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Abstract

This paper investigates the incentives for firms with market power to manip-

ulate markets by strategically reneging on forward commitments. We first study

the behaviour of a dominant firm in a two-period model with demand uncertainty.

We then use the model’s predictions and a machine learning approach to inves-

tigate multiple occurrences of reneging on long-term commitments in Alberta’s

electricity market in 2010-2011. We find that a supplier significantly increased its

revenues by strategically reneging on its capacity availability obligations, causing

Alberta’s annual electricity procurement costs to increase by as much as $600

million (+17%).
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1 Introduction

“Contracts are like hearts, they are made to be broken”.1 Failures to fulfill contractual

obligations are indeed frequent. As parties recognize the risk of a contract “breach”,

they write clauses to protect themselves against certain contingencies but can hardly

consider them all. In sequential markets, a contract breach may occur for legitimate

reasons as, say, a shortage may force a supplier to renege on its promise to deliver

some goods at a given date. Yet, insufficient penalties (or imperfect penalty schemes)

imposed in case of such contingencies give rise to a moral hazard problem by leaving

space for parties to renege on their commitments for strategic reasons. This moral

hazard problem can have significant consequences in terms of efficiency and welfare

distribution, especially in markets where prices are very sensitive to unexpected supply

or demand shocks.

In this paper, we study strategic reneging and market power in sequential mar-

kets in theory and practice. First, we develop a theoretical framework to analyze the

behaviour of a dominant firm facing a competitive fringe in a two-period model with

imperfect commitment and demand uncertainty. Second, we leverage machine learning

to empirically investigate market manipulations, and to test our model’s predictions,

using a rich dataset about Alberta’s electricity market in Canada. Our empirical

analysis focuses on alleged occurrences of strategic reneging disguised under claims

of “emergency” outages of power plants under long-term contracts. We use counter-

factual strategies to estimate the welfare consequences and damages associated with

1So is reported to have said Ray Kroc, the fast-food tycoon who built the McDonalds empire.
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market manipulation via contract reneging. A large supplier is found to have caused

Alberta’s annual electricity procurement costs to increase by as much as $600 million

in 2010-2011. This firm and some of its rivals earned dozens of million dollars in extra

revenues due to the large price impacts caused by the strategic conduct.

Our theoretical framework aims at investigating how imperfect commitment inter-

acts with market power in a sequential setting. We show that the decision to renege

crucially depends on the residual demand. A less elastic residual demand causes the

manipulation to have a larger price impact, while larger demand realizations increase

the volume of spot sales which implies more leverage. We establish equilibrium predic-

tions in order to provide guidance to detect strategic reneging, collect indirect evidence

of potential misconduct, measure its consequences, and thus assess the need for regu-

latory intervention.

This framework shows that strategic reneging can be a strategic substitute or strate-

gic complement to the mere exercise of market power, depending on market conditions.

Reneging is thus not only an additional channel through which market power could

be exercised, but is also a means to create, maintain, or enhance market power. This

result underlines the broader role played by reneging in many electricity markets, even

in absence of contractual commitments. In those markets, firms are forbidden to eco-

nomically withhold large amounts of power through the bidding process. All firms can

hence be considered as being committed to supplying close to marginal cost to comply

with the regulation. Firms may thus attempt to escape this regulation by declaring an

unnecessary maintenance outage so as to physically withhold power from the market.

In other markets, like in Alberta, where market power is not prevented by regulatory

protocols, outages can also be used to complement economic withholding.

In our model, the monopolist competes against a competitive fringe over two periods

to supply a homogeneous good at a particular delivery time. Demand is random and
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assumed to be perfectly inelastic.2 The residual demand curve is nevertheless elastic

in both periods due to the presence of the fringe. In the first period, a share of the

expected demand is allocated through forward contracts. The realized demand net of

these commitments is supplied in the second period on the spot market, where both

production and consumption take place. The strategic reneging of commitments on the

forward market weakens competition on the spot market to enhance the firm’s overall

profitability.3 More precisely, by reducing its own output committed at forward prices,

the firm increases the net demand in the spot market because the withdrawn output

must be (at least partly) replaced in equilibrium. The residual demand curve is hence

shifted which results in a spot price increase.4 Strategic reneging is found to reduce

the forward price premium, and can even induce price-convergence in equilibrium. We

thus offer a new rationale for why the latter is no indication of market efficiency.

We test our model predictions and investigate the consequences of imperfect com-

mitment in an application to Alberta’s electricity market. This market provides several

advantages to study strategic reneging. First, incentives to suppliers are relatively sim-

ple in Alberta’s electricity market. Market outcomes are settled through a real-time

auction, and there is no day-ahead auction (Olmstead and Ayres, 2014). Second, the

market structure consists of a few large suppliers and many small firms, and market

power execution is relevant as documented by Brown and Olmstead (2017). Third,

the availability of firm-level bid data allows us to reconstruct residual demand func-

tions and to test the theory. Fourth, the Alberta Market Surveillance Administrator

(MSA) accused an incumbent supplier of market manipulations through strategically

timed “emergency” outages of power plants subject to long-term forward contracts, in

2This is a reasonable assumption for electricity markets, where end-users are rarely faced with
real-time prices. Relaxing it would not alter our qualitative results because it is not required for
strategic reneging to occur.

3Carlton and Heyer (2008) defines this as extensive conduct in opposition to extractive conduct,
e.g. the exercise of unilateral market power.

4Throughout this paper, we use “reneging” to refer to the act of not satisfying one’s forward
commitments to deliver some output.
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several instances from November 2010 to February 2011.5 This case thus offers a rare

opportunity to investigate strategic reneging empirically.

In our empirical analysis, we interpret these strategic outages as a type of strategic

reneging on long-term forward commitments and evaluate their economic impacts. The

compelling evidence collected in AUC (2015) makes clear that TransAlta’s traders and

plant operators collaborated to time outages. The report reveals that the firm had im-

plemented a trading strategy that involved coordinating forced outages of power plants

under long-term contracts and optimizing spot and forward strategies. The strategy

also involved wind farms, under similar long-term fixed-price contracts, reducing out-

put during periods of high wind to inflate wholesale prices.6

Our empirical investigation uses a sample of hourly observations containing firm-

level bids, plant-level production, and market outcomes from November 2008 to August

2011. The analysis first documents evidence that the events coincided with high de-

mand and low wind output periods. It also shows evidence that TransAlta’s wind

power production was curtailed for strategic reasons. Second, we show that the firm

and its rivals have optimized their supply strategies during the outages. To do so, we

leverage hourly firm-level bid data to predict supply and residual demand functions

using a multivariate extension of the least absolute shrinkage and selection operator,

or lasso (Simon, Friedman and Hastie, 2013). By predicting counterfactual strate-

gies during reneging events (assuming outages did not occur) we can identify strategy

shifts, compute counterfactual market outcomes, and therefore evaluate the impacts of

manipulations. We find deviations of the firm’s strategies in the spot market during

the outages that are consistent with our model’s predictions. By making use of its

informational advantage regarding the outage timing, the firm’s bids may reveal its

5We focus on this case study that has been already thoroughly investigated both to illustrate how
regulatory investigations are conducted and to avoid spreading erroneous accusations.

6The complete regulatory proceedings are accessible from the Alberta Utilities Commission’s eFil-
ing System at https://www2.auc.ab.ca/_layouts/15/auc.efiling.portal/login.aspx.
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intent to manipulate. Changes in supply bids may hence provide a red flag for regula-

tors to detect potential misconduct early on, and intervene sooner.7 Bidding strategies

reflecting this inside information indeed deliver indirect proofs of intent, which, as we

argue, can be helpful for prosecution.

As we show in this paper, accounting for equilibrium effects yields greater estimates

of manipulations gains and increases in procurement costs. We estimate that strategic

reneging delivered up to $67 million in extra revenues to the firm, and up to $600

million in additional procurement costs for Albertans in 2010-2011. This represents a

17% percentage point increase in annual energy procurement costs in the province.

Finally, our paper provides both theoretical arguments and empirical evidence for

the fact that, although long-term contracts are often considered as a channel to limit

the exercise of market power (AUC, 2015), they may also create incentives for market

manipulations with harmful consequences.

Related literature. This paper is related to the strands of economic literature on

sequential markets, market manipulations, and market power in electricity markets.

First, our framework draws from the durable good monopoly model of Coase (1972)

which identifies a commitment problem. There is also a large literature in economics

studying the role of various factors in the formation of price spreads between sequential

markets (Weber, 1981; McAfee and Vincent, 1993; Bernhardt and Scoones, 1994). We

focus on the role of imperfect competition, as in Allaz and Vila (1993) who show that

sequential markets always improve efficiency. In contrast, we do not assume perfect

arbitrage across markets and introduce an imperfect commitment problem. We find

that, in the presence of contract incompleteness, sequential markets may be a source

of manipulations and inefficiencies.

7We do not study this timing aspect since our data is limited to final hourly bid offers and does
not include information about whether hourly bids were modified.
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Our paper is related to Ito and Reguant (2016) who study arbitrage in sequential

markets under imperfect competition and show that the conjunction of limited arbi-

trage and market power generates a forward price premium. We contribute to this

literature by showing that the opposite result, i.e. a spot price premium, can arise in

expectations because of imperfect commitment. We also complement their important

insight about price convergence not being a reliable metric for assessing the degree of

competition. In our setting, price convergence can arise because of multiple market

failures: imperfect competition and imperfect commitment.

Second, this paper is related to the literature on market manipulations. Ledger-

wood and Carpenter (2012) present a general framework of market manipulations with

examples taken from financial and commodity markets. Strategic reneging can be

interpreted as a form of loss-based manipulation in their framework. One of our

main theoretical predictions is also in line with the general insight, found in the fi-

nance literature, that traders receiving inside information will re-optimize their strategy

(Imkeller, 2003). Market manipulations typically involve collusion (Brown, Eckert and

Lin, 2018; Dechenaux and Kovenock, 2007) or financial derivatives and transmission-

related strategies in electricity markets (Birge et al., 2018; Lo Prete et al., 2019; AUC,

2012). Evidence of strategic timing of “emergency” outages of plants during tight

market conditions also exist in European markets (Bergler, Heim and Hüschelrath,

2017; Fogelberg and Lazarczyk, 2019). We document similar evidence for Alberta and

show that bid data can deliver further evidence of intent to manipulate and allow for

a precise market impact assessment.

Third, there is a large literature on market power in the electricity industry. Boren-

stein, Bushnell and Wolak (2002) and Puller (2007) study the California electricity

market, where suppliers scheduled plant maintenance during peak periods as a way to

exercise market power. Empirical evidence of market power has been found in many

electricity markets, including for capacity (Schwenen, 2015). In our application, we
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focus on the “emergency” maintenance of plants under forward contracts used as a

manipulation device to extend unilateral market power in the spot market, but sched-

uled outages can also disguise strategic reneging in context where economic withholding

is prevented by regulatory protocols. There is also a prolific amount of research about

the role of forward contracts to mitigate market power. Although forward contracts

are generally expected to be welfare-enhancing (Bushnell, Mansur and Saravia, 2008;

Green and Le Coq, 2010), they may yield anti-competitive outcomes when firms are

asymmetric (de Frutos and Fabra, 2012), or exacerbate intertemporal market power

distortions (Billette de Villemeur and Vinella, 2011). This paper shows evidence that

incomplete forward contracts can create incentives to dominant players for market

manipulations with harmful consequences.

Fourth, there is a growing empirical literature using machine learning methods in

microeconomic applications. Burlig et al. (2020) use causal inference for evaluating the

gains of energy efficiency investments in K-12 schools in California. More precisely,

they use a lasso approach as a way to construct the counterfactual energy consumption

of each school assuming no investment had taken place. Benatia (2022) and Graf,

Quaglia and Wolak (2020) study the COVID-19 pandemic’s consequences for electricity

markets in France and Italy, respectively. They use machine learning methods to obtain

counterfactual predictions of electricity market outcomes in absence of containment

measures.

Finally, strategic reneging is not limited to the supply side,8 it can also occur outside

electricity markets and take various forms. For instance, a company can schedule

deliveries and cancel them at the last minute to withhold delivery capacities, 9 or it

8Faced with large electricity demand reductions caused by the pandemic in spring 2020, French
distributors reneged on their regulated forward contracts, claiming force majeure, hence transferring
their losses to the historical producer (Benatia, 2022).

9Marks et al. (2017) argue that electricity price spikes in New England have been caused by
two companies regularly reneging on scheduled deliveries to withhold pipeline capacity. After due
investigation, regulators have ruled that the companies followed normal industry practices.
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can refuse to honor a particular contract clause in order to foreclose competition. 10

Alternatively, the firm may force its competitors to renege on their contracts, 11 or

even renege as a means to disseminate misleading information.12 Although our paper

is built in reference to precise market manipulations in a specific context, namely that

of Alberta’s power market, we argue that the lessons learned extend much beyond.13

Institutional details and the market manipulations in Alberta are presented along

with the model in Section 2. The empirical study of Alberta’s electricity market is

developed in Section 3. Section 4 concludes the paper. All propositions and proofs are

in Appendix A, additional empirical results in Appendix B, and inference is described

in C.

2 Strategic Reneging in Electricity Markets

The outage of power plants under commitments can be used as a means to disguise

strategic reneging in restructured electricity markets. We take advantage of the well-

documented market manipulation events that occurred in Alberta’s electricity market

in 2010-2011 to better understand this phenomenon and develop a simple theoretical

framework to guide our empirical study in Section 3. We begin by providing institu-

tional details about the market and information about the manipulation events. We

then develop a theoretical model and draw some lessons for regulation.

10An antitrust investigation of the EU Commission has accused Gazprom to have strategically
reneged on its obligations to accommodate changes of gas delivery points during a cold spell to ensure
that Poland had “no choice but to cover the gas shortage by acquiring from Gazprom” (EUC, 2018).

11In a historical case, two potatoes producers were forced to default on their deliveries because of
the scheme of a competitor which withheld all rail cars with phony deliveries, “leaving 1.5 million
pounds of potatoes rotted because they could not be shipped out of Maine” (Markham, 1991).

12“Spoofing” refers in financial markets to the posting and immediate reneging of quotes on elec-
tronic trading platforms is an observed practice that artificially increases trading activity and tem-
porarily inflates the stock price (Hewitt and Carlson, 2019).

13Ofgem launched a consultation after a journalistic investigation uncovered electricity market “ma-
nipulations” in the UK where firms strategically reneged on day-ahead commitments to sell in the
balancing market (Ofgem, 2023; Finch, Grotto and Gillespie, 2023).
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2.1 A Tale of Strategic Reneging

The Alberta electricity market. Alberta’s electricity system is market-based since

2001. Competition has been introduced on the retail and wholesale segments of the

industry, while transmission and distribution remained as regulated monopolies (Olm-

stead and Ayres, 2014; Brown and Olmstead, 2017). The Alberta Electric System

Operator (AESO) is the authority mandated to design and operate the market. The

revenues of wholesale suppliers in this market consist almost only of payments collected

from the short-run electricity market.14

The electricity market is organized as a uniform-price multi-unit procurement auc-

tion for each hour of the day. Suppliers submit offer bids one day-ahead of physical

production to signal their willingness to produce different amounts of energy. Offer

bids can be modified up to two hours before production. Generators must offer their

available capacity in the market and can choose prices between $0 and $999.99 per

MWh. Bids take the form of a (step) supply function with several price-quantity pairs

for each generator. The AESO aggregates them into an industry-level supply function.

The market-clearing price is determined at every minute and equals the highest ac-

cepted bid price to supply the realized electricity demand. Participants are paid the

pool price, which is the time-weighted average price for each hour.

In 2011, power production in Alberta was dominated by thermal plants burning

coal (46.9%) and natural gas (36%). The remainder of the production came from other

energy sources such as wind (6.1%), hydro (6.1%), and other fossil fuels (4.9%) (Brown

and Olmstead, 2017). Table 1 provides information with regard to Alberta’s market

structure and firm characteristics. In 2010-2011, the five largest firms controlled about

70% of market offers while the rest was controlled by a fringe of over 20 firms. Wind

14The Alberta electricity market is an energy-only market, meaning that there are no additional
payment to suppliers to ensuring their profitability. In practice, some additional revenues can be
obtained from supplying ancillary services to the AESO, such as short-term load balancing.
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farms are not included in market shares because they are treated by the market as

if offered at $0. Offer control differs from capacity ownership because of long-term

bilateral contracts between suppliers.15

[Table 1]

Long-term forward contracts. Power purchase arrangements (PPAs) are long-

term contracts of up to 20 years introduced during the restructuring of Alberta’s elec-

tricity industry in 2000.16 The primary purpose of the PPAs was to anticipate poten-

tial market power issues caused by the concentration of capacity ownership within the

hands of incumbent utilities. Before that, 90% of capacity was controlled by TransAlta,

ATCO, and Capital Power. The contract leaves the ownership and operation of the

assets to the owners but gives buyers the right to sell its production to the electric-

ity market. This is essentially a “virtual divesture” for incumbents. In 2000, PPAs

were sold in auctions with varying private terms including remunerations for fixed and

operating costs, plus a rate of return.

