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Abstract

Policies promoting residential solar system adoption are designed assum-
ing the associated generation displaces retail electricity purchases on a one-
for-one basis. This assumption is not innocuous; electricity from residential
solar systems is unlikely to be perfectly substitutable with grid electricity.
We estimate a model of U.S. residential electricity demand allowing for spa-
tial heterogeneity and imperfect substitution between forms of electricity to
quantify the implications for green energy subsidization. We find subsidies
inducing one kWh of residential solar electricity demand displace only 0.5
kWh of grid consumption. As an emissions reduction policy subsidies had
national abatement costs of $332 per MTCO2 in 2018.
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1 Introduction

The United States has implemented a series of tax, regulatory, and trade poli-

cies aimed at increasing the adoption of residential solar photovoltaic (PV) sys-

tems over the past decade. The Inflation Reduction Act extends the largest of

these incentives, a credit equal to 30 percent of the costs of installing PV sys-

tems households can claim against their federal tax liability, out until 2034. The

stated goal of promoting PV adoption is reducing residential electricity purchases

from the grid in order to lower both carbon emissions and strain on local power

networks during peak hours.1 However, the extent to which induced demand

actually displaces retail electricity sales is critical for evaluating the efficacy of

solar PV subsidization policies. To this end, this paper examines how effective

historical government support for residential PV uptake has been in reducing

residential demand for electricity from the grid.

From a purely physical perspective it may seem reasonable to assume that the

electricity generated by residential solar PV systems should in turn directly lower

consumption from the grid. After electricity generated by PV systems is inverted

and stepped up into the AC current that is used in homes, it is indistinguishable

from electricity drawn from the grid. However, as an empirical question, it is

unclear whether generation by residential systems displaces grid demand on a

one-for-one basis. There are many reasons, such as intermittency and reliability,

that may preclude direct substitution of rooftop solar for electricity drawn from

the grid in all instances. Indeed, if the two sources of electricity were perfect sub-

stitutes from an economic perspective, households should solely purchase one

form when faced with differentiated prices.

The limited uptake of solar PV systems by U.S. households, even after sub-

stantial price declines in the past decade, provides a strong signal this substi-

tutability is likely imperfect. Despite subsidization and regulatory support at

multiple levels of government residential solar systems generated less than 1%

of all electricity consumed by households from 2010-2018, and only 2% at the

1The White House recently suspended tariffs on imported silicon photovoltaic cells and mod-
ules and invoked the Defense Production Act to promote domestic solar production with goals
of “cutting energy costs for families, strengthening our grid, and tackling climate change” by
increasing solar adoption (see here).
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national level as of 2022. Residential PV system installation rates vary consid-

erably between otherwise similar locations which would offer comparable PV

performance. As siting mechanically affects system productivity, some spatial

differentiation is to be expected due to variation in the flux of solar radiation per

unit area (insolation) across locations. Despite this, we show there is significant

dispersion in uptake rates between neighboring Census tracts, despite the fact

that within a county one might expect driving factors such as insolation as well

as grid and PV system prices to be similar.

These facts lead to the primary question which we explore in this paper. How

effective are subsidies for residential PV systems at both inducing additional de-

mand for solar generation and reducing demand for more emissions-intensive

retail electricity from the grid? We begin with an overview of data on local elec-

tricity and PV system prices taken from various administrative sources and use

it to highlight three stylized facts: (1) half of existing variation in solar uptake

at the Census-tract level is unexplained by insolation, income, and other observ-

able variation within counties, (2) there is historical dispersion within counties

between the costs of electricity generated by residential PV systems and the grid

electricity prices faced by residential customers, and (3), while past increases in

residentially generated electricity from PV systems probably did concurrently

displace some demand from the grid, this crowding out has not been one-for-

one.

To rationalize these empirical findings we form a structural model of demand

for electricity that allows for imperfect substitutability between electricity from

residential PV systems and that drawn from the grid. The model incorporates

differentiated prices for each form of electricity at the county level as well as

spatial heterogeneity in preferences for the composition of electricity consumed.

This lets the price dispersion we see in the data, along with any latent variation in

tastes for solar electricity across locations, affect modeled demand. We estimate

the model’s structural parameters and perform experiments which examine how

demand would differ in a counterfactual where existing residential PV subsi-

dies are absent. The counterfactuals illustrate the effects of subsidization policies

on demand for both residential solar and retail electricity for the entirety of the

lower-48 U.S. states, highlighting both the aggregate effects of subsidies as well

as the dispersion of these effects across locations.
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Our estimates indicate that existing policies have been effective at increasing

demand for residential solar. Counterfactual simulations for 2018 suggest exist-

ing subsidies increased household demand for electricity from residential PV sys-

tems by 255% relative to an alternative regime absent any government support.

The aggregate shift masks fairly heterogenous effects of policy across locations.

