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Summary

Seasonality is pervasive across a wide range of economic time series and it substantially complicates
the analysis of unit root non-stationarity in such series. This paper reviews recent contributions to the
literature on non-stationary seasonal processes, focussing on periodically integrated (PI) and seasonally
integrated (SI) processes. Whereas an SI process captures seasonal non-stationarity essentially through
an annual lag, a PI process has (a restricted form of) seasonally-varying autoregressive coe¢cients. The
fundamental properties of both types of process are compared, noting in particular that a simple SI
process observed S times a year has S unit roots, in contrast to the single unit root of a PI process.
Indeed, for S > 2 and even (such as processes observed quarterly or monthly), an SI process has a pair
of complex-valued unit roots at each seasonal frequency except the Nyquist frequency, where a single real
root applies. Consequently, recent literature concerned with testing the unit roots implied by SI processes
employs complex-valued unit root processes, and these are discussed in some detail. A key feature of the
discussion is to show how the demodulator operator can be used to convert a unit root process at a seasonal
frequency to a conventional zero-frequency unit root process, thereby enabling the well-known properties
of the latter to be exploited. Further, circulant matrices are introduced and it is shown how they are
employed in theoretical analyses to capture the repetitive nature of seasonal processes. Discriminating
between SI and PI processes requires care, since testing for unit roots at seasonal frequencies may lead to
a PI process (erroneously) appearing to have an SI form, while an application to monthly US industrial
production series illustrates how these types of seasonal non-stationarity can be distinguished in practice.
Although univariate processes are discussed, the methods considered in the paper can be used to analyze
cointegration, including cointegration across di¤erent frequencies.

Keywords: Periodic Integration, Seasonal Integration, Vector of Seasons, Circulant Matrices, Demodu-
lator Operator, Industrial Production.
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1 Introduction

Seasonality complicates the analysis of non-stationary unit root behavior in time series, because unit roots
can apply at seasonal frequencies in addition to the zero frequency. This possibility has given rise to a
substantial literature concerned with so-called seasonal integration1 . However, a prominent alternative
possibility is that a process evolves with seasonally-dependent dynamics driven by a single unit root, with
this known as periodic integration; Ghysels and Osborn (2001) provide an introductory discussion to both
types of processes. This paper considers recent research that explores the nature of both types of seasonal
unit root processes and the relationships between them. Due to the particular characteristics of seasonal
time series, some of the techniques used for analysis are not standard in econometrics and a key purpose
here is to provide insights into these techniques and how they are employed in recent research on seasonal
processes. In particular, circulant matrices, complex-valued processes and demodulation are discussed.
An illustration using monthly US industrial production series provides insights into how seasonal and
periodic integration can be distinguished in practice.
To outline the essential issues, consider �rstly a purely stochastic time series process observed S times

a year (S = 4 for quarterly data and S = 12 for monthly data) given by

yt = yt�S + "t (1)

where the zero mean disturbance process "t � iid(0; �2). The assumption that "t follows an iid process
is made for expositional simplicity, with all key results carrying over to more general stationary and
invertible disturbance processes. Similarly, the inclusion of a deterministic component in (1) does not
a¤ect the essential features on which we focus; see the discussion in subsection 4.4 below.
The non-stationary process yt of (1) is referred to as being seasonally integrated (SI). It is transformed

to stationarity by application of the seasonal di¤erence �lter �S = 1 � LS ; with L being the usual lag
operator. As discussed in more detail below, this process has autoregressive unit roots at the zero
frequency and at each of the so-called seasonal frequencies, !k = 2�k=S, k = 1; :::; S=2 (assuming S
even). Indeed, there is a single unit root at !k = � and pairs of complex-valued unit roots at each
!k = 2�k=S, k = 1; :::; (S=2) � 1. In total, therefore, the SI process has S unit roots, with the pairs of
complex-valued roots being a feature of the analysis of such processes.
The second type of process can be illustrated by the �rst-order periodic autoregressive (PAR(1))

process written as2

yt =
SP
s=1

�sDstyt�1 + "t (2)

where Dst is a dummy variable which is unity when the observation at time t falls in season s (s = 1; :::; S)
and, again for expositional simplicity, "t is assumed to be iid(0; �2) and no deterministic component is
included. The conventional AR(1) is a special case of (2), which is ruled out by requiring that at
least one �s 6= � for s = 1; :::; S. Stationarity of this process requires

QS
s=1 �s < 1, so that a stationary

PAR(1) process can have some individual coe¢cients that are greater than unity. However, a periodically
integrated (PI) PAR(1) process satis�es

QS
s=1 �s = 1: It is key to what follows that, in contrast to the

S unit roots of the SI process, a PI process is driven by a single unit root that is transmitted across
intra-year observations by the seasonally varying coe¢cients �s.
The discussion below focusses on the unit root behaviors of the above processes. In particular, the

non-stationary behaviors of seasonal processes that are either PI or have a single unit root (at either
the frequency zero or at �) are ruled by a single common stochastic trend that applies across all seasons.
However, the behavior of a process whose non-stationarity arises from a (single) pair of complex-valued
unit roots at a seasonal frequency !k = 2�k=S, k = 1; :::; (S=2) � 1 is ruled by two common stochastic
trends. These stochastic trends give rise to scalar Brownian motions that appear in the asymptotic
distributions of the periodic integration and seasonal unit-root test statistics that have been proposed in
the literature.

1We rule out cases of explosive seasonal non-stationarity, which could arise from, say, roots at seasonal frequencies which
lie inside the unit circle. Cases of seasonal fractional integration and multiple unit roots associated with seasonality are also
beyond the scope of this paper.

2More general periodic autoregressive processes of order p can be considered (see, for example, Boswijk and Franses,
1996), but the �rst-order process is su¢cient to draw out the essential properties we wish to discuss.
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Following Osborn (1991), Franses (1994), and others, we sometimes employ the "double subscript"
vector of seasons representation in our analysis. This is a multivariate representation of seasonal time
series in which each season is treated as an individual time series; this representation facilitates the explo-
ration of cointegrating relationships and/or common stochastic trends shared by the seasons. Assuming
that the �rst time series observation corresponds to the �rst "season" (usually month or quarter) of a
year, y(s�) is then the sth observation of year � ; the identity t = S(� � 1) + s provides the link between
the notation used in (1) and (2) and the vector representation.
Although our focus is seasonality over an annual cycle, the techniques discussed can be applied to

non-stationary cycles of longer or shorter durations than a year. In particular, a weekly cycle may be
relevant for the analysis of daily observations on (say) retail sales or �nancial variables.
In the remainder of the paper, Section 2 elaborates the fundamental aspects of seasonal and periodic

integration on which formal analyses depend. Sections 3 and 4 then examine the regression used to test
for unit roots in a potential SI process, with Section 3 showing how circulant matrices can be used
to represent the regressor variables and Section 4 summarizing the asymptotic distributions of the test
statistics. The complex pairs of unit roots at seasonal frequencies lead to the discussion in Section 4
dealing with complex processes and demodulation. Section 5 returns PI processes and examines the
implications of applying SI unit root test to such processes. Finally, the illustration of Section 6 applies
both SI and PI tests to US industrial production series and draws some conclusions about the likely
nature of the underlying processes. The concluding remarks in Section 7 point to some on-going research
issues.

2 Fundamentals of Seasonal and Periodic Integration

2.1 Seasonal integration

The seminal paper of Hylleberg, Engle, Granger and Yoo (1990) (hereafter referred to as HEGY) has
prompted a large literature on seasonal integration and seasonal unit roots. Earlier contributions, in-
cluding Box and Jenkins (1970) and Dickey, Hasza and Fuller (1984), discussed the removal of seasonal
non-stationarity through the use of seasonal di¤erencing, but HEGY were the �rst authors to focus on
the full set of unit roots which are contained in a quarterly SI process. Their test is discussed in the
next section for the case of general S.
As already noted, a seasonally integrated process has all S unit roots implied by the use of the seasonal

di¤erence operator �S . For S even, 1� LS can be factorized as
�
1� LS

�
= (1� L)(1 + L+ :::+ LS�1)

= (1� L) (1 + L)
S�Y

k=1

�
1� 2 cos (!k)L+ L2

�
; (3)

where !k = 2�k=S for k = 0; 1; : : : ; S� and S� = (S=2) � 1. The zero frequency (!k = 0) unit root is
associated with the factor 1 � L in (3), the root at frequency � is associated with 1 + L and implies
oscillations every two periods, while the factor

�
1� 2 cos (!k)L+ L2

�
=
�
1� e�i!kL

� �
1� ei!kL

�
at

each frequency !k = 2�k=S; k = 1; 2; : : : ; S� gives rise to a complex conjugate pair of unit roots with
oscillations that complete a full cycle every 2�=!k = S=k periods. Although odd S can be relevant, such
as when examining a weekly cycle in daily observations, we assume that S is even for simplicity3 .
For example, with monthly data (S = 12), an SI process has real unit roots at the zero and �

frequencies together with �ve pairs of complex-valued unit roots at the frequencies !k = 2k�=12 for k =
1; 2; :::; 5. For the speci�c case of k = 4 (say), the pair of unit roots at frequency !4 = 2� 4�=12 = 2�=3
imply non-stationary cycles that occur every 3 months within the overall annual cycle.
It is also important to note that the application of seasonal di¤erencing to a process that contains

only a subset of these S unit roots leads to over-di¤erencing, with the di¤erenced process having a
non-invertible moving average component.
Employing the double subscript representation, the SI process of (1) can be written as

y(s�) = y(s;��1) + "(s�); s = 1; :::; S: (4)

3When S is odd, S� = (S � 1)=2 and the factor (1 + L) does not appear in the factorization. The discussion below can
easily be amended for S odd.
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By treating the observations for each season as distinct series, this representation makes clear that each
season follows its own unit root process and, as apparently �rst noted by Osborn (1993), the observations
over the S seasons are not cointegrated. In other words, equivalent to associating the S unit roots of
an SI process with the zero and seasonal frequencies, each of the S unit roots can be associated with a
season (month or quarter) of the year.
De�ning the vectors Y� =

�
y(1�); y(2�); : : : ; y(S�)

�0
= [yS(��1)+1; yS(��1)+1; :::; yS� ]

0 and E� = ["(1�);
"(2�); :::; "(S�)]

0 corresponding to year � , the vector representation of (4) is

Y� = Y��1 + E� : (5)

The system (5) has characteristic equation

jIS � ISzj = (1� zS) = 0 (6)

where IS is an S�S identity matrix. This equation has S solutions with jzj = 1 and implies the presence
of unit roots at the zero and all seasonal frequencies, as discussed in relation to (3).
It is straightforward to see that recursive substitution in (5) yields

Y� =
��1P
j=0

E��j (7)

where, for simplicity of exposition, we assume Y0 = 0. If N the years of observations are available on the
process, the asymptotic distribution of the vector Y� is then given by

1p
N
YbNrc ) �W (r) (8)

where, here and throughout the paper, W (r) = [W1 (r) ;W2 (r) ; : : : ;WS (r)]
0 is an S � 1 vector of

uncorrelated standard Brownian motion processes4 . The asymptotic distribution of (8) therefore re�ects
the separate unit root processes followed by each of the S intra-year observations.