The contracts give the buyer exclusivity to sell the facility’s output up to a certain

capacity, known as its committed capacity. For obvious reasons, the PPAs include

incentives to owners to achieve the committed capacity. These incentives are referred

to as availability incentive payments. If the available capacity is above a target specified

by the contract, then the owner receives this payment. Conversely, if capacity is below

the target the owner must pay this amount to the PPA buyer (AUC, 2015). The

incentive payment is calculated as a 30-day rolling average of prices times the difference

between the actual available capacity and the specified target.

15One caveat of our bid data is that offer control was not well followed at that time. A few
plants have multiple owners, each of which can submit bids for its respective share. Bid data is not
differentiated in these cases, so we decided to split bids using information on offer controls from MSA
(2012).

16In the U.S., this type of contracts is generally called power purchase agreements, and is used for
renewables.
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We interpret those contracts as long-term forward commitments tied to some phys-

ical capacity. The plants subject to PPAs provide baseload production which is offered

at low prices on the energy market by the PPA buyers.17 The average offer price is

around $15/MWh for PPA plants in our sample, and 74% of capacity is offered at

$0/MWh, which is likely explained by the financial forward contracts by the suppliers.

For that reason, they almost always produce up to available capacity. The contract

commits the owner to deliver whatever output the buyer might want up to target ca-

pacity. In this context, strategic reneging consists in choosing not to deliver the output

by reducing available capacity below the contract target, at the cost of incurring the

associated penalty. This conduct can be disguised under claims of maintenance needs,

which might need to be substantiated if the regulator decides to investigate.

The allegations of market manipulations. The Alberta Market Surveillance Ad-

ministrator (MSA) accused TransAlta Corporation of market manipulations through

strategically timed “emergency” outages of its coal-fired power plants under PPAs in

several instances from November 2010 to February 2011. After due investigation, the

Alberta Utilities Commission (AUC, 2015) concluded that “TransAlta unfairly exer-

cised its outage timing discretion [...] for its own advantage and made its own portfolio

benefits paramount to the competitive operation of the market”. In other words, main-

tenance needs were not urgent and outages could have been delayed in order to prevent

substantial market impacts. Ultimately, a $56 million settlement was made.

In the fall of 2010, TransAlta identified the complementarity of its supply strategy

and forced outages of plants under long-term contracts to increase spot prices. The firm

developed the Portfolio Bidding Strategy outlined in an (internal) executive summary

17The energy is sold to a rival firm which then sells to the market. Assuming this rival to be
price-taker (or with large forward covers) the energy would be offered at price p1 in the spot as in
our model below. The main results are hence left unchanged. In a strategic setting, reneging would
impact the rival’s cost structure and further exacerbate the manipulator’s market power.
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dated October 21, 2010, after the hire of new senior trading personnel. The strategy’s

objective was to enlarge revenues from the spot market by increasing prices when the

firm had a net selling position.18 The main ingredients of that strategy involved to:

1. (Bidding) Optimize the bidding strategy in the spot and forward markets;

2. (Outages) Coordinate forced outages to optimize market impacts; and

3. (Wind) Have wind farms to reduce output during periods of high wind.

The firm officially started to use this strategy on November 18, 2010. At the end of

February, 2011, the MSA received complaints from Capital Power and ENMAX, two

PPA buyers, regarding TransAlta’s management of outages of its plants under PPAs.

The investigation conducted by the MSA focused on 4 main events: November 19-

21, November 23, December 13-16, 2010, and February 16, 2011, involving a total of

6 forced outages of PPA plants. However, the witness statements reported in MSA

(2014a) and MSA (2014b) indicate 7 additional events involving 12 other outages be-

tween November 2010 and August 2011. Details about the outages are provided in

Table 2.

[Table 2]

The regulatory investigation. The regulatory proceedings include transcripts of

communication between traders, managers, plant operators, and the PPA buyers (AUC,

2015), which illustrate three elements of misconduct. First, the evidence make clear

that traders and plant operators collaborated to time the outages to maximize market

impacts. After the event on November 23, 2010, a trader circulated an e-mail stating:

“Operations Manager for Sun 1/2, had called me on [November 22, 2010] afternoon

18Besides, the firm considered that the price increase would drive forward prices up. This was
expected to create arbitrage opportunities from undervalued forward contracts given the firm’s private
information about forced outages.
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about timing a 150 MW derate [...]. We determined to take [it] during the day for a

price impact. [...] This was a great example of the ongoing coordination we have [...]

to optimize outages”. Second, some exchanges are suggestive of how traders optimized

offer bids using the outage information. Following the event on November 19, 2010, a

trader e-mailed his manager: “Sun 5 came down early [...] and Poplar Creek pricing

up, prices jumped to $400 over the peak hours.”, who replied “[g]reat job this first week.

Some great value and it’s clear we’re learning a ton.”19 Finally, some transcripts reveal

how deceitful TransAlta was with PPA buyers. For instance, on December 13, 2010,

the PPA buyer called TransAlta’s plant operator about the outage to ask if it could be

postponed to which the response was: “we have got a big boiler leak here, so it’s the

way it has to be here [...] they just had their big meeting out there.”. The expert audit

will however reveal “no indication these leaks were significant” and that the “repair

could have waited until the following week-end” (Heath, 2014).

The regulatory documents include six expert reports from engineers and economists.

Heath (2014) and Eisenhart (2014) establish that the timing of those forced outages

were contrary to the common practice and industry customs in Alberta, and more

generally in North America. They review the details of all the forced outages and

provide expert evidence that it would have been feasible to move the outages to the

next week-end or the next planned outages without any increase in risk of further

equipment damage or endangering the safety of plant personnel.

Church (2014) presents a qualitative framework based on the competition policy

and economics literature to evaluate the effects of the alleged behaviour on market

competition. The analysis focuses on the distinction between conduct that involves

the exercise of unilateral market power versus conduct that creates, maintains, or

enhances market power. This distinction between extractive conduct and extensive

19TransAlta owned and operated Sundance 5, a coal-fired power plant under PPA, and Poplar
Creek, a 376 MW co-generation facility, at that time.
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conduct (Carlton and Heyer, 2008) is key to determining whether the behaviour is

deemed anti-competitive because market power exertion is not prohibited in Alberta’s

electricity market. Church (2014) considers TransAlta’s conduct as anticompetitive

because it can make economic withholding, i.e. unilateral market power, more effective.

The report concludes that the behaviour was anticompetitive because it removed cheap

supply in peak periods, forcing market participants with prior commitments to buy at

larger prices on the spot market. These insights are confirmed by our theoretical and

empirical analyses. Falk and Shehadeh (2014), acting as experts hired by TransAlta,

disagree that forced outages should be considered as anticompetitive, notably because

the firm followed the economic incentives specified in the PPA contracts.

Ayres (2014) consists in the MSA’s quantitative evaluation of the price impacts

during the 4 main events. The analysis uses alternative timings for the outages based

on Heath (2014) and Eisenhart (2014) and study spot and forward prices separately.

The report finds potential transfers from consumers to suppliers ranging from $13

million to $137 million, depending on the counterfactual scenarios. The methodology

and its limitations, some of which pointed out in Frayer (2014), a consultant hired by

TransAlta, will be further discussed in our empirical analysis.

We interpret strategically timed forced outages of plants under PPAs as a form

of strategic reneging on long-term forward commitments. The firm purposefully re-

strained production from the assets under contracts to benefit its portfolio position at

the cost of the foregone revenues and contract penalties. Note that the plants were

always undergoing actual technical issues although not as urgent as claimed by the

firm. In this respect, the urgency of maintenance requirements is difficult to monitor

for regulators, rival suppliers, and retailers alike.
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2.2 Theoretical Framework

Let us develop a theoretical framework to better understand the incentives and im-

plications of this strategic conduct from a general perspective. We model a dominant

supplier facing a fringe of competitive firms in a sequential market with stochastic

demand. Although TransAlta is one of a group of oligopolists in Alberta, an alterna-

tive modeling of imperfect competition would not modify the main insights about how

strategies are shifted when reneging occurs. In our empirical study in Section 3, we

find that one of the main contributors to the spot price impact of reneging is often

the strategic response from rival generation suppliers. This response, which is not part

of the theoretical model we present here, suggests additional channels through which

strategic reneging may enhance market power.

This framework has the following testable implications for the empirical part: 1)

strategic firms will shift their supply upon reneging; 2) the elasticity of residual demand

is the key factor to compute the size of these strategy shifts, price impacts, and output

impacts; 3) reneging and unilateral market power can substitute or complement each

other to create a market impact; 4) they are strategic complements only if the residual

demand function is very inelastic, or exhibits discontinuities.

We first present the general setup, and develop the benchmark case (without reneg-

ing), before introducing reneging and discussing the results. For simplicity of ex-

position, we collect all formal propositions in Appendix A in order to focus on the

interpretation of our results in the main text and save space for the empirical part.

2.2.1 The Setup

Let us consider a sequential market organized in two periods. The forward market

takes place in period 1 and the spot market occurs in period 2. Both production and

consumption take place in period 2. Final demand is a random variable A realized in

16



period 2, and which distribution F (·) is supposed to be known. Demand is observable

and perfectly inelastic to prices in the spot market. In period 1, buyers choose to

contract an exogenous share α > 0 of the expected demand E(A) through forward

commitments.20. They hence buy A−αE(A) in the spot market. In electricity markets,

αE(A) can represent monthly forward contracts of load-serving entities, or long-term

bilateral agreements like PPAs in Alberta.21 For clarity, we assume that arbitrage

across markets is not possible.22

A dominant supplier competes against a competitive fringe on the supply-side. Let

Qt and qt be the quantities sold by the dominant firm and the fringe, respectively, in

period t ∈ {1, 2}. For each player, the total quantity produced is denoted Q = Q1+Q2

and q = q1+q2, respectively. To gain intuition, we specify linear marginal cost functions

as C(Q) = Q/B for the monopolist and c(q) = q/b for the fringe. The hypothesis

of price-taking behaviour implies that the fringe’s supply in period 1 is q1 = bp1,

whereas p2 = (q1 + q2)/b because the whole production takes place in period 2 so that

q2 = b(p2 − p1).

2.2.2 Sequential Markets under Uncertainty

Residual demand. In period 1, the demand αE[A] is covered. The residual demand

faced by the monopolist is D1(p1) = αE[A]− bp1, meaning that in equilibrium

Q1 = αE[A]− bp1 (1)

20Making α endogenous requires assumptions about the risk aversion of buyers and their degree of
coordination. We opted for not introducing such assumptions and offering results that are valid for
any α. Some additional results with α endogenous are presented in Proof 2 in Appendix A

21Buyers sell back their extra commitments in the spot market if A < αE(A).
22Most of the literature considers at least some degree of arbitrage between spot and forward prices.

We assume away arbitrage because i) it would only affect the level of demand above which reneging is
profitable, and ii) our empirical study focuses on the PPA contracts which are long-term commitments.
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must hold. Similarly, the equilibrium quantity sold on the spot market by the monop-

olist must be such that

Q2 = A− αE[A]− q2

= A− αE[A] + b(p1 − p2).

(2)

Spot market sales depend on the difference between realized demand A and total com-

mitments αE[A], as well as the price spread p1 − p2, following the fringe’s adjustment

on the spot market.

Monopolist problem. The expected profits of the dominant firm, hereafter referred

to as the monopolist, can be written

E[Π] = p1Q1 + E[p2Q2]− E

[∫ Q1+Q2

0

C(Q)dQ

]
, (3)

where the expectation is taken with respect to A, and the prices p1 and p2 are deter-

mined by the equilibrium conditions (1) and (2). The monopolist maximizes profits

by backward induction. Taking forward commitments as sunk decisions, the profit-

maximizing spot sales upon observing A are denoted by Q⋆
2. In the first stage, the

monopolist anticipates its behaviour in the spot market and maximizes its expected

profits defined in (3). Its equilibrium forward commitments are denoted Q⋆
1.

In equilibrium, the monopolist’s commitments and final output are positively re-

lated to the level of demand and its relative competitive advantage (Proposition 1).23

Positive price-cost margins in the spot market are observed when the monopolist is a

net seller. Furthermore, there is a forward premium, that is p⋆1−E[p⋆2] > 0, if and only

if the monopolist is a seller in the forward market. This occurs when consumers choose

a large enough degree of forward contracting. Hereafter, we assume α > α so that the

monopolist is always a seller in the forward market, like TransAlta which was a PPA

23In addition to being the slope of the residual demand, recall that b is inversely related to the
fringe’s marginal cost.
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seller in our application.

2.2.3 Strategic Reneging

The monopolist is now given the ability to renege on some of its forward commitments

upon observing A. In practice, reneging may occur for legitimate reasons, for instance

as a consequence of technical failures, or for strategic purposes. It is nevertheless

costly to verify the legitimacy of supply disruptions and thus whether they constitute

a contract breach or even a fraud.

In this paper, we assume the institutional framework to fully ignore the possibility

of reneging not being legitimate. This is, of course, an extreme assumption.24 However,

as long as strategic reneging cannot be completely prevented, there will be deviations

in equilibrium under imperfect information.25

Let µ ∈ [0, 1] denote the share of commitments that can be reneged upon because

the firm has a “good excuse” to do so. In our application, µ represents the share of

contracts tied to specific production assets for which the firm can credibly claim an

emergency outage requirement.26 Those contracts commit the assets to the physical

production of µQ1 in period 2. Let R ∈ [0, µQ1] denote the “reneged output”, i.e. the

amount that the monopolist chooses not to produce although initially committed.

The unsatisfied demand R must be served in the spot market.27 The forward price

remains unaffected because it has already been settled. However, reneging affects the

24An alternative model under asymmetric information would assume two states of the world (true
failure or not) which realizations are unobservable by the principal. Although we do not pursue in
this direction here, the main insights would be unchanged as long as institutions remain imperfect.

25For instance, Green and Porter (1984) show that the optimal incentive structures in collusive
equilibria typically involve episodic deviations from collusive conduct.

26In our study of Alberta’s market, the firm exaggerated minor technical problems reported by plant
operators to substantiate claims of emergency outage requirements. Technical failures occur randomly
and somewhat independently of market conditions. The probability of facing a technical failure can
however be attenuated with planned maintenance, higher reserve margins, and lower use rates (Kim
et al., 2020).

27More generally, this effect could also be the result of reneging in a different market (Marks et al.,
2017), or due to the refusal to honor a contract clause (EUC, 2018), or even caused by a scheme
forcing some rival firm to default on its delivery obligations (Markham, 1991).
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price in period 2 as it shifts upward the residual demand curve faced by the monopolist.

More precisely, the spot price is now determined by

p2 =
1

b
(A− (Q1 −R)−Q2) . (4)

Remark that this framework is easily adapted to situations where firms are forbid-

den to economically withhold large amounts of output. In many electricity markets,

plants must sell their energy around benchmark prices, typically marginal cost esti-

mates, chosen by the regulator. The first period of our model would then represent the

firm’s commitment to comply with this regulation by supplying at marginal cost. The

firm is able to escape this regulation by scheduling an outage to lower its output and

reach higher prices in equilibrium.

Spot market. Contracts typically account for the possibility of non-delivery. Let τ

represent a per-unit deviation penalty that is contractually binding.28 In period 2, the

monopolist solves the profit-maximization problem

max
Q2,R

Π = p1(Q1 −R) + p2Q2 −

∫ Q1−R+Q2

0

C(Q)dQ− τR, (5)

jointly with respect to Q2 and R taking Q1 as given.
29 The profit-maximizing spot sales

are denoted by Q†
2, when reneging occurs. As long as Q1 > 0, reneging R > 0 leads to

an increase of the profit-maximizing volume of sales in the spot market Q†
2 = Q⋆

2+∆Q2,

with 0 < ∆Q2 < R.

The commitment problem essentially arises from a contractual failure. A natural

28We will see that this linear contract leads to imperfect commitment. In a more general model,
the availability of a “good excuse” µ would be random. The optimal τ would hence be determined
together with p1 as functions of the distributions of µ and A, and the cost of auditing.

29If reneging implies that some low-cost generating capacity is unavailable then this formulation
would tend to overstate the benefits of reneging to some degree, as it would not recognize that this
capacity will not available for spot market production. The cost function should be changed to∫ Q1+Q2

0
C(Q)dQ−

∫ Q1

Q1−R
C(Q)dQ.
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solution is to penalize any deviation by p2 − p1. Doing so makes the firm financially

accountable for its deviations, which would prevent any strategic reneging in equilib-

rium.30 This penalty can, however, put too much risk on the seller in a situation where

actual technical problems are bound to happen.

We find that demand must be sufficiently large for reneging to be profitable (Propo-

sition 2), and is hence more likely during peak periods. Moreover, increasing the

amount of commitments allows to shift the residual demand further to the right upon

reneging, which results in a greater likelihood of a profitable manipulation.

Reneging incentives. The optimal strategy can be characterized by comparing the

profits obtained in each case. For a given realized demand A, let us denote the ex-post

profit when commitments are satisfied by,

Π⋆(A) = p1Q1 + p⋆2Q
⋆
2 −

∫ Q1+Q⋆

2

0

C(Q)dQ, (6)

and, the profit when the firm reneges on µQ1 by,

Π†(A) = p1(1− µ)Q1 + p†2Q
†
2 −

∫ (1−µ)Q1+Q
†
2

0

C(Q)dQ− τµQ1. (7)

Reneging is profitable for all A such that Π†(A)− Π⋆(A) ≥ 0, that is when

∆p2Q
⋆
2 + p†2∆Q2 +∆C ≥ (p1 + τ)µQ1, (8)

where ∆p2 = p†2 − p⋆2 is the price impact, ∆Q2 = Q†
2 −Q⋆

2 denotes the strategy shift on

the spot market and the cost savings are ∆C =
∫ Q1+Q⋆

2

(1−µ)Q1+Q
†
2

C(Q)dQ.