We find that the costs of inducing an additional 1kWh of demand for solar elec-

tricity consumption range from $0.06 per kWh in the 10th percentile county to

over $0.31 per kWh at the 90th percentile. These locational differences in the effi-

cacy of subsidies suggest the current uniform federal credit leads to misallocation

if the goal is to maximize induced production, similar to results from studies in

other countries (Lamp and Samano 2023).

At the national level subsidies lead to a solar rebound effect (Qiu, Kahn, and

Xing 2019; Aydın, Brounen, and Ergün 2023), where decreases in residential PV

prices cause both solar and aggregate electricity consumption to rise. We find

that the effect is small, equal to roughly 0.6% of total residential electricity con-

sumption in 2018. This rebound effect stems from the imperfect crowding out

of grid electricity by newly induced solar demand. Existing subsidies increase

modeled solar demand by 19.5 billion kWh, but displace only 9.8 billion kWh of

demand from the grid. The implied rate of displacement, -0.50, is in line with

our reduced-form estimates using state-level panel data for monthly residential

electricity consumption between 2014 and 2022.

This lack of one-for-one displacement has important implications for the im-

plied abatement costs associated with PV subsidization policies. The combina-

tion of all subsidies aimed at inducing solar demand imply an average national

abatement cost of $332 per metric ton of CO2 (MTCO2), roughly twice what these

costs would be under the assumption of perfect displacement. We conclude by

discussing the implications of this imperfect crowding out effect. Given trends

in current policy toward subsidies in lieu of pollution quotas or taxes, our find-

ings add to the growing body of evidence on the shortcomings of second-best

approaches to mitigation.2

2This may be especially salient given the Inflation Reduction Act also provides large subsi-
dies for the adoption of heat pumps and electric vehicles, both of which are promoted as green
alternatives to existing emissions-intensive technologies (Davis 2023).
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2 Background

Residential PV systems have gone from a nascent technology to a widely

available option for electricity provision in the U.S. over the past 20 years. The

combination of a favorable policy environment and a 75% decline in the average

cost (per Watt) of PV systems since 2000 helped drive the installation of almost

2 million small-scale solar systems through 2019 (Barbose et al. 2019).3 Beyond

traditional issues of incidence and distributional consequences (Borenstein and

Davis 2016; Borenstein 2017; Pless and Benthem 2019), the use of subsidies raises

questions regarding the extent to which present policies are achieving the goals of

increasing system uptake and reducing demand for emissions-intensive electric-

ity from the grid. These issues will become increasingly relevant going forward

given the trend in current policy toward incentivizing households to purchase

green alternatives for existing goods.

In this section we first undergo a brief survey of the existing literature. We

contribute to several strands including research on rebound effects, household

PV system adoption, and misallocation in the environmental context. We go on

to perform a decomposition exercise of residential PV uptake in 2018 that gives a

spatial perspective on the distribution of residential systems. The exercise shows

that a significant share of within-county variation in residential PV uptake is un-

explained by insolation, income, and other observables.

2.1 Existing Literature

Our study contributes foremost to research on the rebound effect, the liter-

ature motivated by how changes in the efficiency of using energy resources as

inputs affects final demand (Khazzoom 1980; Chang, Wang, and Shieh 2018). In

the case of electricity, efficiency improvements lower the amount of generation

required to produce a given amount of services that use electricity as an input,

but may also induce additional demand due to reducing the relative prices for

such services. Empirical estimates for rebound effects in electricity consumption

3Small-scale PV, a broader measure capturing all non-utility scale installations by both house-
holds and small commercial enterprises, comprised 4.5% of U.S. electricity generating capacity in
2018 (EIA 2020).
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vary considerably due to differentiated definitions, methods, and settings (Chan

and Gillingham 2015; Borenstein 2015). Papers by Deng and Newton (2017), Qiu,

Kahn, and Xing (2019), and Aydın, Brounen, and Ergün (2023) are the first to

use quasi-experimental methods to estimate a household solar rebound effect —

the extent to which residential PV generation increases electricity consumption.

They exploit intraday fluctuations in electricity generation from residential PV

systems and find households increase their combined consumption of solar- and

grid-drawn electricity on days when household generation is especially high. We

contribute to this literature in estimating a solar rebound effect using a structural

model that accounts for how the income, price, and substitution effects of sub-

sidies affect residential electricity consumption. This allows us to examine how

the spatial variation in subsidies and insolation impacts both local and aggregate

rebound effects for the entire United States.

A second literature has focused on the extensive margin of residential solar

PV system adoption. Rich household-level data have allowed for the estimation

of granular discrete choice models of household installation decisions in the U.S.

and international settings (De Groote and Verboven 2019; Gillingham and Tsve-

tanov 2019; Langer and Lemoine 2022; Feger, Pavanini, and Radulescu 2022).