2.2 Periodic integration

Employing the double subscript representation, the PAR(1) process in (2) is

y(s�) = �sy(s�1;�) + "(s�); s = 1; :::; S: (9)

It immediately follows that this PAR(1) process has the vector representation

A0Y� = A1Y��1 + E� (10)

where Y� and E� are as de�ned in (5), while A0 and A1 are S � S matrices with generic elements

A0(h;j) =

8
<
:

1 h = j; j = 1; :::; S
��h h = j + 1; j = 1; :::; S � 1
0 otherwise

(11)

A1(h;j) =

�
�1 h = 1; j = S
0 otherwise

in which the subscript (h; j) indicates the (h; j)th element of the respective matrix (see, for example,
Osborn, 1991, or Franses, 1994). Due to the form of A0 and A1, the characteristic equation for the
vector process (10) is

jA0 �A1zj = 1�
 

SY

s=1

�s

!
z = 0:

4The increments in standard Brownian motion have unit standard deviation whereas the increments in (1) have a
standard deviation of �.
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Hence the PAR(1) is stationary when
���
QS
s=1 �s

��� < 1, but the process integrated when
QS
s=1 �s = 1.

In contrast to the SI process, the PI process has no unit root at any seasonal frequency !k = 2�k=S;
k = 1; : : : ; S=2.
Noting that A1 is non-singular and A

�1
0 A1 is idempotent, recursive substitution in (10) with the

simplifying assumption Y0 = 0 yields

Y� = A
�1
0 E� +A

�1
0 A1A

�1
0

��1X

j=1

E��j : (12)

Since A1 has a single non-zero element, it has rank 1 and so also does A
�1
0 A1A

�1
0 . Therefore, as shown

by Boswijk and Franses (1996), the S � S matrix A�1
0 A1A

�1
0 can be represented as

A�1
0 A1A

�1
0 = ab0 (13)

in which the S � 1 vectors a and b are

a =

�
1 �2 �2�3 � � �

SQ
s=2

�s

�0
(14)

b =

�
1 �1

SQ
s=3

�s �1
SQ
s=4

�s � � � �1

�0
:

Substituting (13) into (12) shows that the S elements of Y� are driven by the single common trend, given
by b0

P��1
j=1 E��j :

A further consequence of (12) and (13) is that the asymptotic distribution of the each element of the
vector Y� is a function of a single scalar Brownian motion wp (r). In particular, as shown by del Barrio
Castro and Osborn (2008, Lemma 1) or in the more general Lemma of Boswijk and Franses (1996),

1p
N
YbNrc ) �A�1

0 A1A
�1
0 W (r) = �ab0W (r) (15)

= �$awp (r)

where wp (r) = $�1b0W (r) and $ = (b0b)1=2 is a scaling term. Therefore, in contrast to the S Brownian
motions underlying the asymptotic behaviour of the elements of Y� in (8) for the SI process, (15) shows
the PI process is driven by the single stochastic trend wp (r) and hence there are S�1 linearly independent
cointegrating relationships between the elements of Y� .
All statistics proposed in the literature to test the PI null hypothesis have distributions that follow

functionals of the scalar Brownian motion wp (r) associated with the common stochastic trend shared by
the seasons of Y� . In particular, Boswijk and Franses (1996) propose a likelihood ratio test statistic for
the PI null hypothesis in the general PAR(p) model, which can be written as

LR = T ln

�
RSS0
RSS1

�
(16)

where RSS0 denotes the residual sum of squares computed under the null hypothesis, namely imposingQS
s=1 �s = 1 for the PAR(1) case of (2), and RSS1 is the residual sum of squares from the unrestricted

PAR(1) model. Boswijk and Franses (1996) show that under the PI null hypothesis

LR)
�Z

wp (r) dw (r)

�2
=

�Z
wp (r)

2
dr

�
(17)

where wp (r) is de�ned in (15). A key feature of (17) is that it is identical to the asymptotic distribution
of the squared Dickey-Fuller t-statistic in a conventional (nonperiodic) I(1) processes, namely LR )�R
w (r) dw (r)

�2
=
hR
w (r)

2
dr
i
, where w (r) is again scalar standard Brownian motion. Hence testing for

a PI process is analogous to testing for a single unit root in an conventional AR process.
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2.3 Constant parameter representation of a PI process

Having set out the basics of SI(1) and PI(1) processes, we now turn an important aspect of the rela-
tionship between them, by examining the constant parameter representation of a PI(1) process. This
is representation can be obtained analytically as the conventional (constant parameter) process that has
identical autocovariance properties to the PI(1) process when the latter is analyzed as if there is no
parameter variation over the S seasons; it is considered in Osborn (1991), Ghysels and Osborn (2001)
and del Barrio Castro and Osborn (2008).
Recursively substituting for the S�1 observations y(s�1;�); :::; y(s+1;��1) on the right-hand side of (9),

we obtain

y(s�) =

0
@

SY

j=1

�j

1
A y(s;��1) + "(s�) + �s"(s�1;�) + �s�s�1"(s�1;�) + � � �+

0
@
S�1Y

j=0

�s�j

1
A "(s�(S�1);�);(18)

s = 1; :::; S:

In this expression, it is understood that y(s�i;�) = y(S�(s�i);��1) for s � i � 0 and also that �s�j =

�S�(s�i) for s � j � 0. Note that in this representation the AR coe¢cient
YS

j=1
�j applies for all

s = 1; :::; S whereas the coe¢cients of the MA (S � 1) are seasonally varying. Using the properties of
moving averages, the representation (18) gives rise to the constant parameter representation of a PAR(1)
process.

For the case of periodic integration,
YS

j=1
�j = 1 and the autoregressive part of (18) is a seasonal

�rst di¤erence, so that

y(s�) � y(s;��1) = "(s�) + �s"(s�1;�) + �s�s�1"(s�1;�) + � � �+

0
@
S�1Y

j=0

�s�j

1
A "(s�(S�1);�); (19)

s = 1; :::; S:

Note that (19) gives the expression for a generic season s of y(s�) in the �nal equation representation of
the vector process (10)-(11)5 under periodic integration (del Barrio Castro and Osborn, 2008) and is also
equivalent to (12) above.
If the process (19) is considered as one with constant parameters, then this PI(1) process appears to

be an MA(S � 1) in the annual di¤erence �syt = yt � yt�S , since analyzing it as a constant parameter
one e¤ectively averages across the seasonally varying MA processes of (19) and the sum (or average) of
MA(q) processes is also anMA(q). Hence, using the conventional single subscript notation, the constant
parameter representation of the PI(1) process (2) has the form

�Syt =
�
1 + �1L+ � � �+ �S�1LS�1

�
�t; (20)

which is (except for special cases) an invertible MA(S � 1) in the annual di¤erence series; see del Barrio
Castro and Osborn (2008, section 2.2).
An important feature of the constant parameter representation of the PI(1) process in (20) that

is it appears to be SI(1), with �Syt being an invertible MA. However, such an SI conclusion is a
misspeci�cation, since the true data generating process has only a single unit root rather than the S unit
roots of an SI(1) process.
The constant parameter representation sheds light on the seasonal patterns that can arise from a

PI(1) process. Figure 1 illustrates this in the frequency domain, by showing the average periodogram
based on 10,000 replications of a simulated quarterly PI process (2) with �1 = 0:8, �2 = 1, �3 = 0:5,
�4 = 1= (�1�2�3) ; and "t � Niid (0; 1). Clearly, Figure 1 shows spectral power at the zero, �=2 and
� frequencies6 , so that the process exhibits zero frequency and seasonal behavior. As in del Barrio

5That is, writing (10)-(11) as jA0 �A1BjY� = adj (A0 �A1B)E� , where j�j and adj (�) denote the determinat and the
adjoint matrix respectivelly and B is the annual backshift (lag) operator such that BY� = Y��1. In del Barrio Castro and
Osborn (2008) it is also shown that for adj (A0 �A1B) = (�0 +�1B) = D (B), it is possible to write D (B) = ab0 with a
and b de�ned in (14).

6 It well know that a non-periodic AR(1) yt = �yt�1+ "t has spectral power only around the zero and � frequencies with
positive or negative values of �, respectively (see for example Wei (2006, Figure 12.5). In order to obtain expectral power
at an harmonic frequency, it will be necesary to move to an AR(2) with complex conjugate roots. See, also the folowing
sections.
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Castro and Osborn (2008, section 2.2), the invertible constant-parameter representation associated with
this process has the form of (20) with7 �1 = 0:8497, �2 = 0:5976, �3 = 0:4133, and �2� = 2:8139.
The MA(3) polynomial can be factorized as:

�
1 + 0:8497L+ 0:5976L2 + 0:4133L3

�
= (1 + 0:7703L)

(1 + [0:0397 + 0:7314i]L) (1 + [0:0397� 0:7314i]L) and hence has no factor in common with the seasonal
di¤erence operator

�
1� L4

�
= (1� L) (1 + L) (1� iL) (1 + iL). The spectral power in Figure 1 at the

zero frequency is higher than at frequencies �=2 and �, due to the spectral power at the Nyquist frequency
being lowered by the factor (1 + 0:7703L) and that at frequency �=2 by the complex conjugate factors
(1 + [0:0397� 0:7314i]L). Nevertheless, power is evident at the seasonal frequencies.
Although in principle it is always possible to compute the constant parameter representation associated

with a PI process, for a quarterly process this implies solving a nonlinear system of four equations and
evaluating which one of the eight solutions implies an invertible MA, as in section 2.2 of del Barrio
Castro and Osborn (2008). The situation becomes more involved with periodicities higher than quarterly
(S = 4), with monthly data (S = 12) requiring solving a nonlinear system of 12 equations. To avoid
this, Appendix 1 provides a simpler method for examining the contributions of each zero and seasonal
frequency to the overall spectral power of a PI process.

3 Circulant Matrices and the SI Test Regression

For the case of a seasonally integrated process, this section examines the properties of the standard
regression used to test for seasonal unit roots. Following much of the recent literature, we employ
circulant matrices to represent relevant quantities in the analysis.