The condition (8) sheds light on the benefits and losses associated with reneging. On

30This corresponds to financial forward contracts. Substituting τ by p2−p1 in (5) yieldsQ†
2−Q⋆

2 = R,
hence p2 is unchanged in equilibrium and the problem vanishes. However, in a supply function auction
with binding capacity constraints, no finite penalty can fully deter strategic reneging (Benatia, 2018a).
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the one hand, the scheme involves incurring the penalty cost τ as well as the opportunity

cost p1 for each reneged unit. On the other hand, it affects the strategic player’s profits

through thre channels (Proposition 3). First, it affects the (spot) market-clearing price

upwards, ∆p2 ≥ 0. This revenue corresponds to the intensive margin, that is the

increased profit margin on the spot sales. The less elastic the residual demand, the

larger this effect. Second, the spot sales are adjusted upwards, ∆Q2 ≥ 0, which will

give more leverage to the manipulation. The less elastic the residual demand, the

smaller this effect. This effect is on the extensive margin. Finally, there may be some

cost savings.

The elasticity of the residual demand faced by the firm is the key determinant of the

strategy shift, the price impact, and potential cost savings. In any case, reneging on

the quantity supplied on the forward market is associated with an increase in supply on

the spot market, hence reneging is an additional channel through which market power

could be exercised. In other words, the mere exercise of market power and reneging can

be considered as strategic substitutes. We show in the appendix (Proposition 6) that

they can also reinforce each other when residual demand functions are discontinuous,

like in real-world multi-unit auctions.

Forward market. In period 1, the expected profit maximization program is changed

into

max
Q1

E[Π] =

∫ T

0

Π⋆(A)dF (A) +

∫ +∞

T

Π†(A)dF (A). (9)

The gains from reneging increase with Q1, and the profit-maximizing forward po-

sition will be larger if the monopolist anticipates that reneging will be profitable with

positive probability (Proposition 4). More importantly, there is a range of forward

covers [α, α] for which a spot price premium is sustained in equilibrium (Proposition

5). This result shows the limit of using price convergence as a metric to measure
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competitiveness in sequential imperfect markets.31

2.3 Lessons for Regulation

The model delivers important insights for regulation. Identifying and proving a manip-

ulative behaviour is not a trivial task. It entails providing evidence of the manipulation

and the intent to manipulate, as well as the creation of a price impact caused by the

alleged manipulation. Let us consider that a firm has strategically reneged on its com-

mitments under (false or exaggerated) claims of a production failure or maintenance

outage requirements. From (8), the rewards from the manipulation are

(
∆p2Q

⋆
2 + p†2∆Q2 +∆C

)
− (p1 + τ)R. (10)

The profitability depends on the reneged output R and its associated cost p1 + τ ,

the production costs reduction ∆C, the ex-post price p†2, the strategy shift ∆Q2, the

price impact ∆p2 and the counterfactual sales Q⋆
2 assuming reneging had not occurred.

In principle, this formula can be used to estimate the disgorgement penalties. Unfor-

tunately, estimates of ∆p2 and Q⋆
2 may be the subject of contention. Furthermore,

benefiting from a supply disruption or even causing a price impact is not satisfactory

proof of intent. Reneging can occur for legitimate reasons and contracts usually ac-

count for the possibility of non-delivery.32 Additional evidence need usually be collected

through audits performed ex-post, as in the case of our empirical application.

The auditing costs and limited investigation capacities tend to reduce the scope of

regulatory interventions to outright manipulation cases, or following a denunciation.

In our application, the strategic manipulations could have escaped the regulator for

31This point was already made by Ito and Reguant (2016) in a setup with market power and limited
arbitrage. In their setting, more arbitrage leads to more competitive outcomes on average but enlarges
the deadweight loss during periods where the strategic player enjoys high market power.

32Reneging under a claim of a technical issue is not legitimate if the claim cannot be substantiated
(e.g. the technical failure was exaggerated, or reported later so as to time the non-delivery).
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long, had they not significantly harmed several (large) rival suppliers in February 2010.

The theoretical predictions of our model deliver potential red flags and additional

proofs of intent which can be helpful to motivate inquiries into more surreptitious cases.

A reneging event is more likely to be of strategic nature if it occurs during tight market

conditions (e.g. peak demand, inelastic residual demand, or low wind output); but also

if the firm’s strategy on the spot and forward markets differ from usual, and reflects

that the supply disruption was anticipated. We argue that, in such a case, the observed

adjustments constitute indirect evidence of intended market manipulations.33.

Therefore, the regulator can not only use causal estimates of price impacts but also

obtain estimates of counterfactual strategies to evaluate whether further investigation

is needed. Even though regulators have been reluctant to prosecute based on statistical

inference in the past, they are now increasingly using data for market oversight.34

3 Empirical Analysis of Strategic Reneging

Let us turn to the market manipulation events that occurred in Alberta. We begin

by providing a description of the data used before performing a preliminary analysis

of the events. Finally, we propose an in-depth analysis of the firm’s conduct and an

assessment of the market outcomes and welfare impacts.

3.1 Data

We use data shared by the AESO and the MSA,35 and historical weather data col-

lected from Environment Canada.36 The market data contains daily natural gas prices

33As an enforcement matter, the timing of bids (though unobserved in our data) accounting for the
outage information relative to actual outage declaration can be a valuable piece of information.

34For instance, the FERC’s investigation into Constellation’s virtual trading activities in New York’s
electricity market was initiated following observations of “bizarre price behaviour” by the Division of
Energy Market Oversight (FERC, 2012).

35We are grateful to Derek Olmstead for sharing this dataset with us.
36https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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(AECO-C), hourly spot prices, loads, import and export capacities, wind farms’ out-

puts, temperature series in Calgary, Edmonton, Vancouver and Saskatoon, as well as

generator-level information such as hourly bids, available capacity, and dispatch indi-

cators.37 The complete dataset spans from November 1, 2008 to September 1, 2011.

The four main events, as investigated by the MSA, took place between November 1,

2010 and March 1 2011, but the witness statements also include allegations about seven

events that occurred up to August 2011, for a total of 18 outages, as shown in Table 2.

Observed firm-level bid functions have between 20 and 30 price-quantity pairs. To

simplify the numerical analysis and take advantage of functional data analysis methods,

we project all observed bids onto a finite grid of 52 equi-spaced prices from $0 to $1000.

As a preliminary step, we approximate each observed bid function as a 52-dimensional

vector of quantities defined over this fixed price grid.

The data is divided into two main sets of hourly observations where strategies

tend to be more similar, informally referred to as peak (07:00 to 21:00) and off-peak

hours (21:00 to 07:00) in the rest of the paper. The machine learning models are

trained and evaluated on different data splits. All hourly observations where reneging

occurred during the same day are assigned to one of two “reneging sets”: main events or

additional events, which corresponds to the events in Table 2. The remaining sample is

split into a training set and a testing set. The training set is used to estimate the models

whereas the testing set is used to evaluate its predictive power. Sample splitting is done

randomly so that the training (testing) sample has roughly 70% (30%) of observations.38

Table 3 provides summary statistics of the main variables for peak and off-peak hours

in each subsample. The mean and standard deviations are relatively close between the

training and testing samples. Demand and prices are noticeably larger during outage

37Bids include domestic generation as well as export/import offers to adjacent regions. At the time,
there were no demand-side bidders but some responsive load (about 3% of average demand) for a total
of 245 MW. We account for this feature following Ayres (2014).

38Different random splits of the data gave quantitative results no larger or smaller than 0.5%.
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events. TransAlta’s mean quantity bid across prices is smaller during outages whereas

the residual supply is on average larger.

[Table 3]

The historical weather data from Environment Canada include 167 weather stations

with hourly data located in Alberta. In our empirical analysis, we use 53 stations for

which the series have a limited number of missing values.39 We extract 52 temperature

series, 46 dew point temperature series, 46 humidity series, 33 windspeed series, and

17 wind angle series, for a total of 194 weather variables. Table B1 in Appendix B

shows summary statistics about these variables and weather stations.

3.2 Strategic outages and wind curtailment

We begin by documenting what features are correlated with the occurrence of the

strategic forced outage events. Then, we investigate whether the firm curtailed wind

power production strategically.

Strategic timing? First, we investigate whether the outages occurred under tight

market conditions. We regress a binary variable 1
outage
t equal to one in hours during

outage events on a set of explanatory variables capturing market conditions. Our

objective is to characterize whether demand and wind conditions were unusual during

the outage events, after conditioning on time fixed-effects. We estimate the following

equation by OLS

1
outage
t = β1Dt + β2Wt + α′Xt + ut, (11)

where controls include the system demand Dt, total wind output Wt, and a set of time

fixed-effects Xt, for hours of the day, days of the week, months, and years. Table 4

39We use shape-preserving piecewise cubic spline interpolation to fill missings when the series have
less than 15 consecutive missing hourly observations. The series are otherwise discarded from the
sample.
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shows the estimation results for 4 different set of events. Columns 1 & 2 focus on the

main outage events investigated by the MSA and use the period from November 2010

to August 2011. The outage variable is equal to one respectively during the first 4

hours of each event (column 1) and all hours of each event (column 2). The mean

of the dependent variable is 16 times larger in the second regression. Columns 3 &

4 focus on the outages of duration between 4 hours to 7 days that occurred between

November 2008 and November 2010, that is before the Portfolio Bidding Strategy was

implemented. The outage variable is equal to one during the first 4 hours of each

outage (column 3), and all hours of each outage (column 4). We only report the two

main variables of interest.

[Table 4]

The main events (columns 1 & 2) are found to coincide with tighter market con-

ditions on average, with larger demand and less wind power. The outages before

November 2010 (columns 3 and 4) are not found to be associated with tighter mar-

ket conditions. These results suggest that TransAlta have timed its outages based on

market conditions. As pointed out by Capital Power in its witness statement (MSA,

2014a): “in and around November 2010, it appeared that [...] TransAlta had begun tak-

ing a different approach to the scheduling of outages at PPA units. [...] For example,

the outage would start during a peak period on a weekday.” Our results also show that

the outages also spanned over periods where demand net of wind power was unusually

large.

Strategic curtailment of wind power? The firm’s trading strategy described ear-

lier involved the strategic curtailment of wind farms. We investigate whether this

strategy was effectively implemented by estimating the following linear model

W TA
t = β11

reneg
t + β′

wsWS + β′
ENW

EN
t + β′

SUW
SU
t + α′Xt + ut (12)
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where W TA
t is TransAlta’s aggregate wind power production. We control for wind

conditions using wind power output from the wind farms owned by ENMAX (2 plants)

and SUNCOR (2 plants), denoted with WEN
t and W SU

t , and 4 wind speed series from

the closest weather stations, denoted WS.40 We also include a constant, a linear time

trend, and fixed-effects for hour of the day, day of the week, and months, and years.

The binary variable 1
reneg
t represents the treatment of interest. We estimate two

average treatment effects. First, we focus on whether the Portfolio Bidding Strategy

had an impact on wind power production by setting 1
reneg
t to zero before November

1, 2010, and equal to one after. Second, we focus on the outage events in Table 2

and define one treatment variable equal to one during the main outage events and

another treatment variable equal to one during the additional outage events (and zero

otherwise).

Table 5 reports the results for the two treatment effects in columns 1 and 2. As a

robustness test, the second treatment is also separately estimated (columns 3 and 4) for

ENMAX and SUNCOR, the only two rival firms which also operated wind farms at the

time, controlling for TransAlta’s output. We find that TransAlta’s hourly wind output

was on average lower by 3.65 MW (-7%) after the implementation of the Portfolio

Bidding Strategy under similar wind conditions. More importantly, TransAlta’s wind

farms produced on average 7.29 MW less (-16%) during the main events, than under

similar wind conditions. The average effect during additional events is not statistically

significant. We find that none of these effects are significant for the rival firms (columns

3 and 4).

[Table 5]

These results show evidence of significant output anomalies from the wind farms

40We only keep wind farms for TransAlta (4 plants) and its competitors that were in operation
during the entire sample. The stations are located between 3 km and 23 km away from the wind
farms.
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owned by TransAlta after November 2010 and even more so during the outages investi-

gated by the regulator. We consider this as evidence that the firm engaged in strategic

wind curtailment.41

Long-term renewable contracts, like feed-in tariffs, do not impose delivery obliga-

tions. For this reason, the curtailment of renewable power is a means to “renege” that

is always possible and rarely costly. Therefore, these contracts provide firms with a

free market manipulation channel, which should draw attention from regulators and

market designers.

3.3 Machine Learning from Bids about Manipulations

The regulator’s assessment of price impacts relies on a simple methodology (Ayres,

2014). It consists in adding the generation that was not available and keeping all the

rest constant to calculate counterfactual market outcomes – as if no market participant

had reacted to the outage by changing their bids. The report also considers a variety of

refinements including the modeling of exogenous import/export and demand-response

functions, which we replicate in our analysis, and a comparison of the historical bids

for some generators in an attempt to accommodate the potential dynamic reactions

of TransAlta and its competitors. Frayer (2014), a consultant hired by TransAlta,

considers this latter aspect of the analysis as “unreliable”, arguing that firms have

greatly modified their behaviours in response to the outages. In particular, she shows

that competitors reacted to the outage on November 19, 2010 by offering their capacity

at larger prices, and argues that such “behaviour of economic withholding is a form of

competitive reaction to the supply situation triggered by the outage”. Our methodology

is aimed at addressing these limitations.

We propose to quantify the strategy shifts from TransAlta and its competitors dur-

41Due to the inherent difficulty to predict wind power production, a more precise empirical analysis
would require more granular weather and wind power data.
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ing reneging events using a predictive model.42 We first develop a machine-learning

approach to compute counterfactual strategies which can be used to identify poten-

tial misconducts, derive counterfactual market outcomes, and evaluate welfare conse-

quences. Instead of proposing a structural model, we opt for a predictive model of the

firm’s strategy under business-as-usual conditions, i.e. in absence of strategic reneging.

Our preference for a predictive approach in this context is motivated by two main

reasons. First, the major advantage of the structural approach is to be able to simulate

counterfactual outcomes under different structures that have never been observed in

practice, such as a prospective change in market design. Our objective is, instead, to

predict strategies and market outcomes under business-as-usual conditions, assuming

reneging had not happened. Second, the predictive approach does not require an equi-

librium concept, works with complex strategy spaces (here supply and residual demand

functions), and can even capture the tendency of some firms to act sub-optimally with-

out imposing behavioural assumptions (Hortaçsu et al., 2019). This approach also has

its limits: it relies on an identifying restriction, which is discussed in due time.

Empirical strategy. Let us denote TransAlta’s observed supply and residual de-

mand functions by St and RDt in hour t, i.e. St(p) is the quantity supplied by the firm

in hour t if the equilibrium price is p. Following our model’s notations, let (S†
t , RD†

t )

and (S⋆
t , RD⋆

t ) be the potential outcomes with and without reneging, respectively.

However, both potential outcomes (S⋆
t , RD⋆

t ) and (S†
t , RD†

t ) are never observable for

the same hour. We propose to train predictive models for (S⋆
t , RD⋆

t ) so as to derive

counterfactual estimates during reneging events (Ŝ⋆
t , R̂D

⋆

t ). These estimates reflect the

market conditions that would have prevailed in absence of reneging. The estimated

strategy shift is defined as

∆̂St(p) = St(p)− Ŝ⋆
t (p), (13)

42The title of this section is a reference to Burlig et al. (2020) which inspired our empirical approach.
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for every price p ∈ [0, 999.99]. It corresponds to the individual treatment effect of

reneging during “reneging hours” (treatment), and predictions errors during “normal

hours” (control).

The (observed) residual demand function is directly impacted by reneging as it

makes part of the supply committed at forward prices unavailable. In addition, the

function can also be impacted by a reaction from competitors to the supply disruption.

The estimated change in residual demand function, defined as ∆̂RDt(p) = RDt(p) −

R̂D
⋆

t (p), accounts for both effects. To test for the presence of competitors’ reaction

to the supply disruption, we construct an alternative counterfactual residual demand

function based on the approach in Ayres (2014). The latter assumes that i) no strategic

reaction was caused by reneging; ii) the withheld capacity would have been offered at

zero prices (as observed in the data).43 It is defined as RDt(p) = RDt(p) +
∑

r∈Rt
kr,

where kr denotes the capacity which would have been available in absence of reneging

by plant r ∈ Rt, the set of plants which reneged. By construction, in absence of

strategic reaction from competitors, R̂D
⋆

t and RDt should be statistically equivalent.