These studies illustrate a range of findings particular to household PV uptake,

notably the myopic behavior of households with regard to future payments from

renewable energy generation (De Groote and Verboven 2019) and the importance

of accounting for forward-looking behavior (Langer and Lemoine 2022) and tar-

iff structure (Feger, Pavanini, and Radulescu 2022) when designing policy incen-

tives to increase PV adoption. While our model of demand is less granular than

those above, it allows us to focus on how households’ substitution between PV

systems and grid electricity affects their total electricity consumption. We can di-

rectly examine how existing policies have shaped aggregate electricity demand

rather than focusing on discrete system adoption decisions in specific regions.

Finally, we contribute to a literature examining the spatial heterogeneity in

the social costs of renewable energy adoption. Benefits from PV adoption may

accrue through the channel of pollution mitigation from displaced grid demand

and lower carbon emissions, as well as by relieving grid congestion (Sexton et al.

2021; Lamp and Samano 2023; Dauwalter and Harris 2023). Callaway, Fowlie,

and McCormick (2018) show in the U.S. that the displaced emissions of new re-
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newable energy deployment vary substantially across physical location. Sexton

et al. (2021) and Dauwalter and Harris (2023) extend this analysis to local pollu-

tants and show that the environmental benefits from new PV capacity are highly

dependent on location and the displaced generation. The above studies combine

to illustrate how the uniformity of existing subsidies at the federal level, along

with the agnostic treatment of spatial variation in the benefits from avoided gen-

eration, is in general inefficient. In a related study Lamp and Samano (2023) show

for Germany that gains in social welfare may also be possible if existing PV ca-

pacity could be moved around to better reflect the spatially-differentiated value

of electricity.

Like these papers we focus on the efficacy of existing subsidies in the context

of induced demand and to a lesser extent carbon abatement across space. How-

ever, to the best of our knowledge, we are the first to explore how the extent

that residential generation displaces grid demand determines the implications of

solar PV subsidies for aggregate residential electricity consumption. We show

that the imperfect crowding out of grid demand by new PV systems affects both

the spatial distribution of abatement and aggregate abatement overall. Our pass-

through estimates from counterfactuals, supported by evidence from time series

data, suggest that assumptions of one-for-one grid displacement by new residen-

tial PV demand may be overly optimistic.

2.2 U.S. Residential Solar

The most granular comprehensive data on residential solar panel uptake across

the entire continental United States come from Stanford University’s DeepSolar

Project (Yu et al. 2018).4 DeepSolar provides a cross section of the universe of

residential solar installations within the contiguous United States at Census-tract

levels as of December 2018. Figure 1 shows a choropleth map of county-level

average daily solar insolation in native units — kilowatt-hours (kWh) per square

meter per day (kWh/m2/d). This measure captures the maximum amount of en-

4The DeepSolar Project utilizes machine learning techniques to analyze satellite imagery and
infer the location and surface area of small-scale solar panel installations across the lower-48 U.S.
states. The data are currently available as a static snapshot as of December 2018. This dataset links
solar panel location and surface area with average daily solar insolation, measured in kilowatt-
hours per square meter per day (kWh/m2/d), at the Census-tract level.
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ergy a square meter of PV cells could produce over the course of the average day

in a given location.

3.50

4.00

4.50

5.00

5.50

kWh per Square Meter

Figure 1: County-level average daily solar insolation (kWh/m2/d) from the De-
cember 2018 DeepSolar data (Yu et al. 2018).

Figure 2 displays the extent of dispersion in uptake of residential solar instal-

lations. The color gradient in this figure is increasing in the percentages of house-

holds at the county level that have installed solar capacity (as of December 2018).

While solar panel uptake is highly concentrated in the Southwest, wherein some

counties have uptake rates of over 10%, household installations are prevalent in

a few Northern coastal areas as well. Despite the concentration of installations in

urban areas of the Pacific Northwest and Northeastern U.S., uptake rates appear

to follow the insolation gradient.
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Figure 2: Share of households in a given county with residential solar installations
from DeepSolar (Yu et al. 2018).

2.3 Decomposing Solar Panel Uptake

A sort of visual regression of Figure 2 on Figure 1 would suggest insolation

does explain a large portion of uptake. To formally test this we begin with a

reduced-form specification for household demand for PV systems at the Census-

tract level. We regress the average panel area per household in Census tract k of

county c, PAkc, on income and insolation along with county-level fixed effects,

ωc:

PAkc = α1 ln(incomekc) +α2 insolationkc +ωc +ǫkc (1)

Results from variations of the specification in equation (1) are shown in Table

1. Column (1) formalizes the heuristic test available from comparing local insola-

tion in Figure 1 to installation rates in Figure 2; insolation is positively correlated

with uptake and explains roughly one-fifth of tract-level variation in adoption.

