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Abstract

We study core allocations in a two-period asymmetric information mixed economy,

where the consumption sets are arbitrary subsets of an ordered Banach space, and the

feasibility is defined as exact. We prove that (i) the strong blocking by a generalized

coalition leads to a weak blocking by some ordinary coalition, implying the equivalence

between the Aubin core and the core of an economy with only negligible agents; and

(ii) the core can be characterized in terms of the size (and diameter) of the blocking

coalitions in an economy with only negligible agents as well as both negligible and

non-negligible agents.
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1 Introduction

The core of an economy is a solution concept that acknowledges that coalitions of agents

may corporate to improve their welfare. In other words, for any allocation not belonging

to the core, there is a coalition whose members achieve better commodity bundles than the

non-core allocation by redistributing their initial endowments with themselves. In a classical

exchange economy with a continuum of agents, the core coincides with the set of competitive

allocations, refer to Aumann [3]. However, the equivalence theorem fails to hold, in general,

if there are some non-negligible market participants in addition to the negligible ones (see

Shitovitz [28]). Note that the market participants become non-negligible for the following

reasons: (i) some agents may be endowed with an exceptional initial endowments because

their initial ownership of commodities is sufficiently large with respect to the total market

endowment. This is typical in monopolistic or, more generally, in oligopolistic markets; and

(ii) the other reason is, while the initial endowment is spread over a continuum of negligible

agents, some of them may join forces and decide to act as a single agent in the form of

cartels, syndicates, or similar institutions. The paper aims to study a few classical problems

concerning the core allocations in the exchange economy embodying many agents, some of

which are non-negligible.

- Coincidence of the Aubin core and the core: It follows from the definitions that the

Aubin core is contained in the core of an economy. In a classical economy with an

atomless measure space of agents, the validity of the core-equivalence result guarantees

that these two core coincides. Therefore, no similar conclusion is plainly guaranteed

as soon as there are infinitely many commodities and uncertainty with asymmetric

information because there is no core-equivalence theorem in such a setting.

- Size and diameter of the blocking coalition: The robustness of the core allocations with

respect to the restrictions imposed on the size and diameter of the blocking coalition

go back to the seminal contributions of Schmeidler [29], Grodal [18], and Vind [31] in
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a classical model of an atomless economy with the positive cone of the ℓ-dimensional

Euclidean space as the consumption sets of agents and without uncertainty and asym-

metric information. More precisely, Schmeidler [29] showed that if a feasible allocation

is not in the core of the economy, it can be blocked by coalitions of small measures.

Thus, the core (particularly the set of competitive allocations) can be implemented only

by forming small coalitions. Such a result is crucial when forming a coalition implies

a certain cost proportional to its size. Schmeidler’s idea of a blocking mechanism was

further extended by Grodal [18], where she showed that for any ε > 0 and any non-core

allocation, there is a blocking coalition which can be expressed as the union of atmost

ℓ+1 sub-coalitions, and the measure and diameter of each of these sub-coalitions is less

than ε. A coalition whose measure and diameter both are less than ε intuitively means

that the coalition consists of relatively few agents and that the agents in the coalition

resemble one another in chosen characteristics. Finally, Vind [31] established that for

any feasible allocation outside the core of an economy and any measure ε less than

the measure of the grand coalition, there is a coalition S whose measure is precisely

ε such that the non-core allocation is blocked by S. When it combines with the core-

equivalence theorem, this theorem shows that the only allocation against which there

is no coalition of weight α ∈ (0, 1) proposing a deviation are the competitive ones.

One of the implications of Vind’s theorem is normative in the following sense: since

arbitrarily large-sized coalitions are entitled to block each non-core allocation, the core

can be seen as a solution concept supported by an arbitrarily large majority of agents.

The proof of these results relies on the validity of the Lyapunov convexity theorem

for the range of a finite-dimensional vector measure. Therefore, no similar simple con-

clusions hold true as long as there are some atoms in the economy or infinitely many

commodities. Furthermore, Vind’s [31] theorem depends on the strong monotonicity

assumption. Therefore, as the free-disposal condition may not be satisfied for a model

involving arbitrary consumption sets, such an assumption cannot be directly applied.
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The purpose of the paper is to study the above specified problems in a very general setting.

The economic activity is taken into account uncertainty, where agents subscribe to contracts

at the time τ = 0 ( ex-ante) that are contingent upon the realized state of nature at time

τ = 1 (ex-post), in a way so that their expected payoff is maximized. Consumption sets are

assumed to be arbitrary subsets of the commodity space, which are primarily motivated by

real-life constraints imposed on the consumption of each individual agent. Consumption of

certain commodities may be rationed in some scenarios, certain commodities may not feature

at all in the consumption of an individual agent, etc, all this corresponds to the consumption

set being generally confined to an arbitrary subset of the commodity space. Uncertainty is

also a cause for arbitrary consumption sets. In the words of Radner [27], uncertainty lies at

the heart of most real-life economic decisions. These uncertainties are reflected in the var-

ious states of the world. Thus, each individual agent devising a consumption decision that

plans for each possible commodity in each of the possible states of the world posits a serious

computational problem. Computational limitations in such scenarios lead consumption to be

restricted to a subset of all total possibilities. In this paper, we assume that the consumption

set of an individual agent is an arbitrary subset of an ordered (not necessarily separable)

Banach space whose positive cone has a non-empty interior. Our extension is primarily

motivated by the amendments of Bewley [6] made to the classical Arrow-Debreu-Mckenzie

model by permitting the dimensionality of commodity space to be infinite. Infinite dimen-

sional commodity spaces arise quite naturally in general equilibrium analysis. Primarily the

following three scenarios lead to studying infinite dimensional commodity spaces: (i) Dealing

with an infinite time horizon; (iii) Infinitely many states of nature; and (iii) Infinitely many

variations in commodity characteristics. Our economy is also assumed to involve informa-

tion asymmetry among individuals with the exact feasibility condition. In the above setup,

we show that the Aubin core coincides with the core and investigate the core allocations in

terms of size and diameter of coalitions, extending those obtained by Schmeidler [29], Grodal

[18], and Vind [31]. However, there are three main challenges with our framework.
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❼ The arbitrary consumption set in the case of our economy leads to a violation of the

free disposal condition. This, in turn, leads to the failure of standard assumptions like

strict monotonicity.

❼ The asymmetric information setup, along with exact feasibility, possesses certain chal-

lenges with the technicalities of the results.

❼ The Lyapunov convexity theorem fails to hold in its original form due to the infinite

dimensionality of the commodity space. It only holds in a weaker form. Moreover, the

commodity space is not necessarily separable.

All these challenges together make a huge difference in the contribution of this paper from

either the finite-dimensional counterpart or the scenario without asymmetric information

and exact feasibilty, or the scenario with the non-negative orthant as the commodity space.1

We show that all these difficulties can be overcome with a suitable non-satiation condition.

In fact, the major findings in this regard are Proposition 3.4 and Proposition 4.1. While

Proposition 3.4 claims that the weak Aubin blocking can be replaced by a strong ordinary

blocking, Proposition 4.1 is an extension of the Lyapunov convexity theorem in its exact

form for Bochner integrable functions in our general setting. As corollaries of these two

results, one immediately obtains the equivalence between the Aubin core and the core,2

and the Schmeider [29] type of result in our framework. We also formulate, as applications

of Proposition 4.1, the Grodal [18] theorem and the Vind [31] theorem in their standard

formulation (i.e., for ordinary coalitions) for non-atomic agents; the last one of these also

requires the validity of an additional result (Proposition 4.4).

Recognized that the atomless model corresponds to an ideal extreme case, as the competition

in real economic exchange is far from being perfect. Thus, it is worth considering the above

1For comparison with the special cases, we refer to Bhowmik [7], Bhowmik and Cao [8, 9], Bhowmik and
Graziano [11, 12], Evren and Hüsseinov [14], Graziano and Romaniello [17], Hervés-Beloso Et al. [19],
Hervés-Beloso Et al. [20], Khan [22], Pesce [25, 26], among others.

2We also obtain coincidence of the core and the strong core to centain extent, as an application of Proposition
3.4.
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problems concerning the size and diameter of blocking coalitions for a mixed-measure space

of agents. As a consequence, the blocking procedure in our model involves generalized (or

Aubin) coalitions defining the so-called Aubin core (see [4], [11], [24]). Therefore, we can

conclude that, with infinitely many commodities, arbitrary consumption sets, information

asymmetry and the exact feasibility, and atoms, any given allocation outside the Aubin

core can be improved by a coalition of arbitrary small or large size. From a technical point

of view, this result, when compared with the one in Vind [31], involves a fourth level of

generality: with respect to the measure space, to the commodity space, to the consumption

sets, and to the information asymmetry and exact feasibility. Interestingly, the problem

related to the presence of atoms for the measure µ does not affect the results in the “Aubin”

sense, since, in view of Proposition 3.4 and Proposition 4.1, we construct a correspondence

between the (Aubin) core of the mixed economy and the core of an associated atomless

economy (see Theorem 4.9 and Theorem 4.10), which is an extension of the relationship

between core allocations of the two economies in line with Greenberg and Shitovitz [15]. In

virtue of Theorem 4.9 and Theorem 4.10 and the core-equivalence theorem in Angeloni and

Martins-da-Rocha [2] for an atomless economy, we can extend the core-equivalence result

in Greenberg and Shitovitz [15] and Shitovitz [28] to a mixed with asymmetric information

and finitely many commodities. In contrast to them, our result does not depend on the

number of atoms, as in the case of Basile et al. [5] for a similar result in a public good

setup. As a further result, we formulate and prove a suitable version of Grodal’s theorem

in [18] for an economy with atoms and generalized coalitions. In our Vind’s and Grodal’s

theorem, we show that small agents in the blocking generalized coalition of a fixed measure

behave in the same way as in an ordinary coalition, which means they use their full initial

endowments. This significantly extends the scope of the theory, incorporating a much larger

class of models as it involves the four aspects together: negligible as well as non-negligible

agents, infinite-dimensional commodity spaces, uncertainty with asymmetric information

and exact feasibility, and arbitrary consumption sets.
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The paper is organized as follows. Section 2 is attributed to describing the economic model.

Section 3 introduces various core notions and the relationship between the core notions.

Section 4 deals with the Schmeidler-Grodal-Vind theorem in an economy with or without

atoms. Section 5 summarizes our findings. Section 6 is the appendix of our paper, which

contains all the proof.

2 Description of the model

We consider a standard pure exchange economy with uncertainty and asymmetric informa-

tion. We assume that the economic activity takes place over two periods τ = 0, 1. The

exogenous uncertainty is described by a measurable space (Ω,F ), where Ω is a finite set

denoting all possible states of nature at time τ = 1 and the σ-algebra F denotes all events.

At time τ = 0 (ex-ante stage) there is uncertainty about the state of nature that will be

realized at time τ = 1 (ex-post stage). At the ex-ante stage, agents arrange contract on

redistribution of their initial endowments. At τ = 1, agents carry out previously made

agreements, and consumption takes place3.