The direct effects of reneging on market outcomes are measured using an alterna-

tive counterfactual residual demand functions accounting for reneging but assuming

no strategic reaction. It is defined as R̃D
⋆

t = Dt − (R̂S
⋆

t −
∑

r∈Rt
Ŝr
t ), where Ŝr

t is a

prediction of the supply functions of PPA plant r in normal conditions. Substracting

it from R̂S
⋆

t hence yields the market supply net of the PPA plant under outage under

normal conditions, that is in absence of strategic reactions. Note that all those resid-

ual demand functions are modified ex-post to account for the exogenous net import

functions and demand-response functions used in Ayres (2014).

Our objective is to evaluate the causal effects of reneging on market outcomes, that

43As mentioned earlier, 74% of PPA capacity is offered at $0/MWh.
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is price and output deviations. The equilibrium condition, given by

Ŝ⋆
t (P̂t) = R̂D

⋆

t (P̂t), (14)

yields the counterfactual price P̂t as well as the corresponding firm’s output Q̂⋆
t =

Ŝ⋆
t(P̂t). The output change is defined as ∆̂Qt = Qt−Q̂⋆

t and the price impact is ∆̂P t =

Pt− P̂t. If the predictive model performs well, those values should be statistically close

to zero except if reneging affects market outcomes. This approach has the desirable

feature to account for the strategic reactions to reneging of competitors, in addition to

the firm’s own strategic reaction.

We illustrate the different counterfactual predictions in Figure 1 for February 16,

2011. The observed equilibrium “OE” is obtained from the observed functions (S†
t , RD†).

The MSA’s methodology in Ayres (2014) consists in calculating the counterfactual

outcome “CE 1” from (S†
t , RDt).

44 Our approach consists in predicting (S⋆
t , RD⋆

t ) to

obtain the counterfactual equilibrium “CE 2” which would have prevailed in absence

of reneging. Finally, the direct effect of reneging, assuming firms did not modify their

strategies upon observing the outage, is given by the intermediate outcome “CE 3”

obtained from (S⋆
t , R̃D

⋆
).

[Figure 1]

This outage was declared on February 14, 2010 (AUC, 2015), so all firms had

sufficient time to modify their spot strategies accounting for the outage information.

This example illustrates several facts. First, the comparison of RDt and RD⋆
t reveals

that competitors have engaged in economic withholding during the outages. They have

thus also contributed to the price impacts. Second, the comparison of S†
t and S⋆

t shows

that neglecting the firm’s own strategic reaction can lead to vastly underestimate the

44The methodology includes additional refinements with relatively small effects in our setting, as
discussed later.
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price impact, whatever the counterfactual residual function used. These results are

in line with Frayer (2014) who provides some evidence of the coincidental economic

withholding from both TransAlta and ATCO during this event. Third, the intermediate

outcome “CE 3” suggests that most of the price impact in this case resulted from the

outage itself and not the strategic reactions of the firms. Firms probably engaged in

this behaviour to increase the likelihood of receiving large prices.

Identification. The identification of causal estimates relies on the assumption that

the treatment selection conditionally on covariates is as good as random. This as-

sumption holds as long as, conditional on the covariates, the strategic outage decision

depends only on random factors independent of market conditions, such as having a

“good excuse” to substantiate the need for urgent maintenance.45

Our approach can be summarized as comparing “similar days” in terms of weather,

wind, demand, import and export capacities, natural gas price, time of the day, day

of the week, month, and the capacity availability of each single generator in the sys-

tem. Those identification conditions are similar to those used in the (propensity score)

matching literature. The control variables are selected in light of our theoretical model.

The principal factors affecting the profitability of reneging are related to expectations

about demand, wind, and the residual demand’s elasticity. We thus claim that the

identifying restriction holds because: 1) all of these factors can be controlled for to

some extent using observable variables, and 2) the counterfactual predictions obtained

under this assumption are consistent with our theoretical results. 46

However, our identifying assumption is subject to some limitations. A bias may

arise if the data used to estimate the model differs in systematic ways from the data

45The regulatory investigation revealed that each event was initiated by a plant operator reporting
a (non-urgent) technical issue to the trading department (AUC, 2015).

46Note that we cannot condition directly upon the realized strategies of rivals since they are en-
dogenous, which is why they are separately predicted.

33



when reneging occurs because of unobservable factors.47 For instance, if reneging occurs

partly because some particular rival generator is in maintenance but there is no similar

observation in the control group where this generator is unavailable, then we might

lack information about supply strategies in this circumstance and the counterfactual

predictions would be biased. Bearing these limits in mind, we now present the rest of

our methodology.

Estimation. Let us consider the following functional linear model

St(p) = βK(p)
′Kt + βZ(p)

′Zt + α(p)′Xt + ut(p), (15)

defined for all p, where St(p) is the firm’s supply as a function of the price p, Kt is

the vector of available capacity of each generator s ∈ {1, ..., 77}, and Zt is a set of

212 predictors including market demand, wind production from ENMAX, SUNCOR,

TransAlta and the fringe, natural gas prices, total import and export capacities, and

weather controls. Weather controls include heating and cooling degrees with respect

for Calgary, Edmonton, Vancouver and Saskatoon, in addition to a collection of 194

variables from weather stations: 52 temperature variables, 46 dew point variables, 46

humidity variables, 33 wind speed variables, and 17 wind angles variables. The variable

Xt is a set of time dummies for hours of the day, days of the week, and weeks. ut is a

functional error term.

Although equilibrium strategies are best-response to each other, our objective is to

identify the best exogenous (or more precisely pre-determined) predictors of firm-level

strategies. Doing so allows to predict equilibrium strategies without solving for an

equilibrium, because they will depend on each other through the predictors only. The

47Although instrumental variables might provide a solution to this limitation, accommodating for
an endogenous treatment in our functional framework with variable selection is beyond the scope of
this paper.
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model does not condition directly upon the strategies of rivals. However, the speci-

fication includes the hourly capacity availability of every single generator in Alberta,

irrespective of their ownership or control, unless it does not vary throughout our sam-

ple.48 These variables are used to control for the expected residual demand’s elasticity

and the fact that TransAlta may have based its reneging decisions on some particular

rival generator’s availability.

The model parameters are functions defined over the price interval, and thus are

infinite-dimensional. To reduce the dimensionality,49 we estimate the multivariate

model given by

St = β′
K
Kt + β′

Z
Zt +α′Xt + ut, (16)

where the variables are evaluated over an evenly-spaced grid of prices {p1, p2, ..., pL}

and stacked into vectors of length L = 52, denoted by bold variables. For example,

St =

(
St(p1) St(p2) ... St(pL)

)′

is a vector of supply quantities evaluated over

the price grid. Vectors for variables that do not depend on p in (15) consist of repeated

values. ut is an iid multivariate gaussian error term. The exact same model is applied

to the residual supply RS(p) =
∑

j ̸=TA Sj(p) instead of S(p), which yields the estimate

of interest R̂Dt(p) = Dt − R̂St(p).

The models are trained and evaluated as follows. We train predictive models of

strategic bidding using the observations outside of those events. We carry the esti-

mation separately for the samples of off-peak (21:00 to 07:00) and peak hours (07:00

to 21:00). All hourly observations where reneging occurred during the same day are

assigned to a “reneging set”. This consists of the treatment group, whereas the remain-

ing sample is considered as the control group. We split those remaining observations

into a training set and a testing set. The training set is used to estimate the model

48During hours with reneging, we predict the counterfactual strategies by setting the available
capacity of the unavailable plant s to its value in the hour preceding any reneging.

49The estimation of the functional model in (15) can be done using the approach of Benatia, Carrasco
and Florens (2017) although it would not allow for variable selection.
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whereas the testing set is used to evaluate its predictive power. Sample splitting is

done randomly so that the training sample has roughly 70% of observations.

The model is estimated on the training set of observations with the multivariate

extension of the lasso developed by Simon, Friedman and Hastie (2013).50 By design,

the lasso selects variables that best predict the outcome of interest and shrinks the

others to zero. The lasso is a form of penalized regression useful for model selection.

In our setting, it is difficult to know what drives the firm’s strategy. At the same time,

we want to prevent overfitting issues caused by the inclusion of too many variables.

The model parsimony depends crucially on the chosen value of a tuning parameter λ.

We opt for using 20-fold cross-validation and select the value of λ, often referred to as

λ1se, that gives the most regularized model such that the cross-validated error is within

one standard error of the minimum average mean-squared-errors.

Finally, the predicted functions obtained from model (16) are finite-dimensional

vectors that are not restricted to be monotone, unlike supply functions. We recover

monotone function for each estimate by imposing an ex-post monotone constraint.

Inference. Inference boils down to testing the null hypothesis

H0 : ∆̂St(p) = 0, ∀p. (17)

The test statistics are derived from weighted Chi-square distributions, with weights

that depend on the eigenvalues of the asymptotic covariance operator of the functions

∆̂St(·). Because these distributions are not symmetric, the standard errors are not

appropriate to assess statistical significance. It would be possible to use a t-test, but

that would only provide a pointwise evaluation of statistical significance. In contrast,

50More specifically, we use the glmnet package. We also tried using an elastic net regression, that is
the combination of L1 (lasso) and L2 (ridge) penalties of the parameters, and a neural network. The
results were slightly worse in terms of RMSE on the testing set and are thus not reproduced here.
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we choose to use a (uniform) test which evaluates the significance of the entire functions.

We compute p-values using an asymptotic approximation and a parametric bootstrap.

The bootstrap is especially relevant to conduct inference on price impacts estimated

from these functional predictions. The formal description of our method is given in

Appendix C.

Model evaluation. Table 6 shows the main summary statistics of model perfor-

mance for S and RS for peak hours51 in the training, testing and reneging set, as well

as coverage probabilities for prices and outputs’ confidence intervals. The last column

reports the associated statistics for R̂S evaluated against the constructed counterfac-

tual RS which assumes no outage and no strategic response.

The model performs well for both S and RS. The supply prediction exhibits a

mean integrated absolute bias of 22.9 MW on the testing set, which corresponds to

a mean integrated relative absolute error of 2.7%. The root-mean-integrated-squared-

error (RMISE) is also within the same order of magnitude for both the training and

testing sets, meaning that overfitting is not a concern. Substantially larger biases and

RMISE are observed for the reneging set.

Inference also performs correctly on the testing set.52 The rejection rates for the

functional test defined in (17) are reasonably close to the nominal size of 5% for both

the asymptotic approximation and the bootstrap. The last rows report the cover-

age probabilities for estimated prices and outputs derived from the pair of functions

(Ŝ, RS), that is using the observed residual supply, and (Ŝ, R̂S), i.e. using the pre-

dicted residual supply. Those bootstrapped confidence intervals are reasonably close

to the nominal 95% for the testing set.

The results for the reneging set yield important insights. As expected, the pre-

51Results are similar for off-peak hours (Table B2 Appendix B).
52We do not compute these statistics for the training set to reduce computation time.
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dictions (Ŝ, R̂S) differ significantly from their observed values. We find that observed

supply strategies differ significantly from their predicted counterfactual in about 14.5%

of reneging hours. Since RS does not account neither for the strategic reaction of com-

petitors to the outages, nor for bids above zero prices at PPA plants, while R̂S does,

their difference provides evidence that the regulator’s constructed residual demand may

be biased. We find that it is the case in 46-47% of reneging hours. Finally, coverage

probabilities for equilibrium outcomes indicate that counterfactual prices and outputs

differ significantly from observed ones.

[Table 6]

Strategic reactions and counterfactual equilibria. The supply and residual de-

mand predictions are used to compute counterfactual market outcomes for each event,

which can then be investigated as 11 separate case studies. Our objective is to eval-

uate the impacts of market manipulations. We consider two simple scenarios. First,

the outages of the first day of each event could have been delayed until after 21:00 the

same day. Follow-up outages like on December 14 are assumed unavoidable. Second,

all outages could have been delayed to the next planned maintenance, during which

they would have had no impact. In scenario 1, only the first hours of the outages

could have been avoided, whereas all outage hours could have been avoided in scenario

2.53 Recall that the experts established that it would have been feasible to move the

outages to the next week-end or the next planned outages (Heath, 2014; Eisenhart,

2014), which provide more support for scenario 2 than scenario 1.

We first illustrate the hourly results for six hours in Figures 2a to 2f. Observed

supply and residual demand functions are shown by the plain lines and counterfactuals

are represented in the same way as in Figure 1. We also display the 95% confidence

53Ayres (2014) study four scenarios based on these two extremes.
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intervals of the counterfactual supply and residual demand functions, as well as the

95% highest density region of counterfactual equilibrium outcomes.54

[Figure 2]

For November 19, November 23, and April 12, i.e. Figure 2a, 2b and 2f, we find

that TransAlta’s supply strategy was increased compared to the counterfactual, which

allowed the firm to increase its equilibrium output. In addition, the large difference

between RD† and R̃D reveals that some rival suppliers have engaged in economic

withholding. This result is in line with Frayer (2014) who shows the coincidental

economic withholding of 400 MW by TransCanada on November 19, 2010 in the same

hour. For December 13 (Figure 2c) and January 15 (Figure 2e), we find no significant

supply or residual demand difference. Finally, the results for February 16 illustrate

the negative supply shifts shown in Proposition 6. Figure 2d shows that TransAlta

and some of its competitors economically withheld capacity in complement to the PPA

outage. The 95% highest density region, although large, reveals that a price above

$800 would have been unlikely in absence of reneging. Note that in all of the events, it

appears that TransAlta did declare the outages more than 2 hours before production.

The shortest notice appears to be for December 13 when an outage at Sun 2 to be

started at 16:00 was declared at 13:51 (AUC, 2015). Therefore, all rivals were able to

modify their bids accounting for the outage information.

Figures 3 and 4 respectively report the average output (for TransAlta) and the price

impacts for both the first hours of each event (scenario 1), and all hours of each event

(scenario 2). We also show the values obtained using the methodology of the MSA in

Ayres (2014) for comparison. It appears that our method yields on average larger price

and quantity impacts than those estimated by the regulator. The average output of

TransAlta is found to have increased significantly in most events.

54The bootstrapped distribution is used to estimate highest density regions and construct a confi-
dence set for equilibrium outcomes (P̂ ⋆

t , Q̂
⋆
t ) (Hyndman, 1996).
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[Figure 3]

Price impacts are consistently large and in general higher during the first hours of

the outages. As regards the additional events, we find no evidence of price impacts for

November 24, November 26, and January 21, but significant effects for November 30,

January 15, April 12, and August 12. These estimates suggest that the regulator failed

to consider all manipulation events.

[Figure 4]

The estimated strategy shifts can be summarized by focusing on the integrated dif-

ference between the observed function and its prediction, ∆̂St =
∫ p

p

(
St(p)− Ŝ⋆

t (p)
)
dp

and ∆̂RDt =
∫ p

p

(
RDt(p)− R̂D

⋆

t (p)
)
dp possibly over different price intervals. This

provides information about whether supply offers have been modified. We report the

average of these statistics for each event in Figure 5 for all hours of the outages, along

with 95% confidence intervals. We find that not only TransAlta’s supply strategy was

significantly modified during the events, but also its residual demand often shifted to

the right by more than the reneged quantity, hence the positive average estimates.

[Figure 5]

Testing the model’s predictions. Our theoretical model has four testable impli-

cations: 1) the magnitude of strategy shifts are positively related to the elasticity of

residual demand; 2) price impacts are negatively related to the elasticity of residual

demand; 3) output impacts are positively related to the elasticity of residual demand;

and, 4) negative supply shifts are profitable only to benefit from a large discontinuity

jump in the residual demand function.

To test the first three predictions, we regress ∆̂St, ∆̂P t and ∆̂Qt onto the slope

of residual demand functions, the outage capacity, and time fixed-effects for hours of
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the day and days of the week. An increase in the slope implies a less elastic function

(more vertical inverse function) hence smaller strategy shifts, lower quantity cuts, and

larger price jumps. The first three columns in Table 7 show that the empirical results

are in line with those theoretical predictions during the main events (all hours), and

all eight events where a price impact was found, as shown in Figure 4. Note that the

supply strategy is shifted to the right by around 9% of the outage size (in MW), which

roughly corresponds to TransAlta’s market share.

The last column of Table 7 shows regression results of 1∆̂St<0, a dummy equal to 1

when the (integrated) supply shift is negative, onto the slope of RD, outage capacity,

and the same time fixed-effects. As expected, negative shifts strongly coincide with less

elastic residual demand functions. As a falsification test, we run the same regressions

using the testing set and find that the coefficients are of lower magnitude and of opposite

signs. Note that outage size is omitted because it is always zero.55

[Table 7]

3.4 Manipulation Gains and Procurement Costs

The gains from manipulations. The firm-level hourly gross gains from reneging

are defined as

∆̂Πt = PtQt − P̂tQ̂
⋆
t . (18)

Those gains result directly from reneging, i.e. the outage-induced displacement of the

residual demand function, but also indirectly through the firm’s supply strategy shift

and the reactions of its competitors.

We isolate the direct effect of reneging on revenues, using the counterfactual residual

demand R̃D
⋆

t defined earlier. The counterfactual outcome (P̃t, Q̃
⋆
t ) is determined by

55It is not surprising that residual demand can be a significant predictor of the price residuals as it
is not used in our prediction model.
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the condition Ŝ⋆
t (P̃t) = R̃D

⋆

t (P̃t). The direct gains from reneging are hence given by

P̃tQ̃
⋆
t − P̂tQ̂

⋆
t , whereas indirect gains are PtQt − P̃tQ̃

⋆
t .