Column (2) confirms existing results that higher-income locations also exhibit

greater panel uptake (Borenstein and Davis 2016). Adding county-level fixed ef-
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fects ωc along with insolation and income explain half of observed variation in

column (5). The Census-tract level granularity is particularly helpful as it allows

for decomposition within counties while fixed effects control for any variation in

prices and policies across counties.5

Table 1: Decomposition of Solar Panel Area per Household

(1) (2) (3) (4) (5)

Insolation 0.566 - 0.576 - 0.621

(0.131) (0.150) (0.513)

Log Income ($1000s) - 0.391 0.413 - 0.368

(0.183) (0.152) (0.188)

County Fixed Effects No No No Yes Yes

R2 0.18 0.05 0.24 0.45 0.49

N 71,651 71,651 71,651 71,651 71,651

Standard errors clustered at the state level are shown in parentheses. Observations are

weighted by the number of households in the Census-tract using Stata’s aweights command.

Log income is the Census-tract average reported in the ACS 5-year survey from 2015, mea-

sured in thousands of dollars.

Adding a large vector of local climatological and demographic controls to the

regression in (5) attenuates the magnitude of coefficients slightly but does not

change the qualitative result or model fit.6 If it is the case where local differences

5Variation in the regulatory structure governing utilities and generators, state renewable port-
folio standards, and the policy of individual load-serving entities are just some of the factors
affecting local electricity markets. While there is substantial heterogeneity in subsidization poli-
cies and regulation of the electric grids at the county- and state-levels, we believe the intra-county
variation is likely much more limited.

6Adding a vector of demographic controls comprised of black and white race shares, the rate
of residents with less than a high school education, population density, the rate of households
with mortgages, GOP voting percentages in 2016, total land area, median home values and rental
payments, and a diversity index and climatological controls, including local heating and cooling
degree days, coordinate grid centroid, elevation, heating and cooling design temperatures, frost
days, average air temperature, relative humidity, atmospheric pressure, and wind speed raises
the R2 in column (5) to 0.54 while the coefficients on insolation and income remain roughly un-
changed.

9



in system prices and grid electricity are captured by county-level fixed effects,

it is somewhat surprising that these level effects, along with variation in insola-

tion and income, explain only half of system uptake in column (5). To attempt

to rationalize the large share of uptake not attributable to observables, we form a

structural model for residential PV system demand that allows for latent charac-

teristics to contribute for the unexplained variation in our decomposition exercise

thus far.

3 Model

This section lays out the theoretical framework we use to characterize U.S.

demand for residential PV systems relative to grid electricity and non-electrical

consumption. A household i is utility-maximizing and indexed by its county

of residence c in year t. Households are price-takers with exogenous income

each period. Each household has preferences over an electricity composite good,

qe
ict, and an outside commodity, cict, which captures all non-electricity consump-

tion. The electricity composite combines electrical consumption from the grid,

gict, with consumption of residentially generated solar electricity, sict, using a

quasi-constant elasticity of substitution (Q-CES) aggregator that allows for non-

homotheticity in demand for each form of electricity. The electricity composite

is

qe
ict =

(
γ j(gict − g)

ρ−1
ρ + (1 − γ j)(sict − s)

ρ−1
ρ

) ρ
ρ−1

, ρ ≥ 0 and γ j ∈ (0, 1)

(2)

Where j indexes the state of residence for agent i. The parameters γ j and ρ re-

spectively govern the weight households put on each form of electricity and the

substitutability between the two forms. As ρ → ∞ solar and grid electricity are

perfect substitutes. As ρ → 0 the aggregator is Leontief. We allow the weight of

grid electricity in the composite, γ j, to vary across states. Households in states

with lower γ j values will prefer an electricity composite that has a higher share

of solar electricity. The degree of non-homotheticity in grid and solar demand is

parameterized by a pair of reference levels, s and g.

Households have preferences over the electricity composite, qe
ict, and outside

10



consumption, cict, according to a CES utility function:

u j(q
e
ict, cict) =

(
δ j (q

e
ict)

κ−1
κ + (1 − δ j) (cict)

κ−1
κ

) κ
κ−1

, κ ≥ 0 and δ j ∈ (0, 1)

(3)

The parameters δ j and κ govern the weight and substitutability households as-

sign to the electricity composite and outside consumption. Like above, a larger δ j

will lead to households preferring a higher share of total expenditure dedicated

to electricity. We assume that at the state level, all counties in state j have the

same weight parameters, γ j and δ j. The parameters governing substitutability, κ

and ρ, along with reference levels, s and g, are identical for all counties and states.