3.1 Circulant matrices

A circulant matrix is a square matrix where the elements in each row are shifted by one place to the
right compared with the row above. Hence, all elements of a circulant matrix can be de�ned in terms of
the elements of its �rst row. A 4� 4 circulant matrix C has the form

C =

2
664

c1 c2 c3 c4
c4 c1 c2 c3
c3 c4 c1 c2
c2 c3 c4 c1

3
775 :

If C is an S � S circulant matrix with �rst row (c1; c2; c3; � � � ; cS), writing C =Ci rc [c1; c2; c3; � � � ; cS ]
de�nes all elements of the matrix. Note that all diagonal elements of C take the value c1. The identity
matrix IS and a matrix in which all elements are equal to unity are trivial examples of circulant matrices.
The properties of circulant matrices are considered in detail by Davis (1979) and Gray (2006).
It is a property of circulant matrices that C = F��F, where F8 is an S � S complex-valued matrix

associated with the eigenvectors ofC; F� is the conjugate transpose of F and �= diag [�1; �2; �3; � � � ; �S ],
where �j for j = 1; 2; 3; � � � ; S, are the eigenvalues of C. Indeed F has the same (known) elements across
all circulant matrices, so that such matrices di¤er only in their eigenvalues.
Circulant matrices have useful properties that can be exploited to establish the properties of SI

processes. In particular, if D is another circulant matrix with D =Ci rc [d1; d2; d3; � � � ; ; dS ] and hence
D = F�~�F with ~�= diag

h
~�1; ~�2; ~�3; � � � ; ~�S

i
, and k is a scalar constant, then (Davis, 1979, Theorem

7Rounding to the fourth decimal place.
8F is de�ned for all the circulant matrices of dimesion S � S as:

F =
1p
S

2

66666666
4

1 1 1 � � � 1

1 e�i
2�
S e�i

4�
S � � � e�i

2(S�1)�
S

1 e�i
4�
S e�i

8�
S � � � e�i

4(S�1)�
S

...
...

...
. . .

...

1 e�i
2(S�1)�

S e�i
2(S�1)�

S � � � e�i
2(S�1)2�

S

3

77777777
5

:

Note that the matrices associated with the eigenvector of the circulant matrix, that is, F and F�, each form an orthogonal
basis in the Fourier analysis.
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3.2.4, and Gray, 2005, Theorem 3.1)

CD = F�diag
h
�1~�1; �2~�2; �3~�3; � � � ; �S~�S

i
F (21)

C+D = F�diag
h
�1 + ~�1; �2 + ~�2; �3 + ~�3; � � � ; �S + ~�S

i
F (22)

kC = F�diag [k�1; k�2; k�3; � � � ; k�S ]F: (23)

3.2 SI Test regression

As already noted, the analysis of HEGY has stimulated a large econometrics literature relating to the
analysis of seasonal unit root processes. For S seasons per year and S even, the seasonal unit root test
procedure developed from HEGY is based on the following regression (see, for example, Smith, Taylor
and del Barrio Castro, 2009, or del Barrio Castro, Osborn and Taylor, 2012):

�Syt = �0y0;t�1 + �S=2yS=2;t�1 +
S�X

k=1

�
��ky

�
k;t�1

+ ��
k
y�
k;t�1

�
+ "

t
(24)

where S� = (S=2)� 1 as in (3) and throughout the paper. For simplicity, the expression in (24) ignores
any deterministic component. Further, augmentation

Pp
j=1 
j�syt�j will be generally be included in

this test regression in order to render "
t
white noise. Although this is important in practice, appropriate

augmentation does not a¤ect key features of the asymptotic distributions of the test statistics and is also
omitted for simplicity of exposition.
The variables y0;t , yS=2;t and y

�
k;t
, y�

k;t
(k = 1; :::; S�) are de�ned as

y0;t =
S�1X

j=0

yt�j; yS=2;t =
S�1X

j=0

cos[(j + 1)�]yt�j

y�k;t =
S�1X

j=0

cos[(j + 1)!k]yt�j ; k = 1; 2; ::; S� (25)

y�k;t = �
S�1X

j=0

sin[(j + 1)!k]yt�j ; k = 1; 2; : : : ; S�:

These are associated with the frequencies for which the characteristic equation (6) has unit roots: in
particular, y0;t and yS=2;t are associated with the real roots at frequencies zero and �, respectively,
while y�k;t; y

�
k;t are associated with the pairs of complex conjugate roots at frequencies !k = 2�k=S for

k = 1; 2; : : : ; S�. Note also that the variables y0;t and yS=2;t impose all unit roots in (3) except for the
roots 1 and �1, respectively, while the pair y�k;t and y

�
k;t impose all unit roots except for the complex

pair of unit roots at frequency !k arising from
�
1� 2 cos (!k)L+ L2

�
. It is straightforward to see that

for quarterly data (S = 4), (24) is the test regression proposed by HEGY (see expression (3.8) in HEGY,
with no augmentation).
The values of the regressor variables in (24) can be collected into annual vectors, de�ned as:

Y0;� =
�
y0;S(��1); y0;S(��1)+1; : : : ; y0;S��1

�0
, YS=2;� =

�
yS=2;S(��1); yS=2;S(��1)+1; : : : ; yS=2;S��1

�0
,

Y �k;� =
h
y�k;S(��1); y

�
k;S(��1)+1; : : : ; y

�
k;S��1

i0
and Y �k;� =

h
y�k;S(��1); y

�
k;S(��1)+1; : : : ; y

�
k;S��1

i0
for k =

1; 2; : : : ; S�:
Notice these de�nitions incorporate the lagged values, so that the �rst element in the vector for year �
relates to the �nal period (S) of year � � 1.
Relating to these vectors, consider the circulant matrices

C0 = Ci rc [1; 1; 1; � � � ; 1] , CS=2 = Ci rc [1;�1; 1; � � � ;�1]
C�k = Ci rc [cos (0!k) ; cos (!k) ; cos (2!k) ; : : : ; cos ([S � 1]!k)] (26)

C
�
k = Ci rc [sin (0!k) ; sin ([S � 1]!k) ; sin ([S � 2]!k) ; : : : ; sin (!k)] :

8



where C0 and CS=2 both have rank 1, while C�k and C
�
k have rank 2. In e¤ect, the elements of these

circulant matrices associate the coe¢cients of lagged values yt�j in the de�nitions of the variables of (25)
with the appropriate season for the relevant regressor in (24).
For example, consider the regressor y�

k;t�1
in (24). The period t = S (� � 1)+1, which corresponds to

season 1 of year � , has regressor y�
k;t�1

= y�
k;S(��1)

= y�k;(S;��1) where the last expression uses the double
sunscript notation. From (25),

y�k;(S;��1) = cos(!k)y(S;��1) + cos(2!k)y(S�1;��1) + :::+ cos(S!k)y(1;��1)

= cos(0!k)y(1;��1) + cos(!k)y(2;��1) + :::+ cos([S � 1]!k)y(S;��1):

Notice that the order of the lagged variables is reversed in the second line, which also uses the properties
of the cosine function for !k = 2�k=S: for example, cos(S!k) = cos(2�k) = 1 = cos(0!k) and cos([S �
1]!k) = cos(2�k� [2�k=S]) = cos(2�k=S) = cos(!k) as the cosine function is symmetric around 2�k for
any integer k: Hence, except for "end e¤ects" the transformation C�kY� yields the elements of the vector
Y �k;� .
The relationship between the circulant matrices and the regressor variables of (24) is formalized by

del Barrio Castro, Osborn, and Taylor (2012, Lemma 2) as

Y0;� = C0Y� + 0p (1) YS=2;� = CS=2Y� + 0p (1)

Y �k;� = C
�
kY� + 0p (1)

Y �k;� = C
�
kY� + 0p (1)

�
; k = 1; 2; : : : ; S�: (27)

Since the circulant coe¢cient matrices in (27) are non-stochastic these relationships, together with the
asymptotic distribution of the vector SI process in (8), can be used to obtain the asymptotic distributions
of the HEGY auxiliary variables. The properties of circulant matrices, speci�cally (21), imply that the
circulant matrices corresponding to di¤erent frequencies are orthogonal; that is,

C0CS=2 = 0

C0C
�
k = C0C

�
k = CS=2C

�
k = CS=2C

�
k = 0

C�kC
�
j = C

�
kC

�
j = C

�
kC

�
j = 0; k; j = 1; :::; S

�; k 6= j: (28)

Therefore, the HEGY variables at distinct frequencies are asymptotically uncorrelated. However, the
matrices C�k and C

�
k for a given seasonal frequency !k (k = 1; :::; S�) are not orthogonal9 , which has

implications for the distribution of t-ratio tests associated with y�
k;t�1

and y�
k;t�1

in (24) when serial
correlation is present or when the process does not contain all unit roots roots in �S ; see Burridge and
Taylor (2001), del Barrio Castro (2007), Smith, Taylor and del Barrio Castro (2009), del Barrio Castro
and Osborn (2011) and del Barrio Castro, Osborn and Taylor (2012). However, despite C�k and C

�
k not

being orthogonal, Y �k;� and Y
�
k;� are asymptotically uncorrelated, as shown in Appendix 2 below

10 . From

a theoretical perspective, C�k and C
�
k not being orthogonal is inconvenient and obscures the roles of the

S individual unit roots that apply in an SI process.
Since the unit roots at the seasonal frequencies !k for k = 1; :::; S� exist as complex conjugate pairs,

examination of the individual roots at these frequencies involves the use of complex algebra. In order to
consider these, del Barrio Castro, Rodrigues and Taylor (2018, 2019), del Barrio Castro and Rachinger
(2021) and del Barrio Castro, Cubadda and Osborn (2022) employ transformations of C�k and C

�
k ,

speci�cally the complex-valued circulant matrices

C�k = Ci rc
h
1; e�i(S�1)!k ; e�i(S�2)!k ; � � � ; e�i!k

i

C+k = Ci rc
h
1; ei(S�1)!k ; ei(S�2)!k ; � � � ; ei!k

i
: (29)

9 In fact we have C�kC
�
k = S=2C

�
k , note also that C

�
k is symmetric, but for C

�
k we have

�
C
�
k

�
0

= �C�k .
10We show that Y �0k;� and Y �k;� are asymptotically orthogonal, as their scaled cross-product
1

T2

PS
s=1

PN
�=1 Y

�0
k;��1Y

�
k;��1 ) 0:

9



Using the properties of the sin and cos functions for !k = 2�k=S together with the identities ei� =
cos(�) + i sin(�) and e�i� = cos(�) � i sin(�), these matrices are related to C�k and C

�
k through the

one-to-one identities

C�k = C�k � iC�k
C+k = C�k + iC

�
k : (30)

The matrices C�k and C
+
k are attractive in that

C�k C
�
j = C

+
kC

+
j = C

�
k C

+
j = 0; k; j = 1; :::; S

�:

As seen in subsection 4.3, C�k and C+k are useful when analyzing the properties associated with the
individual complex roots that apply at seasonal frequencies for an SI process. Finally, matrices C�k and
C+k also play an important role in our analysis in section 5.

4 SI Test Asymptotic Distributions

It is convenient to discuss the cases of tests for the single unit roots at the zero and Nyquist frequencies,
before turning to the pairs of complex unit roots at the harmonic seasonal frequencies !k = 2�k=S for
S = 1; :::; S�.