Table 8 reports the gross gains of reneging separately for the first hours (until 21:00

the first day), and all hours, aggregated by event. The firm’s total gains from manipu-

lations are evaluated at $13 million for the first hours (+190%), and $67 million when

accounting for all outage hours (+220%), which correspond to a three-fold increase

in gross market revenues. Although the direct gains from reneging make the bulk of

those revenues, respectively 63% and 83%, the strategic reactions generated most of the

revenues in some events, like on November 19 and November 23. This result confirms

that strategic reneging can create or enhance market power.

In support of this idea, we compare our results to the estimates obtained using the

MSA’s methodology. It appears that neglecting strategic effects may lead to greatly

underestimating (-50% on February 16) or overestimating (+34% on August 12) market

impacts. Focusing on the four main events, we find that the bias is -27% for the first

hours, and -11% when considering all hours. However, the bias shrinks to only -4%

when considering all hours and all events.

[Table 8]

These estimates abstract from potential cost variations related to output changes,

financial forward contracts, and outage costs. Cost changes, though probably small,

could be accounted for using the estimates from Brown and Olmstead (2017). However,

forward contracts can substantially reduce those gains if a large share of the firm’s out-

put is committed to being supplied at the forward price. Data on physical and financial

forward contracts are difficult to obtain, so we must neglect this aspect.56 Outage costs

consist of the foregone revenues from reneged commitments and penalty charges, which

56Hortaçsu and Puller (2008) propose a method to estimate forward positions from marginal cost
estimates and bid functions.
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could be calculated if one had detailed information on the contractual arrangements.

However, the firm would have had to shut down the plant for maintenance anyway,

although at a period to avoid large market impacts. The firm would have incurred

some costs anyway due to the design of availability incentive payments.

Changes in procurement costs. Short-run demand being inelastic, the only im-

pact of strategic reneging on total welfare results from the inefficiencies on the supply-

side. More expensive production units are used instead of cheap coal-fired plants under

outage, which undermines the system efficiency and brings up prices. However, this cost

inefficiency is likely to be small, because reneging affects only a tiny fraction of the total

supply. We hence choose to focus only on the “redistributive” impacts of the outages,

which corresponds to the transfer from buyers to sellers given by T̂t =
(
Pt − P̂t

)
Dt.

It corresponds to a transfer from retailers/consumers to producers in absence of finan-

cial forward contracts. In their presence, the total is unchanged but gains and losses

are distributed differently. For example, Capital Power, the supplier whose complaint

initiated the regulatory investigation, claims to have made considerable losses because

of its net buying position in the spot market during several of the events.

The direct effect of reneging on this transfer is defined by
(
P̃t − P̂t

)
Dt. The re-

maining part of the transfer,
(
Pt − P̃t

)
Dt, is generated by the strategic responses to

reneging. Table 9 reports the transfers for each event, separately for the first hours

and all hours. The manipulations caused total power procurement costs to increase

by $115 million over the first hours of all events, and $596 million when considering

all hours. This corresponds to a three-fold increase in procurement costs during these

days, or between 3% to 17% of the annual procurement costs between November 2010

and October 2011. Therefore, the total increase in procurement costs can greatly vary

with the counterfactual outage scenario. The expert reports, however, provide more

support for the largest figure.
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The direct effects of reneging consist of between 64% and 82% of total cost increases,

albeit the strategic component is also sizable in some cases. Note that the estimates

obtained following the MSA’s methodology are biased in most cases. Considering only

the main four events, there are negative biases of about 30% for the first hours and

12% for all hours.

[Table 9]

It turns out that neglecting strategic effects can lead to vastly underestimated

market impacts, not only by failing to account for a large share of the impacts, but

also by using the wrong reference point.57 We evaluate TransAlta’s undue profits from

manipulations between $13 million and $67 million, a figure that is comparable to the

$56 million settlement paid by the manipulator. However, this settlement covers less

than 10% of our largest estimate of increases in procurement costs. The remaining

hundreds of millions, which consist of windfall revenues to suppliers who benefited

from the manipulation, will never be recovered by ratepayers.

As the theory shows, the ability to strategically renege has impacts on futures con-

tract prices, and in turn on spot prices through equilibrium effects. These impacts can

be difficult to quantify empirically, and even more so due to the inherent lack of data

on financial forward contracts. Our model predicts that forward prices must have in-

creased in response to expectations of higher spot prices caused by the manipulations.

Yet, it shows that part of the price discrepancy created by the firm’s conduct may

remain in equilibrium. A spot price premium might even have prevailed in equilibrium

over the long run, had the firm been able to continue this strategy. Evidence shows

that TransAlta’s traders noticed that (month-ahead) forward prices for March 2011

57We evaluate market impacts by calculating the effect of moving from the supply-residual demand
pair without reneging (S⋆

t , RD⋆
t ), to the pair with reneging (S†

t , RD
†
t ), whereas neglecting strategic

effects leads to evaluate the effect of moving from (S†
t , RD

†
t − R), with R being the reneged output,

to (S†
t , RD

†
t ).
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increased by 30% above expectations, reflecting the impacts of the strategic outages

(AUC, 2015). Those overvalued forward contracts were seen as another trading op-

portunity. The firm planned to take a net buying position on the spot market, then

reverse its outage and bidding strategies to maintain spot prices as low as possible.

In absence of regulatory intervention, the firm would have optimized its informational

advantage about forced outages by alternating these two strategies over time.

Even though we account for strategic behaviours in the spot market, our analysis

neglects the general equilibrium effects, such as the consequences for forward mar-

kets. Our figures should hence be seen as a partial picture of the harm resulting from

reneging.

4 Conclusion

We study incentives to manipulate sequential markets arising from imperfect commit-

ment. We show how a supplier with market power would modify its supply strategy

upon anticipating a potentially profitable deviation from its commitments. Our model

provides guidance for the detection of potential misconduct related to strategic reneg-

ing. In an application to Alberta’s electricity market, we confirm our theoretical predic-

tions and estimate that this commitment problem had harmful welfare consequences

for consumers, some of which were not detected by the regulator. Albeit long-term

contracts were primarily implemented in the province to mitigate potential market

power issues, they created powerful incentives to manipulate markets. This downside

of sequential markets that we evidence constitutes a serious issue beyond this specific

case.

Our analysis shows that strategic reneging can take various forms. The findings

suggest that the firm strategically curtailed wind power during episodes of large de-

mand, in addition to timing forced outages at coal-fired plants. This illustrates how
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long-term renewable contracts, like feed-in tariffs, provide horizontally-diversified firms

with a free channel for undue profits. The extensive use of long-term contracts without

delivery obligations, as means to support the development of intermittent renewables,

will lead to similar issues if contracts are concentrated within the hands of otherwise

large suppliers. This stresses the importance of facilitating renewable investment from

entrants rather than incumbent firms and of the centralization of wind dispatch by the

system operators.

The method outlined in this research is a step toward the development of new

tools for the detection and evaluation of market manipulations. It also illustrates

how theoretical models and machine learning methods can complement each other for

regulatory purposes. We argue that these issues can occur beyond electricity markets.

We claim that, with all its limits, the implications of this research should extend to

all markets that are somehow interrelated (not only through time) and subject to

imperfect commitment.
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Tables and Figures

Table 1: Alberta market and firm characteristics

Market shares (%) Capacity (%)
TransCanada (TC) 20.9 4.2
ENMAX (EN) 18.3 6.5
Capital Power (CP) 11.8 11.8
TransAlta (TA) 10.4 36.7
ATCO (AT) 8.2 16.2
Fringe 30.4 24.5

This table shows market shares of capacity for which a firm can submit offer bids versus capacity
ownership by firm (%), excluding wind capacity. Market shares are calculated as average share of
available capacity over total capacity. Capacity shares are based on ownership rather than offer
controls
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Table 2: Timing of strategic outage events

Start End Facility Mean Outage Buyer
Main Events (investigated by the regulator)

Event 1 Nov 19, 2010 16:00 Nov 22, 2010 03:00 SD 5 -280 MW CP
Event 2 Nov 23, 2010 09:00 Nov 24, 2010 00:00 SD 2 -125 MW TC
Event 3 Dec 13, 2010 16:00 Dec 16, 2010 18:00 SD 2 -288 MW TC

Dec 13, 2010 16:00 Dec 15, 2010 03:00 KH 1 -385 MW EN
Dec 14, 2010 17:00 Dec 16, 2010 23:00 SD 6 -401 MW CP

Event 4 Feb 16, 2011 17:00 Feb 18, 2011 21:00 KH 2 -387 MW EN
Additional Events (from the witness statements)

Event 5 Nov 24, 2010 13:00 Nov 25, 2010 17:00 SD 5 -175 MW CP
Event 6 Nov 26, 2010 15:00 Nov 29, 2010 14:00 SD 3 -325 MW TC
Event 7 Nov 30, 2010 14:00 Dec 03, 2010 07:00 KH 2 -387 MW EN
Event 8 Jan 15, 2011 09:00 Jan 18, 2011 11:00 KH 2 -387 MW EN

Jan 17, 2011 16:00 Jan 18, 2011 14:00 KH 1 -387 MW EN
Event 9 Jan 21, 2011 13:00 Jan 25, 2011 06:00 SD 4 -406 MW TC

Jan 25, 2011 15:00 Jan 27, 2011 16:00 SD 5 -406 MW CP
Jan 27, 2011 07:00 Jan 27, 2011 10:00 KH 2 -387 MW EN

Event 10 Apr 12, 2011 13:00 Apr 15, 2011 10:00 SD 5 -406 MW CP
Apr 14, 2011 18:00 Apr 18, 2011 21:00 SD 4 - 406 MW TC

Event 11 Aug 12, 2011 16:00 Aug 19, 2011 23:00 SD 5 -406 MW CP
Aug 14, 2011 22:00 Aug 19, 2011 23:00 SD 4 -406 MW TC

Notes: This table provides a summary of the timing of outage events at PPA plants owned by
TransAlta investigated by the regulator, as well as outage events pointed out by PPA buyers.
Most outages/derates lasted about two days. Timing and mean outage are only indicative as
plants gradually decrease/increase output, possibly over a few hours, to be fully offline/online.
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Table 3: Summary statistics

Training set Testing set Events Add. Events
Mean Std Mean Std Mean Std Mean Std

Off-Peak (21:00 to 07:00)
Output (GWh) 6.96 0.58 6.93 0.56 7.78 0.41 7.41 0.50
Price (CAD) 31.8 43.1 30.4 34.3 66.6 143.9 40.7 60.3
Av. Capacity (GW) 8.35 0.49 8.32 0.48 8.91 0.43 8.42 0.53
Mean Bid TA (MW) 822 150 818 148 739 35 764 63
Mean Bid RS (MW) 6766 457 6748 447 7266 410 6876 517
Wind TA (MWh) 117 115 119 116 86 143 140 137
Wind (MWh) 197 170 198 171 135 205 220 193
NG Price (CAD) 3.9 1.0 3.9 0.9 3.7 0.2 3.7 0.3
Temp Calgary (◦C) 1.7 10.7 2.5 10.3 −14.7 8.7 −2.4 10.7
Observations 7049 2820 110 340

Peak (07:00 to 21:00)
Output (GWh) 7.82 0.55 7.81 0.55 8.68 0.30 8.26 0.47
Price (CAD) 71.3 129.6 72.1 131.8 317.3 330.6 124.7 202.0
Av. Capacity (GW) 8.45 0.47 8.43 0.48 8.96 0.43 8.56 0.54
Mean Bid TA (MW) 925 158 922 160 869 46 862 61
Mean Bid RS (MW) 7018 443 7004 449 7405 420 7118 530
Wind TA (MWh) 120 121 119 121 81 141 159 157
Wind (MWh) 189 176 187 177 129 210 237 217
NG Price (CAD) 3.9 1.0 3.9 1.0 3.7 0.2 3.7 0.3
Temp Calgary (◦C) 5.6 12.0 6.0 11.8 −13.9 8.9 0.8 12.1
Observations 9890 3918 154 476

Notes: This table shows descriptive statistics (mean and standard deviation) of the main vari-
ables. Av. Capacity is the total available hourly capacity. Mean Bid is the average quantity
offered across all prices of the price grid. TA refers to TransAlta. RS refers to the residual supply
net of TA.
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Table 4: Strategic timing of forced outages

(1) (2) (3) (4)

Demand (GWh) 0.004⋆ 0.040⋆⋆ 0.01 −0.03
(0.002) (0.017) (0.007) (0.031)

Wind (GWh) −0.006 −0.068⋆⋆ 0.01 −0.07
(0.004) (0.035) (0.012) (0.070)

Observations 7292 7292 17465 17465
R2 0.01 0.09 0.01 0.05

Notes: This table shows the estimation results of equation (11). The dependent variable is a
binary variable equal to 1 in the first four or all hours during outage events. The means of the
dependent variable are respectively 0.05%, 0.8%, 2.6% and 35%. The first two columns focus on
the suspicious outages after November 2010, whereas the last two focus on all outages before.
All regressions include fixed-effects for hours of the day, days of the week, months and years.
Newey-West robust standard errors with 11 lags are reported in parentheses.
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Table 5: Strategic wind curtailment

Wind TA Wind TA Wind EN Wind SC

After Nov 1, 2010 −3.65⋆

(1.95)
Main events −7.29⋆⋆⋆ −0.76 0.27

(2.75) (1.73) (1.29)
Add. Events −3.56 −0.82 −0.34

(3.26) (1.33) (0.53)

Observations 24757 24757 24757 24757
R2 0.87 0.87 0.85 0.83

Notes: This table shows the estimation results of equation (12). The dependent variable is
TransAlta’s aggregate wind power production in MWh (columns 1 & 2) or ENMAX’s (column
3) or SUNCOR’s (column 4). All regressions include fixed-effects for hours of the day, days of
the week, months, and years. We also control for 4 wind speed measures from nearby weather
stations, and all rivals’ wind power plant output. Newey-West robust standard errors with 14 lags
are reported in parentheses.
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Table 6: Model performance (Peak hours)

Training set Testing set Reneging set

n 9890 3918 630
Parameters 320

S RS S RS S RS RS

Mean Int. Bias 1.7 2.8 2.7 2.6 −0.5 −357.7 4.0
Mean Int. Abs. Bias 22.7 54.7 22.9 55.6 28.3 381.8 121.7
Mean Int. Rel. Abs. Bias 2.5% 0.8% 2.6% 0.8% 3.3% 5.5% 1.7%
RMISE 29.4 81.2 29.6 83.1 38.7 470.6 171.3
Rejection Rate (Imhof) H0 – – 0.062 0.064 0.144 1 0.460
Rejection Rate (BS) H0 – – 0.060 0.069 0.146 1 0.471
Zero parameters 95 91
λCV 0.004 0.005

Coverage probabilities RS R̂S RS R̂S RS R̂S RS

Price – – 0.92 0.93 0.75 0.33 0.16
Output – – 0.92 0.91 0.73 0.60 0.62

Notes: This table shows statistics of model performance separately for the training set, testing
set and reneging set. The reneging set includes all hours for days when reneging occurred. The
statistics include Mean Integrated Bias, Absolute Bias, Relative Absolute Bias, the root-mean-
integrated-squared-errors (RMISE), rejection rates using the asymptotic distribution (Imhof) and
parametric bootstrap (BS). Zero parameters is the number of parameters set to zero by the algo-
rithm (on average across the 52 price values). Inference for functions is described in Appendix C.
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Figure 1: February 16, 2011 17:00-18:00
Notes: The observed equilibrium “OE” is obtained from the observed supply and residual demand

functions (S†
t , RD†). The regulator calculated the counterfactual outcome “CE 1” from (S†

t , RDt).

We instead predict (S⋆
t , RD⋆

t ) to obtain the counterfactual equilibrium “CE 2” which would have

prevailed in the absence of reneging. The direct effect of reneging is given by the intermediate

outcome “CE 3” obtained from (S⋆
t , R̃D

⋆
).
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(a) November 19, 2010 17:00-18:00 (b) November 23, 2010 15:00-16:00

(c) December 13, 2010 16:00-17:00 (d) February 16, 2011 17:00-18:00

(e) January 15, 2011 16:00-17:00 (f) April 12, 2011 13:00-14:00

Figure 2: Illustrative counterfactual predictions
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Notes: Observed supply and residual demand functions are shown by the plain lines and coun-

terfactuals are represented in the same way as in Figure 1. The shaded areas around the curves

represent 95% confidence intervals of the counterfactual supply and residual demand functions.