Within a county households are assumed to be heterogeneous only in exoge-

nous income, yict. The household’s period-t budget constraint is

cict + p
g
ct gict + ps

ct sict = yict (4)

Households within a county face identical and constant flow prices for solar and

grid electricity each year. At the national level households face a uniform price

for the outside good, cict, which serves as the numéraire. ps
ct is the local average

price in county c of period t a household faces in order to consume one kWh of

residential-solar electricity.7 Meanwhile, p
g
ct is the local average price a household

7As we lack access to household-level data combining panel installations, income, and elec-
tricity consumption, uniform market prices (including ps

ct) across households within a county are
necessary for estimating demand at the county level using available data. The least innocuous as-
pect of this price uniformity assumption is that the marginal price of one unit of solar electricity
is, on average, the same for all households within a county in a given year. A thorough scrutiny
of empirical evidence backing up this assumption is available in Technical Appendix C. In short
we find that the portion of system-level variation in levelized costs of energy (LCOE) explained
by system capacity is small (less than 10%) relative to the portion of cost that is either constant
within locations or explained by other factors (e.g., year of installation, module efficiency, or in-
verter type). We will discuss in detail how solar prices are constructed in Section 4.
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pays for one kWh of electricity consumed from the grid.8

Our model treats solar electricity consumption as a continuous choice rather

than a discrete choice over adoption choice. We elect to abstract from the dis-

crete aspect of solar adoption because our primary focus is how subsidization

has affected total residential electricity consumption in a given location rather

than the number of adoptees. The solar flow cost (i.e., the price of one kWh of

residential-solar-generated electricity) embeds upfront panel installation costs,

regional net-metering policies, regional solar subsidization and taxation policies,

and system-level productivity which will vary both over time, due to technolog-

ical change, and by region, due to insolation and climatological differences.9 An

accurate accounting of the effects of such subsidies will naturally consider how

policies impact aggregate consumption flows from different electricity sources.

Lemma 1. The household’s Marshallian demand system features Engel curves that are

linear in income. The model admits a county-level representative consumer.

All proofs are relegated to Technical Appendix A. Assuming prices of grid and

solar electricity are constant across all households within a county ensures we can

examine the local average demand system for a county-level representative con-

sumer. Households maximize (3) composed with (2) subject to (4). Along with

uniform pricing within a county, this nested Q-CES preference structure implies

that the demand generated by aggregating across all households within a county

coincides with that of a utility-maximizing representative agent. Lemma 1 states

that the Marshallian demand functions generated by the Q-CES structure satisfy

the conditions for aggregation outlined in Lewbel (1989). From here forward all

8Data limitations preclude us from imposing a variable marginal price schedule. As prior
structural models in the literature abstract from block pricing, we view the assumption that prices
for electricity from the grid are constant across households within counties as fairly benign (De
Groote and Verboven 2019; Feger, Pavanini, and Radulescu 2022). While, in practice, instanta-
neous electricity prices faced by households may vary with intensity and time of utilization in
some locations, this variation in marginal pricing is substantially smaller than gaps we observe
between solar and grid prices in much of our sample. Borenstein and Bushnell (2022) find that
while 58% of residential customers face varying marginal electricity prices, the absolute difference
between minimal and maximal marginal prices is less than $0.02 per kWh on average, between
10-20% of average costs. There is also evidence that household electricity demand is responsive
to changes in average rather than marginal prices (Ito 2014).

9We describe our process for constructing these prices in the estimation section.
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theoretical and empirical analyses are performed on the conditions for optimal

allocations of a county-level representative agent.

3.1 Comparative Statics

Our model is useful for examining how subsidies that lower the unit price of

residential solar electricity, ps
ct, impact residential solar demand. In this section

we establish conditions under which rebound and backfire effects occurs in our

model. In our setting a rebound effect occurs when declining composite electric-

ity prices, due to the falling opportunity cost of residential solar, lead to an overall

increase in total electrical consumption.10 Although related, our definition of the

rebound effect in the model does not strictly map one-for-one into changes in the

real quantity of electricity consumed (as measured in kWh), but rather an increase

in demand for the composite, qe
ct, attributable to a decline in the optimal price in-

dex, pe
ct via falling ps

ct.
11 As sct is a normal good, its demand will rise as ps

ct falls.

However, the degree to which declining solar prices will affect demand for the

composite electricity good and grid electricity is less immediately apparent.

Definition 1. A subsidization policy backfires if households’ consumption of grid elec-

tricity rises as solar prices fall.

Definition 1 makes explicit a potential perverse outcome from subsidization. Note

that while all policies which backfire due so because of rebound effects, rebound

effects are not necessarily associated with backfiring policies (Chan and Gilling-

ham 2015). Under Definition 1, even if both gct and sct rise in response to a de-

cline in ps
ct then the policy has backfired as grid consumption has risen. We now

characterize the conditions which determine whether subsidization policies will

cause rebounding and backfiring effects.

Proposition 1. Let pe
ct and p̃ct be optimal price indices for the electrical and aggregate

consumption composite goods. Let εe,s
ct be the elasticity of pe

ct with respect to ps
ct, and,

similarly, let ε̃s
ct be the elasticity of p̃ct with respect to ps

ct. Demand for the electricity

10Our notion, while particular to our model, is similar to a more general phenomenon charac-
terized in the literature (Chan and Gillingham 2015; Kulmer and Seebauer 2019; Qiu, Kahn, and
Xing 2019).