Economic agents: The space of economic agents is described by a complete probabil-

ity space (T,T , µ), where T represents the set of agents, the σ-algebra T represents the

collections of allowable coalitions whose economic weights on the market are given by µ.

Since µ(T ) <∞, the set T of agents can be decomposed in the disjoint union of an atomless

sector T0 of non-influential (small or negligible) agents and the set T1 of influential (large or

non-negligible) agents, which is the union of at most countable family {A1, A2, · · · } of atoms

of µ. Abusing notation, we also denote by T1 the collection {A1, A2, · · · }. Thus, the space of

agents not only allow us to investigate in a unified manner the markets that are competitive

and the markets that are not, but also deal with the simultaneous action of influential and

non-influential agents. This general representation permits to cover simultaneously the case

3For simplicity, we assume that there are no endowments and thus no consumption at τ = 0. Hence, agents
are only concerned with allocating their second period (τ = 1) endowments.
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of an economy with a finite set of agents (when T0 is empty and T1 is finite), the case of

an atomless economy (when T1 is empty), the case of mixed markets in which an ocean of

negligible agents coexists with few influential agents (when both T0 and T1 have positive

measure). Moving from this representation, we can also identify two relevant subfamilies

from T by defining

T0 := {S ∈ T : S ⊆ T0} and T1 := {S ∈ T : T1 ⊆ S}.

Thus, T0 is a subfamily of T containing no atoms whereas T1 is a subfamily of T containing

all atoms. Finally, we denote by

T2 := T0 ∪ T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T formed by coalitions containing either no atoms or all atoms.

Commodity Spaces: The commodity space in our model is an ordered Banach space

with the interior of the positive cone is non-empty. We denote by Y the commodity space

of our economy whereas the notation Y+ is employed to denote the positive cone of Y. Let

Y++ be the interior of Y+.

Defining an economy: We introduce a mixed economy with uncertainity and asymmetric

information, and an ordered Banach space whose positive cone has non-empty interior as

the commodity space.

Definition 2.1. An economy is defined as E := {(Xt,Ft, ut, e(t, ·),Pt) : t ∈ T} with the

following specifications:

(A) Xt : Ω ⇒ Y denotes the (state-contingent) consumption set of agent t ∈ T 4;

(B) Ft is the σ-algebra generated by a measurable partition Pt of Ω (i.e. Pt ⊆ F )

denoting the private information of agent t;

4Notice that we do not impose non-negative constraints on consumption sets. Thus, short sales are allowed.
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(C) ut : Ω× Y → R is the state-dependent utility function of agent t;

(D) e(t, ·) : Ω → Y is the random initial endowment of agent t;

(E) Pt : Ω → [0, 1] is the prior of agent t.

Available Information and Expected Utilities: The family of all paritions of Ω is

denoted by P. Since Ω is finite, P has only finitely many different elements: P1, · · · ,Pn.

We assume that Ti := {t ∈ T : Pt = Pi} is T -measurable for all 1 ≤ i ≤ n. For every

1 ≤ i ≤ n, define Gi to be the set of all functions ϕ : Ω → Y such that ϕ is Pi-measurable.5

For any x : Ω → Y, define the ex-ante expected utility of agent t by the usual formula

Vt(x) =
∑

ω∈Ω

ut(ω, x(ω))Pt(ω).

We now state our main assumptions to be used throughout the paper.

Assumptions: Consider an economy E as defined in Definition 2.1.

(A1) For all (t, ω) ∈ T × Ω, Xt(ω) is a closed convex cone.

(A2) The correspondence Θ : T ×Ω ⇒ Y, defined by Θ(t, ω) := Xt(ω), is such that Θ(·, ω)

is T -measurable for all ω ∈ Ω.

(A3) The mapping e(·, ω) : T → Y is T -measurable for all ω ∈ Ω and e(t, ω) is an interior

point of Xt(ω) for all ω ∈ Ω.

(A4) The mapping ϕ : T → [0, 1]Ω, defined by ϕ(t) = Pt, is T -measurable.

(A5) For all (t, ω) ∈ T1 × Ω, ut(ω, ·) is quasi-concave.

(A6) For all (t, ω) ∈ T × Ω, ut(ω, ·) is continuous and for all x ∈ Y, t 7→ ut(ω, x) is T -

measurable.

(A7) For all (t, ω) ∈ T × Ω, ut(ω, y) > ut(ω, x) for all x, y ∈ Xt(ω) with y ≥ x and x 6= y.

5By Pi-measurability, we mean the measurability with respect to the σ-algebra generated by Pi.
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(A8) For all (t, ω) ∈ T × Ω, x ∈ Xt, separable closed linear subspace Z of YΩ satisfying

e(T, ·) ⊆ Z and ε > 0, there is an y ∈ Z ∩ Gt ∩ B(0, ε)Ω such that x + y ∈ Xt and

ut(ω, x(ω) + y(ω)) > ut(ω, x(ω))
6.

(A′
8) For all (t, ω) ∈ T × Ω, x ∈ Xt, separable closed linear subspace Z of YΩ satisfying

e(T, ·) ⊆ Z and ε > 0, there is an y ∈ Z ∩
⋂
{εGi : i ∈ K} ∩ B(0, ε)Ω such that

x+ y ∈ intXt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω)).

Remark 2.2. The assumptions in (A1)-(A7) are standard in the literature of general equi-

librium in economies with asymmetric information and/ or restricted consumption sets. As-

sumptions (A8) and (A′
8) are satisfied under the monotonity assumption whenever Xt(ω) =

Y+ for all (t, ω) ∈ T × Ω.

3 The Ex-ante Core

Our aim in this section is to introduce the ex-ante (Aubin) core allocations in an economy

with a mixed-measure space of agents by considering ordinary (generalized) coalitions and

providing the equivalence between the ex-ante Aubin core allocations and ex-ante core allo-

cations. To this end, we introduce the notion of strong and weak blocking for a two-period

economy with uncertainty. We assume implicitly that the trade takes place at time τ = 0

and that contracts are binding: they are carried out after the resolution of uncertainty, and

there is no possibility of their renegotiation. Moreover, the consumption of each agent is

compatible with her private information. We now introduce the concept of an allocation,

which is a specification of the amount of commodities assigned to each agent.

Definition 3.1. An allocation in E is a Bochner integrable function f : T × Ω → Y such

that

(i) f(t, ω) ∈ Xt(ω) for all (t, ω) ∈ T × Ω; and

6B(0, ε) denotes the closed ball centered at 0 and radius ε in Y.
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(ii) f(t, ·) ∈ Gi for all t ∈ Ti and all 1 ≤ i ≤ n.

It is said to be feasible if
∫
T
f(·, ω)dµ =

∫
T
e(·, ω)dµ for all ω ∈ Ω. We assume that e is an

allocation.

An element of T with positive measure is interpreted as an ordinary coalition or simply,

a coalition of agents. Each S ∈ T can be regarded as a function χS : T → {0, 1}, defined

by

χS(t) :=





1, if t ∈ S;

0, otherwise.

Here, χS(t) means the degree of membership of agent t ∈ T to the coalition S. Following this

interpretation for an ordinary coalition, it is natural to introduce a family of generalized

coalitions as follows (see [24]). To this end, for any function γ : T → R, define the support

of the function γ as

Sγ := {t ∈ T : γ(t) 6= 0}.

An Aubin or a generalized coalition of E is a simple, measurable function γ : T → R

whose support has a positive measure. It is worthwhile to point out that γ(t) represents the

share of resources employed by agent t. By identifying S ∈ T with χS, we can treat S as

a generalized coalition. The weight of a generalized coalition γ, denoted by µA(γ), is

given by µA(γ) :=
∫
T
γ dµ. For any ordinary coalition, this weight simply coincides with the

measure of the coalition itself.

Our first notion of (Aubin) core aims to study the blocking mechanism under the assumptions

that a coalition deviates from a proposed allocation if its members guarantee a strictly better

commodity bundles for themselves by the redistribution.

Definition 3.2. An allocation f is ex-ante blocked by a generalized coalition γ if

there is an allocation g such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ, and

∫

T

γg(·, ω)dµ =

∫

T

γe(·, ω)dµ
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for all ω ∈ Ω. The ex-ante Aubin core of E , denoted by C A(E ), is the set of feasible

allocations that are not ex-ante blocked by any generalized coalition. If the generalized

coalitions are replaced with ordinary coalitions, the corresponding set of allocations is called

the core of E , denoted by C (E ).

The next formalization of core differs from the earlier one in the sense that agents within

a blocking generalized coalition are not worse-off by the re-distribution whereas some are

strictly better-off. To formally define, we consider a sub-coalition of a generalized coalition

γ is a generalized coalition ρ such that Sρ ⊆ Sγ.

Definition 3.3. An allocation f is ex-ante weakly blocked by a generalized coalition

γ if there is a sub-coalition ρ of γ and an allocation g such that

(i) Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sρ;

(ii) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on Sγ; and

(iii)
∫
T
γg(·, ω)dµ =

∫
T
γe(·, ω)dµ for all ω ∈ Ω.

The ex-ante Aubin strong core of E , denoted by C AS(E ), is the set of feasible allocations

that are not ex-ante weakly blocked by any generalized coalition. If the generalized coalitions

are replaced with ordinary coalitions, the corresponding set of allocations is called the ex-

ante strong core of E , denoted by C S(E ).

Recognized that if an allocation f is ex-ante blocked by a generalized coalition γ, it is also

weakly blocked by the same coalition. For the converse, we additionally assume in our next

result that if an allocation f is ex-ante weakly blocked by a generalized coalition γ via some

allocation g and if ρ is a sub-coalition of γ in which members of Sρ strictly prefer g to f ,

then the information available to both coalitions are the same, i.e, ISγ
= ISρ

, where

ISγ
:= {i : µ(Sγ ∩ Ti) > 0}.
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The basic intuition is that members belonging to Ri := R ∩ Ti, where R := Sγ \ Sρ and

i ∈ IR, can be allocated Pi-measurable consumption bundles that give higher utilities by

reducing the utility level of the members of Sρ∩Ti due to continuity and strong monotonicity.

However, such an argument cannot be applied readily in arbitrary consumption sets. In what

follows, we establish this result in a continuum economy by showing that if an allocation

is ex-ante weakly blocked by a generalized coalition, it can also be blocked by an ordinary

coalition. In this regard, Lemma 6.1 and Lemma 6.2 in Appendix play vital roles.

Theorem 3.4. Let E be a continuum economy satisfying (A1)-(A8). Suppose that γ is a

generalized coalition and g is an allocation such that Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on Sγ.

Assume further that the measurable set B, defined by

B := {t ∈ Sγ : Vt(g(t, ·)) > Vt(f(t, ·))} ,

has positive measure and ISγ
= IB. Let Z be a separable closed linear subspace of YΩ such

that

f(T, ·) ∪ g(T, ·) ∪ e(T, ·) ⊆ Z.

