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Abstract

We examine whether the way individuals randomize between options captures their

decision confidence. In two experiments in which subjects face pairs of options (a

lottery and a varying sure payment), we allow subjects to choose randomization prob-

abilities according to which they would receive each option. Separately, we obtain two

measures of self-reported decision confidence for choosing between the two options.

The randomization probabilities are well correlated and correspond with absolute lev-

els of self-reported confidence measures. This relationship is robust to two exogenous

manipulations of decision confidence, where we vary the complexity of the lottery and

subjects’ experience with the lottery, consistent with the predictions of two differ-

ent theoretical frameworks incorporating preference uncertainty. Our findings suggest

that randomization probabilities could serve as an incentivized quantitative measure

of decision confidence.

Keywords: decision confidence, randomization, incentivized approach, preference

uncertainty

JEL Classification B40, C91, D81

∗Department of Economics, IMR, Radboud University, Heyendaalseweg 141, 6525 AJ Nijmegen, the
Netherlands Email: sara.arts@ru.nl.

†Department of Economics, IMR, Radboud University, EOS 02.577, Heyendaalseweg 141, 6525 AJ
Nijmegen, the Netherlands Email: qiyan.ong@ru.nl.

‡Corresponding author. Jianying Qiu, email: jianying.qiu@ru.nl, Department of Economics, IMR,
Radboud University, EOS 02.577, Heyendaalseweg 141, 6525 AJ Nijmegen, the Netherlands.



1 Introduction

There are many decisions in life that people may not be able to make with full confidence.

These decisions often involve difficult trade-offs among conflicting objectives, such as price

vs. quality when buying goods, risk vs. return when investing, and self-interest vs. social

welfare when making policy decisions. As more studies are suggesting that decision confi-

dence has the potential to explain a wide range of anomalies, there is growing interest in

eliciting and accounting for decision confidence when studying people’s choices.1

Most studies on decision confidence have relied on non-incentivized self-reported approaches.

For example, Dubourg et al. (1994, 1997) allowed subjects to indicate whether they were

unsure of their choices. Butler and Loomes (2007, 2011) asked subjects to indicate their de-

cision confidence using the ordinal terms “definitely” and “probably.” After subjects made

choices from a multiple price list, Enke and Graeber (2021b) asked them how certain (from

0% to 100% in increments of 5%) they were that their actual valuation of an intertempo-

ral payment/voucher was within their switching interval obtained from the multiple price

list. Other methods examine decision confidence by having subjects state their confidence

intervals. For example, Cohen et al. (1987) and Cubitt et al. (2015) had subjects report

the range of choices over which they were unsure of their preferences, and Enke and Grae-

ber (2021a) had subjects report the range of values over which they were certain of their

preferences (75%, 90%, 95%, 99% and 100%).

We build on these studies and show that eliciting randomization probabilities of compet-

ing options could be a viable and incentivized approach to capture decision confidence in

two experiments. Specifically, subjects faced pairs of options: a fixed lottery and varying

amounts of a sure payment. Instead of requiring them to choose either the sure payment or

the lottery, this approach allowed them to choose the randomization probabilities according

to which they would receive each option (Qiu and Ong, 2017; Feldman and Rehbeck, 2022;

1These anomalies include the willingness to accept (WTA) - willingness to pay (WTP) gap (Dubourg
et al., 1994), preference reversals (Butler and Loomes, 2007), stochastic choices (Agranov and Ortoleva,
2017), insensitivity to variation in probabilities (Enke and Graeber, 2021a), anomalies in intertemporal
choices (Enke and Graeber, 2021b), small-stakes risk aversion (Khaw et al., 2021), and many other viola-
tions of standard decision theory (Butler and Loomes, 2011).
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Miao and Zhong, 2018; Agranov and Ortoleva, 2020). By eliciting self-reported confidence

measures separately, we are able to test whether the way subjects randomize between two

options coheres with their self-reported decision confidence and compare how randomiza-

tion probabilities and self-reported decision confidence relate to their choices between the

options. We structure our analyses through two theoretical frameworks, one based on

Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015) and the other based on Fudenberg

et al. (2015), to illustrate how an individual who is uncertain about her preferences would

randomize. We show that randomization probabilities capture three important properties

of decision confidence: first, subjects choose randomization probabilities around 0.5 for

options that yield similar utility; second, when subjects face a lottery that is harder to

evaluate, they randomize over a wider range of sure payments and choose randomization

probabilities closer to 0.5; finally, when subjects gain more experience with the lottery and

form clearer preferences, they randomize over a smaller range of sure payments and choose

randomization probabilities further away from 0.5.

To test for the presence of these properties and show that randomization probabilities

can measure decision confidence, we obtained subjects’ binary choice, their self-reported

decision confidence, and their randomization probabilities for each pair of options (a lottery

x and a sure payment y) in the experiments. Self-reported decision confidence was elicited

by having subjects select a confidence statement from “Surely x,” “Probably x,” “Unsure,”

“Probably y,” “Surely y,” in line with Dubourg et al. (1994) and Butler and Loomes (2007),

and by having them select probabilistic confidences of p% x and 100-p% y, where p ranged

from 0 to 40 and 60 to 100 in increments of 10. Separately, subjects had to choose a

randomization probability 0 ≤ λ ≤ 1 with which they would receive x (and with probability

1−λ receive y) for each pair of options. We exogenously manipulated decision confidence by

a) having two lotteries: a simple lottery and a complex lottery with more payoff outcomes

over a wider range of possible values, and b) increasing subjects’ experience with the lottery

by allowing them to observe the outcome draws of the lottery or to make hypothetical

choices and observe the payoffs of their choices and the counterfactual. To ensure that

experimenter demand effects and order effects were not the main drivers of our results, in

one of our experiments, we elicited the measures separately over three sessions (at least

seven days apart) in a random sequence.
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Our experimental results suggest that randomization probabilities could be used as an

incentivized quantitative measure of decision confidence. Subjects’ randomization proba-

bilities were strongly and positively correlated with both confidence statements and prob-

abilistic confidence (median Spearman correlation between 0.86 to 0.89). Consistent with

our hypotheses, the two exogenous manipulations affected decision confidence. Increas-

ing the complexity of the lottery leads to a decrease in self-reported decision confidence,

while increasing experience with lotteries leads to an increase in self-reported decision

confidence. These exogenous changes in self-reported decision confidence are met with cor-

responding changes in randomization probabilities. As a result, the correlations between

randomization probabilities and self-reported decision confidence measures are robust to

the manipulations of the complexity of and experience with the lottery. Further analyses

show that indifference, random errors, or utility differences alone cannot account for the

randomization behavior in our experiment, and that decision confidence has important

behavioral implications: across subjects and decisions, lower decision confidence in choos-

ing an option corresponds with a lower proportion of choosing that option over the other

option in binary choices.

Our study builds on the growing literature on preferences for randomization, implying pref-

erence functionals that are convex with respect to probabilistic mixing, which is a violation

of the betweenness axiom (Chew, 1983; Dekel, 1986; Chew, 1989). Preferences for random-

ization have been documented over wide ranges, across different domains, in experimental

settings as well as in real life decisions (Rubinstein, 2002; Qiu and Ong, 2017; Dwenger

et al., 2018; Feldman and Rehbeck, 2022; Miao and Zhong, 2018; Agranov and Ortoleva,

2020). In a multiple-decision setting, Rubinstein (2002) suggested that randomization

(diversification in his term) by choosing differently across five independent and identical

decisions is “an expression of a more general phenomenon in which people tend to diversify

their choices when they face a sequence of similar decision problems and are uncertain

about the right action” (Rubinstein, 2002, p.1370). Dwenger et al. (2018) found that their

experimental subjects preferred to randomize via an external randomization device rather

than making choices themselves, and the authors reported similar behavior among German

university applicants. Miao and Zhong (2018) showed that randomization could be used to

balance ex-ante and ex-post social preferences. Feldman and Rehbeck (2022) elicited indi-
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viduals’ attitudes toward reduced mixtures over two lotteries in the space of three-outcome

lotteries (the Marschak-Machina triangle) and found pervasive evidence of a preference for

non-degenerate mixing over lotteries. The study that is closest to ours is Agranov and

Ortoleva (2020), who also allowed subjects to choose randomization probabilities when

deciding between two options. They found that subjects often randomized and did so over

large ranges, and they related these ranges to certainty bias and non-monotonic choices.

Given the prevalence of preferences for randomization, it is critical to understand why

they occur. Popular explanations for convex preferences include hedging in the face of

preference uncertainty (Cerreia-Vioglio et al., 2015; Fudenberg et al., 2015; Cerreia-Vioglio

et al., 2019), non-linear probability weighting (Kahneman and Tversky, 1979; Quiggin,

1982; Tversky and Kahneman, 1992), and responsibility aversion (Dwenger et al., 2014).

Our study is the first to provide experimental evidence linking preference uncertainty, de-

cision confidence, and randomization behavior. The only other study explicitly relating

decision confidence to randomization probabilities that we are aware of is Agranov and

Ortoleva (2020). Based on reports from the end-of-experiment questionnaire, they found

that many of their subjects randomized because they were unsure of their preferences

(Agranov and Ortoleva, 2020, Appendix A.6). Our finding of a systematic relationship be-

tween the randomization and decision confidence suggests that a lack of decision confidence

may be a psychological foundation for randomization behavior. The systematic changes of

randomization probabilities and self-reported confidence due to the exogenous manipula-

tion of decision confidence further supports Fudenberg et al.’s (2015) interpretation that

randomization is deliberate and could arise from preference uncertainty.

We also contribute to the literature on stochastic choices, which examines why individuals

change their decisions when they face the same decision situation repeatedly. The relation-

ship we found between randomization probabilities and sure payments bears a remarkable

resemblance to results reported in studies on stochastic choices, for example, Mosteller

and Nogee (1951, Figure 2) and Loomes and Pogrebna (2017, Table 1).2 The similarity

2Note that these results come from entirely different designs. In Mosteller and Nogee (1951) and Loomes
and Pogrebna (2017) individuals repeatedly faced a lottery and a sure payment, with the sure payment
varying from one question to another, and the results are about the proportion of accepting the lottery
across decisions, whereas in our experiment subjects face the lottery and a sure payment once and chose
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between the choice probability in repeated choices and the randomization probability in

a one-shot decision suggests that decision confidence may have the potential to explain

stochastic choices. Consistent with this interpretation, we find that, across subjects and

decisions, higher decision confidence in an option corresponds to choosing that option more

frequently (but not always) in binary choices. Meanwhile, random (expected) utility mod-

els (see, e.g., Eliashberg and Hauser, 1985; Loomes and Sugden, 1995; Gul and Pesendorfer,

2006; Apesteguia and Ballester, 2018), which are the standard explanations for stochastic

choices, do not predict randomization in a one-shot decision as in our experiment. This

is because, while individuals may be considered to have a set of utility functions in this

literature, at the moment of decision-making, they rely on one utility function randomly

realized from the set.

The rest of the paper proceeds as follows. Section 2 describes the experimental procedure.

Section 3 provides the theoretical basis for how randomization probabilities may be linked

to decision confidence. The results are reported in Section 4. Section 5 presents a discussion

of some practical considerations. Finally, Section 6 concludes the paper.

2 Experimental design

Besides eliciting randomization probabilities, we obtained two popular measures of self-

reported decision confidence: qualitative confidence statements (Dubourg et al., 1994;

Butler and Loomes, 2007, 2011) and quantitative probabilistic confidence (Enke and Grae-

ber, 2021b). We went beyond establishing simple correlations between these measures by

exogenously manipulating subjects’ decision confidence and examining how the three mea-

sures of decision confidence responded to these manipulations. Our manipulations built

on earlier findings suggesting decision confidence could be affected by the complexity of

the decision problem (Enke and Graeber, 2021a,b) as well as people’s experience with the

decision (Myagkov and Plott, 1997; Plott and Zeiler, 2005; van de Kuilen and Wakker,

2006; Kuilen, 2009). We conducted two experiments with the same general structure but

the randomization probability of receiving the lottery.
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Figure 1: An example of the decision screen, where option x is a lottery with a 50% chance
of gaining 9 euro and a 50% chance of gaining 1 euro. Option y is a sure payment and
varies across choices. Subjects had to move the slider to determine the randomization
probability. The randomization probability changed at an increment of 1%. Changes in
the randomization probability were reflected in the descriptions below the slider.

with different treatments and experimental procedures. In the following, we describe the

general structure of the experiments before detailing the differences.

2.1 General structure of the experiments

In each decision, subjects faced a pair of options: lottery x and sure payment y. Each

lottery was paired with thirteen values of sure payments (0, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5,

7, 8, and 10 euros), resulting in 13 pairs of options. Subjects faced the 13 pairs of options

in a random sequence for each type of decision. Each decision was made on a separate

screen, and subjects were not allowed to review or change their decisions once they were

made.3 Each subject made three types of choices: binary choices, self-reported decision

confidence, and randomized choices.

3Displaying the decisions from a choice list on separate computer screens helps to preserve isolation
(subjects treat each decision as an independent decision from others), which is a sufficient condition for
the incentive compatibility of the random incentive mechanism implemented in our experiments (see e.g.,
Brown and Healy, 2018; Freeman et al., 2019).
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Binary choices

The binary choices required subjects to choose either lottery x or sure payment y for each

of the 13 different values of sure payment y, in a random order. If the lottery x was

chosen, the computer would draw a random number to determine the lottery’s outcome.

For example, for a lottery that has a 50% chance of paying 9 euro and a 50% chance of

paying 1 euro, if the randomly drawn number falls between 1 and 50, the subject would

receive 1 euro, and if the randomly drawn number falls between 51 and 100, the subject

would receive 9 euros.

Two measures of self-reported decision confidence

After making the binary choices, we asked subjects how confident they felt about their

choices. The confidence statements they could choose were “Surely x”, “Probably x”, “Un-

sure”, “Probably y”, or “Surely y”. Similar statements were used in Dubourg et al. (1994),

Butler and Loomes (2007), and Butler and Loomes (2011).4 Confidence statements were

not incentivized and could not affect payoffs.