11Note that we are dropping household-level indices, i, as we are now operating in an environ-
ment characterized by county-level representative consumers.
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composite is strictly decreasing in the price of solar, leading to rebound effects, if and

only if

κ(ε̃s
ct −ε

e,s
ct )− ε̃s

ct <
ps

ct s

ỹct
(5)

where ỹct = yct − ps
ct s − p

g
ct g. This condition is always satisfied if s ≥ 0. When s < 0,

the existence of rebound effects depends on the sign of (5).

Proposition 1 establishes that under the Q-CES structure, a decline in the solar

price will lead to rebound effects if conditions on κ, s, and the price-index elas-

ticities with respect to ps
ct are met.12 If households are faced with a non-negative

reference level parameter, s, rebound effects are guaranteed to occur for all com-

binations of strictly positive solar and grid prices.13 When s < 0, however, re-

bounding effects are not guaranteed unless the price-index elasticities satisfy (5).

Proposition 2. Subsidization policies reducing ps
ct will backfire, causing grid electric-

ity demand to rise, if any of the following conditions hold:

1. The structural parameters satisfy s ≥ 0, and 0 < ρ ≤ κ < 1.

2. s = 0, and ρ, κ, and price-index elasticities satisfy

ρ−κ

1 −κ
<

ε̃s
ct

ε
e,s
ct

if κ < 1 or
ρ−κ

1 −κ
>

ε̃s
ct

ε
e,s
ct

if κ > 1 (6)

3. s, and ρ, κ, and price-index elasticities satisfy

(ρ−κ)εe,s
ct − (1 −κ)ε̃s

ct <
ps

ct s

ỹct
(7)

Proposition 2 guarantees that backfiring effects will occur independent of local

variation in price-index elasticities only if condition 1 holds. Note that while this

condition is sufficient, it is not necessary for backfiring effects to occur. Indeed,

12Note that the price indices, pe
ct and p̃ct are defined in Lemmas A1 and A2 of Technical Ap-

pendix A.
13When we estimate the model, indeed we estimate that ŝ > 0, predicting that residential-solar

subsidization policies in all geographic locales within the U.S. lead to rebound effects.
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condition 2 says that s can be zero with κ < ρ < 1 and backfiring effects can still

be observed as long as the relative price-index elasticities satisfy the left-hand

condition in (6). A similar requirement occurs for κ > 1 at s = 0. Clearly, it

must be that ρ < κ for ρ−κ
1−κ

to be positive if κ > 1, but the relative price-index

elasticities will still dictate whether backfiring effects occur. Condition 3 says

that even when s, ρ, κ, and price-index elasticities do not necessarily satisfy the

more narrow sufficiency conditions described in 1 and 2, backfiring effects can

still be observed. In fact, they are increasingly likely to be observed, regardless

of the values of ρ, κ, and price-index elasticities, as income effects get stronger.

There are, however, still conditions when s is finite or even negative under which

backfiring effects will be observed: we simply require that (7) holds.

4 Estimating the Model

We estimate demand parameters from the model presented in Section 3 to

test whether Propositions 1 and 2 hold in the data. We begin with presenting

our main estimating equations and briefly outlining our data sources, namely

how we compute the price of residential solar electricity. We then estimate the

structural parameters on a set of 601 counties between 2010 and 2018 for which

we have sufficient data. After examining the in-sample model fit, we extrapolate

our estimates to the full set of counties in the contiguous United States. The

estimated parameters are then used for simulations in Section 5.

4.1 Estimating Equations

We use generalized method of moments (GMM) to estimate the structural de-

mand parameters governing the model. Our estimating equations are comprised

of the representative agents’ structural demand functions for each commodity:

gct = g +

(
γ j

p
g
ct

)ρ

pe
ct(p

g
ct, ps

ct)
ρ−1Xe

ct(gct, sct, p
g
ct, ps

ct) + η
g
ct (8)

sct = s +

(
1 − γ j

ps
ct

)ρ

pe
ct(p

g
ct, ps

ct)
ρ−1Xe

ct(gct, sct, p
g
ct, ps

ct) + ηs
ct (9)

cct =
(
1 − δ j

)κ
p̃ct(p

g
ct, ps

ct)
κ−1

(
yct − ps

ct s − p
g
ct g

)
+ ηc

ct (10)
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For each county/year pair the targeted moments are given explicitly by equa-

tions (8), (9), and (10) below. Demand is decomposed into theoretical predictions

based on observed income and prices along with an error term, ηct.
14,15 Xe

ct is

county-level optimal electricity expenditure, which can be written as a function

of demand for grid and solar, prices, and reference parameters, as demonstrated

in Lemma A1 of Technical Appendix A. Because Xe
ct is a function of left-hand side

variables gct and sct, the demand system given by (8), (9), and (10) is implicit.16