Then there are coalitions E,R, an element λ0 ∈ (0, 1), an element η > 0, and an allocation

y such that

(i) R ⊆ E ⊆ Sγ and IR = IE = ISγ
;

(ii)
∫
E
(y − e) dµ = λ0

∫
T
γ(g − e) dµ;

(iii) y(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on R; and

(iv) Vt(y(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on R.

Proof. The proof of the proposition is relegated to Appendix.

Corollary 3.5. For a continuum economy E satisfying (A1)-(A8) and an allocation f ,

assume that f is ex-ante weakly blocked by a generalized coalition γ via some allocation

13



g satisfying Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sρ for some sub-coalition ρ of γ satisfying

ISγ
= ISρ

. Then there is a coalition E such that f is blocked by E.

Remark 3.6. Notice that, in the proof of Proposition 3.4, the number λ0 can be chosen

sufficiently close to 1. Moreover, it also follows that, if γ is replaced with some ordinary

coalition S, then the coalition E can be choosen so that µ(E) ≥ λ0µ(S).

In view of the above proposition, we have the following theorem whose proof is immediate.

Theorem 3.7. Suppose that E is a continuum economy satisfying (A1)-(A8). Then C A(E ) =

C (E )

4 The Schmeidler-Grodal-Vind theorems

In this section, we study the characterizations of ex-ante core allocations by means of the size

of coalitions in an economy either containing a continuum of negligible agents or comprised

of both negligible and non-negligible agents. To establish the results of a mixed economy,

we introduce an atomless economy associated with the mixed economy and investigate the

connection between the core allocations of these two economies.

4.1 The size of blocking coalitions in a continuum economy

In this subsection, we address the issues related to the size of a blocking coalition, extending

the corresponding results of Schmeidler [29], Grodal [18] and Vind [31] to the case of an

atomless economy with arbitrary consumption sets and private information.

Extending the Schmeidler theorem: The insight of Schmeidler theorem was that, in an

atomless economy, if a feasible non-core allocation is blocked by some coalition S, then it

can also be blocked by a coalition of any given measure less than that of S. The immediate

implication of this theorem includes the fact that the core (and thus, the set of competitive

allocations) can be implemented by the formation of small coalitions only. In what follows, we
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extend this result to our framework. This extends the corresponding result of Bhowmik and

Graziano [12] to a certain extent. It is worthwhile to point out that the techniques adopted

in the proof of Bhowmik and Graziano [12] are inappropriate in our setup of infinitely many

commodities. Thus, we first establish the following proposition to obtain the Schmeidler

theorem in our framework. This proposition can be considered an extension of the Lyapunov

convexity theorem.

Proposition 4.1. Let E be a mixed economy and let the assumptions (A1)-(A8) be satisfied.

Suppose that ψ, f and g are allocations such that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on some

coalition S ∈ T0. Let Z be a separable closed linear subspace of YΩ such that

f(T, ·) ∪ g(T, ·) ∪ ψ(T, ·) ⊆ Z.

Assume further that there is a sub-coalition R of S such that IR = IS and for each t ∈ R

there is some ηt > 0 such that g(t, ·) + z ∈ Xt for all z ∈ Z ∩ B(0, ηt)
Ω. Assume further that

µ(S ∩ H) ≥ α for some coalition H of E and some α > 0. Then there are an η0 > 0, two

coalitions B and C, and an allocation ϕ such that

(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B ∩H) = α;

(ii) ϕ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ B(0, η0)
Ω and µ-a.e. on C;

(iv) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(v)
∫
B
(ϕ(·, ω)− ψ(·, ω))dµ = α

µ(S∩H)

∫
S
(g(·, ω)− ψ(·, ω))dµ for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

The following theorem is an immediate implication of the above proposition, which extends

Schmeidler’s [29] theorem to our framework.
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Theorem 4.2. Consider an atomless economy E and assume that the assumptions (A1)-

(A8) are satisfied. Let f be an allocation of E blocked by some coalition S. Then, for any

ε ∈ (0, µ(S)), there is a coalition R such that µ(R) = ε and f is ex-ante blocked by R.

Proof. The proof of the theorem is relegated to Appendix.

Extending the Grodal Theorem: Given an ε > 0, it was shown in [18] for an atomless

economy that the blocking coalition S can be chosen as a union of finitely many disjoint

sub-coalitions, each of which having measure and diameter less than ε. A coalition whose

measure and diameter both are less than ε intuitively means that the coalition consists of

relatively few agents and that the agents in the coalition resemble one another in chosen

characteristics. Next, we extend this result to an atomless economy, where the consumption

sets of agents are arbitrary subsets of an ordered Banach space having the non-empty interior

of the positive cone.

Theorem 4.3. Let E be an atomless economy such that E satisfies (A1)-(A8). Suppose that

T is endowed with a pseudometric, which makes T a separable topological space such that

B(T ) ⊆ T . For any feasible allocation f 6∈ C (E ) and any ε, δ > 0, there exists a coalition

S with µ(S) ≤ ε ex-ante blocking f and satisfying the following:

(i) There exists some α > 0 such that any coalition F ⊆ S satisfying µ(S \F ) < α ex-ante

blocking f ; and

(ii) S =
⋃
{Si : 1 ≤ i ≤ n} for a finite collection of coalitions {S1, · · · , Sn} with diameter

of Si smaller than δ for all i = 1, · · · , n.

Extending the Vind theorem: Vind’s theorem (refer to [31]) states that, in an atomless

economy, if a feasible allocation is not in the core of the economy, then there is a blocking

coalition of any given measure less than the measure of the grand coalition. Thus, the core

allocations (and hence, the competitive allocations) can also be characterized by means of

coalitions of arbitrarily large sizes. We now intend to show a similar result in our framework.
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To this end, we first establish the following result, which claims that if an allocation is blocked

by a coalition S via some allocation g then there is another allocation h in which everyone

achieves better utility than she gets under f . This Proposition extends the corresponding

results in Bhowmik and Cao [10] and Hervés-Beloso and Moreno-Garćıa [21].

Proposition 4.4. Let E be an atomless economy such that the assumptions (A1)-(A8)

are satisfied. Suppose that f and g are two allocations such that Vt(g(t, ·)) > Vt(f(t, ·))

µ-a.e. on some coalition S. Let Z be a separable closed linear subspace of YΩ such that

f(T, ·)∪g(T, ·) ⊆ Z. Assume further that there is a sub-coalition R of S such that IR = IS and

for each t ∈ R there is some ηt > 0 such that g(t, ·)+z ∈ Xt for all z ∈ Z∩B(0, ηt)
Ω. Then, for

any 0 < δ < 1, there exist some allocation h and some η > 0 such that Vt(h(t, ·)) > Vt(f(t, ·))

µ-a.e. on S; h(t, ·)+ z ∈ Z∩Xt for all z ∈ Z∩B(0, η)Ω for some η > 0 and µ-a.e. on G for

some sub-coalition G of S with IG = IS; and

∫

S

h(·, ω)dµ =

∫

S

(δg(·, ω) + (1− δ)f(·, ω))dµ

for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Corollary 4.5. Consider now a mixed economy where all large agents have continuous and

quasi-concave utility functions. For any large agent A and x, y ∈ XA, if VA(y) > VA(x) and

0 < δ < 1 then, by Lemma 5.26 of Aliprantis and Border [1], we have VA(δy + (1 − δ)x) >

VA(x). In view of this, the conclusion of Proposition 4.4 can be obtained in a mixed model.

Next, we formulate a version of Vind’s (1972) theorem on blocking by an arbitrary coalition.

Theorem 4.6. Consider a continuum economy E in which the assumptions (A1)-(A
′
8) are

satisfied. Let f be a feasible allocation such that f /∈ C (E ). Then for any ε ∈ (0, 1), there is

some coalition R such that µ(R) = ε and f is blocked by R.

Proof. The proof of the theorem is relegated to Appendix.

17



4.2 Interpretation via a mixed economy

In this subsection, we associate E with an atomless economy Ẽ and study the connection

between the ex-ante (Aubin) core allocations of these two economies. This extends the result

of Greenberg and Shitovitz [15] and some of its follow-up papers as mentioned in Section 1.

Given the economy E , the economy Ẽ is obtained by splitting each large agent into a con-

tinuum of small agents whose characteristics are the same as that of large agent. Therefore,

the space of agents of Ẽ , denoted by (T̃ , T̃ , µ̃), satisfies the following: (i) T̃0 = T0 and

µ̃(T̃1) = µ(T1), where T̃1 := T \ T0; (ii) T̃ and µ̃ are obtained by the direct sum of T and

µ restricted to T0 and the Lebesgue atomless measure space over T̃1; and (iii) each atom Ai

one-to-one corresponds to a Lebesgue measurable subset Ãi of T̃1 such that µ(Ai) = µ̃(Ãi),

where {Ãi : i ≥ 1} can be expressed as the disjoint union of the intervals {Ãi : i ≥ 1} given

by Ã1 := [µ(T0), µ(T0) + µ(A1)), and

Ãi :=

[
µ(T0) + µ

(
i−1⋃

j=1

Aj

)
, µ(T0) + µ

(
i⋃

j=1

Aj

))
,

for all i ≥ 2. Furthermore, the space of states of nature and the commodity space of Ẽ are

the same as those of E . Finally, the characteristics (X̃tF̃t, ũt, ẽ(t, ·), P̃t) of each agent t ∈ T̃

in Ẽ is defined as follows:

X̃t :=





Xt, if t ∈ T0;

XAi
, if t ∈ Ãi,

F̃t :=





Ft, if t ∈ T0;

FAi
, if t ∈ Ãi,

ũt :=





ut, if t ∈ T0;

uAi
, if t ∈ Ãi,
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ẽ(t, ·) :=





e(t, ·), if t ∈ T0;

e(Ai, ·), if t ∈ Ãi,

and

P̃t :=





Pt, if t ∈ T0;

PAi
, if t ∈ Ãi.

We now introduce some notations for the rest of the section. To an allocation f in E , we

associate an allocation f̃ := Ξ[f ] in Ẽ , defined by

f̃(t, ω) :=





f(t, ω), if (t, ω) ∈ T0 × Ω;

f(Ai, ω), if (t, ω) ∈ Ãi × Ω.

Reciprocally, for each allocation f̃ in Ẽ , we define an allocation f := Φ[f̃ ] in E such that

f(t, ω) :=





f̃(t, ω), if (t, ω) ∈ T0 × Ω;

1

µ̃(Ãi)

∫
Ãi
f̃(·, ω) dµ̃, if t = Ai and ω ∈ Ω.

Recognized that if f is a feasible allocation in E then Ξ[f ] is a feasible allocation in Ẽ .

Similarly, for each feasible allocation f̃ in Ẽ , the allocation Φ[f̃ ] is feasible in E .

We show that an allocation is in the ex ante core of a mixed economy assigns indifferent

consumption plans to all large agents. This is due to the fact that all agents have the same

characteristics.