In addition to the confidence statements, subjects in Experiment 2 also had to report their

probabilistic confidence in a separate experimental decision. Probabilistic confidence was

not elicited in Experiment 1. Instead of making a direct binary choice, subjects had to

choose how confident they felt about choosing lottery x versus sure payment y. They had

to choose between ten levels of probabilistic confidence: “100% x, 0% y,” “90% x, 10% y,”

... “60% x, 40% y,” “40% x, 60% y,” ..., “0% x, 100% y,” Subjects were considered to have

chosen the option for which they indicated more than 50% probabilistic confidence. For

example, if the subject chose “60% x, 40% y,” she was considered to have chosen x over y

in that decision. Her payoff would then be based on the lottery x. To use the probabilistic

confidence as a measure of decision confidence as well as an indicator of a subject’s choice

between lottery x and sure payment y, we omitted the option of “50% x, 50% y” in the

probabilistic confidence measure. Hence, probabilistic confidence has a threshold effect on

choices, but selecting different values below (or above) the threshold made no difference in

terms of the payoffs. Probabilistic confidence was also used in Enke and Graeber (2021b)

4Butler and Loomes (2007) and Butler and Loomes (2011) did not include the unsure option because
they used the change of the confidence statements from Probably x to Probably y as the switching point
to determine the payment.
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as part of a two-step approach to measure cognitive uncertainty.

Randomized choices

To make randomized choices, subjects had to choose a randomization probability λ, based

on which they would receive lottery x (and hence with a probability of 1 − λ they would

receive sure payment y). For example, a value of λ = 0.40 means subjects would receive

lottery x with a chance of 40% and receive sure payment y with a chance of 60%. The

subjects used a slider from 0% to 100% with increments of 1% to choose the randomization

probability in each choice.5 An important difference between randomized choices and

probabilistic confidence is that every increment in the randomization probability affects the

payoff, while increments in probabilistic confidence make no difference in the payoff except

when probabilistic confidence increases from “40% x, 60% y” to “60% x, 40% y.” Figure 1

shows the decision screen for the randomized choice. The computer would draw a random

number between 1 and 100. If the drawn number was between 1 and 100λ, x would be

chosen over y in that decision. Thus, unlike the self-reported decision confidence measures,

the randomized choices were incentivized. As the subjects could perceive randomized

choices as difficult, they were given two examples to illustrate the payoff mechanism of

the randomized choice before making the decision. Additionally, we provided a concrete

illustration in the lower part of the subjects’ decision screen to remind them of the above

incentive scheme (see Figure C.4 and C.5 in Appendix D).

2.2 Manipulating decision confidence

In the baseline treatment, the subjects faced a simple lottery with two outcomes (a 50%

chance of 9 euro and a 50% chance of 1 euro). They received a complete description and

a detailed explanation of the lottery before making their decisions. We manipulated the

subjects’ decision confidence in two ways: varying the complexity of the lottery and the

subjects’ experience with the lottery.

5In experiment 1 the slider was set in the middle at the start. To avoid anchoring, in experiment 2 the
slider had no initial position, and subjects needed to click on the slider and move the bar to determine the
randomization probability.
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Varying the complexity of the lottery

In both experiments, apart from the simple lottery, the subjects also had to make decisions

involving a complex lottery with four outcomes, but with the same expected payment as

the simple lottery. The complex lottery offered the subjects 9.75 euros with a chance of

20%, 7.50 euros with a chance of 30%, 2.50 euros with a chance of 30%, and 0.25 euros

with a chance of 20%. Unlike studies documenting complexity seeking behaviors as well

as complexity aversion (see e.g., Abdellaoui et al., 2020, and the references therein), our

focus was on decision confidence, such as the range of sure payments that subjects do not

have full confidence, rather than the average valuation of the lottery. All subjects made

decisions involving the simple lottery and the complex lottery. The order of the lotteries

was randomized: some subjects proceeded from the simple lottery to the complex lottery,

while others completed the decisions in the reverse order.6

Varying subject’s experience with the lottery

While we provided a complete description of the lottery, past studies have shown that

decision experience helps individuals to better understand their preferences (Myagkov and

Plott, 1997; Plott and Zeiler, 2005; van de Kuilen and Wakker, 2006; Kuilen, 2009), which

could in turn improve their decision confidence. Following this literature, we also manip-

ulated decision confidence by allowing some subjects to gain experience with the lottery

before making actual choices. We varied the subjects’ experience in two ways. The sub-

jects were randomly assigned to the baseline treatment or the experience treatment of the

respective experiment. In Experiment 1, we implemented a partial-experience treatment,

where subjects had to click and view 20 draws of the lottery after they read the full de-

scription of the lottery, prior to proceeding to making actual decisions. While this allowed

the subjects to experience the different outcomes of the lottery to gain more insights about

their preferences between the lottery and sure payment amounts, this treatment only pro-

vided a “partial experience,” as the subjects did not make any active choices or experience

the consequences of their decisions. As the subjects viewed each lottery draw, an accom-

6The subjects in Experiment 1 additionally faced a loss lottery and a mixed lottery. We included these
lotteries because we believe that they might lead to larger preference uncertainty due to the additional
uncertainty in attitudes toward loss. We omitted these two lotteries in Experiment 2 because, as pointed
out by one reviewer, the theoretical analysis of these two lotteries requires a more general approach than
we currently rely on. Nevertheless, the results of these lotteries are consistent with our hypotheses and
can be provided upon request.
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(a) The partial-experience treatment (b) The full-experience treatment

Figure 2: Panel (a) is an example of the partial-experience treatment, in which subjects
could generate and experience the outcomes of the lottery 20 times. The final bar graph
of the experienced outcomes was displayed on the subsequent decision screens. Panel
(b) is an example of the full-experience treatment, in which subjects faced five levels of
sure payments (3, 4, 5, 6, and 7) in a random sequence for the lottery. They made a
hypothetical decision for each pair and could then click the trial button to experience the
potential consequences of their choices four times.

panying bar chart, which recorded each lottery outcome, was updated. Figure 2(a) shows

an example of the partial-experience treatment. The outcome distribution that the sub-

jects saw after 20 draws was the same as the probability distribution of the lottery. Our

treatment differs from Hertwig et al.’s (2004) decision from experience in two ways. First,

our subjects saw the full description of the probabilities of the lottery, while the Hertwig

et al. (2004)’s experience group did not. Second, experience in our experiment aims to

help subjects to better understand their preferences between the lottery and sure payment

amounts, while experience in Hertwig et al. (2004) aims to help subjects to understand the

outcome distribution of the lottery.

In Experiment 2, we implemented a full-experience treatment, where subjects made hy-

pothetical choices between the lottery and the sure payment and could observe possible

payoffs of their choices as well as their counterfactuals. To avoid experimental fatigue, the
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Experiment 1 (N = 205)
Lotteries Experience Order
The simple lottery Baseline no-experience In the same order in one session:
(50%, 9 ; 50%, 1 ) - Binary choices and confidence statements
The complex lottery Partial-experience - Randomized choices (free)
(20%, 9.75 ; 30%, 7.50 ;
30%, 2.50 ; 20%, 0.25 )

Experiment 2 (N = 293)
Lotteries Experience Order
The simple lottery Baseline no-experience In random order across three sessions
(50%, 9 ; 50%, 1 ) (at least 7 days apart):
The complex lottery - Binary choices and confidence statements
(20%, 9.75 ; 30%, 7.50 ; Full-experience - Probabilistic confidence
30%, 2.50 ; 20%, 0.25 ) - Randomized choices (a cost of 0.10 euro)

Table 1: Summary of the treatments and experimental procedure in Experiment 1 and 2. In
Experiment 1, the subjects made the binary and confidence statements decision as well as the
randomized choice sequentially. In Experiment 2, the subjects additionally made probabilistic
confidence choices and answered the three types of questions in a random order across three
sessions. They also needed to pay a fixed cost of 0.10 euros to randomize strictly. In the baseline no-
experience treatment, subjects learned the full description of the lotteries. In the partial-experience
treatment (in Experiment 1) the subjects could generate and observe the potential outcomes of
the lotteries 20 times. In the full-experience treatment (in Experiment 2) the subjects made
hypothetical choices and then generated and experienced the consequences of their hypothetical
choices.

hypothetical decisions were limited to the sure payments of 3, 4, 5, 6 and 7 euros. For

each decision, subjects were shown the payoffs of both the chosen and unchosen options

in four separate trials. For example, if they had chosen the sure payment of 4 euros over

the lottery, their hypothetical payoffs would be 4 euros for all four trials. Conversely, if

they had chosen the lottery, the computer would make four random draws and display the

outcome of the lottery in each trial. Figure 2(b) shows the decision screen viewed by a

subject who chose the lottery over the sure payment of 4 euros in the hypothetical decision.

A payoff table provided complete information about the hypothetical payoffs associated

with each choice over the four trials as well as their counterfactuals. The row that is not

highlighted shows what the subject could have earned if she had chosen the sure payment

rather than the lottery. Likewise, a subject who chose the sure payment would see what

she could have earned if she had chosen the lottery.
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2.3 Sample and procedure

The data were collected from a sample of 498 subjects of the ID lab at Radboud University.

A total of 205 subjects participated in Experiment 1 and 293 in Experiment 2. In both

experiments, about half of the subjects were male (48% in Experiment 1, 45% in Experi-

ment 2). The mean age of the subjects was 23 years. In Experiment 1, 49% of the subjects

were randomly assigned to the partial-experience treatment, while the rest were assigned

to the baseline treatment. In Experiment 2, 51% of the subjects were randomly assigned

to the full-experience treatment, while the rest were assigned to the baseline treatment.

To demonstrate the correspondence between self-reported decision confidence and random-

ization probabilities for each subject, we elicited both types of decisions for each lottery

x and sure payment y pair. A potential concern of this within-subject design is that ex-

perimenter demand effects may unintentionally influence subjects to give similar answers

to the self-reported decision confidence measures and the randomized choices, resulting

in a systematic relationship between the two. We used several methods to make it more

obscure and costly for subjects to connect self-reported decision confidence and random-

ization probabilities in response to experimenter demand effects (Zizzo, 2010), such as

spreading the decisions over three sessions (at least seven days apart), including a cost for

randomizing, and randomizing the decision order. The key features of the two experiments

are summarized in Table 1, and further details can be found in Appendix D.1.

Invitations were sent in batches via ORSEE (Greiner, 2015). The experiment was con-

ducted using Qualtrics and lasted approximately 20 minutes for Experiment 1 and about

30 minutes in total for Experiment 2. The experimental instructions and decision screens

are presented in online Appendix D. Each subject received a participation fee of 1 euro

and an additional payment based on one of the decisions they made in the experiment. In

Experiment 1, the additional monetary compensation was based on a decision randomly

selected from their binary choices or randomized choices. In Experiment 2, it was based

on a decision randomly selected from their binary choices, randomized choices, or proba-

bilistic confidence decisions. If a subject’s payment was based on a randomized choice, a

random draw was used to determine whether the subject’s payment would be based on the
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lottery or the sure payment. If the lottery was chosen for payment, a second random draw

determined the outcome of the lottery. The average additional payment was 6.28 euros.

We made the payment via bank transfers.

In Experiment 2, subjects were also asked to answer a post-experiment questionnaire at

the end of each of the three sessions based on the type of decision confidence they were

asked about in that session. For example, after subjects completed the session on binary

choices and confidence statements, they were asked to express how they understood the

confidence statements by assigning the minimum and maximum probabilistic confidence

level to each statement. Likewise, after they had completed the session on probabilistic

confidence, the subjects had to choose which confidence statement best represents 100%,

90%, 80%, 70%, and 60% probabilistic confidence in choosing an option. Finally, after the

session on randomized choices, the subjects were either asked to explain qualitatively why

they chose to randomize or why they chose not to randomize, depending on which choice

they made.

3 Theoretical analysis

Under the expected utility theory (EUT) which ignores decision confidence and assumes

that a unique utility function (subject to positive affine transformation) captures an indi-

vidual’s preferences, it is straightforward to show that the individual chooses λ∗ ∈ (0, 1)

for at most one value of the sure payment in the 13 choice pairs. Thus, under EUT, strict

randomization (λ∗ ∈ (0, 1)) rarely occurs, and randomization probabilities do not contain

additional information beyond indifference. This prediction is inconsistent with a growing

body of experimental evidence suggesting that, when facing two options, individuals may

prefer to randomize strictly between rather than selecting a particular option (Qiu and

Ong, 2017; Dwenger et al., 2018; Feldman and Rehbeck, 2022; Miao and Zhong, 2018; Cet-

tolin and Riedl, 2019; Agranov and Ortoleva, 2020). Our theoretical analyses are based on

this body of literature on preference convexity in probabilities.

As the main properties of decision confidence are not well-established in the literature, we
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focus on three properties that seem fairly intuitive in the context of our experiment. First,

when two options are similar, individuals may feel less confident about which one they

prefer. Second, when a lottery is harder to evaluate, such as a lottery with a more complex

payoff structure, individuals may be less confident in making decisions over a wider range

of sure payments. Finally, when individuals develop clearer preference about the lottery,

they may become more confident in making decisions over a wider range of sure payments.

If randomization probabilities capture decision confidence, they would also exhibit these

properties.

We conducted two theoretical analyses of our experiments, which showed that randomiza-

tion probabilities exhibit the properties of decision confidence. Appendix A.1 presents a

theoretical framework based on Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015). To

accommodate the possibility that a decision-maker might not be fully confident about her

choices, we assume an individual has preference uncertainty. She has multiple utility func-

tions that we call multiple selves, with each self representing one particular way of making

the tradeoff between conflicting objectives in choices. With multiple selves, the individual

is not fully confident about her choices when some selves choose one option while others

choose other options. The individual randomizes to reconcile the disagreement among the

different selves. This approach for capturing the lack of decision confidence from unsureness

about preferences is closely related to but different from models of ambiguity (e.g., Gilboa

and Schmeidler, 1989; Klibanoff et al., 2005), which focus on unsureness about beliefs (e.g.,

Halevy, 2007; Chew et al., 2017; Cubitt et al., 2020, and the references therein). In Ap-

pendix A.2 we extend Fudenberg et al.’s (2015) model to link randomization probabilities

to decision confidence. Fudenberg et al. (2015) axiomatized a choice rule of deliberate

randomization called additive perturbed utility (APU). Their representation corresponds

to a form of ambiguity-averse preferences for an individual who is uncertain about her true

utility function. The individual randomizes to balance the probability of errors due to

preference uncertainty against the cost of avoiding them (Fudenberg et al., 2015, p. 2373).