4.1 Zero frequency test

Consider �rst the zero frequency unit root in the SI test regression (24), for which the corresponding
regressor y0;t�1 is de�ned in (25). Using the vector representation Y0;� , the result in (27) together with
the asymptotic distribution of the SI process Y� implies that

1p
N
Y0;bTrc ) C0W (r) = �d0d

0
0W (r)

= �S1=2d0w0 (r) (31)

where the S � 1 vector d0 = [1; 1; � � � ; 1]0 and the scalar standard Brownian motion w0 (r) = (S)
�1=2

d00W (r) = S�1=2
PS

j=1Wj (r)
11 . Therefore, the scalar Brownian motion driving all elements of Y0;� is

the (scaled) sum of the S independent Brownian motions driving the elements of the vector Y� . Since
the innovations to each element of W (r) have unit variance, those for the sum d00W (r) have variance S;
hence (S)�1=2 d00W (r) is standard Brownian motion.
As will be seen, the general form of (31) carries over to the distributions of the variables associated

with the individual unit root processes at each of seasonal frequency: that is, the process is driven by a
single Brownian motion process which is formed as a scaled linear combination of the elements of W (r).
Also, the form of the linear combination, speci�cally the vector d00 in (31), is determined by the form of
the corresponding circulant matrix.
A zero frequency unit root test applied in the SI regression (24) tests H0 : �0 = 0 against the one-

sided alternative H1 : �0 < 0. Due to the asymptotic orthogonality of the auxiliary variables, given by
(28), the regressors related to the unit roots at seasonal frequencies are asymptotically irrelevant when
the process is SI. Hence the asymptotic distributions relating to b�0 can be obtained by considering

�Syt = �0y0;t�1 + "t:

Since �S = (1�L)(1+L+:::+LS�1), then �Syt = (1+L+:::+LS�1)yt�(1+L+:::+LS�1)yt�S = �y0;t,
this model can be written as

�y0;t = �0y0;t�1 + ": (32)

11This result, together with those below for the other HEGY variables, is established using circulant matrices for more
general SI processes than the seasonal random walk of (1) by Smith, Taylor and del Barrio Castro (2009, Theorem 1) and
del Barrio Castro, Osborn and Taylor (2012, Lemma 1).
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The regression (32) is a Dickey-Fuller regression and the conventionally calculated t-ratio for b�0 under the
null hypothesis asymptotically follows the Dickey-Fuller distribution (Dickey and Fuller, 1979), namely

t�0 )
R
w0(r)dw0(r)qR
w20(r)dr

: (33)

Hence the usual Dickey-Fuller t-test can be applied to test for a zero frequency unit root in the SI test
regression (24). As already noted, this distribution also underlies the test for a unit root in a PI process.
The result in (33), namely that the usual Dickey-Fuller distribution applies for a test on �0 in the SI

test regression was shown formally by HEGY for the quarterly case, and by Rodrigues and Taylor (2004)
and del Barrio Castro, Osborn and Taylor (2012), among others, for the general case of S seasons.

4.2 Nyquist frequency test

The relevant regressor variable in (24) for a test at the Nyquist frequency � is yS=2;t�1; with vector
equivalent YS=2;� . In particular, the relationship of (27) and the asymptotic distribution of (8) together
imply that

1p
N
Y
S=2
bTrc ) CS=2W (r) = �dS=2d

0
S=2W (r)

= �S1=2dS=2wS=2 (r) (34)

where the S � 1 vector dS=2 = [�1; 1;�1; � � � ; 1]0 and wS=2 (r) = S�1=2d0S=2W (r) is scalar standard
Brownian motion. It is also useful to note that, due to the properties of the cosine function, we can
write wS=2 (r) = (S)

�1=2PS
j=1 cos(j�)Wj (r). Once again, the scaling S�1=2 used in de�ning wS=2 (r) is

required to ensure the implied innovations have unit variance.
Now consider a process xs=2;t such that xs=2;t + xs=2;t�1 = "t; which has a unit root only at the

Nyquist frequency. A unit root test regression corresponding to this process would have the form

(1 + L)xS=2;t = �S=2xS=2;t�1 + "t (35)

with the test of H0 : �S=2 = 0 considered against the one-sided alternative of stationarity, namely
H1 : �S=2 > 0. The t-ratio for b�S=2 in (37) under the null hypothesis has the asymptotic distribution of
the form

t�S=2 ) �

Z
w (r) dw (r)

rZ
w (r)

2
dr

(36)

where w (r) is standard Brownian motion. The distribution in (35) is again the Dickey-Fuller distribution
except for the minus sign, and hence it has a mirror image property in relation to the distribution of
the zero frequency test statistic in (17). This property was pointed out in the relatively early literature
concerned with seasonal unit roots, including Fuller (1996) and Chan and Wei (1988).
To relate this to the SI case, de�ne

�S=2(L) =
�S

(1 + L)
= (1� L)

S�Y

j=1

�
1� e�i!kL

� �
1� ei!kL

�

and note that, from (3), �S = (1+L)�S=2(L): Then �S=2(L)yt = �yS=2;t, where yS=2;t is de�ned in (25).
Due to the orthogonality properties of (28), the unit root test applied to �S=2 in (35) is asymptotically
equivalent to a test of �S=2 = 0 in

(1 + L)yS=2;t = �S=2yS=2;t�1 + "t: (37)

Note that a minus sign is incorporated in the de�nition of yS=2;t compared with xS=2;t above, and hence
the alternative hypothesis in (37) is �S=2 < 0 and the asymptotic distribution of t�S=2 for an SI process
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is the Dickey-Fuller distribution, or more precisely it is

t�S=2 )

Z
wS=2 (r) dwS=2 (r)

rZ
wS=2 (r)

2
dr

(38)

where wS=2 (r) is the standard Brownian motion of (34). The use of circulant matrices simpli�es the
derivation of (34) and hence the result in (38) compared with that of early studies of seasonal unit roots.
Both the zero and Nyquist frequency tests retain their asymptotic Dickey-Fuller distributions in

the presence of serial correlation in the SI process, provided that the regression (24) is appropriately
augmented.

4.3 Tests at other seasonal frequencies

In order to facilitate the discussion of unit root tests at the seasonal frequencies !k = 2k�=S for S =
1; :::; S�, this subsection �rst considers some properties of complex-valued unit root processes.

4.3.1 Complex-valued unit root processes

Complex-valued unit root processes play a key role in the analysis of SI processes and the properties of
such processes are considered in detail in a series of papers by Gregoir (1999, 2006, 2010).
In order to concentrate on the principal issues, consider the simplest case which gives rise to a pair of

complex-valued unit roots, namely where a real-valued process xkt is given by

[1� 2 cos(!k)L+ L2]xkt = (1� e�i!kL)(1� ei!kL)xkt = "t (39)

in which "t � iid(0; �2). In order to focus on one of the pair of unit roots, de�ne xk�t = (1 � ei!kL)xkt ,
so that (39) implies

xk�t = (1� ei!kL)xkt = e�i!kxk�t�1 + "t: (40)

Clearly xk�t in (40) is complex-valued. Further, it has a single unit root at frequency !k; and hence
xk�t � I!k(1):
Recursive substitution in (40) shows that

xk�t = e�i!k
tX

j=1

ei!kj"j

= e�i!ktx
(0)�
t (41)

where, for simplicity, we assume xk�0 = 0 and we also de�ne

x
(0)�
t = ei!ktxk�t =

tX

j=1

ei!kj"j : (42)

Examining the form of x(0)�t ; note that (42) implies that it satis�es

x
(0)�
t = x

(0)�
t�1 + e

i!kt"t: (43)

Because ei!kt"t is stationary, (43) shows that x
(0)�
t is integrated of order one at the zero frequency,

x
(0)�
t � I0 (1).
The relationship (41) is a key one, since it shows that multiplication by e�i!kt converts the (complex-

valued) process x(0)�t integrated at the zero frequency, x(0)�t � I0(1); to x
k�
t � I!k(1) . The operator

e�i!kt is known as the demodulation operator and it is valuable because it means that the properties
of (conventional) zero-frequency unit root processes can be exploited when considering unit roots at
seasonal frequencies. Clearly, demodulation can also be used to convert from the zero frequency to the
!k frequency, through x

(0)

t = ei!ktxk�t :
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Example
Say data is observed monthly, but is generated by the process

[1� 2 cos(!4)L+ L2]x4t = (1� e�i!4L)(1� ei!4L)x4t = "t
where !4 = 2�4�=12 = 2�=3. As noted in Section 2.1, the pair of unit roots at frequency !4 correspond to
non-stationary cycles of three months duration within the twelve months of annual data. The real-valued
process x4t has two complex-valued unit roots at frequency !4.
To focus on one unit root, x4t is transformed to the complex-valued series x

4
t � I2�=3(1) using

x4�t = (1� ei!4L)x4t = (1� e(2�=3)iL)x4t
= x4t � [cos(2�=3) + i sin(2�=3)]x4t�1:

Applying the demodulator operator of (42) to x4�t yields the complex-valued series x(0)�t = ei!4tx4�t =
[cos(2�=3) + i sin(2�=3)]x4�t ; which is integrated at the zero frequency.

Returning to general xk�t , the innovation ei!kt"t to the process (43) is complex-valued and, as the
sample size T increases, the asymptotic distribution of x(0)�t has the form

1p
T
x
(0)�
t )

�
�2=2

�1=2 �
wkR (r) + iw

k
I (r)

�
(44)

in which wkR (r) and w
k
I (r) are independent standard Brownian motion processes. In (44), w

k
R (r) and

wkI (r) are distinct (real) Brownian motion processes and w
k
R (r) + iw

k
I (r) is a single complex-valued

Brownian motion process. The implication of (44) is that the complex-valued series x(0)�t asymptotically
behaves as a scalar complex-valued Brownian motion process.
Considering again the real-valued process xkt of (39) and multiplying by (1�ei!kL) yields the complex

conjugate process to (40), namely

xk+t = (1� e�i!kL)xkt = ei!ktxk+t�1 + "t (45)

where xk+t � I!k(1). Following the same line of reasoning as above, this can be transformed to x
(0)+
t �

I0 (1) with x
(0)+
t = x

(0)+
t�1 + e

�i!kt"t, with x
(0)�
t and x(0)+t also forming a complex conjugate pair.