Proposition 4.7. Let the assumptions (A1)-(A
′
8) be satisfied for a mixed economy E . Let

R be a coalition in T1
7 having the same characteristics. If f is in the ex ante core of E then

Vt(f(t, ·)) = Vt(xf ) µ-a.e. on R, where

xf (ω) :=
1

µ(R)

∫

R

f(·, ω)dµ

7If T1 is empty then R contains only negligible agents.
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for all ω ∈ Ω.

Proof. The proof of the proposition is relegated to Appendix.

Remark 4.8. If Y is finite-dimensional, then one can dispense with the assumption (A′
8).

In fact, the assumption (A′
8) helps us to apply Proposition 4.1 in the proof of Proposition

4.7. In the case of finite dimension, we can use (A8) and apply the Lyapunov convexity

theorem instead of Proposition 4.1.

Theorem 4.9. Let E be a mixed economy satisfying the assumptions (A1)-(A
′
8). If f̃ ∈

C (Ẽ ) then f := Φ[f̃ ] ∈ C A(E ).

Proof. The proof of the theorem is relegated to Appendix.

Theorem 4.10. Let E be a mixed economy satisfying the assumptions (A1)-(A
′
8). Suppose

also that R ∈ T1 is a coalition having the same characteristics. Then f ∈ C (E ) ⇒ f̃ :=

Ξ[f ] ∈ C (Ẽ ) if either of the following two conditions are true:

(i) R = T1 has at least two elements.

(ii) T1 has exactly one element and µ(R \ T1) > 0.

Proof. The proof of the theorem is relegated to Appendix.

4.3 The size of blocking coalitions in a mixed economy

In this subsection, we generalize the main results of Subsection 4.1 to a mixed economy by

applying the results of

Extending the Grodal Theorem: Next, an extension of Theorem 4.3 to an economy

with a mixed measure space of agents is presented. Basically, we show that for any given

ε, δ > 0, there is a generalized coalition γ whose measure is less than ε and γ can be

expressed as some of the pairwise disjoint generalized coalitions each of its diameters is

less than δ. To this end, we say that two generalized coalitions γ1 and γ2 are disjoint
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if (γ1 ∧ γ2)(t) := min{γ1(t), γ2(t)} = 0 for all t ∈ T . As a consequence of this, we have

Sγ1 ∩ Sγ2 = ∅. Following Gerla and Volpe [16] (see also Bhowmik and Graziano [11]), the

diameter of a generalized coalition γ is defined by

diam(γ) := sup
{
min{α, β}‖a− b‖ : λαa , λ

β
b are fuzzy points of γ

}
,

where a fuzzy point λξa is a function λξa : T → (0, 1] for each a ∈ T and ξ ∈ (0, 1], such that

λξa(t) = 0 if t 6= a and λξa(t) = ξ if t = a.

Theorem 4.11. Let E be a mixed economy such that E satisfies (A1)-(A8). Suppose further

that T is endowed with a pseudometric which makes T a separable topological space such that

B(T ) ⊆ T and f 6∈ C A(E ). For any ε, δ > 0, there exist a generalized coalition γ with

µA(γ) ≤ ε and a finite collection {γ1, · · · , γn} of pairwise disjoint characteristics functions8

of ordinary coalitions such that the diameter of γi smaller than δ and Sγi ⊆ T0 for all

i ∈ {1, · · · , n}, f is blocked by γ and

γ =





∑n

i=1 γi +
∑

k∈K αkχAk
, if K 6= ∅;

∑n

i=1 γi, if K = ∅,

where K := {k : Ak ∈ Sγ} and αk ∈ (0, 1] if k ∈ K.

Remark 4.12. Notice that each sub-coalition γi of γ|T0
is chosen as the set of agents sharing

their full initial endowments and the diameter of γj is exactly the same as that of Sγj .

Therefore, agents in γi have δ-similar characteristics in the ordinary sense, implying the

second part of Theorem 4.3 as a simple corollary. For a mixed economy, the blocking coalition

γ contains atmost finitely many atoms, which means that each sub-coalition of diameter δ is

either δ-similar non-atomic agents or a single atom, not a neighborhood of points contained

in an atom. Since an atom can be treated as δ-similar to itself for any δ > 0, our approach

for taking a neighborhood containing a single atom does not violate Grodal’s requirements.

8Thus, γi can be treated as an ordinary coalition.
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Therefore, similar to Grodal [18]. Therefore, it can be considered as an extension Grodal’s

theorem to a mixed economy.

Extending the Vind Theorem: In view of above results and Theorem 4.6, one can readily

derive the following result as in Bhowmik and Graziano [11].

Theorem 4.13. Consider a mixed economy E in which the assumptions (A1)-(A
′
8) are

satisfied. Let f be a feasible allocation such that f /∈ C A(E ). Then for any ε ∈ (0, 1), there

is some Aubin coalition γ such that µA(γ) = ε and f is Aubin blocked by γ.

Proof. The proof of the theorem is relegated to Appendix.

Remark 4.14. It is clear from the proof of Theorem 4.13 that for an ε > 0, there exists a

generalized coalition γ such that f is blocked by γ with µ̃(γ) = ε and γ(t) = 1 if t ∈ Sγ ∩T0.

Thus, as in the case of atomless economies, non-atomic agents in Sγ use their full initial

endowments. However, the atomic agents in γ only use parts of their initial endowments

and the share αi for an atomic agent Ai depends on the size of γ. So, Theorem 4.13 can be

treated as an extension of that in an atomless economy.

5 Concluding remarks

We have investigated the blocking of any allocation not belonging to the (Aubin, strong)

core of a mixed economy with asymmetric information and exact feasibility, infinitely many

commodities, and arbitrary consumption sets. We showed that the Aubin core coincides

with the core under mild assumptions in an atomless economy. This conclusion trivially

follows from Proposition 3.4. It has also been shown, as an application of Proposition 3.4,

that the ex-ante core can be characterized by means of coalitions of a given size less than

that of the grand coalition in an atomless economy, extending the results in Schmeidler [29]

and Vind [31]. Thus, it is enough to consider coalitions of either arbitrarily small sizes or

arbitrarily large sizes to find the core of an atomless economy. It is further shown that
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Grodal’s theorem (refer to Grodal [18]) holds true in an atomless economy. All of these

results have also been carried out to a mixed economy by considering generalized coalitions

instead of standard coalitions. To do this, we associated an atomless economy with a mixed

economy and showed that the Aubin core of the mixed economy is equivalent to the core

of the atomless economy. All of these results have been obtained without assuming the

separability condition on the commodity space. The difficulties that arise in all of these

results are due to the following facts: (i) the standard Lyapunov convexity theorem does

not hold, it holds only in a weaker form in an infinite dimensional commodity space; (ii) the

consumption sets are arbitrary subsets of the commodity space which may not satisfy the free-

disposal condition Xt +YΩ
+ ⊆ Xt for t ∈ T , thus the strong monotonicity condition may not

be applied whenever required; and (iii) information asymmetry, which further restricts the

consumption of each agent and prevents to maintain the exact feasibility condition smoothly

in the blocking mechanism. All of these difficulties are taken care of by establishing several

key propositions, out of which Proposition 3.4 has its own interest. In fact, as a consequence

of this proposition, we conclude that the ex-ante strong core is equivalent to the ex-ante core

in an atomless economy under some restriction on information structure.

We close this section with further remarks dealing with possible extensions and applications

of our results.

Remark 5.1. Hervés-Beloso and Moreno-Garćıa [21] provides a characterization of Wal-

rasian allocations in terms of robustly efficient allocations in an atomless economy. Later, it

was extended by Bhowmik and Cao [10] to a mixed economy with asymmetric information

and an ordered separable Banach space whose positive cone has an interior point as the

commodity space by applying Vind’s theorem and a result similar to Proposition 4.4. Thus,

in view of Proposition 4.4 and Theorem 4.6, it would be interesting to know whether the

main result of Bhowmik and Cao [10] can be extended to our framework.

Remark 5.2. Our paper is confined to infinite dimensional commodity spaces with a non-

empty positive interior. However, modeling many different economic scenarios require infinite
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dimensional spaces without having interior points in their positive cones. For instance,

commodity differentiation is modeled through the space M(K) of signed Borel measure on a

compact topological space. It would be interesting to investigate our results in those settings.

6 Appendix

Lemma 6.1. Suppose that f and g are two allocations such that Vt(g(t, ·)) > Vt(f(t, ·))

µ-a.e. on some coalition S, and Z is a separable, closed, linear subspace of YΩ such that

f(S, ·) ∪ g(S, ·) ⊆ Z. Assume further that, for each t ∈ S there is some ηt > 0 such that

g(t, ·) + z ∈ Xt for all z ∈ Z ∩ B(0, ηt)
Ω. Then for any 0 < ε < µ(S), there are some η > 0

and a sub-coalition R of S such that

(i) µ(R) > µ(S)− ε;

(ii) g(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and (t, ω) ∈ R× Ω; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on R.

Proof. Define a correspondence Υ : S ⇒ R+ by letting

Υ(t) :=
{
η ∈ (0,∞) : g(t, ·) + z ∈ Xt and Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω

}
.

By the continuity of preferences and the fact that g(t, ·)+ z ∈ Xt for all z ∈ Z∩B(0, ηt)
Ω for

some ηt > 0 and µ-a.e. on S, we have Υ(t) 6= ∅ µ-a.e. on S. As Υ(t) is bounded from above,

the function ϕ : S → R+, defined by ϕ(t) := supΥ(t), is well-defined. We show that ϕ is

TS-measurable. To this end, note that the function ψ : S × Z → R, defined by ψ(t, z) :=

Vt(g(t, ·)+z)−Vt(f(t, ·)), is a Carathéodory function, and thus, it is TS⊗B(Z)-measurable.

Define a correspondence G : S ⇒ Z by letting G(t) := {z ∈ Z : ψ(t, z) > 0}. It follows

that G is non-empty valued and has TS ⊗ B(Z)-measurable graph, as GrG = ψ−1(0,∞).
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Consider a correspondence H : S ⇒ Z defined by

H(t) := {z ∈ Z : g(t, ω) + z(ω) ∈ Xt(ω) for all ω ∈ Ω} .

Due to the closeness of Xt(ω), H(t) can be equivalently expressed as9

H(t) = {z ∈ Z : dist(g(t, ω) + z(ω), Xt(ω)) = 0 for all ω ∈ Ω} .