Both analyses suggest that the preference for randomization is motivated by the hedging

of preference uncertainty. In particular, randomization probabilities are affected by the

perceived preference uncertainty of the options, attitudes towards preference uncertainty,

as well as the utility difference between the options. The theoretical analyses suggest that
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our proposed link between randomization probabilities and decision confidence could hold

under a broad class of decision models that incorporate preference uncertainty.

To develop our experimental hypotheses, we note that subjects may perceive more pref-

erence uncertainty with the complex lottery than with the simple lottery, and experience

with the lottery may reduce preference uncertainty regarding the lottery. As we demon-

strate in Appendix A, a) subjects choose randomization probabilities close to 0.5 when two

options have similar decision utility; b) they randomize over a wider range of sure pay-

ments, with randomization probabilities closer to 0.5 when they face the complex lottery

compared to the simple lottery; and c) with experience and less preference uncertainty

about the lottery, subjects’ randomization probabilities may be stretched away from 0.5 as

they randomize over a smaller range of sure payments. If randomization probabilities and

the two self-report measures both capture decision confidence, we expect the following:

Hypotheses. 1) Randomization probabilities are positively correlated with the self-reported

confidence measures and correspond in absolute levels to probabilistic confidence and the

confidence statements.

2) When two choice options are more similar, for example, around the switching choices

where subjects switch between the lottery and the sure payment, the subjects have lower

decision confidence, a higher likelihood of randomizing, and randomization probabilities

closer to 0.5.

3) Increasing the complexity of the lottery decreases subjects’ decision confidence, as mea-

sured by the self-reported confidence measures, and randomization probabilities are affected

in the same direction, maintaining a strong association between them.

4) Gaining experience with a lottery increases subjects’ decision confidence when making

decisions about the lottery, as measured by the self-reported confidence measures, and ran-

domization probabilities are affected in the same direction, maintaining a strong association

between them.
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4 Experimental results

We report the results of our experiments in two steps. We begin by showing the systematic

link between randomization probabilities and the two measures of self-reported confidence

(confidence statements and probabilistic confidence) in the baseline no-experience treat-

ment for decisions about the simple lottery (Hypotheses 1 and 2). We then show that

decision confidence responded to our treatment manipulations in the intended direction

by comparing the two measures of self-reported decision confidence across treatments.

We demonstrate that exogenous shifts in self-reported decision confidence are paired with

corresponding shifts in randomization probabilities, maintaining their systematic link (hy-

pothesis 3 and 4).

In online Appendix C.1, we discuss the different orders in which subjects completed the

decision tasks in Experiment 2. While we observe some order effects, the main results hold

across the different orders. For this reason, we report the pooled results for all the subjects

of Experiment 2 here.

4.1 Randomization probabilities and self-reported confidence

Below, we report two empirical observations that are consistent with Hypothesis 1 and 2.

Result 1. Randomization probabilities were significantly correlated and corresponded in

absolute levels with probabilistic confidence and confidence statements.

To obtain the correlation between randomization probabilities and confidence statements,

we transformed the confidence statements “Surely y,” “Probably y,” “Unsure,” “Probably

x,” and “Surely x” to a scale of 1 to 5, with “Surely y” taking the value of 1 and “Surely

x” taking the value of 5 to represent the decision confidence in choosing the lottery x.

We computed the nonparametric Spearman correlation between confidence statements and

randomization probabilities for each subject in Experiment 1 and 2. We also computed the

nonparametric Spearman correlation between subjects’ probabilistic confidence and their

randomization probabilities for each subject in Experiment 2. The results are summarized
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Correlation between randomization probabilities and
Confidence statements Prob. confidence

Experiment 1 Experiment 2 Experiment 2

10th percentile 0.60 0.71 0.73
median 0.91 0.89 0.90

90th percentile 0.97 0.96 0.98

Table 2: Nonparametric Spearman correlations between randomization probabilities and
confidence statements as well as probabilistic confidence at the 10th percentile, 50th per-
centile, and 90th percentile in the two experiments in the baseline no-experience treatment
for decisions about the simple lottery.

in Table 2. Consistent with Hypothesis 1, the first two columns of Table 2 show that

confidence statements and randomization probabilities have a high and positive correlation.

Moderate to strong correlations of 0.60 in Experiment 1 and 0.71 in Experiment 2 were

found at the 10th percentile level, which increased to 0.91 in Experiment 1 and 0.89 in

Experiment 2 at the median level. Since the subjects in Experiment 2 reported confidence

statements and randomization probabilities in different sessions separated by least seven

days, the similarities between the correlations found in Experiments 1 and 2 suggest that

confidence statements and randomization probabilities are associated in ways beyond the

order effects. In Experiment 2, we also found high correlation levels between self-reported

probabilistic confidence and randomization probabilities which are reported in the third

column: the correlation is 0.73 at the 10th percentile, 0.90 at the median, and 0.98 at the

90th percentile.

As correlations do not describe the correspondence between randomization probabilities

and self-reported decision confidence at absolute levels, we also computed the average

randomization probability at each self-reported probabilistic confidence level in Table 3.

Overall, the mean randomization probability for x is close to the probabilistic confidence

of choosing x: subjects who chose a randomization probability of, for example, 0.7 would

report probabilistic confidence of 70% on average. The results suggest randomization

probabilities can be used as a direct proxy for probabilistic confidence.

There may be concerns that subjects gave similar answers to probabilistic confidence and

randomization probabilities because the two measures resemble each other closely. To

reduce such concerns, we used the probabilistic confidence associated with each confidence
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Self-reported probabilistic confidence
100% x 90% x 80% x 70% x 60% x 40% x 30% x 20% x 10% x 0% x

0% y 10% y 20% y 30% y 40% y 60% y 70% y 80% y 90% y 100% y

Rand. 0.98 0.86 0.82 0.73 0.58 0.36 0.23 0.18 0.09 0.02
prob. (0.008) (0.021) (0.022) (0.022) (0.027) (0.024) (0.023) (0.022) (0.018) (0.004)

Table 3: The mean randomization probabilities at each self-reported probabilistic confi-
dence level in Experiment 2 in the baseline no-experience treatment for decisions about
the simple lottery. The standard errors of the mean are reported in parentheses. We com-
pute the mean randomization probability at each level of probabilistic confidence for each
subject before taking its mean across subjects.

statement reported in Vanberg (2008) as references - the probabilistic confidence level of

0.85 as the cutoff between surely and probably, 0.68 as the cutoff between probably and

unsure, and 0.50 as the mean value for unsure (Vanberg, 2008, Footnote 10, p.1472). We

then computed the mean, minimum, and maximum randomization probabilities associated

with each confidence statement from our experiments and compare these values to the cutoff

values from Vanberg (2008). Consistent with Vanberg (2008), the minimum randomization

probabilities were 0.83 and 0.85 for “Surely x” and 0.61 and 0.62 for “Probably x,” and the

mean randomization probabilities were 0.51 and 0.46 for “Unsure” in Experiments 1 and

2, respectively. More details can be found in Figure B.1 in Appendix B.

Next, we turn to Hypothesis 2 and examine the randomization probabilities around the

switching choices. Intuitively, x and y are harder to compare around the switching choices.

Reflecting this, subjects reported lower decision confidence and chose randomization prob-

abilities close to 0.5 around the switching choices, as indicated in Result 2.

Result 2. The subjects reported lower decision confidence around the switching choices

based on the self-reported confidence measures. Meanwhile, they were more likely to ran-

domize and chose randomization probabilities close to 0.5 around the switching choices.

We study the switching choice of each subject by considering two levels of sure payments:

yb and ȳb. We let yb denote the highest sure payment at and below which the subject

consistently preferred x over y, and ȳb denote the lowest sure payment amount at and above

which the subject consistently chose y over x in the binary choices. We henceforth refer to

the values of y between yb and ȳb as the subject’s switching range. This approach allows us

to accommodate subjects who switched once as well as those who switched multiple times
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between lottery x and the sure payments (for the simple and complex lotteries, respectively,

19% and 25% in Experiment 1 and 14% and 23% in Experiment 2).7

As expected, decision confidence was lower within the switching range than outside it. In

Experiment 2 (Experiment 1), 88% (85%) of the confidence statements within the switching

range were “Probably x,” “Unsure,” or “Probably y,” compared to 41% (40%) outside the

switching range. In Experiment 2, “60% x, 40% y” and “40% x, 60% y” were selected

for 53% of the values within the switching range, compared to 13% outside the switching

range. Table 4 shows the median randomization probabilities, probabilistic confidence,

and confidence statements around the switching range. The median responses to the self-

reported confidence measures indicate a lack of confidence around the switching range.

Having established that self-reported confidence is lower in the switching range, we turn

to the randomization probabilities within this range. We find that the randomization

probabilities within the switching range resemble the two self-reported confidence measures.

In Experiment 2 (Experiment 1), 67% (85%) of randomization probabilities reported for

values of y within the switching range fell between 0.1 and 0.9, whereas this only holds

for 33% (47%) outside the switching range. Further, in Experiment 2 (Experiment 1),

the subjects assigned a median randomization probability of 0.65 (0.67) to x at yb, and

a median randomization probability of 0.45 (0.46) to x at ȳb. The median randomization

probability for all the choices that fell within the switching range was 0.5. These results

are consistent with Hypothesis 2 that subjects are more likely to choose randomization

probabilities close to 0.5 for choices that they find difficult to compare.

4.2 Manipulating decision confidence

In this section, we examine whether our exogenous manipulations of the decision situation

affect self-reported decision confidence in the expected direction and whether randomiza-

7It is important to include these subjects, because when subjects are not fully confident about their
choices, they may switch between x and y multiple times. For the subjects who switched from the lottery to
the sure payments once, the switching range simply includes the two sure payments around the switching
choice (e.g., if a subject chooses the lottery at y = 4 and switches to the sure payment at y = 4.5 euros,
this means that yb = 4, ȳb = 4.5, and the switching range is [4, 4.5]).
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Behavior around the switching range

Experiment
Confidence Probabilistic Randomization
statements Confidence probabilities

yb ȳb yb ȳb yb ȳb
Experiment 1 (N = 105) Probably x Probably y - - 0.67 0.46

Experiment 2 (N = 145) Probably x Probably y 60% x 40% x 0.65 0.45

Table 4: Behavior around the switching choices for the baseline no-experience treatment
for decisions about the simple lottery. We let yb denote the highest sure payment amount
at and below which subjects consistently preferred x over y, and ȳb denote the lowest sure
payment amount at and above which subjects consistently chose y over x. Here, we show
the median randomization probabilities, confidence statements and probabilistic confidence
levels subjects reported at yb and ȳb.

tion probabilities are affected in similar ways to maintain a systematic relationship with the

self-reported confidence measures. We discuss the results for the two treatments separately.

4.2.1 The complex lottery versus the simple lottery

Hypothesis 3 states that subjects have lower decision confidence when making decisions

about the complex lottery compared to the simple lottery, and this is reflected in the differ-

ences in self-reported decision confidence measures as well as randomization probabilities

across lotteries. Result 3 summarizes our findings.

Result 3. Compared to decisions about the simple lottery, the subjects did not report full

decision confidence over a wider range of sure payments and reported decision confidence

more compressed toward “Unsure” or (50% x, 50% y) for decisions about the complex lot-

tery. Likewise, the subjects randomized over a wider range of sure payments and chose

randomization probabilities closer to 0.5 for decisions about the complex lottery.

Comparing the range of sure payments over which the subjects chose confidence statements

“Unsure” or “Probably,” we find that the range size was larger for decisions about the

complex lottery than for decisions about the simple lottery in both Experiment 1 and 2,

and it was statistically significant in Experiment 2 (Experiment 1: 3.62 vs 3.36, Wilcoxon

signed-rank test p = 0.150; Experiment 2: 3.58 vs 3.15, Wilcoxon signed-rank test p <

0.01). We also computed the range of sure payments for which subjects were not fully
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Figure 3: The mean self-reported decision confidence and randomization probabilities
for each value of y for the simple lottery (solid line) and complex lottery (dashed line).
Wilcoxon signed-rank tests were performed to test the difference between the simple and
the complex lotteries for each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.

confident about their choices using their probabilistic confidence reports in Experiment 2.

The range is the difference between the minimum and maximum sure payment for which

subjects did not indicate probabilistic confidence of (100% x, 0% y) or (0% x, 100% y).

Similar to the results obtained from the confidence statements, the subjects were not fully

confident over a wider range of sure payments for decisions about the complex lottery than

decisions about the simple lottery (4.63 vs. 4.37, Wilcoxon signed-rank test p<0.01).

We detail how confidence statements and probabilistic confidence varied with different sure

payment amounts across the two lotteries in Experiment 2 in Panel (a) and Panel (b) of

Figure 3. The results for Experiment 1 were similar, albeit weaker, and are presented

in Figure B.2 of Appendix B. Compared to the simple lottery, self-reported decision

confidence measures were more compressed towards “Unsure” or (50% x, 50% y) when the

subjects faced the complex lottery. The difference in decision confidence across the two

lotteries is statistically significant between sure payments of 5 and 8 euros, and less often

statistically significant for lower sure payment amounts.

Having established that the complexity of the lottery affected the subjects’ self-reported

decision confidence in the intended way, we proceed to examine the randomization proba-

bilities chosen for each lottery. In both experiments, the range of sure payments over which

subjects chose a randomization probability between 0.1 to 0.9 was significantly larger for

decisions about the complex lottery than for decisions about the simple lottery (Experi-

ment 1: 4.06 vs 3.63, Wilcoxon signed-rank test p < 0.01; Experiment 2: 3.19 vs 3.03,
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Wilcoxon signed-rank test p < 0.10). A summary of the range sizes for each lottery found

in Experiment 1 and Experiment 2 can be found in Table B.4 in Appendix B.

Like self-reported decision confidence, Panel (c) of Figure 3 shows that the randomization

probabilities were also more compressed towards 0.5 when the subjects faced the com-

plex lottery compared to the simple lottery. The difference in randomization probabilities

across the two lotteries was statistically significant between sure payments of 5 and 7 eu-

ros, coinciding with the range obtained from probabilistic confidence. Like self-reported

decision confidence, Panel (c) of Figure 3 show asymmetric treatment effects on random-

ization probabilities for sure payments above 5 euros and sure payments below 5 euros.