The colored areas are the 95% highest density region of counterfactual equilibrium outcomes.
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Figure 3: Average quantity impacts
Notes: This figure shows the average impacts on TransAlta’s output separately for the first hours

of each event (scenario 1), and all hours of each event (scenario 2). The values obtained using the

regulator’s methodology are shown for comparison.
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Figure 4: Average price impacts
Notes: This figure shows the average price impacts separately for the first hours of each event

(scenario 1), and all hours of each event (scenario 2). The values obtained using the regulator’s

methodology are shown for comparison.
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Figure 5: Average bid function impacts (all hours)
Notes: This figure shows the average impacts on the supply and residual demand functions sepa-

rately for all hours of each event (scenario 2).
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Table 7: Strategy shifts, market impacts, and residual demand

∆̂S ∆̂Q ∆̂P 1
∆̂S<0

Main events RD slope −92.53⋆⋆⋆ −54.50⋆⋆⋆ 276.52⋆⋆⋆ 0.91⋆⋆⋆

(11.89) (15.83) (76.23) (0.16)
Outage capacity 0.09⋆⋆⋆ 0.09⋆⋆⋆ −0.09 −0.00⋆⋆⋆

(0.02) (0.02) (0.10) (0.00)
Observations 200 200 200 200
R2 0.58 0.54 0.52 0.52

All events RD slope −43.00⋆⋆⋆ −33.91⋆⋆ 141.52⋆⋆ 0.32⋆⋆

(12.93) (13.77) (67.10) (0.14)
Outage capacity 0.04 0.04⋆ −0.05 −0.00

(0.02) (0.03) (0.04) (0.00)
Observations 643 643 643 643
R2 0.14 0.08 0.30 0.06

Testing RD slope 5.76 −1.52 −29.43⋆⋆⋆ −0.12⋆

(5.04) (4.62) (9.10) (0.07)
Observations 6738 6738 6738 6738
R2 0.01 0.01 0.02 0.01

Notes: This table shows regression results where the dependent variable is supply strategy shifts
(column 1), output impacts (column 2), price impacts (column 3), and a dummy equal to one if
strategy shifts are negative (column 4). Newey-West robust standard errors with respectively 5
(main), 7 (all) and 11 (testing) lags are reported in parentheses.
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Table 8: Profitability of the manipulations

Nov19 Nov23 Dec13 Feb16 Nov30 Jan15 Apr12 Aug12 Tot.

First hours
Gains (M$) 0.6 1.6 2.1 1.4 0.4 4.4 2.7 0.1 13
MSA (%) 80 77 100 50 93 100 94 134 90
Direct (%) 6 43 91 74 11 94 15 166 63

All hours
Gains (M$) 2.1 1.6 9.5 18.0 3.1 9.8 9.2 13.5 67
MSA (%) 90 78 97 88 93 104 95 104 96
Direct (%) 14 44 55 87 16 145 29 118 83

Notes: This table shows TransAlta’s gross gains from manipulations (in million dollars) separately
for each event during the first hours, and all hours of the outages. MSA (%) provides the relative
size of the regulator’s estimate compared to ours. Direct (%) gives the share of gains associated
with the outage assuming no strategic reactions from TransAlta and its rivals.
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Table 9: Welfare impacts

Nov19 Nov23 Dec13 Feb16 Nov30 Jan15 Apr12 Aug12 Tot.

First hours
Transfer (M$) 5.0 13.6 19.0 11.9 3.8 37.8 23.8 0.5 115
MSA (%) 81 83 100 33 92 100 95 125 89
Direct (%) 6 48 93 66 11 96 16 152 64

All hours
Gains (M$) 18.5 13.5 83.8 165.6 31.8 85.3 78.3 119.4 596
MSA (%) 90 84 98 85 90 104 96 104 95
Direct (%) 15 49 56 81 14 149 31 119 82

Notes: This table shows the transfer from buyers to sellers caused by the manipulations (in million
dollars) separately for each event during the first hours, and all hours of the outages. MSA (%)
provides the relative size of the regulator’s estimate compared to ours. Direct (%) gives the share
of transfers associated with the outage assuming no strategic reactions from TransAlta and its
rivals.
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A Mathematical Appendix

Proposition 1 (Sequential markets under uncertainty) In equilibrium, the mo-

nopolist’s forward commitments Q⋆
1 and final output Q⋆

1+Q⋆
2 decrease with its marginal

cost 1/B and the slope of its residual demand b. In addition,

• (Forward seller) Q⋆
1 ≥ 0 if only if α ≥ α = B+b

2B+b
;

• (Spot seller) Q⋆
2 ≥ 0 if and only if p⋆2 ≥ C(Q⋆

1 +Q⋆
2); and,

• (Forward premium) p⋆1 ≥ E[p⋆2] if only if α ≥ α;

Proof 1 (Proof of Proposition 1) Solving backward, we consider first the profit-

maximization problem of the monopolist in period 2, when uncertainty is resolved.

Given p1 and Q1, the problem writes

max
Q2

Π = p1Q1 +
1

b
(A−Q1 −Q2)Q2 −

∫ Q1+Q2

0

C(Q)dQ. (19)

The first-order condition is

∂Π

∂Q2

= 0 =
∂p2
∂Q2

Q2 + p2 − C(Q1 +Q2)

=
1

b
(A−Q1 − 2Q2)−

1

B
(Q1 +Q2)

(20)

and the quantity supplied in period 2 is thus

Q⋆
2 =

B

2B + b
A−

B + b

2B + b
Q1. (21)

Result 2 follows from the first-order condition in (20) which can be rewritten Q⋆
2/b =

p⋆2 − (Q⋆
1 +Q⋆

2) /B.
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In period 1, the expected profit maximization program is given by

max
Q1

E[Π] =
1

b
(αE[A]−Q1)Q1 +E

[
1

b
(A−Q1 −Q⋆

2)Q
⋆
2

]
−E

[∫ Q1+Q⋆

2

0

C(Q)dQ

]
.

(22)

Making use of the envelope theorem, the first-order condition is

∂E[Π]

∂Q1

= 0 =
∂p1
∂Q1

Q1 + p1 + E

[
∂p2
∂Q1

Q⋆
2

]
− E [C(Q1 +Q⋆

2)]

=
1

b
(αE[A]− 2Q1 − E[Q⋆

2])−
1

B
(Q1 + E[Q⋆

2]) ,

(23)

or equivalently

∂E[Π]

∂Q1

=
1

b

{
αE(A)−

3B + 2B

2B + b
Q1 −

B + b

2B + b
E(A)

}
= 0. (24)

The quantity supplied in period 1 is such that

Q⋆
1 =

B

2B + b
αE[A]−

B + b

2B + b
E[Q⋆

2]. (25)

From (21), in equilibrium, the monopolist’s forward sales are

Q⋆
1 =

(2α− 1)B − (1− α)b

3B + 2b
E[A]. (26)

which yields the first result, and its total output is

Q⋆
1 +Q⋆

2 =
B

2B + b
(A− E[A]) +

(1 + α)B

3B + 2b
E[A]. (27)

The forward price is

p⋆1 = (1 + α)
B + b

3B + 2b

E[A]

b
, (28)
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and the spot price is

p⋆2 =
A

b

B + b

2B + b
+

E[A]

b

(
B

2B + b
−

(1 + α)B

3B + 2b

)
. (29)

The spread between the forward and spot markets depend on the realization of demand

and the forward demand αE[A]. It is given by

p⋆2 − p⋆1 =
A

b

B + b

2B + b
+

E[A]

b

(
B

2B + b
−

(1 + α)(2B + b)

3B + 2b

)
, (30)

and the expected price spread between the sequential markets is given by

p⋆1 − E[p⋆2] =

(
α−

B + b

2B + b

)
E(A)

b
−

B + b

2B + b

Q⋆
1

b

=
(2α− 1)B − (1− α)b

3B + 2b

E[A]

b
.

(31)

yielding Result 3 in the proposition.

Moreover, feasibility requires Q⋆
1 + Q⋆

2 ≥ 0 and q⋆1 + q⋆2 ≥ 0. From (27), the first

condition is satisfied if F (·) is such that

Pr(A < −
(2α− 1)B − (1− α)b

3B + 2b
E[A]) = 0, (32)

and the second condition is equivalent to A− (Q⋆
1+Q⋆

2) ≥ 0 which holds if F (·) is such

that

Pr(A <
B

B + b

(2α− 1)B − (1− α)b

3B + 2b
E[A]) = 0. (33)

Proof 2 (Endogenous α in this context) Risk-neutral consumers choose α to min-

imize their total expected expenditures to procure A. This problem is given by

min
α

E[TE] = αp1E[A] + E [p2 (A− αE[A])] . (34)
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The optimal share denoted α⋆ is characterized by the first-order condition

∂E [TE]

∂α
= 0 =

(
p1 + α

∂p1
∂α

− E[p2]

)
E(A) + E

[
∂p2
∂α

(A− αE[A])

]

=
1

b

(
αE[A]−Q1 + αE(A)− α

∂Q1

∂α
− E[A] +Q1 + E[Q2]

)
E(A) + E

[
∂p2
∂α

(A− αE[A])

]

=
1

b

(
(2α− 1)E[A]− α

∂Q1

∂α
+ E[Q2]

)
E(A)−

1

b
E

[
∂(Q1 +Q2)

∂α
(A− αE[A])

]

(35)

where
∂Q1

∂α
=

2B + b

3B + 2b
E(A),

E(Q2) =
(2− α)B + (1− α)b

3B + 2b
E(A),

∂Q1 +Q2

∂α
=

B

3B + 2b
E(A).

(36)

Substituting and rearranging yield

0 =
1

b
((2α− 1)(3B + 2b)− α(2B + b) + B + (1− α)b)

E(A)2

3B + 2b
,

0 =
1

b
(2α− 1)(2B + b)

E(A)2

3B + 2b
,

(37)

which implies that it is optimal for consumers to choose α⋆ = 1/2. This solution is

feasible only if the monopolist produces a positive output, i.e. if Q⋆
1 +Q⋆

2 ≥ 0 which is

guaranteed under the previous feasibility conditions on F (A).

Proposition 2 (All-or-nothing strategic reneging) In equilibrium, taking forward

commitments as given, there exists a demand threshold T such that R = µQ1 if and

only if A ≥ T , and R = 0 otherwise. In addition, T increases with τ and p1, and

decreases with µ and Q1.

Proof 3 (Proof of Proposition 2) We first show that the problem admits a corner

solution, then characterize the demand threshold T .
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Part 1 (Corner solution). The first-order condition with respect to Q2 is changed to

∂Π

∂Q2

= 0 =
∂p2
∂Q2

Q2 + p2 − C(Q1 −R +Q2)

=
1

b
(A−Q1 +R− 2Q2)−

1

B
(Q1 −R +Q2) ,

(38)

and thus we have

Q†
2 =

B

2B + b
A−

B + b

2B + b
(Q1 −R). (39)

The first-order condition with respect to R is

∂Π

∂R
= 0 = −(p1 + τ) +

∂p2
∂R

Q2 + C(Q1 −R +Q2)

= −(p1 + τ) +
1

b
Q2 +

1

B
(Q1 −R +Q2) ,

(40)

However, this condition does not characterize the optimal reneging strategy. The set of

first-order conditions does not characterize a maximum because we have (∂2Π/∂Q2
2)

2
=

− (2/b+ 1/B) < 0 and the determinant

∂2Π

∂Q2
2

∂2Π

∂R2
−

(
∂2Π

∂Q2∂R

)
= −

1

b2
< 0. (41)

To solve this problem, let us consider R to be fixed at the time of choosing Q2, so that

(39) holds. Substituting its expression into (40) yields

∂Π

∂R
= −(p1 + τ) +

(
1

b
+

1

B

)(
B

2B + b
A−

B + b

2B + b
(Q1 −R)

)
+

1

B
(Q1 −R) . (42)
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Differentiating with respect to R gives

∂2Π

∂R2
=

(
1

b
+

1

B

)(
B + b

2B + b

)
−

1

B

=
B

b(2B + b)
> 0,

(43)

that is the objective function is convex in R, leading to a corner solution. The optimal

reneging strategy is an all-or-nothing strategy, i.e. R⋆ = 0 or R⋆ = µQ1.

Part 2 (Demand threshold). Reneging is profitable for all A such that

Π†(A)− Π⋆(A) ≥ 0, (44)

which develops into

Π†(A)− Π⋆(A) =
2(B + b)A− B(2− µ)Q1

2b(2B + b)
µQ1 − (p1 + τ)µQ1 ≥ 0. (45)

If Q1 > 0, then reneging is optimal for all A ≥ T , where

T = (p1 + τ)
b(2B + b)

B + b
+

B

2(B + b)
(2− µ)Q1. (46)
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It is easily checked that this threshold satisfies

∂T

∂τ
=

b(2B + b)2

2B2 + b(3B + b)
> 0,

∂T

∂µ
= −

B(2B + b)

2(2B2 + b(3B + b))
Q1 < 0, and,

∂T

∂Q1

=
∂p1
∂Q1

b(2B + b)

B + b
+

B

2(B + b)
(2− µ)

=
−2(2B + b) + B(2− µ)

2(B + b)

= −
(2 + µ)B + 2b

2(B + b)
< 0.

(47)

The development in (45) is obtained from the addition of

∆p2Q
⋆
2 =

1

b(2B + b)2
(
B2A− B(B + b)(1− µ)Q1

)
µQ1, and,

p⋆2∆Q⋆
2 =

1

b(2B + b)2
(
(B + b)2A− B(B + b)Q1

)
µQ1,

which yields

∆p2Q
⋆
2 + p⋆2∆Q⋆

2 =
1

b(2B + b)2
(
(B2 + (B + b)2)A− B(B + b)(2− µ)Q1

)
µQ1,

and from which we finally obtain

∆p2Q
⋆
2 + p⋆2∆Q⋆

2 +∆C =
(2(B2 + (B + b)2 + 2Bb)A− (2B(B + b)− Bb)(2− µ)Q1)

2b(2B + b)2
µQ1

=
((4B2 + 2b(3B + b))A− B(2B + b)(2− µ)Q1)

2b(2B + b)2
µQ1.

Proposition 3 (Spot strategy) In equilibrium, if reneging is profitable (A ≥ T ), the

monopolist will shift its spot supply to Q†
2 > Q⋆

2 to optimize its profits, total production

decreases and, in addition,

• (Price impact) ∆p2 ≥ 0 increases with µ, Q1, 1/b, and B;
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• (Strategy shift) ∆Q2 ≥ 0 increases with µ, Q1, b and 1/B; and,

• (Cost savings) ∆C ≥ 0 increases with µ, Q1 and 1/b, and the effect of 1/B

depends on the relative cost advantage of the monopolist.

Proof 4 (Proof of Proposition 3) The first two results are directly obtained from

∆p2 =
B

b(2B + b)
µQ1

∆Q2 =
B + b

2B + b
µQ1,

and the third result follows from the expression

∆C =

∫ Q1+Q⋆

2

(1−µ)Q1+Q
†
2

C(Q)dQ =

∫ B

2B+b
(A+Q1)

B

2B+b
(A+(1−µ)Q1)

C(Q)dQ

=
1

2B

B2

(2B + b)2
(
(A+Q1)

2 − (A+ (1− µ)Q1)
2
)

=
B

2(2B + b)2
(
2µAQ1 + µ(2− µ)Q2

1

)

=
B

2(2B + b)2
(2A+ (2− µ)Q1)µQ1.

This expression is derived by combining and rearranging the following expressions:

Q1 +Q⋆
2 =

B

2B + b
(A+Q1),

(1− µ)Q1 +Q†
2 =

B

2B + b
(A+ (1− µ)Q1),

Q⋆
2 =

B

2B + b
A−

B + b

2B + b
Q1, and,

Q†
2 =

B

2B + b
A−

B + b

2B + b
(1− µ)Q1.

Proposition 4 (Equilibrium forward sales) In equilibrium, upon anticipating a pos-

itive probability of profitable reneging, the monopolist will shift its supply of forward

contracts to Q†
1 > Q⋆

1, the extent of which depends on the distribution of uncertainty.
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The monopolist faces a trade-off upon choosing Q1. In equilibrium, the firm will

equalize the expected marginal efficiency loss associated with excessive forward sales

with the expected marginal profit associated with spot market manipulation. Upon

increasing its forward sales, the monopolist increases both the likelihood of a profitable

manipulation 1−F (T ) and the profitability of the latter. This comes at the opportunity

cost of “over contracting” when A ≤ T .

Proof 5 (Proof of Proposition 4) The first-order condition is

∂E[Π]

∂Q1

= 0, (48)

where
∂E[Π]

∂Q1

=
∂T

∂Q1

f(T )
(
Π⋆(T )− Π†(T )

)
+

∫ T

0

∂Π⋆(A)

∂Q1

dF (A)

+

∫ +∞

T

∂Π†(A)

∂Q1

dF (A).

(49)

The definition of T implies Π⋆(T ) = Π†(T ) and the condition becomes

∫ T

0

∂Π⋆(A)

∂Q1

dF (A) +

∫ +∞

T

∂Π†(A)

∂Q1

dF (A) = 0, (50)

The second-order condition is given by

∂2E[Π]

∂Q2
1

=
∂T

∂Q1

f(T )

(
∂Π⋆(T )

∂Q1

−
∂Π†(T )

∂Q1

)

+

∫ T

0

∂2Π⋆(A)

∂Q2
1

dF (A) +

∫ +∞

T

∂2Π†(A)

∂Q2
1

dF (A).

(51)
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The first term is negative since ∂T
∂Q1

< 0, f(T ) > 0 and
(

∂Π⋆(T )
∂Q1

− ∂Π†(T )
∂Q1

)
> 0 since

∂Π†(T )− Π⋆(T )

∂Q1

=µ

[
(2(B + b)T − B(2− µ)Q1)

2b(2B + b)
− (p1 + τ)

]

=− µQ1

(
B(2− µ)

2b(2B + b)
+

∂p1
∂Q1

)

=− µQ1

(
B(2− µ)− 2(2B + b)

2b(2B + b)

)

=µQ1

(
(2 + µ)B + 2b

2b(2B + b)

)
> 0.