In view of the fact that 0 ∈ H(t), we haveH(t) 6= ∅ µ-a.e. on S. Moreover, GrH is TS⊗B(Z)-

measurable as GrH = y−1({0}), where y : S × Z → R is defined by y(t, ω) := dist(g(t, ω) +

z(ω), Xt(ω)), is TS ⊗ B(Z)-measurable. Finally, define a correspondence Φ : S ⇒ Z such

that Φ(t) := G(t)∩H(t) for all t ∈ S. As 0 ∈ Φ(t), we have Φ(t) 6= ∅ µ-a.e. on S. Moreover,

GrΦ is TS ⊗ B(Z)-measurable. Analogously, the correspondence Θη : S ⇒ Z, defined by

Θη(t) := Z ∩ B(0, η)Ω, has TS ⊗ B(Z)-measurable graph, for all η > 0. Thus,

Υ(t) = {η ∈ (0,∞) : Θη(t) ⊆ Φ(t)} = {η ∈ (0,∞) : Λη(t) = ∅} ,

where Λη : S ⇒ Z, defined as Λη(t) := Θη(t)∩(Z\Φ(t)), has TS-measurable graph. Finally,

the TS-measurability of ϕ follows from the fact that for each α > 0, we have

{t ∈ S : ϕ(t) < α} =
⋃

η∈Q∩(0,α)

ProjSΛη.

For each η ∈ Q ∩ (0, 1), define Bη := {t ∈ S : ϕ(t) ≥ η}. Thus, {Bη : η ∈ Q ∩ (0, 1)} is a

family of TS-measurable sets such that Bη ⊆ Bη′ if and only if η ≥ η′ and S ∼
⋃
{Bη : η ∈

Q∩(0, 1)}10. Let ε ∈ (0, µ(S)). Then there is some η0 ∈ Q∩(0, 1) such that µ(Bη0) > µ(S)−ε.

9For any x ∈ Y and A ⊆ Y, the distance between x and A, denoted by dist(x,A). defined as

dist(x,A) := inf{‖x− y‖ : y ∈ A}.

10C ∼ D means µ(C∆D) = 0, where C∆D = (C \D) ∪ (D \ C).
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Set R := Bη0 and note that, for t ∈ R, as ϕ(t) ≥ η0, we have Z ∩ B(0, η0)
Ω ⊆ Φ(t). This

completes the proof.

The following lemma on the convexity of vector measure is an application of the infinite-

dimensional version of the Lyapunov convexity theorem (refer to Uhl [30]), whose proof can

be found in Bhowmik and Cao [10] and Evren and Hüsenov [14].

Lemma 6.2. Consider a continuum economy and assume that f ∈ L1

(
µ,YΩ

)
. Suppose also

that S,R are two coalitions of E such that µ(S ∩R) > 0. Then,

H := cl

{(
µ(B ∩R),

∫

B

fdµ

)
: B ∈ TS

}

is a convex subset of R × YΩ. Moreover, for any 0 < δ < 1, there is a sequence {Gn : n ≥

1} ⊆ TS such that µ(Gn ∩R) = δµ(S ∩R) for all n ≥ 1 and

lim
n→∞

∫

Gn

f(·, ω)dµ = δ

∫

S

f(·, ω)dµ

for all ω ∈ Ω.

Proof of Proposition 3.4: It is given that

(i) Vt(g(t, ·)) ≥ Vt(f(t, ·)) µ-a.e. on Sγ; and

(ii) Vt(g(t, ·)) > Vt(f(t, ·)) for all t ∈ B and IB = ISγ
.

Define ϕ : T × Ω × (0, 1) → Y by letting ϕ(t, ω, λ) := λg(t, ω) + (1 − λ)e(t, ω). By Lemma

5.28 in Aliprantis and Border [1], we conclude that ϕ(t, ω, λ) is an interior point of Xt(ω)

for all (t, ω, λ) ∈ T × Ω× (0, 1). Furthermore, ϕ(T, ·, ·) ⊆ Z. For each t ∈ B, we define

λt := inf {λ ∈ (0, 1) : Vt(ϕ(t, ·, λ)) > Vt(f(t, ·))}

By the continuity of preference, λt exists for each t ∈ B. Furthermore, the mapping t 7→ λt

is measurable. This follows from the following equality and T -measurability of the function
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θ(·, λ) : B → R, defined by θ(t, λ) := Vt(ϕ(t, ·, λ))− Vt(f(t, ·)) for all (t, λ) ∈ B × (0, 1).

{t ∈ B : λt > α} =
⋃

r∈Q∩(α,1)

{t ∈ B : Vt(ϕ(t, ·, r)) ≤ Vt(f(t, ·))}.

For each λ ∈ (0, 1) ∩ Q, define Bλ := {t ∈ B : λ ≥ λt}. Thus, {Bλ : λ ∈ Q ∩ [0, 1)} is a

family of TB-measurable sets such that Bλ ⊆ Bλ′ if and only if λ ≤ λ′. Furthermore,

B =
⋃

{Bλ : λ ∈ Q ∩ (0, 1)}.

Let ε > 0 be such that ε < min{µ(Bi) : i ∈ IB}. Choose an λ0 ∈ (0, 1) ∩ Q such that

µ(Bλ0
) > µ(B) − ε, which implies IBλ0

= IB = ISγ
. Applying Lemma 6.1, there are some

η > 0 and a sub-coalition B̂ of Bλ0
such that

(a) IB̂ = IBλ0
;

(b) ϕ(t, ·, λ0) + z ∈ Xt for all z ∈ Z ∩ B(0, η)Ω and t ∈ B̂; and

(c) Vt(ϕ(t, ·, λ0) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and t ∈ B̂.

Since γ is simple and measurable, there is a collection {Q1, · · · , Qm} of pairwise disjoint

measurable sets such that γ(t) := γj for some γj ∈ [0, 1] and all t ∈ Qj. We define J := {j :

γj 6= 0}. So, the support of γ is given by

Sγ =
⋃

{Qj : j ∈ J}.

Let K := {(i, j) ∈ IB̂ × J : µ(B̂i ∩ Qj) > 0}. Pick an element (i, j) ∈ K. By Lemma 6.2,

there exists a sequence {Gn : n ≥ 1} ⊆ TB̂i∩Qj
of coalitions such that µ(Gn) = γjµ(B̂i ∩Qj)

and for all ω ∈ Ω,

lim
n→∞

∫

Gn

(ϕ(·, ·, λ0)− e(·, ω))dµ = γj

∫

B̂i∩Qj

(ϕ(·, ·, λ0)− e(·, ω)) dµ.

27



The function ξn : Ω → Y, defined by

ξn(ω) = γj

∫

B̂i∩Qj

(ϕ(·, ·, λ0)− e(·, ω)) dµ−

∫

Gn

(ϕ(·, ·, λ0)− e(·, ω))dµ,

satisfies ξn ∈ Z ∩ Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω. Define

κ := min
{
γjµ(B̂i ∩Qj) : (i, j) ∈ K

}
.

Choose an integer nij ≥ 1 such that ξnij
(ω) ∈ B

(
0, ηκ

3m

)
for all ω ∈ Ω. It follows that

∑

{j:(i,j)∈K}

ξnij
(ω) ∈ B

(
0,
ηκ

3

)
.

We define R :=
⋃{

Gnij
: (i, j) ∈ K

}
. Letting F := Sγ \ B̂, we note that IF ⊆ ISγ

. Define

M := {(i, j) ∈ IF × J : µ(Fi ∩Qj) > 0} .

For any (i, j) ∈ M, similar to above, there is a subcoalition Hij of Fi∩Qj such that µ(Hij) =

λ0γjµ(Fi ∩Qj) and bij ∈ Z ∩ Gi with

bij(ω) := λ0γj

∫

Fi∩Qj

(g(·, ω)− e(·, ω)) dµ−

∫

Hij

(g(·, ω)− e(·, ω)) dµ ∈ B

(
0,
ηκ

3m

)

for all ω ∈ Ω. As a consequence, we have

∑

{j:(i,j)∈M}

bij(ω) ∈ B

(
0,
ηκ

3

)
.

Pick an (i, j) ∈ M, and define

Di := Z ∩ Gi ∩ B

(
0,
ηκ

3m

)Ω
.
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As in Lemma 6.1, the correspondence Fij : Hij ⇒ Di, defined by

Fij(t) := {z ∈ Di : g(t, ·) + z ∈ Xt and Vt(g(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has THij
⊗ B(Di)-measurable graph, which further implies the

existence of a THij
-measurable selection hij of Fij. Define

ζij :=
1

µ(Hij)

∫

Hij

hijdµ.

By properties of the Bochner integral (see Diestel and Uhl [13], Corollary 8, p. 48), one

has ζij ∈ co{hij(t) : t ∈ Hij}
11, which, in view of the fact that Di is closed and convex,

immediately implies that ζij ∈ Di. Therefore, βij := ζijµ(Hij) ∈ Di. Consequently,

∑

{j:(i,j)∈M}

βij(ω) ∈ B

(
0,
ηκ

3

)
.

Let C :=
⋃
{Hij : (i, j) ∈ M}. For each i ∈ ISγ

, let xi : Ω → Y be a function defined by

xi(ω) :=





∑
{j:(i,j)∈K} ξnij

(ω) +
∑

{j:(i,j)∈M}[bij(ω)− βij(ω)], if ω ∈ Ω and i ∈ IF ;

∑
{j:(i,j)∈K} ξnij

(ω), if ω ∈ Ω and i /∈ IF .

It follows that xi(ω) ∈ B(0, ηκ). Finally, we define a function y : T × Ω → Y defined by12

y(t, ω) :=





ϕ(t, ω, λ0) +
xi(ω)

‖{j:(i,j)∈K}‖µ(Gnij
)
, if (t, ω) ∈ Gnij

× Ω and (i, j) ∈ K;

g(t, ω) + hij(t, ω), if (t, ω) ∈ Hij × Ω and (i, j) ∈ M;

g(t, ω), otherwise.

Recognized that y is an allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := C ∪ R.

11Here, co stands for the closed convex hull.
12ξ(t, ω) denotes the ωth-coordinate of ξ(t).
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Recognized that

∫

E

(y(·, ω)− e(·, ω))dµ =

∫

R

(y(·, ω)− e(·, ω)dµ+

∫

C

(y(·, ω)− e(·, ω)dµ

=
∑

(i,j)∈K

[∫

Gnij

(ϕ(·, ω, λ0)− e(·, ω))dµ+
xi(ω)

‖ {j : (i, j) ∈ K} ‖

]

+
∑

(i,j)∈M

[∫

Hij

(g(·, ω)− e(·, ω))dµ+

∫

Hij

hij(·, ω)dµ

]

=
∑

(i,j)∈K

∫

Gnij

(ϕ(·, ω, λ0)− e(·, ω))dµ+
∑

i∈IB

xi(ω)

+
∑

(i,j)∈M

∫

Hij

(g(·, ω)− e(·, ω))dµ+
∑

(i,j)∈M

βij(ω)

=
∑

(i,j)∈K

γj

∫

B̂i∩Qj

(ϕ(·, ω, λ0)− e(·, ω))dµ−
∑

(i,j)∈K

ζnij
(ω) +

∑

(i,j)∈K

ζnij
(ω)

+
∑

(i,j)∈M

bij(ω)−
∑

(i,j)∈M

βij(ω) +
∑

(i,j)∈M

λ0γj

∫

Fi∩Qj

(g(·, ω)− e(·, ω))dµ

−
∑

(i,j)∈M

bij(ω) +
∑

(i,j)∈M

βij(ω)

=
∑

(i,j)∈K

λ0γj

∫

B̂i∩Qj

(g(·, ω)− e(·, ω))dµ+
∑

(i,j)∈M

λ0γj

∫

Fi∩Qj

(g(·, ω)− e(·, ω))dµ

= λ0

∫

B̂

(γg(·, ω)− γe(·, ω))dµ+ λ0

∫

F

(γg(·, ω)− γe(·, ω))dµ

= λ0

∫

Sγ

γ(g(·, ω)− e(·, ω))dµ.