We show in Appendix A.3 that this asymmetric treatment effect is consistent with the

theoretical analysis. This asymmetry arises because the treatment manipulation affects

both preference uncertainty and the average valuation of the lotteries.

Next, we find that the correlations between the two decision confidence measures and

randomization probabilities remain similar after our exogenous manipulation. Compar-

ing decisions about the simple lottery with those about the complex lottery, the median

correlations between randomization probabilities and confidence statements are 0.86 vs

0.82 in Experiment 1 and 0.89 vs 0.88 in Experiment 2. The median correlations between

randomization probabilities and probabilistic confidence are 0.90 vs 0.89 in Experiment 2.

Further results on the associations between self-reported decision confidence measures and

randomization probabilities, similar to those reported in subsection 4.1, can be found in

Table B.1, B.2, and B.3 in Appendix B.

4.2.2 Experience and no experience

Hypothesis 4 states that, compared to the baseline no-experience treatment, gaining ex-

perience with the lotteries increases decision confidence. We find that the subjects in the

full-experience treatment had higher decision confidence than those in the no-experience

treatment when the subjects had to make decisions about the complex lottery. Result

4 summarizes our findings. As the partial-experience treatment and decisions about the
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simple lottery did not exhibit significant treatment effects, we report the results of these

treatments in Figure B.3 and Figure B.4 and Table B.5 in Appendix B.

Result 4. Compared to the subjects in the no-experience treatment, the subjects in the

full-experience treatment revealed less than full decision confidence over a narrower range

of sure payments for decisions about the complex lottery and their self-reported decision

confidence were stretched further away from “Unsure” or (50% x, 50% y). Likewise, the

subjects in the full-experience treatment randomized over a narrower range of sure pay-

ments and chose randomization probabilities further away from 0.5 for the complex lottery

compared to the subjects in the no-experience treatment.

Examining the range of sure payments over which subjects reported confidence statements

of “Probably” or “Unsure”, we find a significantly narrower range in the full-experience

treatment compared to the no-experience treatment (3.16 vs. 3.58, Wilcoxon rank-sum test

p < 0.05). The range of sure payments over which subjects chose probabilistic confidence

between 0.1 and 0.9 did not significantly different between the full-experience treatment

and the no-experience treatment (4.58 vs. 4.63, Wilcoxon rank-sum test p = 0.590).

Panels (a) and (b) of Figure 4 show how self-reported decision confidence differs between

the full-experience and the no-experience treatment. Compared to the no-experience treat-

ment, self-reported decision confidence was stretched further away from “Unsure” or (50%

x, 50% y) for the subjects in the full-experience treatment and these differences in decision

confidence were significantly different for sure payments between 2 and 4.5 euros. This

implies that the subjects in the full-experience treatment were more confident about which

option they preferred than subjects in the no-experience treatment.

Having shown the treatment effects of the full experience on the self-reported decision

confidence, we next examine these treatment effects on randomization probabilities. Like

decision confidence, we find that the range of sure payments over which subjects chose ran-

domization probabilities between 0.1 to 0.9 was significantly narrower in the full-experience

treatment than in the no-experience treatment for decisions about the complex lottery

(2.67 vs. 3.19, Wilcoxon rank-sum test p < 0.05). Panel (c) of Figure 4 shows that

the difference in mean randomization probabilities across sure payments between the full-
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Figure 4: The mean self-reported decision confidence and randomization probabilities for
each value of y for the complex lottery in Experiment 2. The graphs show the baseline
no-experience treatment (solid line) compared to the full-experience treatment (dashed
line). Wilcoxon rank-sum tests were performed to test the difference between the simple
and complex lottery for each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.

experience treatment and the no-experience treatment resembles that shown in Panel (a)

and Panel (b). Compared to the no-experience treatment, randomization probabilities

were also stretched further away from 0.5 among the subjects in the full-experience treat-

ment. Significant differences in the randomization probabilities between subjects in the

full-experience treatment and the no-experience treatment were also observed between 2

euros to 4.5 euros. Asymmetric treatment effects on randomization probabilities could also

be observed here for sure payments above 5 compared to those below 5, which we discuss

further in the theoretical models in Appendix A.3.

The increase in decision confidence due to allowing subjects to gain experience with the

lotteries did not affect the high correlation between self-reported decision confidence and

randomization probabilities. The median correlation between self-reported decision confi-

dence and randomization probabilities in the full-experience treatment was broadly similar

to the median correlation in the no-experience treatment. More details can be found in

Table B.1, B.2, and B.3 in Appendix B.

5 Discussion: Practical considerations

So far, we have demonstrated that randomization probabilities could be a good proxy for

decision confidence. Here, we discuss some practical considerations of using randomization
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probabilities as a proxy for decision confidence. First, randomization probabilities, or any

decision confidence measure, have little practical relevance if they merely reflect indiffer-

ence, random errors, or utility difference. If randomization is only driven by indifference,

randomization probability values do not provide additional information, as subjects can

choose any values of randomization probabilities when they are indifferent. If random errors

are responsible for randomization, randomization probabilities provide little information

other than potentially revealing inattention during the experiment and thus those data

should be ignored in the analysis. Finally, if utility difference alone drives randomization

and preference uncertainty is irrelevant, randomization probabilities would not have sig-

nificant behavioral implications; subjects will always choose the option with higher utility,

regardless of how small the utility difference is. In Appendix B.1 we show that indiffer-

ence, random errors, or utility difference alone cannot be the driving force behind subjects’

randomization behavior.

More importantly, there is evidence that randomization probabilities contain information

about how subjects made binary choices. Figure 5 reports the proportions of decisions in

which lottery x was chosen in the binary choice at each randomization probabilities and

probabilistic confidence level.8 Across subjects and decisions, higher randomization proba-

bility was associated with a higher likelihood that the option would be chosen in the binary

choices. Figure 5 also shows this association with the probabilistic confidence. Interest-

ingly, while probabilistic confidence had similar behavioral implications as randomization

probabilities, it corresponded less closely to binary choices, as reflected by the Fisher’s

exact tests in Figure 5. Further analysis also suggested that randomization probabilities

were more sensitive to variations in sure payments around the switching choices than prob-

abilistic confidence, where subjects are least likely to have strict preferences. This means

that changes in decision confidence around the switching choices are more likely to be

detected when randomization probabilities are used as the proxy for decision confidence

rather than probabilistic confidence. Detailed analysis can be found in Appendix B.2.

8We do not consider confidence statements in this analysis, as binary decisions and confidence statements
were made on the same decision screen.
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Figure 5: Correspondence of randomization probabilities (solid line) and probabilistic con-
fidence (dashed line) with the proportion of times lottery x is chosen (y-axis) for the simple
lottery in the baseline no-experience treatment. The dotted line represents a 45-degree line.
Fisher’s exact tests were performed to test the difference in choice proportions between the
randomization probabilities and probabilistic confidence: ** p < 0.05, *** p < 0.01.

6 Conclusion

We have shown in this study that letting individuals assign randomization probabilities

according to which they receive two options can be a viable and incentivized way to elicit

decision confidence. We showed the link between randomization probabilities and deci-

sion confidence theoretically through the frameworks based on Klibanoff et al. (2005) and

Cerreia-Vioglio et al. (2015) as well as Fudenberg et al. (2015) and demonstrated this

relationship empirically through two experiments.

Our experimental results provide strong evidence suggesting that the randomization prob-

ability for an option could be interpreted as the probabilistic confidence related to choosing

that option. In this study, the majority of subjects randomized frequently, and the ran-

domization pattern was consistent with our theoretical analysis. We further found that

randomization probabilities were highly correlated and varied systematically with self-

reported decision confidence, with high randomization probabilities for options associated

with high self-reported decision confidence. Our further examination of alternative in-

terpretations of randomization suggested that indifference, random errors, and differences

in utility alone were unlikely to be the driving factors. Overall, our results suggest that
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decision confidence can be meaningfully and accurately inferred from randomization prob-

abilities.
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Appendices

A Appendix: Theoretical analysis

A.1 The theoretical analysis based on Cerreia-Vioglio et al. (2015) and

Klibanoff et al. (2005)

To accommodate the potential that a decision-maker might not be fully confident about

her choices, we assume an individual has multiple utility functions that we call multiple

selves, with each self representing one particular way to trade off conflicting objectives in

choices. Such a modelling technique has been used in models of incomplete preferences

(see e.g., Bewley, 2002; Dubra et al., 2004; Cerreia-Vioglio et al., 2015).

Specifically, let uτ denote the utility function of the self τ , and T denote the set of selves.

Let π denote the subjective probability distribution over T , which, similar to the modelling

technique of Loomes and Sugden (1982), represents “the individual’s degree of belief or

confidence in the occurrence of the corresponding states” (Loomes and Sugden, 1982, p.

807). This belief could come from introspection or experiences with similar options. Given

a utility function uτ , we follow the standard assumption that the self behaves according

to EUT. Let Uτ (l) denote the expected utility of an option l ∈ L.9 We further assume

that the individual dislikes disagreement among selves. This is because, to arrive at a

choice when there are multiple selves with different preferences is, in essence, similar to

situations where a group of people with different opinions tries to reach a consensus. The

more strongly group members disagree with each other, the harder it is for the group to

make compromises and agree on a single opinion. Hence, aversion to disagreement among

selves can be interpreted as the cost of forcing different selves to reach a consensus. With

9The function U(·) could be made more general to allow for non-EUT preferences to incorporate un-
sureness about how strongly to weight the extra factor, such as probability weighting or loss aversion, in
a non-EU model.
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the above assumptions, we can write the individual’s preference over an option l as:

V (l) =

∫

T

φ [U τ (l)] dπ, (1)

where concave φ(·) implies an aversion to disagreement - deviations from the mean expected

utility - among different selves. Similar to the connection between the concavity of the

utility function and risk aversion, the concavity of φ(·) implies that the individual places

more weight on the selves who have lower value for l. Such a cautious attitude is consistent

with Levitt (2021) who showed that subjects who have difficulties making a decision are

often excessively cautious in the sense of preferring to maintain the status quo.

Equation 1 extends directly from Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015).

It can be seen as a smooth version of the cautious expected utility model (Cerreia-Vioglio

et al., 2015). It is also a parallel of the smooth ambiguity model of Klibanoff et al. (2005).

Indeed, in the smooth ambiguity model, an individual is unsure about the probability

distribution of the states of nature, and she has a subjective belief over these probability

distributions. Likewise, in this model, an individual is unsure about her utility function,

and she has a subjective belief over her multiple selves. Note that this does not mean

this model only applies to decision-making under risk. If there is preference uncertainty

under risk (or even under certainty, e.g., over options about experience goods) because

individuals have difficulties evaluating options, this uncertainty is also likely to be present

in more complex situations of decision-making under ambiguity. In this sense, this model

complements the smooth model of ambiguity and general models about uncertainty in

beliefs. Ultimately, the lack of decision confidence arises from the difficulties in evaluating

options, which may be due to uncertainty in both beliefs and preferences. A general model

accommodating both sources of uncertainty could be written as:

V (a) =

∫

M

∫

T

φ [U τ,µ(a)] dπdµ,

where a represents an act, and µ is a subjective probability distribution over M , the set

of probability distributions of the states of nature.

We are now ready to establish the link between decision confidence and the randomization
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probability in the randomized choices. Specifically, recall that in our mechanism, the

individual chooses a randomization probability λ ∈ [0, 1] and builds a lottery (λ, x; (1 −

λ), y): She receives x with probability λ and y with probability 1− λ. Since for any given

self τ , the individual’s preference over the lottery (λ, x; (1− λ), y) satisfies EUT, we have

Uτ [λx+ (1− λ)y] = λUτ (x)+ (1−λ)Uτ (y). The individual’s decision is then to maximize

her utility by choosing the optimal randomization probability 0 ≤ λ ≤ 1:

Maxλ V [λx+ (1− λ)y] =

∫

T

φ [λUτ (x) + (1− λ)Uτ (y)] dπ.

In the experiment, y is a sure payment. Sure monetary payments are probably the easiest

options to evaluate, hence we assume the individual is always confident about her evaluation

of a sure payment: Uτ (y) = u(y), ∀τ ∈ T . Applying the Taylor expansion to the above

equation at y, we can derive the optimal λ as:10

λ∗ ≈
1

−
φ′′[u(y)]
φ′[u(y)]

×
Eπ [Uτ (x)]− u(y)

σ2
x

(2)

where σ2
x = Eπ [Uτ (x)− Eπ(Uτ (x))]

2 is the standard deviation of the valuation of the lot-

tery across multiple selves and approximates how strongly different selves disagree with

each other. Similar to decision-making under risk, −φ′′(u(y))
φ′(u(y)) can be interpreted as a metric

of attitudes towards disagreement among selves. Thus, the randomization probability ag-

gregates the three important determinants of decision confidence: preference uncertainty,

the utility difference between the two options, and her attitude toward preference uncer-

tainty. It is in this sense we argue that the randomization probability captures decision

confidence.

Deriving the hypotheses

To see how the individual may randomize for sure payments that yield similar utility as

10More precisely, since 0 ≤ λ ≤ 1, λ∗ ≈ min

{

max

{

0, 1

−
φ′′[u(y)]

φ′[u(y)]

× ∆u

σ2
x

}

, 1

}

. The detailed derivation

can be found below.
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the lottery, notice that the certainty equivalent of the lottery is

u(CEx) =

∫

φ [U τ (l)] dπ

≈ Eπ

{

Eπ [Uτ (x)] + φ′ (Eπ [Uτ (x)]) [Uτ − Eπ [Uτ (x)]] +
φ′′ (Eπ [Uτ (x)])

2
[Uτ − Eπ [Uτ (x)]]

2

}

= Eπ [Uτ (x)] +
φ′′ (Eπ [Uτ (x)])

2
σ2
x.

The optimal randomization probability at the sure payment which is equal to the certainty

equivalent of the lottery (u(y) = u(CEx) = Eπ [Uτ (x)] +
φ′′(Eπ [Uτ (x)])

2 σ2
x) is

λ∗ ≈
1

−
φ′′[u(CEx)]
φ′[u(y)]

×
Eπ [Uτ (x)]− u(CEx)

σ2
x

=
1

2
×

φ′ [u(CEx)]φ
′′ (Eπ [Uτ (x)])

φ′′ [u(CEx)]
.