For the situation where xkt is observed S times a year, de�ne the vectors X
k�
� = [xk�S(��1)+1; ::::; x

k�
S� ]

0

and Xk+
� = [xk+S(��1)+1; ::::; x

k+
S� ]

0. Then (44) implies that the asymptotic distributions of Xk�
� and Xk+

�

are given by

1p
N
Xk�
bNrc ) � (S=2)

1=2
C�kW (r) = � (S=2)

1=2
d�!kd

+0
!k
W (r)

= � (S=2)
1=2
d�!k

�
wkR (r) + iw

k
I (r)

�
(46)

and
1p
N
Xk+
bTrc ) � (S=2)

1=2
C+kW (r) = � (S=2)

1=2
d+!kd

�0
!k
W (r)

= � (S=2)
1=2
d+!k

�
wkR (r)� iwkI (r)

�
(47)

where C�k and C
+
k are de�ned in (29), d

�
!k
and d+!k are S�1 vectors de�ned as d�!k =

�
e�i!k e�i2!k

e�i3!k � � � e�iS!k
�0
and d+!k =

�
ei!k ei2!k ei3!k � � � eiS!k

�0
respectively, while [wR (r) + iwI (r)]

and
�
wkR (r)� iwkI (r)

�
are scalar complex-valued standard Brownian motions with

�
wkR (r)� iwkI (r)

�
=

(S=2)
�1=2

d�0!kW (r). Note that wkR (r) = (S=2)
�1=2PS

j=1 cos [j!k]Wj (r) and wkI (r) = (S=2)
�1=2PS

j=1 sin [j!k]Wj (r) ;

where Wj (r) is the jth element of W (r).
The key features of (46) and (47) are that one of the complex conjugate pair of scalar Brownian

motions separately drives each of these two vector processes Xk�
� and Xk+

� , with the form of these
relationships being analogous to (31) and (34) related to the zero and Nyquist frequency, respectively.
The zero frequency unit roots

�
wkR (r)� iwkI (r)

�
are shifted in (46) and (47) to unit roots at frequency !k

through demodulation, achieved using the vectors d�!k and d
+
!k
, with the cyclical property of e�i!kt (with

a cycle every S=k periods) implying that e�i!kt = e�i!k[t�(S=k)]. The scaling S1=2 enters the right-hand
side of (46) and (47) due to the distribution being considered in relation to the number of years N , rather
than the number of observations T in (44).
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4.3.2 Real-valued process

The real-valued process xkt of (39) involves both x
k�
t and xk+t , with the S elements of the real-valued

annual vector Xk
� = [xS(��1)+1; :::xS� ]

0 being driven by two complex Brownian motion processes, namely
wkR (r)� iwkI (r). In particular, using the partial fraction decomposition (see Gregoir, 1999, and Tanaka,
2008),

1

(1� 2 cos(!k)z + z2)
= � e�i!k

2i sin (!k)

1

(1� e�i!kz)

+
ei!k

2i sin (!k)

1

(1� e�i!kz)

and hence, from (39),

xkt = �
e�i!k

2i sin (!k)
xk�t +

ei!k

2i sin (!k)
xk+t :

Therefore, from (46) and (47), the asymptotic distribution of Xk
� is given by

1p
N
Xk
bNrc ) � e�i!k

2i sin (!k)
�

�
S

2

�1=2
d�!k

�
wkR (r) + iw

k
I (r)

�

+
ei!k

2i sin (!k)
�

�
S

2

�1=2
d+!k

�
wkR (r)� iwkI (r)

�
: (48)

Although the asymptotic distributions of the least squares estimators in a seasonal unit root process
like (39) are analyzed by Ahtola and Tiao (1987), Chan and Wei (1988), and Tanaka (2008), use of (48)
permits a more straightforward derivation of these distributions than used by earlier authors. A test
regression corresponding to (39) is

[1� 2 cos (!k)L+ L2]xkt = [�1 � 2 cos (!k)]xkt�1 + (�2 + 1)xkt�2 + "t: (49)

The hypothesis H0 : �2 + 1 = 0 is considered against the alternative Ha : �2 + 1 > 0 to test the null of a
pair of complex conjugate unit roots, while H0 : �1 � 2 cos (!k) = 0 versus Ha : �1 � 2 cos (!k) 6= 0 is a
test of the frequency allocation of the unit roots. The t-ratio statistics have asymptotic distributions

t�̂1�2 cos(!k)
)

2
4 sin (!k)

�R
wkR (r) dw

k
I (r)�

R
wkI (r) dw

k
R (r)

�
qR �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr

+
cos (!k)

�R
wkR (r) dw

k
R (r) +

R
wkI (r) dw

k
I (r)

�
qR �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr

3
5 (50)

t�̂2+1
) �

R
wkR (r) dw

k
R (r) +

R
wkI (r) dw

k
I (r)qR �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr

:

Clearly, the real and complex parts of the two underlying complex-valued Brownian motion processes
enter both asymptotic distributions. Dickey, Haza and Fuller (1984) obtain the distribution of �t�̂2+1
in (50) for a seasonal unit root test with two seasons per year. This distribution is also reported by del
Barrio Castro and Sanso (2015)12 and they show that the distribution of the joint F -type test for the
null of �1 � 2 cos (!k) = 0 and �2 + 1 = 0 is given by (see expression (3.4) in their proposition 3.1)

Fk =

�R
wkR (r) dw

k
R (r)�

R
wkI (r) dw

k
I (r)

�2
+
�R
wkR (r) dw

k
R (r) +

R
wkI (r) dw

k
I (r)

�2

2
�R �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr
� : (51)

12See expressions (3.2) and (3.3) in proposition 3.1 of del Barrio Castro and Sansó Rossello (2015). Note that these
expressions are more general than those reported in (50) as they allow for serial correlation and appropriate augmentation
in the test regression.
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Early discussions of unit root tests at the harmonic seasonal frequencies !k for k = 1; :::; S�; including
HEGY, were based on (49) and often involved using a sequence of t-type tests relating to, �rstly, �2
and then �1. However, as these test statistics are correlated, more recent analyses have focussed on
a representation transformation which yields uncorrelated test statistics. More speci�cally, Smith and
Taylor (1999) employ the regression

[1� 2 cos (!k)L+ L2]xkt = ��k [� cos(!k)xkt�1 + xkt�2] + ��k sin(!k)xkt�2 + "t (52)

for which the unit root null hypothesis is ��k = �
�
k = 0. Unlike those in (49), the regressors in (52) are

asymptotically orthogonal.
As shown by del Barrio Castro and Sansó Rossello (2015), the connection between the distributions

of the t-ratio tests t�k and t�k of the transformed variables and the t-ratio tests t�̂1�2 cos(!k) and t�̂2+1
in (50) is �

t��k
t��k

�
= �

�
0 1
1

sin(!k)
cos (!k)

�
�
"
t�̂1�2 cos(!k)
t�̂2+1

#
:

Hence, for the simple SI(1) process of (1) with no serial correlation, the asymptotic distributions for the
t-ratios associated with the coe¢cients in (54) are

t��k )
�R
wkR (r) dw

k
R (r) +

R
wkI (r) dw

k
I (r)

�
qR �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr

t��k
)

�R
wkI (r) dw

k
R (r)�

R
wkR (r) dw

k
I (r)

�
qR �

wkR (r)
�2
dr +

R �
wkI (r)

�2
dr

: (53)

The roles of the asymptotic distributions for the partial sum variables associated with each of the
complex pair of roots, (46) and (47) are clear in these expressions. Indeed, the distributions of (50)
can be viewed as analogous to those of (33) and (38) for the zero and Nyquist frequencies, respectively,
except that the distributions in (50) relate to a scalar complex standard Brownian motion rather than
the real standard Brownian motions at 0 and � frequencies. Further, as the distributions of t��k and t��k
are asymptotically uncorrelated, a joint F-type test Fk of the null �k = �k = 0 has the same asymptotic
distribution as given in (51).

4.3.3 SI test regression

To relate the above discussion to the SI test regression (24), the pair of unit roots at the seasonal
frequency !k can be isolated by noting that

�k(L) =
�S

(1� 2 cos (!k)L+ L2)
= (1� L) (1 + L)

S�Y

j=1
j 6=k

�
1� e�i!jL

� �
1� ei!jL

�

and hence, from (3),
�k(L)[1� 2 cos (!k)L+ L2] = (1� LS):

Therefore, de�ning13 yk;t = �k(L)yt, the SI null hypothesis implies that the process yk;t of (25) is
asymptotically equivalent to xkt in (39).
Also, due to the asymptotic orthogonality of the regressors and under the SI null hypothesis, testing

for a pair of complex unit roots at the seasonal frequency !k in the HEGY test regression (24) is
asymptotically equivalent to testing ��k = 0 and �

�
k = 0 in (52). From (52) and due to the asymptotic

equivalence of xkt and yk;t, we can therefore consider

[1� 2 cos (!k)L+ L2]yk;t = ��k [� cos(!k)yk;t�1 + yk;t�2] + ��k sin(!k)yk;t�2 + "t
= ��ky

�
k;t�1 + �

�
ky

�
k:t�1 + "t (54)

13Note that we de�ne �S=2(L) = �S= (1 + L) and �k(L) = �S=
�
1� 2 cos (!k)L+ L2

�
for k = 1; 2; : : : ; S�, which are

the operators denoted �S=2(L) and �k(L), respectively, by Smith and Taylor (1999) and del Barrio Castro and Sansó
(2015); that is by �S=2(L) = ��S=2(L) and �k(L) = ��k(L).

15



with regressors y�k;t�1 = � cos(!k)yk;t�1 + yk;t�2 and y�k;t�1 = sin(!k)yk;t�1: Smith and Taylor (1999,

equation 2.17) show that y�k;t and y
�
k;t are equal to y

�
k;t and y

�
k;t de�ned in (25).

As already noted, the SI test regression (24) requires augmentation to account for serial correlation
in a general SI process. However, as shown by Burridge and Taylor (2001), del Barrio Castro and Osborn
(2011), and del Barrio Castro, Osborn, and Taylor (2012), the t-ratio tests t��k and t��k

for k = 1; 2; : : : ; S�

in the presence of serial correlation have asymptotic distributions which depend on nuisance parameters.
Hence the distributions (53) apply only in very special circumstances. Nevertheless, the F-type tests Fk
for k = 1; 2; : : : ; S� remain pivotal (that is, their distribution is free from nuisance parameters) when
correctly augmented with asymptotic distribution given by (51). Hence, it is better in practice to use
this joint Fk test associated with the presence of a pair of complex conjugates at frequency !k = 2�k=S
for k = 1; 2; : : : ; S� than the two t-ratio tests t��k and t��k

.