For each t ∈ Ri, define

ηi := min

{
η − dist

(
0,

xi(ω)

‖ {j : (i, j) ∈ K} ‖µ(Gnij
)

)
: ω ∈ Ω and (i, j) ∈ K

}
.

Let η0 := min{ηi : i ∈ IR}. As a consequence, we have y(t, ·) + z ∈ Xt and Vt(y(t, ·) + z) >

Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on R. This completes the proof.

Proof of Proposition 4.1: Let ε > 0 be such that ε < min{µ(Ri) : i ∈ IS}. By Lemma

6.1, one can find an η > 0 and a sub-coalition C of R such that
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(i) µ(C) > µ(R)− ε;

(ii) g(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on C; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on C.

Let δ ∈ (0, 1] be such that α = δµ(S ∩ H). Pick an i ∈ IS. By Lemma 6.2, there exists a

sequence {Gn : n ≥ 1} ⊆ TCi
such that µ(Gn) = δµ(Ci ∩H) and for all ω ∈ Ω,

lim
n→∞

∫

Gn

(g(·, ω)− ψ(·, ω))dµ = δ

∫

Ci

(g(·, ω)− ψ(·, ω)) dµ.

The function ξn : Ω → Y, defined by

ξn(ω) = δ

∫

Ci

(g(·, ω)− ψ(·, ω)) dµ−

∫

Gn

(g(·, ω)− ψ(·, ω)) dµ,

satisfies ξn ∈ Z∩Gi for all n ≥ 1 and {‖ξn(ω)‖ : n ≥ 1} converges to 0 for all ω ∈ Ω. Choose

an ni ≥ 1 such that

ξni
(ω) ∈ B

(
0,
ηδµ(Ci ∩H)

2

)

for all ω ∈ Ω. Define D := S\C. Similar to above, for each i ∈ ID, there exist some Fi ∈ TDi

and bi ∈ Z ∩ Gi such that µ(Fi) = δµ(Di ∩H) and

bi(ω) := δ

∫

Di

(g(·, ω)− ψ(·, ω)) dµ−

∫

Fi

(g(·, ω)− ψ(·, ω)) dµ ∈ B

(
0,
ηδµ(Ci ∩H)

2

)
.

For each ω ∈ Ω, define zi(ω) := bi(ω) if i ∈ ID; and zi(ω) := 0, if i ∈ IS \ ID. Analogously,

define

Bi :=





Gni
∪ Fi, if i ∈ ID;

Gni
, if i ∈ IS \ ID.
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Recognized that, for each i ∈ IS, we have

Si :=





Ci ∪Di, if i ∈ ID;

Ci, if i ∈ IS \ ID.

Further, note that IC = IB = IS and µ(B) = δµ(S ∩ H) = α. For each i ∈ IS, define a

function ϕi : Ti × Ω → Y such that

ϕi(t, ω) :=





g(t, ω) + 1
δµ(Ci∩H)

(ξni
(ω) + zi(ω)), if (t, ω) ∈ Gni

× Ω;

g(t, ω), otherwise.

It follows that ϕi(t, ·) ∈ Z for all t ∈ Ti. Furthermore, in light of (ii) and (iii), we have

ϕi(t, ·) ∈ Xt and Vt(ϕ
i(t, ·)) > Vt(f(t, ·)) µ-a.e. on Bi. Lastly, note that

∫

Bi

(ϕi(·, ω)− ψ(·, ω))dµ = δ

∫

Si

(g(·, ω)− ψ(·, ω))dµ

for all ω ∈ Ω. Let B :=
⋃
{Bi : i ∈ IS} and

η0 := min

{
η − dist

(
0,

1

δµ(Ci ∩H)
(ξni

(ω) + zi(ω))

)
: i ∈ IS and ω ∈ Ω

}
.

Thus, the function ϕ : T × Ω → Y, defined by ϕ(t, ω) := ϕi(t, ω) for all (t, ω) ∈ Ti × Ω,

satisfies the requied properties for the above choices of B, C and η0.

Proof of Theorem 4.2: Let h be an allocation such that f is blocked by S via h. We

choose a separable closed linear subspace Z of YΩ such that f(T, ·) ∪ h(T, ·) ∪ e(T, ·) ⊆ Z.

Pick an ε ∈ (0, µ(S)). In view of Theorem 3.4 and Remark 3.6, we can choose an η > 0, two

coalitions E, R and an allocation g such that (i) µ(E) > ε; (ii) R ⊆ E ⊆ S and IR = IE = IS;

(ii) f is blocked by E via g; and (iii) g(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e.

on R. Let δ ∈ (0, 1) be such that ε = δµ(E). By Proposition 4.1, there are a coalition B

32



and an allocation ϕ such that µ(B) = ε; Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B; and

∫

B

(ϕ(·, ω)− e(·, ω))dµ = δ

∫

E

(g(·, ω)− e(·, ω))dµ

for all ω ∈ Ω. Consequently,
∫
B
(ϕ(·, ω) − e(·, ω))dµ = 0 for all ω ∈ Ω. This means that B

blocks f .

Proof of Theorem 4.3: Let f be an allocation and R be a coalition blocking f via some

allocation g. We choose a separable closed linear subspace Z of YΩ such that f(T, ·)∪g(T, ·)∪

e(T, ·) ⊆ Z. Let ε > 0. Invoking the proof of Theorem 4.2, we derive, in view of Proposition

4.1, that there are an η > 0, two sub-coalitions B, C of R and an allocation ϕ such that

(i) IC = IB = IR and µ(B) ≤ ε;

(ii) ϕ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on C; and

(iv) f is blocked by B via ϕ.

Let i ∈ IB. By absolute continuity of the Bochner integral, there exists some ζi > 0 such

that

2

µ(Ci)

∫

Gi

(ϕ− e) dµ ∈ Z ∩ Gi ∩ B(0, η)Ω

for all Gi ∈ TBi
satisfying µ(Gi) < ζi. Define

α := min

{
ζi,

µ(Ci)

2
: i ∈ IB

}
.

For all i ∈ IB, pick any Di ∈ TBi
such that µ(Bi \Di) < α. Therefore, µ(Ci ∩Di) >

µ(Ci)
2

.

It follows that

xi :=
1

µ(Ci ∩Di)

∫

Bi\Di

(ϕ− e) dµ ∈ Z ∩ Gi ∩ B(0, η)Ω.
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Let hi : T × Ω → Y such that

hi(t, ω) :=





ϕ(t, ω) + xi(ω), if (t, ω) ∈ (Ci ∩Di)× Ω;

ϕ(t, ω), otherwise.

By (ii) and (iii), it follows that hi(t, ·) ∈ Z ∩ Gi ∩ Xt and Vt(hi(t, ·)) > Vt(f(t, ·)) µ-a.e. on

Ci ∩Di. Furthermore,

∫

Di

(hi(·, ω)− e(·, ω))dµ =

∫

Bi

(ϕ(·, ω)− e(·, ω)) dµ

for all ω ∈ Ω. Let S ∈ TB be a coalition such that µ(B\S) < α. It follows that µ(Bi\Si) < α

for all i ∈ IB. Consequently, for each i ∈ IB, there is an allocation hi such that Vt(hi(t, ·)) >

Vt(f(t, ·)) µ-a.e. on Si, and

∫

Si

(hi(·, ω)− e(·, ω))dµ =

∫

Bi

(ϕ(·, ω)− e(·, ω)) dµ

for all ω ∈ Ω. We consider an allocation h : T × Ω → Y+, defined by h(t, ω) = hi(t, ω)

if (t, ω) ∈ Si × Ω, i ∈ IB and h(t, ω) = g(t, ω), otherwise. Recognized that S blocks the

allocation f via h.

For the second part, choose δ > 0. Let {tn : n ≥ 1} be a countable dense subset of R. For

all n ≥ 1, define

Gn := B ∩ B

(
tn,

δ

2

)

Letting Fn :=
⋃
{Gk : 1 ≤ k ≤ n} for all n ≥ 1, we see that {Fn : n ≥ 1} is an ascending

sequence and B =
⋃
{Fn : n ≥ 1}. Thus, there is an n0 ≥ 1 such that µ(B \Fn0

) < α
2
. Thus,

Fn0
is blocking f . Let H be a sub-coalition of Fn0

such that µ(Fn0
\H) < α

2
. It follows that

µ(B \H) < α. Thus, H is also blocking f .

Proof of Proposition 4.4: Let 0 < δ < 1. In view of Proposition 4.1, there are an η0 > 0,

two non-null coalitions B and C, and an allocation ϕ such that
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(i) C ⊆ B ⊆ S, IC = IB = IS and µ(B) = δµ(S);

(ii) ϕ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on C;

(iii) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on B \ C; and

(iv)
∫
B
(ϕ(·, ω)− f(·, ω))dµ = δ

∫
S
(g(·, ω)− f(·, ω))dµ for all ω ∈ Ω.

Let E := S \ B and define, for each i ∈ IE, the set Di := Z ∩ Gi ∩ B (0, η0µ(Ci))
Ω, where

Ci := C ∩ Ti. As in Lemma 6.1, the correspondence Fi : Ei ⇒ Di, defined by

Fi(t) := {z ∈ Di : f(t, ·) + z ∈ Xt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

has a TEi
⊗B(Di)-measurable graph. By our stated assumptions, Fi(t) 6= ∅ for all t ∈ Ei. By

the Aumann-Saint-Beuve measurable selection theorem, there is a TEi
-measurable selection

ξi of Fi. Define

ζi :=
1

µ(Ei)

∫

Ei

ξidµ.

As in the proof of Theorem 3.4, one can show that ζi ∈ Di. So, εi := ζiµ(Ei) ∈ Di and

bi :=
εi

µ(Ci)
∈ Z ∩ Gi ∩ B (0, η0)

Ω .

Let h : S × Ω → Y be a function such that

h(t, ω) :=





ϕ(t, ω)− bi(ω), if (t, ω) ∈ Ci × Ω and i ∈ IE;

f(t, ω) + ξi(t, ω), if (t, ω) ∈ Ei × Ω and i ∈ IE;

ϕ(t, ω), otherwise.

It is evident that h is an allocation and Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on S. It can be readily

verified that ∫

S

h(·, ω)dµ =

∫

S

(δg(·, ω) + (1− δ)f(·, ω))dµ
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for all ω ∈ Ω. Define

η := min {η0 − dist (0, bi(ω))) : i ∈ IE and ω ∈ Ω} .