(52)

The two last terms of (51) are negative so the first-order condition characterizes a

maximum.

The integrand of the first term in (50) can be developed into

∂Π⋆(A)

∂Q1

=
∂p1
∂Q1

Q1 + p1 +
∂p⋆2
∂Q1

Q⋆
2 − C(Q1 +Q⋆

2)

=
1

b
(αE(A)− 2Q1 −Q⋆

2)−
Q1 +Q⋆

2

B
,

=
αE(A)

b
−

2B + b

Bb
Q1 −

B + b

Bb
Q⋆

2,

=
αE(A)

b
−

2B + b

Bb
Q1 −

B + b

Bb

(
B

2B + b
A−

B + b

2B + b
Q1

)
,

=
αE(A)

b
−

3B + 2B

b(2B + b)
Q1 −

B + b

b(2B + b)
A.

(53)

Thus, we have

∫ T

0

∂Π⋆(A)

∂Q1

dF (A) =

(
αE(A)

b
−

3B + 2B

b(2B + b)
Q1 −

B + b

b(2B + b)
E[A|A ≤ T ]

)
F (T ). (54)
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The integrand of the second term in (50) can be developed into

∂Π†(A)

∂Q1

= (1− µ)

[
∂p1
∂Q1

Q1 + p1 − C((1− µ)Q1 +Q†
2)

]
− µτ +

∂p†2
∂Q1

Q†
2

= (1− µ)

[
∂p1
∂Q1

Q1 + p1 −
1

b
Q†

2 − C((1− µ)Q1 +Q†
2)

]
− µτ

= (1− µ)

[
αE(A)

b
−

2B + b(1− µ)

Bb
Q1 −

B + b

Bb
Q†

2

]
− µτ

= (1− µ)

[
αE(A)

b
−

2B + b(1− µ)

Bb
Q1 −

B + b

Bb

(
B

2B + b
A−

B + b

2B + b
(1− µ)Q1

)]
− µτ

= (1− µ)

[
αE(A)

b
−

(
2B + b(1− µ)

Bb
−

(B + b)2(1− µ)

Bb(2B + b)

)
Q1 −

B + b

b(2B + b)
A

]
− µτ

=
(1− µ)

b

[
αE(A)−

(3 + µ)B + 2b

(2B + b)
Q1 −

B + b

(2B + b)
A

]
− µτ

(55)

Thus, we have

∫ +∞

T

∂Π†(A)

∂Q1

dF (A) =(1− µ)

(
αE(A)

b
−

(3 + µ)B + 2b

b(2B + b)
Q1 −

B + b

b(2B + b)
E[A|A > T ]

)
(1− F (T ))

− µτ (1− F (T )) .

(56)

Combining and rearranging yields the equivalent expression of the first-order condition

(1− µ (1− F (T )))

b

{
αE(A)−

3B + 2B

2B + b
Q1 −

B + b

2B + b
E(A)

}
+

µ (1− F (T ))

b

{
B + b

2B + b
(E[A|A > T ]− E(A))−

(1− µ)B

2B + b
Q1 − bτ

}
= 0.

(57)

From (24), the first term in (57) is equal to zero for Q⋆
1. Furthermore, we have

T ≤ E[A|A > T ] hence the second term between braces admits as minimum bound

B + b

2B + b
(T − E(A))−

(1− µ)B

2B + b
Q1 − bτ. (58)
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Substituting p1 by its expression into (46) yields

T = αE(A)
2B + b

B + b
−Q1

(2 + µ)B + 2b

2(B + b)
+ τb

2B + b

B + b
, (59)

which substituting into (58) and rearranging yields another expression for this bound

E(A)
B(2α− 1)− b(1− α)

2B + b
−Q1

4−µ

2
B + b

2B + b
. (60)

It is easily checked that this bound is positive at Q⋆
1. Therefore for any parameter values

(provided that Q⋆
1 is positive) the solution of (57) will be above Q⋆

1.

Is there a forward premium? The forward premium is decreased by strategic

reneging even without anticipatory adjustments in the forward market (i.e. with Q†
1 =

Q⋆
1) because the spot price will be larger in expectations. More importantly, there

is a range of forward covers [α, α] for which a spot price premium is sustained in

equilibrium (Proposition 5). It follows in particular that for α = α there is price

convergence and the monopolist is a seller in both markets. This convergence exists in

our setting because the monopolist exerts market power and manipulates the spot price

via strategic reneging, and not because of arbitrage and increased competition. This

result shows the limit of using price convergence as a metric to measure competitiveness

in sequential imperfect markets.58

Remark that buyers now face a trade-off. Indeed, taking more forward contracts to

hedge against higher spot prices (and volatility) will provide more room for manipu-

lation to the monopolist. Although useful to deal with uncertainties, forward markets

may introduce distortions into market mechanisms.

58This point was already made by Ito and Reguant (2016) in a setup with market power and limited
arbitrage. In their setting, more arbitrage leads to more competitive outcomes on average but enlarges
the deadweight loss during periods where the strategic player enjoys high market power.
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Proposition 5 (Equilibrium forward premium) In equilibrium, there is a forward

premium p†1 ≥ E[p†2] if and only if α ≥ α > α, and p†1 < E[p†2] otherwise. In addition,

α < 1 in absence of a forward adjustment, i.e. if Q†
1 = Q⋆

1.

Proof 6 (Proof of Proposition 5) The results are easily checked from (31) and its

analog under imperfect commitment is given by

p†1 − E[p†2] =

(
α−

B + b

2B + b

)
E(A)

b

−

(
B + b

2B + b
+ µ(1− F (T ))

B

2B + b

)
Q†

1

b
.

(61)

Assuming further that Q†
1 = Q⋆

1, the condition for a forward premium to be sustained,

i.e. p†1 ≥ E[p†2], simplifies to

(
α−

B + b

2B + b
−

(1 + µ(1− F (T )))B + b

2B + b

B

3B + 2b

)
E(A)

b
≥ 0. (62)

Under this assumption, the threshold level of contracting α is hence such that

α < α = α +
(1 + µ(1− F (T )))B + b

2B + b

B

3B + 2b
≤ α +

B

3B + 2b
< 1. (63)

Discontinuous residual demand. Residual demand functions are seldom linear in

the real world. For example, in the application, the observed residual demands are

step functions because of the multi-unit auction design. We thus extend our results to

(discontinuous) piecewise linear functions. Let the fringe’s marginal cost function be

modified to c(q) = q/b + ∆c for q ≥ k, and be unchanged for q < k. The dominant

supplier is paid the spot price p2 = (A − Q1 − Q2)/b + ∆c, where ∆c > 0 is the step

size, if its output is Q2 ≤ Qk
2 = A−Q1 − k.

In the linear setting, strategic reneging always coincides with a positive strategy

shift to Q†
2 −Q⋆

2 > 0. The existence of discontinuities gives rise to a different situation
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where it is sometimes profitable to renege on commitments and reduce output below Q⋆
2

to trigger the price step. This occurs for levels of demand smaller than the threshold T

characterized in the linear case (Proposition 6). We identify two main implications.59

First, discontinuous residual demand functions facilitate strategic reneging because it

is now profitable at lower demand levels. Second, the exercise of market power and

strategic reneging can complement each other to create a price impact. Indeed, a neg-

ative strategy shift would not be profitable without reneging. Therefore, a supply-cut

on the spot market coincidental with reneging may be due to strategic manipulations,

because market power and reneging can be strategic complements.60

Proposition 6 (Piecewise linear residual demand) In equilibrium, if the resid-

ual demand is a piecewise linear function with a discontinuity at Qk
2 < Q⋆

2, there exists

a demand threshold Ã above which it is profitable to trigger the price step ∆c by pro-

ducing Qk
2 instead of Q⋆

2. In addition,

• (Spot) The threshold Ã decreases with ∆c, and increases with k and Q1;

• (Forward) The firm will also reduce its forward commitments to Qk
1 < Q⋆

1; and,

• (Reneging) The price step makes strategic reneging profitable for lower values of

demand, i.e. there exists T̃ < T above which strategic reneging is profitable for

any demand A for large enough values of ∆c.

Proof 7 (Proof of Proposition 6) Following the specification of the fringe’s marginal

cost function, let us define Qk
2 = A−Q1−k as the dominant player’s maximum volume

of spot sales such that the fringe marginal cost is q/b+∆c (i.e. on the upper segment).

59Proposition 6 summarizes the results for the case where the discontinuity jump is at the left of
the profit-maximizing output in the linear setting, i.e. Qk

2 < Q⋆
2.

60Some implications of large discontinuities in residual demand functions are discussed in Brown
and Eckert (2021).
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The equilibrium condition in the spot market is changed to:

Q2 = A−Q1 + b∆c− bp2 for any 0 ≤ Q2 ≤ Qk
2,

Q2 = A−Q1 − bp2 for any Q2 > Qk
2.

Over the interval where Q2 ∈
[
0, Qk

2

]
the price is given by

p2 =
1

b
(A−Q1 + b∆c−Q2)

hence the profit function is given by

Π = p1Q1 + p2Q2 −

∫ Q1+Q2

0

C(Q)dQ

= p1Q1 +
1

b
(A−Q1 + b∆c−Q2)Q2 −

1

B

∫ Q1+Q2

0

QdQ.

Part 1. Optimal strategy without reneging. The optimal strategy is given by

∂Π

∂Q2

=
1

b
(A−Q1 + b∆c− 2Q2)−

1

B
(Q1 +Q2)

so that

Q2 =
B

2B + b
(A+ b∆c)−

B + b

2B + b
Q1

if Q2 ≤ Qk
2, and Q⋆

2 defined in (21) if Q2 > Qk
2.

For given values of A and Q1, we have Q2 > Q⋆
2 because ∆c > 0 although the

feasibility conditions dictate that the strategy Q2 prevails over Q2 ∈
[
0, Qk

2

]
and Q⋆

2

prevails for “large” values of Q2 (Q2 > Qk
2). Observe that:

• If Q⋆
2(A,Q1) < Qk

2(A,Q1) then the optimal strategy over
[
Qk

2; +∞
[
is Qk

2 (the

profit function is decreasing on [Q⋆
2; +∞[ ∩

[
Qk

2; +∞
[
).
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• If Q2(A,Q1) > Qk
2(A,Q1) then the optimal strategy over

[
0;Qk

2

]
is Qk

2 (the profit

function is increasing on
[
0;Q2

]
∩
[
0;Qk

2

]
).

There are three cases:

1. If Q⋆
2 < Qk

2 < Q2 then the optimal strategy is Qk
2.

2. If Q⋆
2 < Q2 < Qk

2 then the optimal strategy is Q2.

3. If Qk
2 < Q⋆

2 < Q2 then we must compare profits for Qk
2 and Q⋆

2.

We compare the profits in each case to characterize this case. Let Π⋆, Q⋆
2 and Qk

2 be

given as above and define

δ = Q⋆
2 −Qk

2,

that can be positive or negative. By definition

p2(Q
k
2) =

1

b

(
A−Q1 −Qk

2

)

=
1

b

(
A−Q1 −Q⋆

2 −
(
Qk

2 −Q⋆
2

))

= p⋆2 +
δ

b

if Q2 > Qk
2. The lower price at the step (at Qk

2 + ε) is thus p⋆2 + δ/b. The upper price
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is p⋆2 + (δ/b) + ∆c. The profit obtained with strategy Qk
2 writes

Πk = p1Q1 + p2Q
k
2 −

∫ Q1+Qk

2

0

C(Q)dQ

= p1Q1 +

(
p⋆2 +

δ

b
+∆c

)
(Q⋆

2 − δ)−
1

B

∫ Q1+Q⋆

2
+δ

0

QdQ

= p1Q1 +

(
p⋆2 +

δ

b
+∆c

)
(Q⋆

2 − δ)−
1

2B
(Q1 +Q⋆

2 − δ)2

= p1Q1 + p⋆2Q
⋆
2 +

[
∆cQ⋆

2 +

(
p⋆2 +∆c−

Q⋆
2

b

)
δ −

δ2

b

]

−
1

2B

[
(Q1 +Q⋆

2)
2 − 2δ (Q1 +Q⋆

2) + δ2
]

= Π⋆ +

[
∆cQ⋆

2 −

(
p⋆2 +∆c−

Q⋆
2

b

)
δ −

δ2

b

]
−

1

2B

[
−2δ (Q1 +Q⋆

2) + δ2
]
.

It is therefore profitable to choose Qk
2 rather than Q⋆

2 if

∆cQ⋆
2 > δ

{
−

1

2B
[2 (Q1 +Q⋆

2)− δ] +

[
p⋆2 −

1

b
Q⋆

2 +
δ

b
+∆c

]}
.

Since Q⋆
2 is optimal we know that it satisfies:

p⋆2 −
1

b
Q⋆

2 =
1

B
(Q1 +Q⋆

2)

from the FOC in (20) therefore the previous inequality boils down to:

∆cQ⋆
2 > δ

[
∆c+

(
1

2B
+

1

b

)
δ

]

which yields the condition

∆cQk
2 >

(
1

2B
+

1

b

)
δ2. (64)

Observe that a negative shift from Q⋆
2 to Qk

2 to trigger ∆c is more likely when Qk
2 is

large, ∆c is large, δ is small, b is large (RD is less elastic).
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Let us denote W = ∆cQk
2 −

(
1
2B

+ 1
b

)
δ2 and differentiate to obtain

∂W

∂A
= ∆c+

B + b

Bb
δ > 0 (65)

since δ > 0 when Qk
2 < Q⋆

2. Moreover,

∂2W

∂A2
< 0, (66)

thus there is a threshold level of demand Ã such that for all A > Ã (assuming δ > 0

though), Qk
2 yields larger profits than Q⋆

2 and reversely for lower values of A. This

threshold is characterized by

W = ∆cQk
2 −

(
1

2B
+

1

b

)
δ2 = 0

↔ ∆c(Ã−Q1 − k) =

(
1

2B
+

1

b

)(
k −

B + b

2B + b
Ã+

B

2B + b
Q1

)2

.

(67)

Total differentiation and rearrangement yield the relation between this threshold and

forward commitments

0 <
dÃ

dQ1

=
∆c+ 1

b
δ

∆c+ B+b
Bb

δ
< 1. (68)

Part 2. Strategy on forward markets. A complete characterization of the optimal

forward strategy requires solving several cases depending on the distribution of demand.

To gain intuition of the effect of discontinuities on the forward strategy, we only focus

on a specific case where demand is distributed so that Qk
2 < Q⋆

2, i.e. A < 2B+b
B+b

k+ B
B+b

Q1.
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In this case, the expected profit is given by

E[Π] =

∫ Ã

0

(
p1Q1 + p⋆2Q

⋆
2 −

∫ Q1+Q⋆

2

0

C(Q)dQ

)
dF (A)

+

∫ +∞

Ã

(
p1Q1 + pk2Q

k
2 −

∫ Q1+Qk

2

0

C(Q)dQ

)
dF (A).

(69)

Differentiating with respect to Q1, making use of the definition of Ã and applying the

envelope theorem yield

∂E[Π]

∂Q1

=

∫ Ã

0

(
p1 −

(
1

b
+

1

B

)
(Q1 +Q⋆

2)

)
dF (A) +

∫ +∞

Ã

(
p1 −

(
1

b
+

1

B

)(
Q1 +Qk

2

))
dF (A)

−

∫ +∞

Ã

(
∂pk2
∂Q2

Qk
2 + pk2 −

Q1 +Qk
2

B

)
dF (A) = 0

=

∫ +∞

0

(
p1 −

(
1

b
+

1

B

)
(Q1 +Q⋆

2)

)
dF (A)

+

∫ +∞

Ã

(
1

b
+

1

B

)
δ −

(
pk2 −

Q1 +Qk
2

B

)
dF (A).

(70)

The integrand of the second term can be rewritten

δ

b
+

Q⋆
2 −Qk

2

B
− pk2 +

Q1 +Qk
2

B

=−
Qk

2

b
− (pk2 − p⋆2)− p⋆2 +

Q⋆
2

b
+

Q1 +Q⋆
2

B

=−
Qk

2

b
− (pk2 − p⋆2) < 0,

(71)

where the inequality holds for the considered case. Therefore the second integral is

negative and it must be that the first integral is positive for the first-order condition (70)

to hold. Following the previous result for Q⋆
1, it implies that the equilibrium forward

commitment is Qk
1 < Q⋆

1 in this case.

Part 3. Reneging under non-linear residual demand. The complete characterization of

strategic reneging in this setting involves solving multiple cases. The most interesting
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case is when reneging would not be profitable without taking advantage of the price jump

created by the step function. That is when exerting market power in the spot market

and reneging on forward contracts are complementary means to achieve a price impact.

We focus on this case by assuming that, for A = T ,

• Q†
2 − Q†k

2 = ϵ > 0: reaching the step requires to produce less than the optimal

amount Q†
2 in presence of reneging; and

• ∆cQk
2 <

(
1
2B

+ 1
b

) (
Q⋆

2 −Qk
2

)2
: the strategy Q⋆

2 yields larger profits than Qk
2 hence

the firm will not take advantage of the price step in absence of reneging.