When φ′ [u(CEx)] is close to one and the function φ(·) is smoothly concave, which is likely

to hold for options with moderate payoffs, the randomization probability is around 0.5.

This implies that the individual would choose randomization probabilities close to 0.5 when

two options yield similar utilities. Furthermore, the smallest sure payment that the indi-

vidual chooses λ∗ < 1 (the lower bound), and the largest sure payment that the individual

chooses λ∗ > 0 (the upper bound) are defined by u(yx) = Eπ [Uτ (x)] −
−φ′′[u(y)]
φ′[u(y)] σ2

x, and

u(ȳx) = Eπ [Uτ (x)] . The range of sure payments that the individual randomizes strictly is

u(ȳx)− u(yx) =
−φ′′ [u(y)]

φ′ [u(y)]
σ2
x,

which varies with preference uncertainty (σ2
x).

Relating these results to our experiment, we expect subjects to have more preference

uncertainty about a complex lottery than a simple lottery, as the individual may find

it harder to evaluate a complex lottery. She considers relevant a larger set of utility

functions and the subjective belief π becomes flatter. This translates into larger preference

uncertainty (δx increases). Experience with a lottery, on the other hand, reduces preference

uncertainty about the lottery because the individual attains clearer preferences about the

lottery when she gains more experience (the set of utility functions becomes smaller and
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δx decreases). These lead to the following hypotheses:

Hypotheses.

a) Subjects choose randomization probabilities close to 0.5 around sure payments, where

subjects switch between the lottery and the sure payments in binary choices.

b) Compared to the simple lottery, subjects randomize strictly over a wider range of sure

payments when making decisions about the complex lottery.

c) Compared to the no-experience treatment, subjects in the experience treatments random-

ize strictly over a smaller range of sure payments.

As a concrete illustration, consider the following numerical example: the individual has

two selves τ = 1, 2, and π(u1) = 0.6, π(u2) = 0.4. The individual’s preference over the

lottery x1 is such that U1(x1) = 0.8 and U2(x1) = 0.2. Her preference over the lottery x2

is such that U1(x2) = 1.0 and U2(x2) = 0. Thus, the individual perceives more preference

uncertainty about the lottery x2 than the lottery x1 (σx1 = 0.05 < σx2 = 0.24). Option

y is a sure payment, and u1(y) = u2(y) = y. The function φ(Uτ ) = 1 − e−Uτ . Simple

calculation shows that λx1 = − 1
0.8−0.2 ln(

0.4
0.6 ×

y
1−y ) and λx2 = − 1

1−0 ln(
0.4
0.6 ×

y
1−y ), subject

to 0 ≤ λ ≤ 1. Figure A.1 shows the relationship between the optimal λ and sure payment

y. The Figure shows that the randomization probability decreases with y, and approaches

to 0.5 for y that yields similar decision utility as the lottery (y = 0.515 for x1 and y = 0.476

for x2). Furthermore, the individual randomizes over a wider range of y for x2 which she

perceives higher preference uncertainty compared to x1.

Derivation of the optimal λ∗
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Figure A.1: The relationship between the randomization probability λ and the sure pay-
ment y. The figure is produced by assuming φ(Uτ ) = 1− e−Uτ , π(u1) = 0.6, π(u2) = 0.4,
U1(x1) = 0.8 and U2(x1) = 0.2, U1(x2) = 1.0 and U2(x2) = 0, and U1(y) = U2(y) = y.

Taking the first order derivative of the optimization equation gives:11

dV [λx+ (1− λ)y]

dλ
=

∫

T

φ′ [λUτ (x) + (1− λ)u(y)]× [Uτ (x)− u(y)] dπ = 0.

Note that Uτ (x) is a random variable governed by the subjective probability distribution

π. Let X = Uτ (x), and ∆τ = X − u(y). With these notations, we have

φ′ [λUτ (x) + (1− λ)u(y)] = φ′ [u(y) + λ∆τ ] .

We are most interested in scenarios where the individual finds it difficult to choose between

x and y, i.e., when the two options are close and ∆τ is small relative to X and u(y). When

11The second-order derivative is

d2V [λx+ (1− λy)]

dλ2
=

∫

T

φ
′′ [λUτ (x) + (1− λ)u(y)]× [Uτ (x)− u(y)]2 dπ.

Since φ(·) is concave, φ′′(·) is negative. We are interested in situations where options x and y are not the
same, i.e., Uτ (x) 6= u(y) for some τ ∈ T . Together we have φ′′ [λUτ (x) + (1− λ)u(y)]×[Uτ (x)− u(y)]2 ≤ 0,

and the inequality is strict for some τ ∈ T . Consequently, d2V [λx+(1−λy)]

dλ2 =
∫

T
φ′′ [λUτ (x) + (1− λ)u(y)]×

[Uτ (x)− u(y)]2 dπ < 0. This ensures we are indeed seeking for the maximum.
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this is the case, we can use the Taylor expansion at y and obtain

φ′ [u(y) + λ∆τ ] = φ′(u(y)) + φ′′(u(y))λ∆τ +O (λ∆τ ) ≈ φ′(u(y)) + φ′′(u(y))λ∆τ ,

where O (λ∆τ ) is the sum of the terms that have λ∆τ with a power of two or higher. The

above first order condition can be written as

dV [λx+(1−λ)y]
dλ =

∫

T
φ′ [u(y) + λ∆τ ] ∆τdπ,

≈
∫

T
[φ′(u(y)) + φ′′(u(y))λ∆τ ] ∆τdπ

= Eπ [φ
′(u(y))∆τ ] + λEπ

[

φ′′(u(y))∆2
τ

]

= 0,

where Eπ(·) is the expectation operator with respect to the distribution π. Solving for λ,

we have:

λ∗ ≈ min







max







0,
1

−
φ′′[u(y)]
φ′[u(y)]

×
∆u

σ2
x −∆2

u







, 1







≈ min







max







0,
1

−
φ′′[u(y)]
φ′[u(y)]

×
∆u

σ2
x







, 1







,

where ∆u = Eπ [Uτ (x)] − u(y) is the (expected) utility difference of x and y, σ2
x =

Eπ [Uτ (x)− Eπ(Uτ (x))]
2 is the standard deviation of Uτ (x).
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A.2 The theoretical analysis based on Fudenberg et al. (2015)

Below, we perform a theoretical analysis of our experiment based on Fudenberg et al.

(2015) to demonstrate the links between randomization probabilities and decision confi-

dence.12 Fudenberg et al.’s (2015) original representation concerns final outcomes. To

apply their model to our experiments with lotteries, we write the individual’s preference

over randomizing between lottery x and sure payment y as:13

V (λ, x; 1− λ, y) = λU(x)− c(λ) + (1− λ)u(y)− c(1− λ),

where U(x) is the expected utility of the lottery x and c(λ) is a weak cost function with finite

steepness (the first order derivative of the cost function at the limit of 0 is not infinite).

Using the weak cost function allows the model to accommodate zero choice probability

that is present in our experiment. The cost function captures the implementation costs

of making the desired choice, such as time and cognitive resources. In the Fudenberg

et al.’s (2015) main representation, the cost function is independent of the option and the

choice set. In an earlier version of their paper (Fudenberg et al., 2014), they proposed

two extensions (item-invariant and menu-invariant APU) in which the cost function may

depend on the preference uncertainty over options or the choice problem. We consider

these two extensions to examine the effects of our treatments (increasing the complexity

of the lottery or increasing subjects’ experience with the lottery) on the cost function.

When c(λ) is strictly convex, there exists an optimal randomization probability λ∗ which

maximizes the individual’s utility, as defined by the equation c′(λ∗)− c′(1− λ∗) = U(x)−

u(y), where c′(λ∗) − c′(1 − λ∗) measures the convexity of the cost function c′′(·). While

12Cerreia-Vioglio et al. (2019) predict preference for randomization when the individual faces non-
degenerated lotteries. However, when one of the two options is a sure payment, as in our experiment,
the individual has no preference for randomization. This follows directly from the axiom of Weak Stochas-
tic Certainty Effect.

13Cerreia-Vioglio et al. (2019, Footnote 22, p.2437) proposed an alternative approach in which the
individual integrates the lottery and the sure payment into a compound lottery, applies the reduction of
the compound lottery, and implements the cost function to each outcome. We illustrate their approach and
point out the differences between the two below. In particular, that approach predicts that the optimal
randomization probability for the pair of the lottery and the sure payment that the individual is indifferent
with depends on the number of outcomes in the lottery.
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the exact value of the optimal randomization probability depends on the cost function,

some observations are in order. First, the optimal randomization probability approaches

0.5 when U(x) is close to u(y). Second, for the same utility difference between the two

options, the individual chooses a randomization closer to 0.5 when the cost function is

more convex. More generally, as Proposition 3 in Fudenberg et al. (2015) demonstrates,

the individual becomes less selective and randomizes more when c′′(·) increases. Third,

simple calculations show that the largest sure payment that the individual chooses λ∗ = 0.9

(the lower bound) is u(y) = U(x)−∆, and the smallest sure payment she chooses λ∗ = 0.1

(the upper bound) is u(ȳ) = U(x) + ∆, where ∆ = c′(0.9) − c′(0.1) > 0.14 Thus, the

individual randomizes over a larger range of sure payments when the cost function is more

convex (u(ȳ)− u(y)) = 2∆). According to Fudenberg et al. (2015), the cost function may

depend, among other things, on the individual’s perceived preference uncertainty over the

options and her attitude towards uncertainty. Using this interpretation of the cost function,

the three properties of randomization probabilities correspond to the three properties of

decision confidence we outlined in the main body of the paper. It is in this sense that we

say randomization probabilities measure decision confidence.

If we are willing to make more specific assumptions about the cost function, we can obtain

a direct solution of the optimal randomization probability. For example, when the cost

function takes the form of c(λ) = ηλlog(λ), we can derive the familiar logit/logistic choice

rule:

λ∗ =
eU(x)/η

eU(x)/η + eu(y)/η
. (3)

As shown by Holman and Marley, the parameter η can be linked to the variance of the

i.i.d. Gumbel preference shocks in a random utility representation (Luce and Suppes, 1965,

p.338). In the context of our study, η can be interpreted as the individual’s preference

uncertainty about lottery x. Figure A.2 depicts the relationship between the optimal

randomization probability λ∗ and the sure payments y. As we can see, randomization

probabilities decrease with the value of y and approach 0.5 when the two options have

14The values of 0.1 and 0.9 were chosen to accommodate experimental data.
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Figure A.2: The relationship between the optimal randomization probability λ∗ and the
sure payments y. The figure is produced according to the logit/logistic choice rule λ∗ =

eU(x)/η

eU(x)/η+eu(y)/η
. The parameter η captures the preference uncertainty over lottery x, with a

larger η implying more convexity in the cost function and thus more preference uncertainty.

similar utilities. Furthermore, when η increases, the cost function becomes more convex

and the individual’s randomization probabilities become more compressed (the dashed line)

and closer to 0.5.

Individuals may perceive more preference uncertainty over the complex lottery than over

the simple lottery (∆c > ∆s, where c denotes the complex lottery and s denotes the simple

lottery), and experience with the lottery may reduce preference uncertainty about the

lottery (∆e < ∆n, where e denotes experience and n denotes no experience). In light of our

analysis above, we expect that subjects’ randomization probabilities are closer to 0.5 and

that they randomize strictly over a wider range of sure payments when they make decisions

about the complex lottery than when they make decisions about the simple lottery. In

addition, compared to the no-experience treatment, randomization probabilities of subjects

in the experience treatments are stretched away from 0.5, and subjects randomize strictly

over a smaller range of sure payments. Figure A.3 demonstrates the effects.

These hypotheses are the same as Appendix A.1.
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(a) Simple versus complex (b) No experience versus full experience

Figure A.3: The effects of complexity and experience on the lower bound, the upper bound,
and the size of randomization range.

Cerreia-Vioglio et al. (2019)’s approach

Cerreia-Vioglio et al. (2019, Footnote 22, p.2437) proposed an alternative approach to apply

Fudenberg et al.’s (2015) model to lotteries. We illustrate their approach with the following

example. Consider an individual who faces a choice between a sure payment y and a lottery

x = 90.51 which pays 9 or 1 with equal likelihood. Cerreia-Vioglio et al. (2019) treat the

randomized choice as a compound lottery. With the reduction of the compound lottery,

the randomization of (λ, x; 1 − λ, y) becomes 90.5λ10.5λy, and the individual’ preference

over 90.5λ10.5λy is

V (λ, x; 1− λ, y) = 0.5λu(9)− c(0.5λ) + 0.5λu(1)− c(0.5λ) + (1− λ)u(y)− c(1− λ)

= λU(x)− 2c(0.5λ) + (1− λ)u(y)− c(1− λ)

This formulation predicts an optimal randomization probability of 2/3 when the expected

utility of the lottery is close to the utility of the sure payment (c′(0.5λ) − c′(1 − λ) =

U(x) − u(y) = 0 ⇒ λ = 2/3). The intuition is that the above formulation rewards the

individual for randomizing over more outcomes, and thus the individual assigns a higher

randomization probability to lotteries with more outcomes. It can be shown that, when the

lottery x has four outcomes which are equally likely, the optimal randomization probability

is λ = 4/5 when U(x) = u(y). These predictions are different from those obtained based

on Fudenberg et al. (2015)’s approach.
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A.3 The asymmetric treatment effects on the lower and upper bound

of randomization range

We illustrate the asymmetric treatment effects on the lower bound and the upper bound of

randomization range in this section. Recall that y denotes the largest sure payment that

the individual chooses λ∗ < 1 (the lower bound) and ȳ denotes the smallest sure payment

she chooses λ∗ > 0 (the upper bound).