This completes the proof.

Proof of Theorem 4.6: Since f is a non-core allocation, there exist some η > 0, coalitions

R, S and an allocation g such that

(i) f is blocked by S via g;

(ii) g(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on R; and

(iii) Vt(g(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on R.

Then, for each ε ∈ (0, µ(S)), by Theorem 4.2, there is a coalition G such that µ(G) = ε and

f is blocked by G. If µ(S) = µ(T ), there is nothing more to verify. Thus, we assume that

µ(S) < µ(T ) and choose an ε ∈ (µ(S), µ(T )). Define

δ := 1−
ε− µ(S)

µ(T \ S)
.

Let Z be a separable closed linear subspace of YΩ such that f(T, ·) ∪ g(T, ·) ∪ e(T, ·) ⊆ Z.

By Proposition 4.1, there are an η0 > 0, two non-null coalitions B and C, and an allocation

ϕ such that

(A) C ⊆ B ⊆ S, IC = IB = IS and f is blocked by B via ϕ;

(B) ϕ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on C; and

(C) Vt(ϕ(t, ·) + z) > Vt(f(t, ·)) for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on C.

Define

D :=
⋂

{Gi : 1 ≤ i ≤ n} ∩ Z ∩ B (0, η0δµ(C))
Ω .
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As in Lemma 6.1, the correspondence F : T \B ⇒ D, defined by13

F(t) := {z ∈ D : f(t, ·) + z ∈ intXt and Vt(f(t, ·) + z) > Vt(f(t, ·))} ,

is non-empty valued and has TT\B ⊗ B(D)-measurable graph, which further implies the

existence of a TT\B-measurable selection ξ of F. Define

ζ :=
1

µ(T \B)

∫

T\B

ξdµ.

As in the proof of Theorem 3.4, one can show that ζ ∈ D. So, ε := ζµ(T \B) ∈ D and

γ :=
ε

δµ(C)
∈
⋂

{Gi : 1 ≤ i ≤ n} ∩ Z ∩ B (0, η0)
Ω .

In view of Proposition 4.1, there exist a coalition F and an allocation ψ such that

(a) µ(F ) = (1− δ)µ(T \ S);

(b) Vt(ψ(t, ·)) > Vt(f(t, ·)) µ-a.e. on F ; and

(c)
∫
F
(ψ(·, ω)− e(·, ω))dµ = (1− δ)

∫
T\S

(f(·, ω) + ξ(·, ω)− e(·, ω))dµ for all ω ∈ Ω.

Let g̃ : T × Ω → Y be an allocation such that

g̃(t, ω) :=





ϕ(t, ω)− γ(ω), if (t, ω) ∈ C × Ω;

ϕ(t, ω), otherwise.

By Proposition 4.4, there exist some allocation h such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on

S, and ∫

S

h(·, ω)dµ =

∫

S

(δg̃(·, ω) + (1− δ)f(·, ω))dµ

13Here, intXt is the interior of Xt under the relative topology of the norm-totology of Y Ω on Xt.
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for all ω ∈ Ω. We define a function y : T × Ω → Y by setting

y(t, ω) :=





ψ(t, ω), if (t, ω) ∈ F × Ω;

h(t, ω), otherwise.

Recognized that y is an allocation with Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E := F ∪ S. It can

be readily verified that µ(E) = ε and

∫

E

(y(·, ω)− e(·, ω))dµ = (1− δ)

∫

T

(f(·, ω)− e(·, ω))dµ = 0.

This completes the proof.

Proof of Proposition 4.7: Denoting by XR, FR, VR, and eR(·) the common values of Xt,

Ft, Vt, and e(t, ·), respectively. Suppose, on contrary, that VR(xf ) > VR(f(t, ·)) for all t ∈ B

for some sub-coalition B of R. Without loss of generality, we may assume that µ(R) < µ(T ).

Otherwise, f will be be blocked by B via xf . This can be seen as follows:

∫

B

xfdµ =
µ(B)

µ(R)

∫

R

xfdµ =
µ(B)

µ(R)

∫

R

edµ =

∫

B

edµ.

Therefore, we assume that µ(R) < µ(T ). Then there are an λ ∈ (0, 1) and a sub-coalition D

of B such that VR(λxf +(1−λ)eR) > VR(f(t, ·)) for all t ∈ D. By Lemma 5.28 of Aliprantis

and Border [1], we have14 λxf + (1 − λ)eR is an interior point of XR. It follows that there

are an η > 0 and a sub-coalition E of D such that

VR(λxf + (1− λ)eR − z) > VR(f(t, ·))

for all z ∈ B(0, η)Ω and t ∈ E. Let Z be a separable closed linear subspace of YΩ such that

14Since Xt is closed and convex, as in the proof of Theorem 3.4 we can readily show that xf ∈ XR.
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f(T, ·) ∪ e(T, ·) ⊆ Z. Let δ ∈ (0, 1] be such that µ(E) = δµ(R). Define

D :=
⋂

{Gi : 1 ≤ i ≤ n} ∩ Z ∩ B (0, ηµ(E))Ω .

As before, one can find an allocation ξ : T0 × Ω → Y such that

(i) ξ(t, ·) ∈ D µ-a.e. on T0;

(ii) f(t, ·) + ξ(t, ·) ∈ intXt µ-a.e. on T0; and

(iii) Vt(f(t, ·) + ξ(t, ·)) > Vt(f(t, ·)) µ-a.e. on T0.

By Proposition 4.1, there exists a coalition C ∈ TT\R and an allocation ϕ such that

(A) µ(C) = δµ(T \R);

(B) Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on C; and

(C)

∫

C

(ϕ− e)dµ = λδ

∫

T\R

(f + ξ − e)dµ.

Define

ζ :=
1

µ(T \R)

∫

T\R

ξdµ.

As in the proof of Theorem 3.4, one can show that ζ ∈ D, which further implies α :=

λδζµ(T \R) ∈ D. Consequently,

γ :=
α

µ(E)
∈
⋂

{Gi : 1 ≤ i ≤ n} ∩ Z ∩ B (0, η)Ω .

Finally, we define an assignment y : T × Ω → Y defined by

y(t, ω) :=





λxf (ω) + (1− λ)eR(ω)− γ(ω), if (t, ω) ∈ E × Ω;

ϕ(t, ω), otherwise.

It can be readily verified that S := C ∪ E blocks f via y. This is a contradiction. Hence,

VR(f(t, ·)) ≥ VR(xf ) µ-a.e. on R. LetG be a sub-coalition of R such thatVR(f(t, ·)) > VR(xf )
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for all t ∈ G. By applying Jensen’s inequality, one obtains

VR

(
1

µ(G)

∫

G

fdµ

)
> VR(xf )

and

VR

(
1

µ(R \G)

∫

R\G

fdµ

)
≥ VR(xf ).

Let κ := µ(G)
µ(R)

. By Lemma 5.26 in Aliprantis and Border (2005), one has

VR(xf ) = VR

(
κ

µ(G)

∫

G

fdµ+
1− κ

µ(R \G)

∫

R\G

fdµ

)

> VR(xf ),

which is a contradiction. Therefore, VR(f(t, ·)) = VR(xf ) µ-a.e. on R.

Proof of Theorem 4.9: Let f̃ ∈ C (Ẽ ). Suppose by the way of contradiction that f :=

Φ[f̃ ] /∈ C A(E ). Consequently, there exists a generalized coalition γ and an allocation g such

that Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ and

∫

Sγ

γg(·, ω) dµ =

∫

Sγ

γe(·, ω) dµ

for all ω ∈ Ω. Define J := {j : Aj ⊆ Sγ}. By Theorem 3.7, we may assume that J 6= ∅.

Therefore, ∫

Sγ∩T0

γ(g − e) dµ+
∑

j∈J

γ(Aj)µ(Aj)(g(Aj)− e(Aj)) = 0.

Let Z be a separable closed linear subspace of YΩ such that f(T, ·)∪ g(T, ·)∪ e(T, ·) ⊆ Z. In

view of Theorem 3.4, there exist an r0 ∈ (0, 1), a sub-coalition E of Sγ∩T0, and an allocation

y such that Vt(y(t, ·)) > Vt(f(t, ·)) µ-a.e. on E and

∫

E

(y − e) dµ = r0

∫

Sγ∩T0

γ(g − e) dµ.
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By the Lyapunov convexity theorem, there is a sub-coalition B̃j of Ãj such that

µ̃(B̃j) = r0γ(Aj)µ̃(Ãj).

Define an allocation ϕ : T → Y by letting

ϕ(t, ω) :=





g̃(t, ω), if (t, ω) ∈ B̃j × Ω and j ∈ J;

y(t, ω), otherwise,

where g̃ := Ξ[g]. Define

S̃ := E ∪
⋃

{B̃j : j ∈ J}.

It follows that
∫
S̃
(ϕ− e) dµ = 0. Pick an j ∈ J. Since

f(Aj, ·) =
1

µ̃(Ãj)

∫

Ãj

f̃dµ̃,

applying Proposition 4.7 to a continuum economy with R = Ãj, we have Vt(f(Aj, ·)) =

Vt(f̃(t, ·)) µ-a.e. on Ãj. Therefore, µ-a.e. on B̃j, we have

Vt(ϕ(t, ·)) = VAi
(g(Ai, ·)) > VAi

(f(Ai, ·)) = VAj
(f̃(t, ·)).

Hence, f̃ is blocked by S̃ via ϕ, which leads to a contradiction.

Proof of Theorem 4.10: First, we define x
f̃
: Ω → Y by letting

x
f̃
(ω) :=

1

µ̃(R)

∫

R

f̃(·, ω)dµ̃

for all ω ∈ Ω. Thus, consider a feasible allocation f̃A : T̃ × Ω → Y such that

f̃A(t, ω) :=





f̃(t, ω), if (t, ω) ∈ (T \R)× Ω;

x
f̃
(ω), otherwise.
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In view of Proposition 4.7, we have Vt(f̃(t, ·)) = Vt(f̃
A(t, ·)) µ-a.e. on R. Suppose, by the

way of contradiction, that f̃ /∈ C (Ẽ ). Thus, f̃A is not in the core of Ẽ , which means that

it is blocked by some coalition Ŝ via some allocation ĝ. Let Z be a separable closed linear

subspace of YΩ such that f(T̃ , ·) ∪ ĝ(T̃ , ·) ∪ e(T̃ , ·) ⊆ Z.