4.4 General comments

Note that, despite all the scalar Brownian motions appearing in (31), (34), (46) and (47) being de�ned as
linear combinations of the elements of the same Brownian motion vectorW (r); they are independent from
each other, as the coe¢cients of the linear combinations are based on the elements of vectors of dimension
S�1 that are orthogonal. Also, the circulant matrices C0, CS=2, C�k , and C

�
k for k = 1; 2; : : : ; S

� represent
the transformations used to construct the regressor variables of the SI test regression (24) and, as already
noted, the circulant matrices corresponding to di¤erent frequencies are orthogonal to one another.
Although tests for unit roots are often considered separately at each of the zero and seasonal frequen-

cies, the implied level of signi�cance needs to be carefully controlled when joint inference is being made
about about the presence of unit roots across frequencies. A straightforward way to control the level of
signi�cance is to use of F-type tests when testing the overall null hypothesis of SI or the null hypothesis
of unit roots at all seasonal frequencies, the latter allowing a possible zero frequency unit root. An im-
plication of the orthogonality relationships noted in the previous paragraph is that the distributions of
these test statistics can be immediately obtained. Under the null hypothesis, a joint test of the overall
SI null hypothesis, namely H0 : �0 = �S=2 = ��1 = �

�
1 = ::: = �

�
S� = �

�
S� = 0 in (24), has the asymptotic

distribution

F01:::S =
1

S

(
(t�0)

2 + (t�S=2)
2 +

S�X

k=1

[(t��k )
2 + (t��k

)2]

)
(55)

where t�0 and t�S=2 are as in (33) and (38), respectively, and t��k , t��k
(k = 1; :::; S�) in (53). Similarly,

a joint F-type test of the null hypothesis that the process has unit roots at all seasonal frequencies
!k = 2�k=S for S = 1; :::; S�; corresponding to H0 : �S=2 = ��1 = �

�
1 = ::: = �

�
S� = �

�
S� = 0 in (24), has

the asymptotic distribution

Fseas =
1

(S � 1)

(
(t�S=2)

2 +
S�X

k=1

[(t��k )
2 + (t��k

)2]

)
: (56)

Another practical consideration when testing for unit roots in a seasonal context is whether the
distributions discussed above relating to individual (zero and seasonal) frequencies continue to apply
when not all unit roots are present, in other words when the underlying process does not have the SI
form. Reassuringly, Smith, Taylor and del Barrio Castro (2009) show that, with appropriate augmentation
for serial correlation, the asymptotic distributions for t�0 and t�S=2 in (33) and (38) continue to apply in
this situation, as does the asymptotic distribution of Fk in (51) for testing a pair of complex unit roots
at the seasonal frequency !k. However, the distributions of (53) for the individual regressors y�k;t�1 and

y�k;t�1 do not hold in this case, so that the joint F-type test should always be applied to test for a unit
root at a seasonal frequency !k, k = 1; :::; S�.
If a deterministic part is included in (24), such as a constant, seasonal dummies, a constant and a linear

trend, seasonal dummies and a linear trend, or seasonal dummies and trends, the scalar Brownian motions
w0 (r), wS=2 (r), wkR (r), and w

k
I (r) for k = 1; 2; : : : ; S

� are replaced by de-meaned or de-meaned and de-
trended Brownian motion, as explained in Smith, Taylor, and del Barrio Castro (2009), for example.
The use of GLS de-trending, mean recursive de-trending, etc., in the HEGY approach is analyzed by
Rodrigues and Taylor (2004, 2007) and Taylor (2002), while del Barrio Castro, Osborn and Taylor (2016)
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compare the performances of various approaches to detrending and determining the appropriate lag length
for testing SI in the presence of autocorrelation. Finally, the use of bootstrap techniques to deal with
volatility in the SI regression is analyzed by Burridge and Taylor (2004) and Cavaliere, Skrobotov, and
Taylor (2019).

5 Testing for Seasonal Unit Roots in PI Processes

In the light of the key di¤erences in the unit root properties of SI and PI processes, it is relevant to ask
what the consequences are of a potential misspeci�cation of the form of the process under investigation.
Except for deterministic seasonal e¤ects, the analysis of seasonal processes is typically undertaken assum-
ing the parameters are constant over the seasons. Hence it is important to ask what the consequences
are of applying seasonal unit root tests to a PI process.
This situation is analyzed by Boswijk and Franses (1996) for the Dickey, Hasza and Fuller (1984)

test and extended by del Barrio Castro and Osborn (2008) to the HEGY procedure in the quarterly case
(S = 4) for an integrated PAR(1) process. Essentially, del Barrio Castro and Osborn (2008) use the
PI process asymptotic distribution (15) and the circulant matrices associated with the SI test auxiliary
variables (26) to obtain the distributions of the auxiliary variables when applied to a PI process. For
the PI process of (2), which has S seasons and vector representation given by (10), these asymptotic
distributions (after appropriate scaling) are:

1p
N
C0YbNrc ) �$C0awp (r) = �$d0d

0
0awp (r)

= �$

0
@

SX
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aj

1
Ad0wp (r) (57)
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where $ is a scaling term, a and wp (r) relate to the PI process, see (14) and (15), while all the remaining
quantities in (57)-(60) e¤ectively carry over from the analysis of SI processes in the preceding section.
In particular, the circulant matrices are de�ned in (26) and (29), while R�

k and R
�
k are de�ned as

R�
k = 1=2

�
d+k + d

�
k

�
R�
k = 1= (2i)

�
d+k + d

�
k

�
, and �nally note that they are also de�ned in Appendix 1

(see (63)).
The key conclusion from (57)-(60) us that the distribution of all the auxiliary variables used in the SI

test regressions are functions of the single scalar Brownian motion wp (r). This scalar Brownian motion
is associated with the common stochastic trend that is shared by all the seasons of the PI process.
Hence, unlike the case for an SI process discussed above, the distributions of the test statistics are not
asymptotically uncorrelated when the SI tests are applied to a PI process.
Based on distributional results of the form of (57)-(60) for quarterly data (see Lemma 3 in del Barrio

Castro and Osborn, 2008), del Barrio Castro and Osborn (2008, Theorems 2 and 3) obtain the asymptotic
distributions of the t-ratios associated with y0;t and yS=2;t and the F -type test associated with the joint
exclusion of y�k;t and y

�
k;t in (24) when the true process is PI. Not surprisingly, the distributions for t�0

and t�S=2 have the form of (33), which is the usual tDF distribution for a zero frequency unit root test,

while the F -type test associated with the joint exclusion of y�k;t and y
�
k;t has an asymptotic distribution of

the form
�
tDF

�2
. However, because the single Brownian motion process wp (r) underlies the asymptotic

distributions for the tests at the zero and all seasonal frequencies, e¤ectively the same unit root is being
examined at all these frequencies. Therefore, when the true process is PI, the asymptotic distributions
for joint F-type tests discussed in subsections 4.3 for 4.4 for SI processes will not apply.
The analysis of del Barrio Castro and Osborn (2008) employs the constant parameter representation

of a PI process, which is discussed above in subsection 2.3. Due to the MA(S� 1) component present in
this representation, as in (20), the theoretical analysis assumes appropriate augmentation in the SI test
regression in order to capture the resulting autocorrelation in the (misspeci�ed) seasonally di¤erenced
process. In practice, however, augmentation is an empirical matter and the roots of the invertible MA in
the constant parameter representation may be relatively close to the corresponding unit roots of the AR
seasonal di¤erence, leading to less spectral power at the seasonal frequencies than at the zero frequency,
as in the example of subsection 2.3.
Hence, we can conclude that a unit root at the zero frequency is very likely to be detected by the

HEGY approach when applied to a PI process, while detection of apparent unit roots at the Nyquist
and harmonic seasonal frequencies will depend on the order of augmentation used in the test for seasonal
integration and the values of the coe¢cients that give rise to the PI unit root,

QS
s=1 �s = 1. In general,

however, spurious unit roots could be detected. The simulation analysis of del Barrio Castro and Osborn
(2008) con�rms this conclusion, which is also illustrated in the empirical example of the next section.
Finnaly expressions (57), (58), (59) and (60) also link with expressions (73), (74) and (75) in Appendix

1, note that in (57) we have
�PS

j=1 aj

�
= R0

0a, note that � = �1a. Hence in expression (57), (58), (59)

and (60) we have terms that are quivalent to the expression collected in (73), (74) and (75), that we
propose to use to the following section to provide information about the relative importance of each (zero
and seasonal) frequency of the nonstationary behaviour of a PI process.

6 Empirical Illustration

In this section we illustrate the use of the seasonal unit root and periodic integration tests through
their application to seasonally unadjusted monthly US industrial production series. In particular, we
examine six important components of the industrial production index (IPI), namely Business Equipment,
Business Supplies, Construction Supplies, Durable Consumer Goods, Nondurable Consumer Goods and
Nondurable Goods Materials. Seasonally unadjusted data are available on each of these components at
the monthly frequency starting in January 1947. The sample ends in December 2020, yielding N = 74
years of data14 . As usual, the data are analyzed after the logarithmic transformation, with the series (in
log form) shown in Figure 2.
All six series exhibit clear upward trends over time, with the extent of seasonal variation varying

14Our sample ends in 2020 to avoid dealing with the disruptions to production caused by the COVID-19 epidemic. The
data was downloaded from the FRED Economic Data of the St. Louis Fed.
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over series. In particular, Figure 2 indicates that Business Equipment exhibits relatively small seasonal
variations, with these much more marked in the case of Construction Supplies and Durable Consumer
Goods. It is also notable that the extent of seasonality sometimes varies over time, with (for example) the
extent of seasonality apparently declining for Durable Consumer Goods. To obtain further insights into
the seasonality in the six IPI time series, Figure 3 reports the raw periodograms of the series. Clearly,
all six show a high peak associated with the zero frequency, but peaks are also seen at all the seasonal
frequencies, namely at �=6, �=3, �=2, 2�=3, 5�=6 and �, corresponding to 1, 2, 3, 4, 5, 6 cycles per
year, respectively. The peaks at the seasonal frequencies are generally lower than at the zero frequency,
with little peak evident for Business Equipment and Nondurable Goods Materials at frequency �=6
(corresponding to one cycle per year).
Tables 1.a, 1.b, 2.a and 2.b present the results of unit root tests applied at the zero and each seasonal

frequency for the SI test regression (24). The regression is augmented to deal with possible presence
of serial correlation using the MAIC information criteria. Ordinary least squares (OLS) detrending is
applied in Table 1.a and 2.a, with generalized least squares (GLS) detrending in Tables 1.b and 2.b.
Tables 1.a and 1.b allow for both seasonal dummies and seasonal trends in the test regression, while
seasonal dummies are used in conjunction with a single trend in the corresponding parts of Table 2; see
del Barrio Castro, Osborn and Taylor (2016) for an evaluation of methods that are used for lag selection
and detrending in the SI test regression. The critical values used for the tests are provided in Tables 1.c
and 2.c, where these are asymptotic critical values obtained by simulation.
Tables 1 and 2 point to the presence of a unit root at the zero frequency for all six series, irrespective

of form of trend (seasonal or not) and detrending method. Results for the Nyquist frequency (!�) are also
relatively straightforward, with the presence of a unit root rejected in all cases at a level of signi�cance of
10% or (generally) below. The situation in respect of F-type tests for pairs of unit roots at other seasonal
frequencies is a little less clear, with unit roots not rejected in some cases at frequencies �=6; �=3 and
�=2; which correspond to one, two and three cycles per year in data observed monthly. However, the
evidence against unit roots is strong at frequencies 2�=3 and 5�=6, with the overall Fseas statistic for the
null of unit roots at all seasonal frequencies also being decisively rejected. Therefore, none of these series
appear to be of the SI form and the conclusion might be drawn that the seasonality observed in Figure 3
is either stationary in form or associated with deterministic seasonality. However, these SI tests do not
consider the possibility of seasonality being of PI form.
Table 3 considers the possibility that the IPI series are periodically integrated, and includes tests for

both periodically varying coe¢cients and a unit root. The model considered is a generalization of (2) for
monthly data, with

yt =
12P
s=1

Dst�s +
12P
s=1

Dst�st (61)