In the model extended from Cerreia-Vioglio et al. (2015) and Klibanoff et al. (2005),

u(ȳx) = Eπ [Uτ (x)] and y = Eπ [Uτ (x)]−
−φ′′[u(y)]
φ′[u(y)] σ2

x. The changes in the upper and lower

bounds depend on both Eπ [Uτ (x)] and σ2
x. We observe that subjects on average valued

the complex lottery higher than the simple lottery (mean CE of 4.68 for the simple lottery

versus 4.98 for the complex lottery in Experiment 2, p<0.01). Since the complex lottery

has a larger σ2
x and the average valuation of the lottery is Eπ [Uτ (x)] −

−φ′′(Eπ [Uτ (x)])
2 σ2

x,

this implies an increase in Eπ [Uτ (x)] for the complex lottery. The increase in Eπ [Uτ (x)]

increases both the upper bound and the lower bound, while the increase in σ2
x decreases

only the lower bound. Together, they imply that the treatment effect on the upper bound

could be larger than on the lower bound. Similarly, we observe an increase, albeit small,

in the valuation of the complex lottery in the full-experience treatment (mean CE of 4.98

in the no-experience treatment versus 5.07 in the full-experience treatment in Experiment

2, p>0.10). The increase in Eπ [Uτ (x)] increases both the upper and lower bounds, and

the decrease in σ2
x increases the lower bound further. Consequently, the treatment effect

could be stronger on the lower bound than on the upper bound.

The analysis based on Fudenberg et al. (2015) follows similarly. In Fudenberg et al. (2015),

ȳ = EU(x) + ∆, y = EU(x)−∆. The changes in the upper and lower bounds depend on

both EU(x) and ∆. Since the average valuation of the lottery is EU(x), the higher average

valuation of the complex lottery implies higher EU(x) of the complex lottery compared to

the simple lottery. Higher EU(x) and ∆ imply a stronger treatment effect on the upper

bound than on the lower bound. Likewise, an increase in experience level is associated

with an increase in EU(x) and a decrease in ∆, which jointly imply a stronger treatment

effect on the lower bound than the upper bound.
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Figure B.1: The mean randomization probabilities at each confidence statement. The
bars show the average minimum and maximum values. The values show the aggregate
values for the baseline treatment – simple lottery, no-experience – in Experiment 1 (left)
and Experiment 2 (right). The mean, minimum, and maximum values for the separate
treatments in each of the experiments can be found in Table B.1 in Appendix B.
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Figure B.2: The mean self-reported decision confidence and randomization probabilities for
each value of y obtained from decisions about the simple lottery (solid line) and decisions
about the complex lottery (dashed line) in Experiment 1. Wilcoxon signed-rank tests were
performed to test the difference between the simple lottery and the complex lottery for
each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.3: The mean self-reported decision confidence and randomization probabilities
for each value of y in the no-experience treatment (solid line) and the partial-experience
treatment (dashed line) in Experiment 1. Wilcoxon rank-sum tests were performed to test
the difference between the partial-experience treatment and no-experience treatment for
each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.4: The mean self-reported decision confidence and randomization probabilities
for each value of y in the no-experience treatment (solid line) and the full-experience
treatment (dashed line) in Experiment 2. Wilcoxon rank-sum tests were performed to
test the difference between full-experience treatment and no-experience treatment for each
value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Treatment Lottery Surely x Probably x Unsure Probably y Surely y

Experiment 1

No-experience

Simple

Mean
0.93 0.73 0.51 0.33 0.10

(0.011) (0.016) (0.023) (0.018) (0.010)

Min
0.83 0.61 0.47 0.21 0.01

(0.027) (0.022) (0.027) (0.019) (0.005)

Max
1 0.83 0.56 0.47 0.25

(0.001) (0.015) (0.025) (0.026) (0.025)

Complex

Mean
0.92 0.72 0.56 0.35 0.09

(0.012) (0.015) (0.015) (0.017) (0.011)

Min
0.82 0.62 0.49 0.24 0.01

(0.024) (0.019) (0.023) (0.020) (0.005)

Max
0.99 0.82 0.63 0.46 0.22

(0.006) (0.016) (0.020) (0.018) (0.026)

Partial-experience

Simple

Mean
0.90 0.68 0.52 0.33 0.10

(0.018) (0.017) (0.021) (0.018) (0.012)

Min
0.79 0.57 0.45 0.24 0.01

(0.0129) (0.021) (0.022) (0.021) (0.008)

Max
0.98 0.79 0.59 0.42 0.24

(0.013) (0.019) (0.026) (0.021) (0.027)

Complex

Mean
0.89 0.69 0.51 0.31 0.11

(0.015) (0.016) (0.023) (0.016) (0.013)

Min
0.77 0.55 0.44 0.21 0.01

(0.029) (0.023) (0.027) (0.018) (0.008)

Max
0.98 0.82 0.58 0.42 0.22

(0.009) (0.016) (0.028) (0.022) (0.024)

Experiment 2

No-experience

Simple

Mean
0.94 0.75 0.46 0.27 0.06

(0.010) (0.018) (0.023) (0.020) (0.008)

Min
0.85 0.62 0.34 0.17 0

(0.022) (0.027) (0.026) (0.020) (0.001)

Max
0.99 0.86 0.56 0.39 0.16

(0.007) (0.017) (0.029) (0.026) (0.022)

Complex

Mean
0.95 0.73 0.46 0.22 0.05

(0.008) (0.019) (0.025) (0.017) (0.009)

Min
0.88 0.59 0.34 0.13 0

(0.018) (0.028) (0.027) (0.015) (0)

Max
1 0.86 0.58 0.34 0.13

(0) (0.017) (0.029) (0.026) (0.021)

Full-experience

Simple

Mean
0.95 0.79 0.51 0.22 0.06

(0.008) (0.017) (0.026) (0.019) (0.010)

Min
0.87 0.68 0.39 0.12 0.01

(0.022) (0.026) (0.031) (0.018) (0.007)

Max
1 0.89 0.62 0.34 0.16

(0.002) (0.015) (0.031) (0.026) (0.023)

Complex

Mean
0.95 0.78 0.50 0.24 0.51

(0.009) (0.018) (0.025) (0.019) (0.010)

Min
0.87 0.65 0.39 0.15 0.01

(0.022) (0.027) (0.030) (0.019) (0.007)

Max
1 0.89 0.62 0.36 0.13

(0.001) (0.015) (0.028) (0.026) (0.021)

Table B.1: The mean, minimum, and maximum randomization probabilities that corre-
spond to each confidence statement for all treatments in the two experiments. The values
in parentheses are the standard errors of the mean.
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Lottery Treatment
Correlation between randomization probabilities and

confidence statements prob. confidence
Experiment 1 Experiment 2 Experiment 2

Simple

No experience
10th percentile 0.60 0.71 0.73

median 0.91 0.89 0.90
90th percentile 0.97 0.96 0.98

Experience
10th percentile 0.60 0.78 0.77

median 0.92 0.90 0.91
90th percentile 0.97 0.97 0.99

Complex

No experience
10th percentile 0.69 0.67 0.64

median 0.90 0.88 0.89
90th percentile 0.97 0.96 0.97

Experience
10th percentile 0.62 0.69 0.77

median 0.88 0.90 0.90
90th percentile 0.96 0.97 0.97

Table B.2: Nonparametric Spearman correlation at the 10th percentile, median, and 90th
percentile in the two experiments for each lottery and experience treatment group.

Self-reported probabilistic confidence
100% x 90% x 80% x 70% x 60% x 40% x 30% x 20% x 10% x 0% x

0% y 10% y 20% y 30% y 40% y 60% y 70% y 80% y 90% y 100% y

Simple lottery, no-experience treatment
Rand. 0.98 0.86 0.82 0.73 0.58 0.36 0.23 0.18 0.09 0.02
prob. (0.008) (0.021) (0.022) (0.022) (0.027) (0.024) (0.023) (0.022) (0.018) (0.004)

Complex lottery, no-experience treatment
Rand. 0.97 0.85 0.76 0.73 0.59 0.33 0.21 0.18 0.08 0.04
prob. (0.007) (0.024) (0.026) (0.024) (0.025) (0.024) (0.021) (0.024) (0.016) (0.012)

Simple lottery, full-experience treatment
Rand. 0.97 0.92 0.85 0.76 0.63 0.37 0.23 0.16 0.07 0.03
prob. (0.007) (0.016) (0.024) (0.025) (0.026) (0.025) (0.024) (0.020) (0.015) (0.009)

Complex lottery, full-experience treatment
Rand. 0.98 0.92 0.81 0.71 0.62 0.35 0.20 0.16 0.06 0.02
prob. (0.007) (0.017) (0.025) (0.028) (0.027) (0.023) (0.024) (0.027) (0.015) (0.008)

Table B.3: The mean randomization probabilities at each self-reported probabilistic confi-
dence level in Experiment 2 for each lottery and experience treatment group. The standard
errors of the mean are reported in the parentheses. We compute the mean randomization
probability at each level of probabilistic confidence for each subject before taking its mean
across subjects.
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Lottery
Randomization Confidence Probabilistic
probabilities statements confidence

Experiment 1

Lower bound
Simple 2.99 2.95

Complex 2.84 * 2.94

Upper bound
Simple 6.61 6.30

Complex 6.90 *** 6.56 **

Range size
Simple 3.63 3.36

Complex 4.06 *** 3.62

Experiment 2

Lower bound
Simple 3.16 3.03 2.63

Complex 3.19 2.99 2.59

Upper bound
Simple 6.18 6.19 7.00

Complex 6.38 *** 6.57 *** 7.21 ***

Range size
Simple 3.03 3.15 4.37

Complex 3.19 * 3.58 *** 4.63 ***

Table B.4: Comparisons of the lower bound, the upper bound, and the range size be-
tween the simple lottery and complex lottery in the no-experience treatment in the two
experiments. The lower bound, the upper bound, and the range sizes are defined by ran-
domization probabilities (0.10 ≤ λ ≤ 0.90), confidence statements (“Probably x”, “Unsure”,
“Probably y”) and probabilistic confidence (between “90% x, 10% y” and “10% x, 90% y”).
Wilcoxon signed-rank tests were performed to test the difference between the simple lottery
and the complex lottery for each measure: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Experience
Randomization Confidence Probabilistic
probabilities statements confidence

Experiment 1

Simple

Lower bound
No 2.99 2.95

Partial 2.75 2.80

Upper bound
No 6.61 6.30

Partial 6.60 6.25

Range size
No 3.63 3.36

Partial 3.85 3.45

Complex

Lower bound
No 2.84 2.94

Partial 2.74 3.03

Upper bound
No 6.90 6.56

Partial 6.90 6.52

Range size
No 4.06 3.62

Partial 4.16 3.49

Experiment 2

Simple

Lower bound
No 3.16 3.03 2.63
Full 3.44 ** 3.26 * 2.71

Upper bound
No 6.18 6.19 7.00
Full 6.18 6.30 7.10

Range size
No 3.03 3.15 4.37
Full 2.74 3.04 4.38

Complex

Lower bound
No 3.19 2.99 2.59
Full 3.60 *** 3.29 ** 2.73 *

Upper bound
No 6.38 6.57 7.21
Full 6.27 6.45 7.31

Range size
No 3.19 3.58 4.63
Full 2.67 ** 3.16 ** 4.58

Table B.5: Comparisons of the lower bound, the upper bound, and the range size be-
tween the no-experience treatment and experience treatments by lottery type in the two
experiments. The lower bound, the upper bound, and the range sizes are defined by ran-
domization probabilities (0.10 ≤ λ ≤ 0.90), confidence statements (“Probably x”, “Unsure”,
“Probably y”) and probabilistic confidence (between “90% x, 10% y” and “10% x, 90% y”).
Wilcoxon rank-sum tests were performed to test the difference between experience treat-
ment and no-experience treatment for each measure: * p < 0.10, ** p < 0.05, *** p <
0.01.

52



B.1 Other interpretations of randomization probabilities

We have interpreted randomization behavior as a lack of decision confidence in the face of

preference uncertainty. Our theoretical analysis provides an explicit link between random-

ization probabilities and decision confidence, and our experimental results show a system-

atic relationship between randomization probabilities and two measures of self-reported

decision confidence. Like Agranov and Ortoleva (2020), we also found that many sub-

jects explicitly mentioned unsureness, complexity, difficulty, and hedging as reasons for

randomization in the post-experiment questionnaire (for more details, see online Appendix

C.2). Nevertheless, the subjects may randomize for reasons other than decision confidence.

While it is not possible to eliminate all alternative interpretations, we show in this section

that indifference, random errors, or utility difference alone cannot be the driving force

behind subjects’ randomization behavior.

First, we rule out the explanation that indifference drives randomization because random-

ization from indifference could occur at most once, but Table B.6 shows that the majority

of the subjects randomized at least two times. Second, randomization is also unlikely due

to random errors because, as Panel (c) in Figure 3 shows, despite the random sequence of

y, the randomization probabilities of choosing x decreased monotonically with the value of

y. This result is consistent with Equation 1 and Figure A.1. The systematic response of

randomization probabilities to our manipulation of decision confidence also suggests that

subjects randomize deliberately.

A third explanation is that randomization captures only utility differences instead of de-

cision confidence. Butler et al. (2014) call this the strength of preferences: “the relative

degree of difference between the two options as perceived by the decision maker” (But-

ler et al., 2014, p.538). For example, we can write this explicitly as a Fechnerian utility

model p = φ [U(L)− u(y)], where φ : R ⇒ [0, 1] is a cumulative distribution function

with φ(0) = 0.5 (Luce and Suppes, 1965, p.334). The lower bound and the upper bound of

randomization are then u(y) = U(L)−φ−1(0.90) and u(ȳ) = U(L)−φ−1(0.10). If random-

ization probabilities depend only on utility differences, when U(L) increases (comparing the

simple lottery to the complex lottery or the no-experience treatment to the full-experience
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Randomization The number of subjects who chose randomization
Interval 0 times 1 time 2 times or more 3 times or more

Experiment 1: Simple lottery, no-experience

0 < λ < 1 2 6 97 95

0.10 ≤ λ ≤ 0.90 3 6 96 93

0.40 ≤ λ ≤ 0.60 22 26 57 35

Experiment 1: Complex lottery, no-experience

0 < λ < 1 4 1 100 98

0.10 ≤ λ ≤ 0.90 4 2 99 98

0.40 ≤ λ ≤ 0.60 21 15 69 46

Experiment 1: Simple lottery, partial-experience

0 < λ < 1 6 1 93 89

0.10 ≤ λ ≤ 0.90 6 1 93 88

0.40 ≤ λ ≤ 0.60 13 24 63 38

Experiment 1: Complex lottery, partial-experience

0 < λ < 1 3 5 92 89

0.10 ≤ λ ≤ 0.90 3 7 90 89

0.40 ≤ λ ≤ 0.60 14 19 67 46

Experiment 2: Simple lottery, no-experience

0 < λ < 1 25 8 112 106

0.10 ≤ λ ≤ 0.90 26 7 112 105

0.40 ≤ λ ≤ 0.60 42 24 79 44

Experiment 2: Complex lottery, no-experience

0 < λ < 1 26 6 113 100

0.10 ≤ λ ≤ 0.90 26 7 112 98

0.40 ≤ λ ≤ 0.60 37 38 70 42

Experiment 2: Simple lottery, full-experience

0 < λ < 1 32 11 105 98

0.10 ≤ λ ≤ 0.90 34 11 103 96

0.40 ≤ λ ≤ 0.60 55 36 57 32

Experiment 2: Complex lottery, full-experience

0 < λ < 1 35 11 102 91

0.10 ≤ λ ≤ 0.90 35 12 101 90

0.40 ≤ λ ≤ 0.60 56 25 67 38

Table B.6: The distribution of subjects who chose 0 < λ < 1, 0.10 ≤ λ ≤ 0.90, and
0.40 ≤ λ < 0.60 zero times, one time, two times or more, and three times or more across
treatments in the two experiments.
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treatment), (1) the randomization probability will increase for each value of sure payment;

and (2) the lower bound and the upper bound of randomization will increase. Our results

clearly reject the first prediction, and the results were mixed for the second. Subjects’ ran-

domization probabilities did not shift horizontally but were instead compressed towards

0.5 when they faced the complex lottery compared to the simple lottery and stretched

away from 0.5 in the full-experience treatment compared to the no-experience treatment.