The term yct in (10) is average household income for a county/year pair taken

from the American Community Survey (ACS). The sample we use for estimation

contains 601 counties covering 16 states over the 2010-2018 period. Annual av-

erages for residential grid electricity prices and consumption at the county-level

come from the EIA.17,18

4.2 Residential PV Electricity Pricing and Consumption

Unlike with electricity purchased from the grid, flow prices and quantities for

households’ consumption of residential PV-generated electricity are not readily

observable. In this section we describe how we measure average residential PV

generation and flow prices at the system level. We use these system-level mea-

surements to form averages at the county/year frequency for solar consumption,

14See Lewbel (2001).
15We use bold-face font to denote vectors. In this case ηct is a three-dimensional vector com-

prising the error terms in the GMM-targeted demand system for a given county/year pair (i.e.,
the difference between observed demand and the values that would be generated by the true
set of population parameters governing agents’ maximization problems in a correctly specified

model). We denote demand-specific errors with superscripts, so that, for example, η
g
ct is the error

for county/year pair c and t in (8).
16When minimizing the GMM objective function, we pass data for gct, sct, p

g
ct, and ps

ct to the
expression for electrical expenditure, while the minimizing routine updates the structural param-
eters g and s at each iteration.

17The EIA’s form 861 collects annual data on the universe of U.S. utility companies’ electricity
sales from 1990 onward. Respondents submit data on total electricity deliveries, total revenue,
and total number of customers by state and end-use sector. These data provide total residential
electricity expenditure, consumption, and customers served for each state/utility pair. We then
aggregate all consumption and customers served at the county level using the service territory
data provided in form EIA-861 to construct average prices and consumption and use the EIA’s
utility/county crosswalk to map these data to the counties in our sample.

18Non-electrical consumption, cct, is computed by subtracting both forms of electricity expendi-
ture from county-level average household income taken from the American Community Survey
estimates for each year.
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sct, and average solar prices, ps
ct.

Data for constructing prices and quantities are drawn from the Lawrence

Berkley National Lab’s (LNBL) Tracking the Sun (TTS) dataset, which catalogues

the majority of small-scale PV installations between 1998 and 2018 (Barbose et al.

2019). Each observation contains the size of the system (in Watts), the location

of the installation, and the date the system was installed. We use the LBNL’s

PVWatts API to estimate annual solar generation at the system level for the ap-

proximately 700,000 residential installations in the TTS dataset for which we have

sufficient location data. Then, for each county/year in which we observe instal-

lations, we sum our total measurement for generation across all systems installed

either prior to or in that year. We take this total and divide it by annual house-

hold counts from the ACS 5-year dataset to form our panel of average household

solar consumption at the county/year level.

On a unit basis measuring flow prices, ps
ct, directly in the data is infeasible.

The TTS contains detailed data on system-level installation costs as well as local

rebates, taxes and transfers, and other pecuniary incentives. Moving forward,

we assume that households price electricity generated by PV systems using a

user-cost approach. This approach takes into account various factors, such as the

fraction of total system costs attributed to each unit of electricity produced, along

with taxes, local subsidies, and fixed installation costs. In addition, this approach

factors in the ongoing expenses associated with maintenance and depreciation of

solar panels. By implementing this approach, the cost (or price) of generating one

kWh of electricity from a household PV system in county c during period t will be

expressed in the same units as the flow price of grid electricity. This ensures con-

sistency in measuring the cost of electricity regardless of the source, allowing for

accurate comparisons between the two.19 We construct this PV user cost using

a levelized cost of energy (LCOE) approach common in the engineering litera-

ture for each system-level observation in the TTS data.20 From these residential

system-level prices, ps
ict, we then construct size-weighted average prices for all

19In the data we observe both households that purchase their own systems and those that buy
electricity from a third party-owned (TPO) system. System size and installation costs are similar
across both forms of ownership. As electricity generated by TPO systems must be priced so as
to recoup the user costs for their owners, we find it reasonable to assume that households value
electricity generated by household-owned systems in a similar manner.

20See Flowers et al. (2016) for a review of LCOE measures for PV systems.
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county/year pairs to get the values of ps
ct used in our primary quantitative analy-

ses. Technical Appendix B.1 provides a complete description of how we construct

our estimates for average county/year residential solar generation, sct. Technical

Appendix B.2 provides a detailed description of the system-level LCOE measure

we use to get prices, as well as our county/year aggregation procedure.

Figure 3: Time series of median county-level price wedges, ps
ict − p

g
ct.

Figure 3 shows how system-level solar markups over local retail electricity

prices have changed since 2000. This markup is just ps
ict − p

g
ct where ps

ict ≡

LCOEict. A markup value above the dashed gray line indicates a given system-

level solar price in its year of installation exceeded that of electricity drawn from

the grid. We present two time series, each featuring different assumptions regard-

ing the degree to which households took advantage of available tax credits and

other solar-installation incentives during the period of installation.21 The blue

line contains a time series of the median system-level LCOEict each year con-

structed under the assumption that households take full advantage of all avail-

able subsidies, including federal investment tax credits (ITC), which when con-

21In Technical Appendix B.2.2 we engage in additional comparisons of after-subsidy solar
prices under alternative subsidization assumptions.
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sidered together offset well-over 30% of aggregate residential PV system costs

over our sample period.22,23 The red line, on the other hand, features the time

series of median LCOEict constructed under the assumption that no subsidies,

either federal ITC or local, are taken up by households.