+
12P
s=1

�1sDstyt�1 + � � �+
12P
s=1

�psDstyt�p + "t:

This general speci�cation includes both constant and trends that are allowed to vary over the months of
the year, while the lag order p is selected for each series using AIC; the maximum lag considered is 4 due
to the highly parameterized nature of (61).
The �rst statistic reported, labelled Fper; provides a test that the AR coe¢cients are periodically

varying, which employs the joint null hypothesis �js = �j for j = 1; : : : ; p (see Boswijk and Franses
(1996) for details); since no unit root is under test, the conventional F distribution is applied, with all
six series showing strong evidence of coe¢cient variation over the year. The possibility that the series are
periodically integrated, PI, is then considered through the LR test of Boswijk and Franses (1996), which
is discussed above; see (16) and (17). Using conventional signi�cance levels, none of the series provides
evidence against the PI unit root null hypothesis. In order to check that the unit root uncovered by
the LR test has a periodic form, an F -test is undertaken of the null that all coe¢cients associated with
the periodic integration restriction are equal to one. Representing the relevant coe¢cients as 's withQS
s=1 's = 1 (where 's = �s for a PAR(1) process such as (2)), this last test has H0 : 's = 1 for

s = 1; 2; : : : ; S. Hence the null hypothesis is that the conventional zero frequency unit root applies and
that di¤erencing of the form (1 � L) is appropriate, with the process being PI under the alternative.
Five of the six series reject the null hypothesis at a signi�cance level of 10% or lower, with only Business
Supplies supporting the conventional zero frequency unit root. However, the test is not signi�cant for
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Nondurable Goods Materials at 5%.
Overall, the results in Tables 1 to 3 indicate that the IPI series examined are predominantly PI

in form, with none apparently having the full set of unit roots at seasonal frequencies required for SI
processes. Business Supplies is a partial exception, since unit roots are not rejected at some seasonal
frequencies for this series and the �rst di¤erencing null hypothesis is not rejected at conventional levels
against the periodic alternative.
Finally Figures 4.a, 4.b and 4.c use the estimated coe¢cients from (61) to provide information about

the relative importance of each (zero and seasonal) frequency to the nonstationary behaviour of the six
IPI series. In particular, Figures 4.a and 4.b employ the seasonal dummy and seasonal trend coe¢cients,
employing the trignometric transformation to convert these to coe¢cients associated with the zero and
seasonal frequencies. Figure 4.c, on the other hand, applies the trignometric transformation to the
cumulation of the estimated 's coe¢cients associated with a possible PI unit root; Appendix 1 provides
further information on these transformations. It might be noted here, however, that the cumulation

associated with each month can be represented as the vector �c =
�
'1; '1'2; '1'2'3; : : : ;

Y12

j=1
'j

�0
,

which is a scaling (multiplication by '1) of the common trend coe¢cients for a PI process in (14). Hence
Figure 4.c gives information of how the PI coe¢cients contribute to the spectral power at each frequency.
To put Figure 4.c in context, note if the seasonal unit root process of (39) is analyzed in this way, it will
have a non-zero contribution only at the frequency !k.
Figures 4.a and 4.b show that both the seasonal dummy variables and the seasonally varying trends

generally contribute strongly to the seasonal e¤ects seen in the IPI series. For example, the seasonal
dummy variable coe¢cients imply particularly strong cycles at frequencies �=6 and �=2 for Durable
Consumption Goods; these are further enhanced by the seasonal trend e¤ects for this series, with trend
seasonality also strong at frequencies �=3 and 2�=3.
In contrast to the strong contributions in Tables 3.a and 3.b of the dummy variables and trends to

seasonal e¤ects, the PI coe¢cients in Table 3.c add very little. The dominant contribution of these
coe¢cients is at the zero frequency, which suggests that the estimated PI coe¢cients are (in some sense)
all close to unity. Nevertheless, the conventional unit root is rejected for most series in Table 3, and the
periodic coe¢cients consequently do make some contributions in Figure 3 at the seasonal frequencies.

7 Concluding Remarks

This paper compares the properties of seasonally integrated (SI) and periodically integrated (PI) processe,
with the aim of providing insights into the methods and results used in the analysis of non-stationary
seasonal processes. A substantial theoretical literature has built on the analysis of Hylleberg, Engle,
Granger and Yoo (1990), which was the �rst to consider the separate unit roots at the zero and seasonal
frequencies implied by seasonal integration. Since the unit roots at seasonal frequencies (except at the
frequency !k = �) imply the existence of pairs of complex-valued unit roots, the methods of analysis can
appear somewhat di¤erent to the usual zero frequency unit root case. However, as the discussion of this
paper aims to draw out (particularly in Section 4), the theoretical analysis dealing with complex unit root
processes is, in essence, analogous to that associated with conventional I(1) processes. The theoretical
analysis dealing with PI processes is relatively more straightforward than the seasonal integrated case,
because (as discussed in subsection 2.2) periodic integration quite naturally leads to a vector represen-
tation to which conventional cointegration analysis can be applied. Nevertheless, the crucial di¤erence
between the two types of seasonal non-stationarity is that an SI process has a unit root associated with
each of S "seasons" of the year (typically a month or quarter), and hence S unit roots in total, in contrast
to the single unit root underlying the movements of a PI process.
Although they are more straightforward than SI processes to analyze from a theoretical perspective,

PI processes have attracted less study and relatively few empirical applications appear to have been
made to macroeconomic data. Nevertheless, when the approaches are compared in practice, and as
re�ected in the empirical analysis of Section 6, Franses and Romijn (1993) �nd more support for periodic
than seasonal integration for UK series. It should also be noted that an empirical PI model will often
involve more parameters than an SI model, especially for higher frequency data, such as monthly or
weekly, due to the inherent use of seasonally-varying coe¢cients in the former. Useful directions for
further theoretical and empirical analyses are, �rstly, the discrimination between SI and PI processes
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and, secondly, e¤ective methods to reduce the number of coe¢cients to be estimated in a PI model for
higher frequency data.
Although the present paper has discussed only univariate techniques, the analytical methods consid-

ered here can be used to analyze cointegration issues. In particular, del Barrio Castro, Cubadda and
Osborn (2022) apply demodulation in conjunction with seasonally (or, more generally, cyclically varying)
coe¢cients to show that cointegration can exist across di¤erent frequencies. This generalizes the previ-
ously considered cointegration possibilities of seasonal cointegration (Engle, Granger, Hylleberg and Lee,
1994, Johansen and Schaumburg, 1999) and periodic cointegration (Boswijk and Franses 1995).
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APPENDIX 1
Trigonometric Representation of a PI Process

At this stage, it is useful to introduce the one to one connection between the dummy variable and
trigonometric representations of seasonal dummy variables; see Ghysels and Osborn (2001, section 2.2)
for more details in the context of deterministic seasonality.
As shown in Ghysels and Osborn (2001, section 2.2), there is a one-to-one correspondence between the

coe¢cients of the full set of S seasonal dummy variables and the coe¢cients of a trigonometric representa-
tion of the seasonal pattern. To be speci�c, the two representations of the deterministic seasonally-varying
mean are

SP
s=1


sDst =
S�P
k=0

�
�k cos

�
2�kt

S

�
+ �k sin

�
2�kt

S

��
(62)

where Dst is as de�ned for (2) while S� = (S=2)� 1, assuming S is even, as in (3) above. The left-hand
side of (62) is the dummy variable representation of deterministic seasonality, where 
s is the coe¢cient
(or intercept) associated with season s = 1; 2; : : : ; S. The trigonometric representation of deterministic
seasonality is given by the right-hand side of (62). Here the coe¢cients �0 and �S=2 are associated
with the zero and Nyquist (�) frequencies, respectively, as sin (2�0t=S) = sin (0) = sin (�t) = 0, while
the coe¢cients �k and �k are associated with seasonal waves at the harmonic frequencies !k = 2�k=S
(k = 1; : : : ; S�) that complete a full cycle every 2�=!k = S=k periods.
De�ning the S�1 coe¢cient vectors � =

�

1 
2 � � � 
S

�0
andB =

�
�0 �1 �1 � � � �(S�1)=2

�(S�1)=2 �S=2
�0
; the equivalence in (62) implies that

� = RB

where the S � S matrix R is

R=
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R0 R�

1 R
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with jth row

R�j =
h
1 cos
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sin
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� � � cos
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:

Note that the columns of matrix R are orthogonal to each other and that R0
iRi = S for i = 0 and

i = S=2, R`0
i R

`
i = S=2 for i = 1; 2; : : : ; (S � 1) =2 and ` = �; �; see, for example, Fuller (1996, Theorem

3.1.1) or Wei (2006, expressions 11.2.13-11.2.15). Finally, it is also possible to obtain the trigonometric
coe¢cients B from the dummy coe¢cients � as

B = R�1�: (64)

As noted in Ghysels and Osborn (2001), since the columns of matrix R for an orthogonal basis, it is
straightforward to see that R0R is a diagonal matrix and its inverse is

R�1 = diag
�
1=S 2=S 2=S � � � 2=S 2=S 1=S

�
�R0

: (65)

The relationships just discussed apply whenever the full set of seasonal dummy variables is used.
Hence, for a periodically integrated PAR, of the form

y(s�) = �s + �s� + �sy(s�1;�) +

p�1X

j=1


s;j
�
y(s�j;�) � �s�jy(s�j�1;�)

�
+ "(s�);

we can obtain the contributions of the seasonal intercepts to the zero frequency movement by de�ning
the S � 1 vector ��=

�
�1 �2 � � � �S

�0
; with the zero frequency contribution being

1

S
R0
0�� =

1

S

SX

s=1

�s = �0: (66)
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The contribution at the Nyquist frequency is then:

1

S
R0
S=2�� =

1

S

SX

s=1

cos (�s)�s = �S=2: (67)

and the contributions at each harmonic frequencies !k = 2�k=S for k = 1; 2; : : : ; (S � 1) =2 are:
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To summarize the total e¤ect at frequency !k = 2�k=S for k = 1; 2; : : : ; (S � 1) =2, we can then use
h
(�cosk )

2
+
�
�sink

�2i
: (69)

And in the case of the zero and Nyquist frequencies in order to make comparable the information we also

summarize the e¤ect and the zero and Nyquist frequencies with (�0)
2 and

�
�S=2

�2
, see for example Wei

(2006).
The case of seasonal deterministic trends �s is analogous to that just discussed. By de�ning the S�1

vector ��=
�
�1 �2 � � � �S

�0
; the zero frequency contribution is:

1
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�s = �0; (70)

and that for the Nyquist frequency:
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At the harmonic frequencies !k = 2�k=S for k = 1; 2; : : : ; (S � 1) =2:
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with the summary total e¤ect at frequency !k:
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:

And in the case of the zero and Nyquist frequencies we also use (�0)
2 and

�
�S=2

�2

Finally in the case of the coe¢cients �s; s = 1; 2; : : : ; S; of a PI process associated to the periodic

integration restriction
SY

s=1

�s = 1, we use the S � 1 vector � =
"
�1 �1�2 �1�2�3 � � �

SY

s=1

�s

#0
.