In addition, while ȳ for the complex lottery was significantly higher than that for the

simple lottery in both experiments (Experiment 1: 6.90 vs 6.61, Wilcoxon signed-rank

test, p < 0.01; Experiment 2: 6.38 vs 6.18, Wilcoxon signed-rank test p < 0.01), y for

the complex lottery was significantly lower than that for the simple lottery in Experiment

1 at 10% significance level (2.84 vs 2.99, Wilcoxon signed-rank test p < 0.10), and not

significantly different in Experiment 2 (3.19 vs 3.16, Wilcoxon signed-rank test p = 0.646).

Importantly, although the difference in the mean valuation of the lottery with or without

experience was similar to that of the complex lottery versus the simple lottery, we observe

the opposite effects when we compare the full-experience treatment with the no-experience

treatment for decisions about the same lottery. We find that y were significantly lower for

subjects in the full-experience treatment (Simple lottery: 3.16 vs 3.44, Wilcoxon rank-sum

test p < 0.05; Complex lottery: 3.19 vs 3.60, Wilcoxon rank-sum test p < 0.01) but not

for ȳ (Simple lottery: 6.18 vs 6.18, Wilcoxon rank-sum test p = 0.789; Complex lottery:

6.27 vs 6.38, Wilcoxon rank-sum test p = 0.369). In general, randomization probabilities

were larger at low sure payments but smaller at high sure payments comparing the full-

experience treatment with the no-experience treatment. These results highlight the central

role of preference uncertainty in decision confidence.

Interpretability of self-reported decision confidence measures vs randomization

probabilities

There may be concern that self-reported decision confidence measures are easier to interpret

than randomization probabilities because they ask about decision confidence explicitly.

Below we show that this perception is not warranted: self-reported decision confidence

measures are equally, if not more, difficult to interpret. We analyze the subjects’ responses

in the post-experiment questionnaire administered at the end of each part of Experiment

55



2. We asked the subjects which confidence statement best describes their probabilistic

confidence p% in choosing x and 100-p% in choosing y for values p = 60, 70, 80, 90, 100.

In a separate session, we asked the subjects to state the minimum level of probabilistic

confidence for “Surely”, and the minimum and maximum levels of probabilistic confidence

for “Probably” and “Unsure” on a scale from 0% to 100%.

Probabilistic confidence associated with each confidence statement
Levels Median 10th 30th 70th 90th SD
Surely (min) 85% 70% 80% 90% 100% 16.31%
Probably (max) 80% 70% 80% 90% 99% 11.10%
Probably (min) 55% 25% 50% 60% 65% 16.59%
Unsure (max) 54% 25% 50% 60% 64% 17.58%
Unsure (min) 35% 0% 0% 40% 50% 21.12%

Confidence statements associated with each probabilistic confidence level
Levels Median 10th 30th 70th 90th SD
100% Surely x Surely x Surely x Surely x Surely x 0.17
90% Surely x Probably x Surely x Surely x Surely x 0.54
80% Probably x Probably x Probably x Surely x Surely x 0.54
70% Probably x Probably x Probably x Probably x Probably x 0.34
60% Unsure Unsure Unsure Surely x Surely x 0.54

Table B.7: The median, 10th, 30th, 70th, 90th percentile, and standard deviation of
probabilistic confidence associated with each confidence statement and the median, 10th,
30th, 70th, 90th percentile, and standard deviation of confidence statements associated
with each probabilistic confidence level. Consistent with Result 1, we code confidence
statements of surely x, probably x, unsure, probably y, and surely y as 5, 4, 3, 2, and 1
respectively. Standard deviations are calculated accordingly.

Table B.7 summarizes the subjects’ responses to the two questions. The top panel shows

the range of probabilistic confidence levels associated with each confidence statement. Al-

though the first column shows that the median probabilistic confidence thresholds are

well-ordered (the median maximum probabilistic confidence of a lower ordered statement

was always smaller than the median minimum probabilistic confidence of a higher ordered

statement), the standard deviations reported in the last column as well as minimum and

maximum probabilistic confidence assigned to each confidence statement at different per-

centile levels show the presence of substantial heterogeneity in the probabilistic confidence

associated with each confidence statement.

Despite the explicit linkage to probabilistic confidence in our experiment, there appear to

be two interpretations of the confidence statement “Unsure”. While the majority of the

subjects (172) reported a probabilistic confidence level higher than 50% for the maximum of

56



“Unsure” and higher than 0% for the minimum of “Unsure”, as we expected, there exist also

a substantial number of subjects (84) who reported a probabilistic confidence level lower

than 50% for the maximum of “Unsure” (and close 0% for the minimum of “Unsure”). To

clearly demonstrate the heterogeneity in the association between probabilistic confidence

and confidence statements, we performed the analysis for these two groups separately. The

first group was selected on the criterion that the maximum level of probabilistic confidence

for “Unsure” was equal or larger than 50% and the minimum level of probabilistic confidence

for “Unsure” was larger than 0%. For the second group, the criterion was that the maximum

level of probabilistic confidence for “Unsure” was smaller than 50%. As we can see from

Table B.8, in both groups there remained substantial heterogeneity in the association

between probabilistic confidence and confidence statements. For example, the maximum

level of probabilistic confidence for the statement “Probably” ranged from 75% to 99% in

the first group and from 60% to 95% in the second group.

Probabilistic confidence associated with each confidence statement
For subjects: Unsure (max) ≥ 50% and Unsure(min) > 0%

Levels Median 10th 30th 70th 90th S.D
Surely (min) 85% 75% 80% 90% 100% 14.80%
Probably (max) 85% 75% 80% 90% 99% 9.13%
Probably (min) 60% 41% 55% 60% 70% 13.26%
Unsure (max) 60% 50% 55% 60% 65% 9.62%
Unsure (min) 40% 30% 40% 45% 50% 10.46%

For subjects: Unsure (max) < 50%
Levels Median 10th 30th 70th 90th S.D
Surely (min) 80% 50.3% 75% 85.5% 99% 20.22%
Probably (max) 80% 60% 75% 84% 95% 14.01%
Probably (min) 40% 20% 30% 50% 60% 17.57%
Unsure (max) 30% 10% 20% 35.4% 40% 12.94%
Unsure (min) 0% 0% 0% 0% 10% 8.46%

Table B.8: The median, 10th, 30th, 70th, 90th percentile, and standard deviation of
probabilistic confidence associated with each confidence statement for subjects who fit the
criteria specified in the table.

B.2 Differences between randomization probabilities and self-reported

decision confidence

Correspondence between decision confidence measures and binary choices
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Intuitively, when the subjects report lower confidence in choosing an option, they would be

less likely to choose that option. When decision confidence is linked to choices perfectly,

we would expect that reported decision confidence of p% in choosing option x corresponds

to option x being chosen in p% of the binary choices.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Randomization probabilities / probabilistic confidence

P
(l

o
tt

er
y

 x
)

Figure B.5: The fitted line of the multilevel logistic regressions with the binary choice as the
dependent variable and either the randomization probabilities or probabilistic confidence
as the explanatory variable for the simple lottery in the baseline no-experience treatment.
The dotted line represents perfect correspondence. The solid line is for randomization
probabilities, and the dashed line is for probabilistic confidence.

Figure 5 suggests that both randomization probabilities and probabilistic confidence con-

tain information about how the subjects made their binary choices. In addition, random-

ization probabilities appear to correspond more closely to binary choices, as suggested

by the Fisher’s exact tests in the figure. Multilevel logistic regression models with ran-

dom intercepts for each participant to estimate the association show similar results. The

regression results are presented in Table B.9 and are illustrated in Figure B.5.

Relative sensitivity of randomization probabilities

Apart from its close correspondence with binary choices, we also find that randomization

probabilities were more sensitive to variations in sure payments, including sure payments

around the switching choices. Figure B.6 plots probabilistic confidence and randomization

probabilities against sure payments y for each lottery and experience treatment. In all
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Randomization Probabilistic
probabilities confidence

Fixed Effects Log odds

Intercept −3.648∗∗∗ −5.212∗∗∗

(0.214) (0.296)
Decision confidence 7.187∗∗∗ 9.987∗∗∗

(0.374) (0.535)

Random Effects

Subject intercept 0.797 0.658
(0.893) (0.811)

Table B.9: Results of the two multilevel logistic regressions with the binary choice as the
dependent variable and either the randomization probabilities or probabilistic confidence
as the explanatory variable. Including random-intercept at the subject level. The stars *
p < 0.10, ** p < 0.05, and *** p < 0.01. The values in the parentheses are the standard
errors of the estimates.

four treatments, we find that probabilistic confidence was more compressed towards 50:50

compared to randomization probabilities. The gaps between probabilistic confidence and

randomization probabilities were statistically significant for most of the sure payments,

except in the simple lottery, no-experience treatment. We look at sure payments around

the mean certainty equivalent of the lottery (between 4.5 and 5.07 euros for all lotteries

and treatments), and we find a smaller difference in mean probabilistic confidence than

difference in mean randomization probabilities between sure payments of 4.0 and 5.5 euros

across all treatments. This was statistically significant for the full-experience treatment

(Full-experience, simple lottery, 0.36 vs 0.48; Full-experience, complex lottery, 0.30 vs

0.34, Wilcoxon signed-rank tests: p < 0.01). This means that we are more likely to pick

up changes in decision confidence around the certainty equivalent using randomization

probabilities as the proxy for decision confidence compared to probabilistic confidence.

One plausible explanation for why probabilistic confidence is less sensitive to changes in

sure payment values is that there is only incentivizing effect on probabilistic confidence

at the threshold of 50:50. In comparison, all values of randomization probabilities are

incentivized, which may encourage subjects to reveal their precise decision confidence.
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(a) No-experience, simple lottery
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(b) Experience, simple lottery
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(c) No-experience, complex lottery
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(d) Experience, complex lottery

Figure B.6: The randomization probabilities, λ, (solid line) are more sensitive (steeper)
around the switching choices than probabilistic confidence (dashed line). This implies with
the same change in y, randomization probabilities change more than subjects’ probabilistic
confidence levels, making randomization probabilities better at capturing the small changes
in decision confidence.
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C Online appendix: Additional results

C.1 Order effects in experiment 2

To address the issue of experimenter demand effects due to the within-subject design, we

elicited the experimental tasks in Experiment 2 with at least one week apart and in different

orders. In each week, the subjects had to make only one type of decisions. The subjects

were not informed about the order of their decisions; during each session, the subjects were

only informed about the set of decisions they had to make for that session. Having the

subjects make separate decisions each week reduces the likelihood that later decisions are

made to cohere with earlier decisions since the subjects would have to remember many

decisions in the earlier week(s) to do so.

As a further safeguard against experimenter demand effects, we randomized the order in

which the subjects completed the three decisions. To select the orders, we made sure

that there was at least one order in which each of the three measures was elicited first,

and, when possible, subjects did not have to report probabilistic confidence and random-

ization consecutively since the two measures bear close resemblance. We ended up with

three orders: Order 1) binary choices and confidence statements → randomized choices

→ probabilistic confidence, Order 2) randomized choices → binary choices and confidence

statements → probabilistic confidence, Order 3) probabilistic confidence → binary choices

and confidence statements → randomized choices.

The main concern of order effects is whether the subjects’ later decisions were affected by

their earlier decisions. In particular, did the subjects randomize differently if they had to

make randomization choices after confidence statements or probabilistic confidence because

they were induced to think about decision confidence? To examine this possibility, we

compare the proportion of decisions in which the subjects randomized when the randomized

choices were made first versus when randomized choices were made after they completed

other decision confidence measures.

Figure C.1 reports the distribution of confidence statements, randomization probabilities
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(a) Confidence statements

(b) Probabilistic confidence

(c) Randomization probabilities

Figure C.1: The distribution of confidence statements (a), probabilistic confidence (b),
and randomization probabilities (c) in each decision order. The three decision orders are:
Order 1) binary choices and confidence statements → randomized choices → probabilistic
confidence, Order 2) randomized choices → binary choices and confidence statements →

probabilistic confidence, Order 3) probabilistic confidence → binary choices and confidence
statements → randomized choices.

62



and probabilistic confidence across subjects for each order. Indeed, the subjects chose not

to randomize in more decisions when randomization probabilities were asked first rather

than later (Order 2: 65.8% of decisions with no randomization; Order 1 and 3: 57.0% of

decisions with no randomization; Z-test of proportions: p < 0.01). Interestingly, we observe

similar order effects for confidence statements in the sense that the subjects reported full

confidence in more decisions (chose "Surely x" or "Surely y") when they reported their

confidence statements first than later (Order 1: 51.0% of decisions with full confidence;

Order 2 and 3: 46.9% of decisions with full confidence; Z-test of proportions: p < 0.01).