The first assumption implies Qk
2 < Q⋆

2 because

Q†
2 −Q†k

2 = k −
B + b

2B + b
A+

B

2B + b
(Q1 −R)

=
(
Q⋆

2 −Qk
2

)
−

B

2B + b
R.

(72)

In words, without reneging reaching the step also requires producing less than the opti-

mal amount Q⋆
2. This assumption is used to focus on the values of demand for which

the step is at the left of the optimal output level in both cases. For some A, the increase

in profits from combining both reneging and taking advantage of the price step can be

written as

Π†k(A)− Π⋆(A) = Π†(A)− Π⋆(A) + p†k2 Q†k
2 − p†2Q

†
2 +

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ. (73)

Recall that at A = T the firm is indifferent between choosing R = 0 and R = µQ1. At

A = T , the above hence simplifies to

Π†k(T )− Π⋆(T ) = p†k2 Q†k
2 − p†2Q

†
2 +

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ, (74)

where the second term on the right-hand-side is positive under the previous assumptions.
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It can be developed into

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ =
1

B

(
Q1 −R +

Q†
2 +Q†k

2

2

)
ϵ. (75)

Let us now turn to the first term. We have

p†k2 Q†k
2 − p†2Q

†
2 = (p†k2 − p†2)Q

†k
2 − p†2(Q

†
2 −Q†k

2 ), (76)

where at A = T ,

p†k2 − p†2 =
1

b
(T − (Q1 −R)−Q†k

2 ) + ∆c− p†2

=
k

b
+∆c− p†2

=
k

b
+∆c− (p1 + τ)−

B

2B + b

R

2b

=
ϵ

b
+∆c,

(77)

and

Q†
2 −Q†k

2 = k − bp†2 = ϵ. (78)

Making use of these expressions yields

p†k2 Q†k
2 − p†2Q

†
2 =

(ϵ
b
+∆c

)
Q†k

2 − p†2ϵ. (79)

Thus, we have Π†k(T )− Π⋆(T ) > 0 if and only if

(ϵ
b
+∆c

)
Q†k

2 − p†2ϵ+
1

B

(
Q1 −R +

Q†
2 +Q†k

2

2

)
ϵ > 0, (80)
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which can be rearranged into

∆cQ†k
2 >

(
p†2 −

(
Q†k

2

b
+

Q1 −R

B
+

Q†
2

2B
+

Q†k
2

2B

))
ϵ

=

(
p†2 −

Q†
2

b
−

Q1 −R +Q†
2

B

)
ϵ+ (Q†

2 −Q†k
2 )

(
1

b
+

1

2B

)
ϵ

=

(
1

b
+

1

2B

)
ϵ2,

(81)

where the last equality comes from the definition of ϵ and the first-order condition for

Q†
2. Therefore, for any ϵ > 0, there exists ∆c such that this condition is satisfied. This

condition is not mutually exclusive with ∆cQk
2 <

(
1
2B

+ 1
b

) (
Q⋆

2 −Qk
2

)2
since Qk

2 < Q†k
2

and Q⋆
2 − Qk

2 > Q†
2 − Q†k

2 . We have shown that there is ∆c > 0 such that Π†k(T ) −

Π⋆(T ) > 0 for some ϵ > 0. Now we want to show that Π†k(A) − Π⋆(A) ≥ 0 for all

A ≥ T̃ with T̃ < T . First, it is easy to show that ∂2Π†k(A)−Π⋆(A)
∂A2 < 0. The desired result

hence holds if ∂Π†k(A)−Π⋆(A)
∂A

|A=T > 0. We have,

∂Π†k(A)− Π⋆(A)

∂A
=

∂p†k2 Q†k
2

∂A
−

∂p⋆2Q
⋆
2

∂A
+

∂Q⋆
2

∂A

Q1 +Q⋆
2

B
−

∂Q†k
2

∂A

Q1 −R +Q†k
2

B

= p†k2 −

(
p⋆2

B

2B + b
+Q⋆

2

B + b

b(2B + b)

)
+

B

2B + b

Q1 +Q⋆
2

B
−

Q1 −R +Q†k
2

B

= p†k2 −
B

2B + b

(
p⋆2 −

Q⋆
2

b
−

Q1 +Q⋆
2

B

)
−

Q⋆
2

b
−

Q1 −R +Q†k
2

B

= p†k2 −
Q⋆

2

b
−

Q1 −R +Q†k
2

B

= ∆c+
k

b
−

Q⋆
2

b
−

Q1 −R +Q†k
2

B
.

(82)

Furthermore, at A = T , we have k = ϵ+ B+b
2B+b

T − B
2B+b

(Q1 −R), hence k/b = ϵ/b+ p†2.
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Substituting into the above yields

∂Π†k(A)− Π⋆(A)

∂A
|A=T = ∆c+

ϵ

b
+ p†2 −

Q⋆
2

b
−

Q1 −R +Q†k
2

B

> ∆c+
ϵ

b
+ p⋆2 −

Q⋆
2

b
−

Q1 −R +Q†k
2

B

> ∆c+
ϵ

b
+ p⋆2 −

Q⋆
2

b
−

Q1 +Q⋆
2

B

> ∆c+
ϵ

b

> 0.

(83)

These results characterize the conditions that it is profitable to choose R > 0 and

trigger the step by changing output from Q⋆
2 to Q†k

2 . It is interesting to note that when

Q⋆
2 > Q†k

2 the output is reduced when reneging occurs. This happens when ϵ > B+b
2B+b

R.
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B Data appendix & additional results

Table B1: Sample average of weather variables from 53 stations

Station Lon Lat Temp DewP Humi WindA WindS
ABEE AGDM -112.97 54.28 0.7 -4.2 73.4 19.8 10.8
ANDREW AGDM -112.28 53.92 0.9 -3.7 75.2 20.1 13.1
BANFF CS -115.55 51.19 1.9 -5.0 65.5 19.1 8.9
BARNWELL AGDM -112.3 49.8 4.6 -1.9 67.6 17.1
BARONS AGCM -113.22 50.03 3.7 -3.0 67.1
BASSANO AGCM -112.47 50.89 2.7 -3.1 71.1 15.1
BELLSHILL AGCM -111.47 52.58 2.2 -3.4 71.1 20.6 15.6
BLOOD TRIBE AGDM -113.05 49.57 4.2 -2.1 68.1 19.0
BOW ISLAND -111.45 49.73 4.5 -2.1 66.8 20.7 15.7
BOW ISLAND IRRIGATI -111.38 49.87 4.5 -1.8 68.7 20.0 13.2
BOW VALLEY -115.07 51.08 3.3 -4.6 61.8 10.1
BROOKS -111.85 50.56 3.5 -2.1 71.8 12.4
CADOGAN AGCM -110.51 52.33 2.2 -3.6 70.6
CAMROSE -112.82 53.05 1.9 20.7 12.7
CRAIGMYLE AGCM -112.25 51.78 2.2 -2.9 73.8
DELBURNE AGCM -113.18 52.18 2.6 -3.4 69.1
DRUMHELLER EAST -112.68 51.45 3.3 -3.1 68.2 20.4 9.5
EDMONTON BLATCHFORD -113.52 53.57 3.2 -1.7 74.4
EDMONTON CITY CENTR -113.52 53.57 3.4 -3.6 63.7 12.6
EDMONTON INTERNATIO -113.61 53.31 1.6
ELK ISLAND NAT PARK -112.87 53.68 6.5
ENCHANT AGDM -112.43 50.18 3.8 -1.9 71.3 20.9 15.5
ESTHER 1 -110.21 51.67 2.5 -3.7 68.8
ETZIKOM AGCM -111.05 49.55 4.0
GILT EDGE NORTH AGC -110.62 53.07 1.8 -3.4 72.9 14.3
IRVINE AGCM -110.26 49.99 4.6 -2.2 66.9
JASPER WARDEN -118.03 52.93 2.4 -4.2 67.5 17.8 6.9
KILLAM AGDM -111.87 52.85 1.5 -4.3 69.8 21.0 14.4
KITSCOTY AGCM -110.42 53.35 1.3 -3.5 74.3
LETHBRIDGE CDA -112.77 49.7 5.4 -2.1 63.4 21.0 16.1
LINDBERGH AGDM -110.58 53.94 0.9 -4.2 72.6 19.9 11.2
LLOYDMINSTER A -110.07 53.31 1.4 -3.8 72.2 16.1
MEDICINE HAT RCS -110.72 50.03 4.6 -2.4 65.6
MOSSLEIGH AGCM -113.35 50.67 2.9 -3.1 69.6
MUNDARE AGDM -112.3 53.57 1.7 -3.8 71.0 21.1 13.5
NEW SAREPTA AGCM -113.17 53.26 1.8 -4.0 69.5
ONEFOUR CDA -110.47 49.12 3.8 20.5 19.0
PAKOWKI LAKE AGCM -111.13 49.22 4.2 -2.6 67.2
POLLOCKVILLE AGDM -111.71 51.13 2.2 -3.6 70.7 14.8
RED DEER A -113.89 52.18 2.0 -4.0 67.6 9.8
RIVERCOURSE AGCM -110.1 53.02 1.3 -4.0 72.2
SMOKY LAKE AGDM -112.5 54.28 1.1 19.2 11.6
STAVELY AAFC -113.88 50.18 3.8 -4.3 60.0 16.2
SUNDRE A -114.68 51.78 1.7 -5.0 66.4 6.7
THORSBY AGCM -113.89 53.22 2.2 -3.7 68.6
THREE HILLS -113.21 51.77 2.7 -3.1 70.2 21.9
TOMAHAWK AGDM -114.72 53.44 2.4 -3.5 69.2 20.0 9.8
TULLIBY LAKE AGCM -110.08 53.66 0.9 -4.4 71.8
VAUXHALL CDA CS -112.13 50.05 4.2 -2.1 68.0 14.7
VIOLET GROVE CS -115.13 53.14 2.8 -3.6 66.6 10.7
WAINWRIGHT CFB AIRF -111.1 52.83 2.1
WETASKIWIN AGCM -113.44 52.98 1.8 -3.6 71.9
WIMBORNE AGCM -113.59 51.94 2.3 -3.8 68.7

Notes: This table shows sample means of the weather variables used from each of the 53 stations. Temperature and
Dew point temperature are Celsius degrees, humidity is in percentage points, wind angle is in tenths of degrees,
wind speed in km/h.
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Table B2: Model performance (Off-peak hours)

Training set Testing set Reneging set

n 7049 2820 450
Parameters 316

S RS S RS S RS RS

Mean Int. Bias 2.0 2.4 1.9 2.1 −7.8 −315.0 41.6
Mean Int. Abs. Bias 19.7 50.3 19.7 50.3 28.3 340.8 89.7
Mean Int. Rel. Abs. Bias 2.5% 0.8% 2.5% 0.8% 3.8% 5.0% 1.2%
RMISE 27.9 69.8 28.1 70.0 36.7 421.3 122.6
Rejection Rate (Imhof) H0 – – 0.045 0.057 0.120 1 0.382
Rejection Rate (BS) H0 – – 0.041 0.059 0.111 1 0.391
Zero parameters 122 80
λCV 0.009 0.004

Coverage probabilities RS R̂S RS R̂S RS R̂S RS

Price – – 0.94 0.95 0.82 0.52 0.30
Output – – 0.94 0.94 0.81 0.75 0.80

Notes: This table shows statistics of model performance separately for the training set, testing
set and reneging set. The reneging set includes all hours for days when reneging occurred. The
statistics include Mean Integrated Bias, Absolute Bias, Relative Absolute Bias, the root-mean-
integrated-squared-errors (RMISE), rejection rates using the asymptotic distribution (Imhof) and
parametric bootstrap (BS). Zero parameters is the number of parameters set to zero by the algo-
rithm (on average across the 52 price values). Inference for functions is described in Appendix C.

Price-responsive loads and net import functions We follow the methodology

outlined in Ayres (2014), up to minor modifications due to data limitations, in order to

incorporate price-responsive load and net import functions. We detail how it is done

in our analysis below.

The equilibrium condition is

S(p) = D −RS(p)− nI(p)− SPRL(p),

where the domestic production that we observe in each hour corresponds to D −

nI(P ⋆)−SPRL(P
⋆), for the current price P ⋆. We define the residual demand function as

RD(p) = (D−nI(P ⋆)−SPRL(P
⋆))−RS(p)−(nI(p)−nI(P ⋆))−(SPRL(p)−SPRL(P

⋆))

such that the equilibrium is always characterized by S(P ⋆) = RD(P ⋆). Therefore, for

any observed residual demand in the data where all we have is domestic production and
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residual supply bids like RDm(p) = (D−nI(P ⋆)−SPRL(P
⋆))−RS(p), we only need to

substract the recentered net import and PRL supply functions to obtain the residual

demand functions that account for price-responsive load and net import functions.

Following Ayres, we assume that the price-responsive load can be written as the sup-

ply function: SPRL(p < 100) = 31, SPRL(100 ≤ p < 500) = 93, SPRL(500 ≤ p < 800) =

139, and SPRL(800 ≤ p < 1000) = 180. The net import function from British Columbia

is nIBC(0 ≤ p < 25) = −ECapBC ,nIBC(25 ≤ p < 27) = −0.75ECapBC , nIBC(27 ≤ p <

29) = −0.5ECapBC , nIBC(29 ≤ p < 33) = −0.25ECapBC , nIBC(33 ≤ p < 45) = 0,

nIBC(45 ≤ p < 46) = 0.25ICapBC , nIBC(46 ≤ p < 55) = 0.5ICapBC , nIBC(55 ≤ p <

89) = 0.75ICapBC , nIBC(89 ≤ p < 1000) = ICapBC , where ICapBC and ECapBC de-

note the available import and export capacity to BC. The net import function from

Saskatchewan is nISK(0 ≤ p < 25) = −ECapSK ,nISK(25 ≤ p < 27) = −0.75ECapSK ,

nISK(27 ≤ p < 29) = −0.5ECapSK , nISK(29 ≤ p < 33) = −0.25ECapSK ,nISK(33 ≤

p < 55) = 0, nISK(55 ≤ p < 1000) = ICapSK , where ICapSK and ECapSK denote the

available import and export capacity to SK.
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Table B3: Model performance (PPA Plants)

Training set Testing set Reneging set

Peak Off-Peak Peak Off-Peak Peak Off-Peak
SD5
Mean Int. Bias 0.9 0.9 0.9 0.9 −108.2 −108.2
RIMSE 9.5 9.5 9.8 9.8 195.6 195.6
SD6
Mean Int. Bias 0.5 0.5 0.5 0.5 −22.6 −22.6
RIMSE 10.1 10.1 9.8 9.8 88.1 88.1
KH1
Mean Int. Bias 0.1 0.1 0.1 0.1 −21.5 −21.5
RIMSE 3.1 3.1 3.0 3.0 89.7 89.7
KH2
Mean Int. Bias 0.1 0.1 0.1 0.1 −56.7 −56.7
RIMSE 3.2 3.2 3.1 3.1 145.8 145.8
SD2
Mean Int. Bias 0.2 0.2 0.2 0.2 −21.3 −21.3
RIMSE 5.7 5.7 6.1 6.1 71.5 71.5
SD3
Mean Int. Bias 0.6 0.6 0.5 0.5 −51.4 −51.4
RIMSE 9.5 9.5 10.0 10.0 125.7 125.7
SD4
Mean Int. Bias 0.9 0.9 0.9 0.9 −83.8 −83.8
RIMSE 12.4 12.4 12.5 12.5 176.9 176.9

Notes: This table shows statistics of model performance for supply strategies of PPA plants
which reneged. We report statistics separately for the training set, testing set, and reneging set.
The reneging set includes all hours for days when reneging occurred. RMISE refer to the root-
integrated-mean-squared-errors.
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C Inference

We test the null hypothesis formalized in (17) using the Cramer-Von Mises statistic

CVMS =
∫ 1000

0
∆̂St(p)

2dp. Remark that ∆̂St(p) = ût(p) is obtained from the vector

approximation ût. This vector is asymptotically distributed as a multivariate normal.

Thus, CVMS asymptotically follows a weighted χ2 distribution which weights depends

on the eigenvalues of the asymptotic covariance of ût. We estimate this covariance

matrix using the testing set (and not the training set). P-values are computed from

an approximate asymptotic distribution.61 The same approach is used to conduct

inference on ∆̂RDt.

Besides, we test the null hypotheses

H0 : ∆̂P t = 0, and, H0 : ∆̂Qt = 0. (84)

The distribution of those equilibrium values depends non-linearly on the joint distri-

bution of supply and residual demand functions. We propose to use a parametric

bootstrap to approximate their distributions. The random draws are taken from the

multivariate normal distribution using the covariance of error vectors for supply and

residual demand (estimated using the testing set). This aims at accounting for the

correlation between the two functions. The procedure is as follows. Separately for

each hour t in the sample, we draw 10,000 multivariate normal random vectors u
Sb

t

and u
RDb

t to construct Ŝ⋆b
t and R̂D

⋆b

t . Then, for each draw we compute the equilibrium

price and firm’s output (P̂ b
t , Q̂

⋆b
t ). Finally, we use the quantiles of the bootstrapped

distribution to construct confidence intervals and to compute p-values for the CVM

statistics.

61A more formal treatment of functional testing procedures is proposed in Benatia (2018b) and
Carrasco, Florens and Renault (2014).
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