γ = 0.25 γ = 0.5 γ = 1 γ = 0.25

T=10 T=20 T=10 T=20 T=10 T=20 T=10 T=20

N 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

Hausman H 0.926 1.406 0.855 1.039 2.327 4.615 2.436 4.949 4.049 8.140 4.673 9.276 13.107 31.054 19.591 51.124
A p.05 0.028 0.086 0.032 0.047 0.210 0.552 0.226 0.606 0.448 0.827 0.539 0.886 0.783 0.964 0.925 0.994
B p.05 0.040 0.027 0.050 0.039 0.021 0.017 0.033 0.027 0.019 0.012 0.019 0.020 0.731 0.950 0.835 0.988

θ̂ Bias 0.141 0.135 0.067 0.066 0.141 0.135 0.067 0.066 0.141 0.135 0.067 0.066 0.747 0.731 0.639 0.632
SD 0.282 0.193 0.174 0.122 0.282 0.193 0.174 0.122 0.282 0.193 0.174 0.122 0.281 0.224 0.175 0.140
SE/SD 0.907 0.934 0.971 0.975 0.907 0.934 0.971 0.975 0.907 0.934 0.971 0.975 0.707 0.627 0.741 0.652

θ̃ Bias 0.110 0.090 0.066 0.051 0.017 0.005 0.003 -0.003 -0.066 -0.080 -0.049 -0.053 0.176 0.126 0.142 0.086
SD 0.284 0.193 0.184 0.125 0.253 0.174 0.166 0.117 0.239 0.165 0.158 0.113 0.307 0.202 0.203 0.138
SE/SD 0.912 0.924 0.940 0.961 0.946 0.962 0.984 0.977 0.941 0.958 0.999 0.980 0.832 0.847 0.874 0.869

Avg K̂ 20.445 27.279 25.870 36.731 13.713 16.601 18.482 23.625 8.555 9.640 12.172 14.160 9.619 11.456 12.635 15.373
Avg L̂ 1.992 1.996 2.302 2.283 1.281 1.249 1.362 1.338 1.010 1.011 1.001 1.000 6.724 7.369 10.186 11.654

1000 Monte Carlo (MC) replications. “H” is the average of the Hausman test statistic, across MC replications. “p.05” denotes the rejection rate for a nominal size of 5%. “A p.05”
is based on the 95th percentile of a central χ2

1 distribution. “B p.05” is based on the 95th percentile of the empirical distribution determined via 399 bootstrap replications. “Bias”

is the mean bias, “SD” and “SE” denote the standard deviation over the MC replications and the average estimated standard error, respectively. “Avg K̂” and “Avg L̂” report the
average number of groups for individuals and time occasions obtained in the first step.

1
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5 Final remarks

We propose a specification test for the form of the unobserved heterogeneity in panel data models.

The test is based on the recently proposed grouped fixed-effects approach and served to detect

departures from the commonly assumed time-invariant or additive fixed-effects specifications.

The proposed approach is a generalized Hausman test whose asymptotic distribution is a

non-central chi square because of the bias arising from incidental parameters, for both the ML

estimators that are being contrasted (at least in the non-linear case), and from the approximation

error induced by discretization of the unobserved heterogeneity that is performed with the

grouped fixed-effects approach. The use of bootstrap critical values successfully corrects the

empirical size of the test and yields satisfactory power properties. The proposed test also

emerges as a viable alternative to existing procedures with short panel datasets.

It is worth to mention that the work is still preliminary and it will be soon further developed.

In particular, we aim at extending the simulation study so as to consider:

❼ A wider set of scenarios under both H0 and H1, considering in particular N = 500. In

addition, the behavior of the test statistic will be studied under different setting for the

TW-GFE estimator, that is, using more values for the user-defined γ parameter and a

data generating process that allows us to govern how informative population moments are

about the unobserved heterogeneity.

❼ Investigation of the finite-sample performance of the proposed test under departures from

the required assumptions (for instance, violations of the sampling assumptions for the

TW-GFE).
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Table 5: Simulation results: Probit model, TW-FE vs TW-GFE

DGP2-NL DGP3-NL

γ = 0.25 γ = 0.25

T=10 T=20 T=10 T=20

N 50 100 50 100 50 100 50 100

Hausman H 0.924 0.847 1.574 1.868 1.882 4.352 2.370 4.433
A p.05 0.031 0.030 0.102 0.144 0.152 0.367 0.196 0.381
B p.05 0.037 0.043 0.039 0.031 0.093 0.221 0.158 0.337

θ̂ Bias 0.210 0.166 0.108 0.092 0.297 0.275 0.210 0.194
SD 0.316 0.192 0.182 0.130 0.268 0.183 0.169 0.126
SE/SD 0.869 0.982 0.971 0.948 0.851 0.867 0.883 0.828

θ̃ Bias 0.263 0.177 0.215 0.170 0.185 0.120 0.137 0.090
SD 0.364 0.206 0.223 0.149 0.299 0.189 0.207 0.135
SE/SD 0.829 0.963 0.903 0.916 0.859 0.905 0.851 0.888

Avg K̂ 13.188 16.010 17.141 21.847 9.784 11.490 12.528 15.121
Avg L̂ 6.824 7.466 10.412 11.897 6.736 7.289 10.114 11.616

1000 Monte Carlo (MC) replications. “H” is the average of the Hausman test statistic, across MC replications. “p.05”

denotes the rejection rate for a nominal size of 5%. “A p.05” is based on the 95th percentile of a central χ2
1 distribution.

“B p.05” is based on the 95th percentile of the empirical distribution determined via 399 bootstrap replications. “Bias” is

the mean bias, “SD” and “SE” denote the standard deviation over the MC replications and the average estimated standard

error, respectively. “Avg K̂” and “Avg L̂” report the average number of groups for individuals and time occasions obtained

in the first step.
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