Case 1. R = T1 and |T1| ≥ 2. Choose an element A0 ∈ T1 and let µ(A0) = ε > 0. By

Theorem 4.6, f̃A is blocked by a coalition B̃ of Ẽ via the allocation g̃ with µ̃(B̃) = µ̃(T0)+ε,

which gives µ̃(B̃ ∩ T̃1) ≥ ε. Moreover, it can be checked that there is a sub-coalition G of

B̃ such that IG = IB̃ and for each t ∈ G there is some η > 0 such that g(t, ·) + z ∈ Z ∩Xt

for all z ∈ Z ∩ B(0, η)Ω. Therefore, in the light of Proposition 4.1, there exist a coalition Ẽ

and an allocation ỹ such that f̃A will be blocked by Ẽ via ỹ and µ̃(Ẽ ∩ T̃1) = ε. Define a

coalition S of E such that S := (Ẽ ∩ T0) ∪ A0, and define a function y : T × Ω → Y by

y(t, ω) =





ỹ(t, ω), if (t, ω) ∈ (T0 \ A0)× Ω;

1
ε

∫
Ẽ∩T̃1

ỹ(·, ω)dµ̃, otherwise.

Recognized that y is an allocation of E such that

∫

S

y(·, ω)dµ =

∫

S

e(·, ω)dµ

for all ω ∈ Ω. Furthermore, by the quasi-concavity of VT1
, we have Vt(y(t, ·)) > Vt(f(t, ·))

µ-a.e. on S, which leads to a contradiction.

Case 2. µ(R \ T1) > 0. Define C := R ∩ T0. By Theorem 3.4, we conclude that there are

some η > 0, coalitions B̃, G̃ and an allocation ỹ such that

(A) G̃ ⊆ B̃ ⊆ Ŝ and IG̃ = IB̃ = IŜ;

(B) ỹ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η)Ω and µ-a.e. on G̃; and

(C) f̃A will be blocked by B̃ via ỹ.
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If B̃ ⊆ T0, there is noting more to verify. Thereofore, we assume that µ̃(B̃ ∩ T̃1) > 0. Let

ε := µ̃(B̃ ∩ T̃1). Define a function ỹA : T̃ × Ω → Y by

ỹA(t, ω) :=





1
ε

∫
B̃∩T̃1

ỹ(·, ω)dµ̃, if (t, ω) ∈ (B̃ ∩ T̃1)× Ω;

ỹ(t, ω), otherwise.

It follows that VT1
(ỹA(t, ·)) > VT1

(f̃A(t, ·)) µ-a.e. on B̃ and

∫

B̃∩T0

(ỹA − e)dµ+ ε(ỹA − eT1
) = 0. (6.1)

If µ(C) ≥ ε then we choose a coalition R̂ ⊆ C such that µ(R̂) = ε. Consequently, by

Equation (6.1), we have

∫

B̃∩T0

(ỹA − e)dµ+ µ(R̂)(ỹA − eT1
) = 0.

If µ(C) < ε then first choose an α ∈ (0, 1) such that µ(C) = αε. By Proposition 4.1, there

are some η0 > 0, two coalitions K̂ and D̂ and an allocation ϕ such that

(a) K̂ ⊆ D̂ ⊆ B̃ ∩ T0 with IK̂ = ID̂ = IB̃∩T0
;

(b) ϕ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η0)
Ω and µ-a.e. on K̂;

(c) Vt(ϕ(t, ·)) > Vt(f(t·)) for all t ∈ D̂; and

(d)

∫

D̂

(ϕ− e)dµ = α

∫

B̃∩T0

(ỹA − e)dµ.

In view of Equation (6.1), we have IK̂∪C = ID̂∪C = IB̃ and

∫

D̂

(ϕ− e)dµ+ µ(C)(ỹA − eT1
) = 0.

Hence, in either of these cases, there are coalitions D,K,N and allocation ξ such that

(i) K ⊆ D ⊆ B̃ ∩ T0 and N ⊆ C such that IK∪N = ID∪N = IB̃;
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(ii) ξ(t, ·) + z ∈ Z ∩Xt for all z ∈ Z ∩ B(0, η̃)Ω and µ-a.e. on K;

(iii) Vt(ξ(t, ·)) > Vt(f(t, ·)) for all t ∈ K; and

(iv)
∫
D
(ξ − e)dµ+ µ(N)(ỹA − eT1

) = 0.

If µ(D∩N) = 0 then D∪N blocks the allocation f̃A via ζ, where the allocation ζ is defined

by

ζ(t, ω) =





ỹA(t, ω), if (t, ω) ∈ N × Ω;

ξ(t, ω), otherwise.

If µ(D ∩N) > 0 then we define E := (D \N) ∪ (N \D) and G := D ∩N . Recognized that

there is an η̃ > 0 such that ζ(t, ω) + z ∈ Z ∩ Xt for all z ∈ Z ∩ B(0, η̃)Ω and µ-a.e. on H

for some sub-coalition H of K ∪ N satisfying IH = IE. By Proposition 4.1, there is some

coalition F ⊆ E and an allocation h such that

∫

F

(h− e)dµ̃ =
1

2

∫

E

(ζ − e)dµ̃.

By Proposition 4.4, there exist an allocation ι and a sub-coalition V of G such that IV = IG,

Vt(ι(t, ·)) > Vt(f(t, ·)); and

∫

G

(ι− e)dµ =
1

2

∫

G

(ξ − e)dµ+
1

2

∫

G

(ỹA − e)dµ.

Then S := F ∪G blocks the allocation f̃A via ψ, where the allocation ψ is defined by

ψ(t, ω) =





h(t, ω), if (t, ω) ∈ F × Ω;

ι(t, ω), otherwise.

This contradicts with the fact that f is in the ex-ante core of E .

Proof of Theorem 4.11: Let us choose ε, δ > 0. Let f /∈ C A(E ). Defining f̃ := Ξ[f ], we

note that f = Φ[f̃ ]. Thus, by Theorem 4.9, we have f̃ /∈ C (Ẽ ). In view of Theorem 4.3, we

have a coalition S with µ̃(S) ≤ ε ex-ante blocking f and satisfying the following:
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(i) There exists an τ > 0 such that such that for any coalition F of S satisfying µ(S\F ) < τ

ex-ate blocking f ; and

(ii) S =
⋃n

i=1 Si for a finite collection of coalitions {S1, · · · , Sn} with diameter of Si smaller

than δ for all i = 1, · · · , n.

Let

B1 := S1 and Bi = Si \
⋃

{Sj : 1 ≤ j < i}

for all i ≥ 2. Define Gi := Bi ∩ T0 for each i ∈ {1, · · · , n} and note that

S =
⋃

{Gi : 1 ≤ i ≤ n} ∪ (S ∩ T̃1).

Put, I :=
{
k : µ̃(Ãk ∩ S) > 0

}
. For I 6= ∅, choose a finite subset K of I such that K = I if I

is finite; and
∑

k∈I\K µ(Ak) < τ , otherwise. We define R := S if I = ∅; and

R :=
⋃

{Gi : 1 ≤ i ≤ n} ∪
⋃

{Ãk ∩ S : k ∈ K},

otherwise. In view of the fact that µ(S \ R) < τ , we conclude that R ex-ante blocks f .

Moreover, it contains either no atom or finitely many atoms. For K 6= ∅, let γ : T → [0, 1]

be an Aubin coalition such that

γ(t) :=





1, if t ∈ R ∩ T0;

αk, if t = Ak, k ∈ K;

0, otherwise,

and for K = ∅, define an Aubin coalition γ : T → [0, 1] such that

γ(t) :=





1, if t ∈ R ∩ T0;

0, otherwise,
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where

αk :=
µ̃(Ãk ∩ S)

µ̃(Ãk)
.

For all 1 ≤ i ≤ n, let γi : T → [0, 1] be an Aubin coalition such that γi := χGi . Thus,

{γ1, · · · , γn} is a finite collection of pairwise disjoint generalized coalitions and Sγi ⊆ T0 for

all 1 ≤ i ≤ n. It follows from the definition of the diameter of a generalized coalition by

taking α = β = 1 that

diam(γi) = sup {‖a− b‖ : a, b ∈ Sγi} = diam(Sγi) < δ.

Furthermore, it can be readily verified that

γ =





∑n

i=1 γi +
∑

k∈K αkχAk
, if K 6= ∅;

∑n

i=1 γi, if K = ∅,

This completes the proof.

Proof of Theorem 4.13: Let f be a feasible allocation of E such that f /∈ C A(E ) and let

ε ∈ (0, 1). Letting f̃ := Ξ[f ], we note that f = Φ[f̃ ]. Thus, applying Theorem 4.9, one has

f̃ /∈ C (Ẽ ). Therefore, in view of Theorem 4.6, one can find a coalition S and an allocation

g̃ in Ẽ such that µ̃(S) = ε and f̃ is ex-ante blocked by the coalition S via some allocation g̃.

Put J = {j : µ̃(S ∩ Ãi) > 0}. The rest of the proof is decomposed into two cases:

Case 1. J 6= ∅. In this case, we have

∫

S∩T0

g̃ dµ̃+
∑

j∈J

∫

S∩Ãj

g̃ dµ̃ =

∫

S∩T0

ẽ dµ̃+
∑

j∈J

∫

S∩Ãj

ẽ dµ̃.

For each j ∈ J, choose some γj ∈ (0, 1] such that µ̃(S ∩ Ãj) = γjµ(Aj) and define

gj :=
1

µ̃(S ∩ Ãj)

∫

S∩Ãj

g̃ dµ̃.
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By Jensen’s inequality, we have VAj
(gj) > VAj

(f(Aj, ·)) for all j ∈ J and

∫

S∩T0

g̃ dµ̃+
∑

j∈J

γjgjµ(Aj) =

∫

S∩T0

ẽ dµ̃+
∑

j∈J

γjejµ(Aj).

Define an allocation g : T × Ω → Y+ by

g(t, ω) :=





g̃(t, ω), if (t, ω) ∈ (S ∩ T0)× Ω;

gj(ω), if t = Aj, ω ∈ Ω and j ∈ J;

f(t, ω), otherwise,

and an Aubin coalition γ : T → [0, 1] by

γ(t) :=





1, if (t, ω) ∈ (S ∩ T0)× Ω;

γj, if t = Aj, ω ∈ Ω and j ∈ J;

0, otherwise.

Consequently, we have Vt(g(t, ·)) > Vt(f(t, ·)) µ-a.e. on Sγ and

∫

T

γg(·, ω) dµ =

∫

T

γe(·, ω) dµ

for all ω ∈ Ω. Furthermore, note that

∫

T

γ dµ = µ(S ∩ T0) +
∑

j∈J

∫

Aj

γj dµ = µ(S) = ε.

Case 2. J = ∅. Analogous to Case 1, one can show that f is blocked by an Aubin coalition

γ via g, where the function g : T × Ω → Y+ is defined by

g(t, ω) :=





g̃(t, ω), if (t, ω) ∈ (S ∩ T0)× Ω;

f(t, ω), otherwise,
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and the Aubin coalition γ : T × Ω → [0, 1] is defined by

γ(t, ω) :=





1, if (t, ω) ∈ (S ∩ T0)× Ω;

0, otherwise.

Recognized that
∫
T
γ dµ = µ̃(S ∩ T0) = µ(S) = ε.
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