However, we see the opposite effect for probabilistic confidence. The subjects had full

confidence in fewer decisions when they reported their probabilistic confidence first rather

than later (Order 3: 31.1% of decisions with full confidence; Order 1 and 2: 35.9% of

decisions with full confidence; Z-test of proportions: p < 0.01). Figure C.2 illustrates

the above comparisons at each value of y. Consistent with these results, on average the

proportions of subjects who randomized or reported less than full confidence is lower when

randomized choices or confidence statements were elicited first, while the opposite is true for

probabilistic confidence. These differences were present across most sure payment values.

Taken together, while Figure C.1 and Figure C.2 reveal some differences in the subjects’

reports depending on whether a measure is elicited first or later, there is no consistent

pattern of order effects across the three measures.

While the above analyses reveal some order effects, these order effects are unlikely to be the

main driver of our results. Table C.1 shows the 10th percentile, the median, and the 90th

percentile nonparametric Spearman correlations between the randomization probabilities

and the self-reported decision confidence measures in each decision order for each lottery

and treatment. While there were some differences (e.g., the 10th percentile correlations are

sometimes lower in Order 2 than in other orders), median correlations were high (above

0.8) and comparable across all orders. This suggests that randomization probabilities were

not chosen simply to cohere with the earlier reported decision confidence, and the high

correlation between randomization probabilities and self-reported confidence measures is

not purely driven by order effects.

We further compared the correspondence between randomization probabilities and proba-
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(a) Confidence statements: Simple lottery
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(b) Confidence statements: Complex lottery
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(c) Probabilistic confidence: Simple lottery
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(d) Probabilistic confidence: Complex lottery
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(e) Randomization probabilities: Simple lottery
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(f) Randomization probabilities: Complex lottery

Figure C.2: Proportions of subjects who are not completely confident (confidence state-
ments "probably x/y" or "unsure", probabilistic confidence and randomization probabili-
ties between 0.1 and 0.9) for each value of y. The light (dark) gray bars represent the order
in which a measure is elicited first (later, respectively).
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bilistic confidence in absolute levels when they were asked in different orders. Table C.2

reports these comparisons. While the mean randomization probabilities were lower when

they were reported first (in Order 2) than later across a wide range of self-reported proba-

bilistic confidence, mean randomization probability for x remained broadly similar to the

probabilistic confidence for x in absolute terms for most values of probabilistic confidence.

These findings further support that our results are not mainly driven by order effects.

Finally, we show that randomization probabilities responded to the manipulations of de-

cision confidence in similar ways regardless of the order they were asked. In Tables C.3

and C.4 we report the differences in the size of the ranges of sure payments over which

the subjects indicated that they were not completely confident about their decision in the

lottery and experience treatments. While there were some differences in the size of the

treatment effects across different orders, the differences were mostly in the intended direc-

tion. Importantly, although we find that treatment effects on randomization probabilities

are weaker in Order 1, the sequence of decisions in Order 1 (binary choices and confidence

statements → randomized choices → probabilistic confidence) was similar to the decision

order in Experiment 1 (binary choices and confidence statements → randomized choices),

where we find strong support that randomization probabilities are good proxy for decision

confidence. Taken together, we conclude that order effects are not the main driver behind

our findings.
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Correlation between randomization probabilities
and confidence statements

Lottery Treatment Combined Order 1 Order 2 Order 3

Simple

No experience
10th percentile 0.71 0.73 0.71 0.70

Median 0.89 0.88 0.89 0.89
90th percentile 0.96 0.96 0.96 0.95

Experience
10th percentile 0.78 0.80 0.58 0.74

Median 0.90 0.90 0.89 0.93
90th percentile 0.97 0.97 0.96 0.97

Complex

No experience
10th percentile 0.67 0.73 0.57 0.72

Median 0.88 0.88 0.88 0.89
90th percentile 0.96 0.96 0.95 0.95

Experience
10th percentile 0.69 0.73 0.59 0.79

Median 0.90 0.90 0.87 0.92
90th percentile 0.97 0.97 0.97 0.96

Correlation between randomization probabilities
and probabilistic confidence

Lottery Treatment Combined Order 1 Order 2 Order 3

Simple

No experience
10th percentile 0.73 0.78 0.75 0.72

Median 0.90 0.94 0.87 0.90
90th percentile 0.98 0.99 0.96 0.98

Experience
10th percentile 0.77 0.79 0.77 0.81

Median 0.91 0.91 0.89 0.92
90th percentile 0.99 0.99 0.97 0.98

Complex

No experience
10th percentile 0.64 0.71 0.59 0.68

Median 0.89 0.90 0.89 0.89
90th percentile 0.97 0.99 0.97 0.97

Experience
10th percentile 0.77 0.80 0.68 0.81

Median 0.90 0.91 0.88 0.91
90th percentile 0.97 0.98 0.97 0.97

Table C.1: Nonparametric Spearman correlations by decision order across lottery and expe-
rience treatments at the 10th percentile, 50th percentile, and 90th percentile in Experiment
2. The three orders are: Order 1) binary choices and confidence statements → randomized
choices → probabilistic confidence, Order 2) randomized choices → binary choices and con-
fidence statements → probabilistic confidence, Order 3) probabilistic confidence → binary
choices and confidence statements → randomized choices.
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Self-reported probabilistic confidence
100% x 90% x 80% x 70% x 60% x 40% x 30% x 20% x 10% x 0% x

0% y 10% y 20% y 30% y 40% y 60% y 70% y 80% y 90% y 100% y

Combined
Rand. 0.97 0.89 0.83 0.74 0.60 0.36 0.23 0.17 0.08 0.02
prob. (0.005) (0.013) (0.016) (0.017) (0.019) (0.017) (0.017) (0.015) (0.012) (0.005)

Order 1
Rand. 0.97 0.89 0.83 0.73 0.64 0.37 0.28 0.18 0.12 0.02
prob. (0.012) (0.025) (0.024) (0.029) (0.031) (0.029) (0.032) (0.028) (0.026) (0.006)

Order 2
Rand. 0.98 0.86 0.83 0.72 0.54 0.31 0.16 0.15 0.05 0.02
prob. (0.005) (0.026) (0.032) (0.035) (0.040) (0.035) (0.027) (0.028) (0.014) (0.007)

Order 3
Rand. 0.97 0.91 0.83 0.78 0.62 0.39 0.25 0.17 0.08 0.02
prob. (0.010) (0.016) (0.029) (0.022) (0.028) (0.027) (0.026) (0.023) (0.019) (0.011)

Table C.2: The mean randomization probabilities at each self-reported probabilistic con-
fidence level in Experiment 2 in the baseline no-experience treatment for decisions about
the simple lottery on the aggregate and in each order separately. The standard errors of
the mean are reported in the parentheses.

Lottery Combined Order 1 Order 2 Order 3

Confidence Simple 3.15 2.96 2.77 3.68
Statements Complex 3.58*** 3.25 * 3.56*** 3.93

Probabilistic Simple 4.37 4.28 4.06 4.72
confidence Complex 4.63*** 4.34 4.61*** 4.93*

Randomization Simple 3.09 3.17 2.67 3.14
probabilities Complex 3.19* 3.09 2.89* 3.51**

Table C.3: Sizes of the ranges of sure payments over which subjects express that they are
not fully confident for each of the confidence measures. The three orders are: Order 1)
binary choices and confidence statements → randomized choices → probabilistic confidence,
Order 2) randomized choices → binary choices and confidence statements → probabilistic
confidence, Order 3) probabilistic confidence → binary choices and confidence statements
→ randomized choices. Wilcoxon signed-rank tests were performed to test the difference
between the simple lottery and the complex lottery: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Treatment Combined Order 1 Order 2 Order 3

Simple
No experience 3.15 2.96 2.77 3.68

Confidence Experience 3.04 2.84 2.92 3.35
Statements

Complex
No experience 3.58 3.25 3.56 3.93

Experience 3.16** 3.23 3.03* 3.23*

Simple
No experience 4.37 4.28 4.06 4.72

Probabilistic Experience 4.38 4.24 4.40 4.50
Confidence

Complex
No experience 4.63 4.34 4.61 4.93

Experience 4.58 4.53 4.50 4.70

Simple
No experience 3.03 3.17 2.67 3.14

Randomization Experience 2.74 3.00 2.34 2.93
Probabilities

Complex
No experience 3.19 3.09 2.89 3.51

Experience 2.67** 2.81 2.30 2.90

Table C.4: The size of the range of sure payments over which subjects express that they
are not fully confident about their decision based on each of the confidence measures, by
the lottery and experience treatments and decision order. The three orders are: Order 1)
binary choices and confidence statements → randomized choices → probabilistic confidence,
Order 2) randomized choices → binary choices and confidence statements → probabilistic
confidence, Order 3) probabilistic confidence → binary choices and confidence statements
→ randomized choices. Wilcoxon rank-sum tests were performed to test the difference
between the no experience and experience treatment: * p < 0.10, ** p < 0.05, *** p < 0.01.
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C.2 Reasons to randomize

At the end of the session on randomized choices in Experiment 2, we asked the subjects

who had chosen to randomize at least once in the post-experiment questionnaire, what

their reasons for randomizing were. Of the 120 subjects who provided an answer to this

question, 22% stated that they randomized because they were unsure about their choice

or found it difficult to compare the two options. Here are a few examples:

• “Because I was not completely sure whether I wanted to choose A or B.’

• “I was not sure exactly what the consequences of my decision was going to be and I

was not 100% confident in choosing either A or B.”

• “Its difficult to make a decision for sure, so a combination feels more safe.”

Another group of subjects (22.5%) randomized for reasons related to hedging. Here are a

few examples:

• “Even though the certain option was less valued, certainty is nice and preferred over

risky options. Therefore, I chose to combine them some of the time.”

• “To hedge my bets when the expected gains of A and B were similar, gaining a small

chance for big gains or loses in option A, adding some suspense.”

• “For example when I preferred A but B felt a little safer so I thought it wouldn’t hurt

adding a bit more security since a B amount for sure isn’t bad.”

Around 18% stated that they chose to randomize when the sure payment amount was

close to the expected value of the lottery but did not explain why randomizing is better.

In contrast, most of the subjects who did not to randomize at all stated that they did not

randomize because they did not want to pay the cost of 0.10 euro for randomizing and/or

that they made their choices solely based on the computation of the expected value of the

lottery.
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D Online appendix: Experimental materials

D.1 Reducing demand effects through decision order and cost for ran-

domizing

We used different approaches in our two experiments to address the concern that exper-

imenter demand effects drive a systematic relationship between the self-reported decision

confidence measures and the randomized choices.

In Experiment 1, the subjects completed all their decisions within a single experimental

session. The subjects first completed the binary choices and confidence statements for all

pairs of the lottery and the sure payment before making the randomized choices. Although

the order of the type of decisions (binary choice and confidence statements → randomized

choices) was fixed in Experiment 1, the subjects made their decisions on a lottery and 13

different values of sure payment in a random sequence for each type of decisions. They were

not allowed to make changes to the decisions they had already made. This was designed

to make it difficult for the subjects to link their randomized choice to their earlier binary

choice and confidence statement for each pair of options. We also randomized the order

of the lottery treatments to reduce any order effects: some subjects proceeded from the

simple lottery to the complex lottery, while others completed the decisions in the reverse

order.

In Experiment 2, we made further attempts to disconnect decisions regarding self-reported

confidence and randomization probabilities by spreading the decisions over three sessions

(seven days apart) and by introducing a cost to randomize. In each session, the subjects

only made one set of decisions, either 1) binary choices and confidence statements, 2)

randomized choices, or 3) probabilistic confidence choices. The order of their decisions

across the three sessions was determined randomly by the computer.15 The subjects were

not informed about the order of their three sets of decisions. During each session, the

15The order of the decisions was either 1) binary choices and confidence statements → randomized
choices → probabilistic confidence, 2) randomized choices → binary choices and confidence statements
→ probabilistic confidence, 3) probabilistic confidence → binary choices and confidence statements →

randomized choices.
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subjects were only informed about the set of decisions they had to make for that session,

and they made decisions on each lottery and 13 different values of sure payment in a random

sequence. They were not allowed to refer to or change the choices they had made in the

earlier session(s). Apart from decision order, we also introduced a cost for randomization

in Experiment 2: the subjects in had to pay a fixed cost of 0.10 euros if they would like to

choose a randomization probability other than 0% or 100%. In comparison, randomized

choices were free of charge in Experiment 1. These new features in Experiment 2 made it

more obscure and costly for the subjects to connect self-reported decision confidence and

randomization probabilities in response to experimenter demand effects (Zizzo, 2010).

D.2 Experiment 1

(a)

(b)

Figure D.1: Welcome screen (a) and informed consent (b) of the experiment.
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(a)

(b)

Figure D.2: The introduction of the binary choices and confidence statements for the
complex lottery in the no-experience treatment (a) and the simple lottery in the partial-
experience treatment (b).
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(a) (b)

Figure D.3: Examples of the decision screens for the binary choices and confidence state-
ments for the complex lottery in the no-experience treatment (a) and the simple lottery in
the partial-experience treatment (b).

Figure D.4: Explanation of the randomized choices.
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(a)

(b)

Figure D.5: Examples of the decision screens for the randomized choices for the simple
lottery in the no-experience treatment (a) and the complex lottery in the partial-experience
treatment (b).

74



Figure D.6: Demographic questions asked at the end of the experiment.
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D.3 Experiment 2

(a)

(b)

Figure D.7: Welcome screen (a) and informed consent (b) of the experiment.
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(a)

(b)

Figure D.8: The introduction (a) and an example of the hypothetical decision screens (b)
of the full-experience treatment.

(a)

(b)

Figure D.9: The introduction (a) and an example of the decision screens (b) of binary
choices and confidence statements for the simple lottery.
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Figure D.10: post-experiment questionnaire after the binary choices and confidence state-
ments.
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(a)

(b)

Figure D.11: The introduction (a) and an example of the decision screens (b) of proba-
bilistic confidence choices for the complex lottery.
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Figure D.12: post-experiment questionnaire after the probabilistic confidence choices.
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(a)

(b)

Figure D.13: The introduction (a) and an example of the decision screens (b) of randomized
choices for the complex lottery.
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Figure D.14: post-experiment questionnaire after the randomized choices. The first ques-
tion was asked if a subject chose randomization probabilities other than 0 or 1 in at least 1
choice. The second question was asked if a subject only chose randomization probabilities
of 0 or 1.

Figure D.15: Demographic questions asked at the end of the experiment.
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