The cumulation of the coe¢cients in de�ning � is important, as it re�ects the interactions between
adjacent observations. The contribution of the zero frequency will then be measured by:

1

S
R0
0� = �0; (73)
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that associated with the Nyquist (�) frequency by:

1

S
R0
S=2� = �S=2 (74)

and, �nally, with the harmonic frequencies !k = 2�k=S for k = 1; 2; : : : ; (S � 1) =2 by:
2

S
R�0
j � = �cosk (75)
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and the summary total e¤ect at frequency !k = 2�k=S:
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(�cosk )

2
+
�
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�2�
:

And as in the previous two cases in order to compare the results with the zero and Nyquist frequencies

we summarize the information for these frequencies with (�0)
2 and

�
�S=2

�2
respectively.

Note that it is also possible to compute (73), (74) and (75) using the coe¢cients that capture the com-

mon trend in the PI process, namely a =
h
1 �2 �2�3 � � � QS

s=2 �s

i0
. However, for our empirical

illustration, the results using a are very similar to those using the form of � of the previous paragraph
and hence only results using this � are included in the paper.
It should also be pointed out that it does not make sense to de�ne the S � 1 vector � as � =�
�1 �2 �3 � � � �S

�0
because if we have, for example, the process (1 + L)x�t = "t which is a

particular case of a PI process with �� =
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then 1
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sin (!ks) = 0: However, by cumulating

the coe¢cients as in � of the previous paragraph, the contribution at the frequency of the unit root is
no longer zero while the contributions at other frequencies are zero.

APPENDIX 2
Asymptotic Independence of HEGY Regressors

Although the circulant matrices C�k and C
�
k are not orthogonal, it is noted in subsection 3.2 that the

regressor variables y�k;t�1 and y
�
k;t�1 in (24) are asymptotically independent when yt is generated by the

SI process (1). This can be established using (27), since
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To obtain this result, we use the fact that C�k is symmetric and that C
�
kC

�
k = S=2C�kC

�
k while C

�
k =

v�k

�
v
�
k

�0
; see Smith, Taylor and del Barrio Castro (2009, p 560) for more details.

27



Figure 1: Average Periodogram for Example Periodically Integrated Process

Notes: The example process has �1 = 0:8, �2 = 1, �3 = 0:5, �4 = 1=(�1�2�3);
see text (subsection 2.3).
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Figure 2: Series used in the Empirical Illustration

Business Equipment Business Supplies

Construction Supplies Durable Consumer Goods

Non-Durable Consumer Goods Non-Durable Goods Materials
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Figure 3: Periodograms of the Series used in the Empirical Illustration
Business Equipment Business Supplies

Construction Supplies Durable Consumer Goods

Non-Durable Consumer Goods Non-Durable Good Materials
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Table 1.a. Seasonal Integration Test Results: Dummies and Trends, OLS
Bus. Bus. Const. Durable Nondur. Nondur.
Equip. Supp. Supp. Cons. G. Cons. G. Goods Mat.

t0 -1.0199 -0.3721 -2.2007 -1.6419 -0.4419 -2.2810
t� -3.8454* -4.9540*** -5.1180*** -3.9023** -5.3235*** -4.1153***
F�=6 30.6731*** 9.5620** 20.1071*** 28.7250*** 11.2715** 40.1376***
F�=3 13.6166*** 6.3918 21.7623*** 11.1394** 8.0808 26.5298***
F�=2 10.1656** 24.5148*** 14.5043*** 14.2796*** 16.0250*** 27.1045***
F2�=3 17.3084*** 19.5288*** 29.8845*** 15.0662*** 29.7554*** 15.4465***
F5�=6 14.8094*** 17.6557*** 17.7820*** 12.7341*** 14.6024*** 16.0091***
Fseas 16.5453*** 14.5460*** 19.5753*** 15.4758*** 14.3971*** 24.0702***
Aug 17 14 14 13 13 15

Table 1.b. Seasonal Integration Test Results: Dummies and Trends, GLS
Bus. Bus. Const. Durable Nondur. Nondur.
Equip. Supp. Supp. Cons. G. Cons. G. Goods Mat.

t0 -1.7169 -0.3888 -1.4548 -1.4582 0.0956 -2.3119
t� -3.0662** -3.1018** -4.0988*** -3.0316** -4.4457*** -4.0456***
F�=6 12.1288*** 2.6282 12.8731*** 17.4216*** 2.9525 35.3733***
F�=3 7.5390** 2.8271 9.6179*** 10.7939*** 6.2010* 22.3992***
F�=2 7.3705** 7.6471** 3.9172 7.1728** 7.5806** 20.7182***
F2�=3 11.1962*** 9.2270*** 12.0667*** 11.8378*** 22.8782*** 11.0395***
F5�=6 9.4426*** 8.4188** 7.3779** 11.5378*** 7.0826** 14.1270***
Fseas 8.8746*** 5.5785** 8.4681*** 11.0124*** 8.4028*** 19.7138***
Aug 17 14 14 13 13 15

Notes: *, **, *** indicate signi�cance at 10%, 5%, 1% respectively.
Aug. is the level of augmentation selected according to MAIC. The maxim lag is determined with

l12 =
h
12 (T=100)

1=4
i
:

Table 1.c: Critical Values for Tables 1.a and 1.b
OLS 1% 5% 10%
t -3.9359 -3.3883 -3.1011
Fk 12.0285 9.5506 8.3986
Fseas 8.0830 7.1697 6.7214
GLS 1% 5% 10%
t -3.5677 -3.0157 -2.7385
Fk 9.0715 6.9961 6.0407
Fseas 5.7873 5.0916 4.7418
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Table 2.a. Seasonal Integration Test Results: Dummies and Constant Trend, OLS
Bus. Bus. Const. Durable Nondur. Nondur.
Equip. Supp. Supp. Cons. G. Cons. G. Goods Mat.

t0 -1.0787 -0.4687 -2.4504 -1.6737 -0.4501 -2.2647
t� -3.6959*** -3.7582*** -3.1263** -3.1401** -3.0506** -4.4611***
F�=6 23.9860*** 10.1851*** 16.0720*** 20.9269*** 6.4100* 24.6796***
F�=3 12.1480*** 1.5896 4.8845 7.4819** 2.2600 22.1213***
F�=2 9.9454*** 6.7779** 6.4869* 12.7344*** 5.0386 15.4746***
F2�=3 10.7473*** 11.5759*** 19.4741*** 10.2388*** 15.5256*** 14.3397***
F5�=6 8.8004*** 10.1580*** 11.5983*** 8.6555** 7.5868** 13.7899***
Fseas 12.3765*** 7.3775*** 10.6444*** 11.3031*** 6.9249*** 18.5360***
Aug 17 14 13 13 18 19

Table 2.b. Seasonal Integration Test Results: Dummies and Constant Trend, GLS
Bus. Bus. Const. Durable Nondur. Nondur.
Equip. Supp. Supp. Cons. G. Cons. G. Goods Mat.

t0 -1.6452 -0.3761 -1.5971 -1.386 -0.0620 -2.1881
t� -3.4177*** -2.1293* -1.5940 -2.7610*** -3.0717*** -4.5881***
F�=6 7.7239*** 0.2928 4.9614*** 6.8328*** 0.7618 12.1027***
F�=3 7.2495*** 0.3309 1.8323 4.9575** 0.4025 22.4505***
F�=2 8.5721*** 4.7960** 3.4230** 3.6822** 3.7156** 15.3410***
F2�=3 4.7374** 3.9178*** 1.7992 6.5218*** 4.6616** 5.3308***
F5�=6 4.2740** 8.8063*** 7.1080*** 3.8781** 4.3232** 13.1237***
Fseas 6.0127*** 3.2640*** 3.4753*** 4.7578** 2.5533*** 13.6979***
Aug 17 14 13 13 18 19

Notes: *, **, *** indicate signi�cance at 10%, 5%, 1% respectively.
Aug. is the level of augmentation selected according to MAIC. The maxim lag is determined with

l12 =
h
12 (T=100)

1=4
i
:

Table 2.c: Critical Values for Tables 2.a and 2.b
OLS 1% 5% 10%
t0 -3,9359 -3,3883 -3,1011
t� -3,3993 -2,8326 -2,5452
Fk 8,6594 6,5190 5,5180
Fseas 5,2075 4,4694 4,0963
GLS 1% 5% 10%
t0 -3,5677 -3,0157 -2,7385
t� -2,7455 -2,1526 -1,8552
Fk 4,9418 3,3184 2,6024
Fseas 2,5516 2,0649 1,8302
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Table 3. Periodic Tests
Fper LR F(1�L) order

Business Equip. 3.411*** 0.227 3.367*** 2
Business Supplies 7.238*** 0.011 0.919 2
Contruc. Supplies 5.196*** 2.960 2.118** 2

Durable Cons. Goods 4.468*** 4.586 9.678*** 3
Nondur. Cons. Goods 5.850*** 0.472 2.621*** 2
Nondur. Goods Mat. 4.930*** 8.470 1.657* 2

Notes: *, **, *** indicate signi�cance at 10%, 5%, 1% respectively.
Order is the value of p selected according to AIC in (61.

See text for discussion of the tests. Maximun lag in PAR models 4:
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Figure 4.a: Frequency Contributions of the Seasonal Intercepts

Notes: Values shown are obtained from the Appendix expressions (66) (�0)
2, (71)

�
�S=2

�2
and (72) for

the relevant !k = 2�k=12, k = 0; 1; :::; 6:

Figure 4.b: Frequency Contributions of the Seasonal Trends

Notes: Values shown are obtained from the Appendix expressions (70) (�0)
2, (71)

�
�S=2

�2
and (72) for

the relevant !k = 2�k=12, k = 0; 1; :::; 6:
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Figure 4.c: Frequency Contributions of Periodic Integration Coe¢cients

Notes: Values shown are obtained from the Appendix expressions (73) (�0)
2, (74)

�
�S=2

�2
and (75) for

the relevant !k = 2�k=12, k = 0; 1; :::; 6 using 's with �
c =

h
'1; '1'2; '1'2'3; : : : ;

QS
j=1 'j

i0
:
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