Through 2010, we estimate that solar prices exceeded those from grid electric-

ity for both the median and average systems even under maximal assumptions

concerning subsidization. Prices excluding subsidies for the median system did

not decline well below grid prices until 2016, and even in 2018 many systems

provided electricity at a cost well-above that drawn from the grid. This large

variation in prices over space and time provides us the variation necessary for

identification of structural parameters when estimating the model.

4.3 Identification

Our identification strategy is based on several primary assumptions. First, as

solar and grid prices may be endogenous we require a set of valid instruments

on which to project the residuals (De Groote and Verboven 2019; Gillingham and

Tsvetanov 2019; Lyu 2023). Second, we assume that within each state the county-

level econometric errors are mean zero. This amounts to assuming that if the

utility-maximization problem of the representative agent in county c corresponds

to the actual data generating process, we expect the average representative agent

within each state to also be solving the utility-maximization problem we have

specified such that these errors are zero.

Let zct be a period-t vector of instrumental variables for county c. For a given

county/year pair this object is three-dimensional and contains the following in-

struments: 1) a constant term, 2) the national average price per Watt for U.S.

22The ITC is effectively a credit worth 30% of total system costs that can be claimed against fed-
eral taxes for any residential solar system installed between 2006 and 2019. The Internal Revenue
Service (IRS) line-item data suggest households claimed $2.25 billion in federal solar investment
tax credits for fiscal year 2018 for the full universe of payees. Our maximal estimate for credits
that could be claimed against installations sufficient data in our sample was $1.65 billion for 2018,
supporting the assumption that most households successfully claimed the credit. Similar levels
of aggregate claims relative to installation costs are present in other tax years (IRS 2019).

23The assumption that all households are able to fully monetize the ITC may overstate its effects
on costs (Borenstein 2017; Pless and Benthem 2019) as some households which purchased PV
systems may not have sufficient tax liabilities against which to claim the credit. As such we
construct both prices as a bounding exercise.
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photovoltaic cell and module imports that year interacted with the longitudinal

centroid of county c, and 3) the national average price of retail electricity across

all sectors. We assume the annual average price of PV cell and module imports

is correlated with county-level flow prices, ps
ct, as these are key hardware com-

ponents that determine system costs, but orthogonal to model errors in solar de-

mand, ηs
ct.

24 Interacting this with county-level longitude exploits the fact that

almost all silicon photovoltaic cells and modules used in U.S. systems are im-

ported from East Asian countries, leading to freight costs for PV imports to be

increasing in longitude.25 Further, the national average grid electricity price is

strongly correlated with local grid prices, p
g
ct, but unlikely to violate exclusion re-

strictions given each county’s residential demand is a very small fraction of total,

national electricity consumption across all sectors.

Note that, for the next couple of paragraphs only, we denote the county in-

dices’ dependence on state j via notation c( j). Our within-state identifying as-

sumption is as follows:

E

[
ηc( j),t ⊗ zct

∣∣ c( j) ∈ j
]
= 09×1 ∀ j (11)

where ⊗ is the Kronecker product. The logic behind this identifying assumption

is straightforward: if the model is correctly specified, agents’ optimization should

result in the residual terms being mean-zero in expectation regardless of any geo-

graphical conditioning. This generates a sufficient number of moment conditions

to identify the state-level preference weights γ j and δ j.

Now, let n ∈ {g, s, c} index the moment conditions associated with implicit

demand conditions in (8), (9), and (10), respectively, for each county/year vector

of residuals. Let ηn
jt be a column vector of the nth component of each of ηc( j),t for

a fixed state j in year t. Let C jt be the number of counties in state j in period t that

are included in our sample, let C j = ∑t C jt be the total number of county/year

level observations within state j, and let C = ∑ j ∑t C jt be the total number of

24This is reasonable given that residential systems comprise a small share of U.S. end use of PV
cells and modules and an even smaller share of the global market; local residential demand in a
single U.S. county should have negligible effects on national import prices.

25Imports have accounted for about 90% of all U.S. solar PV shipments between 2013 and 2019,
among which the largest partners were Vietnam, Malaysia, South Korea, and Thailand. Prior to
this period the Chinese share of U.S. imports was high enough to motivate the U.S. to bring an
anti-dumping dispute to the WTO.

20



county/year observations in our dataset.26 In a slight abuse of notation, let ηn
j

be the C j × 1 dimensional column vector of within-state demand residuals for

either grid, solar, or non-electrical consumption across all county/year obser-

vations and z j be the stacked column vector of instruments zc( j)t over our en-

tire sample period for each county in state j. Letting Θ =
(
ρ,κ, s, g,γ⊤,δ⊤

)
be

the column vector comprised of the 36 structural parameters constituting the de-

mand system, define µn
j as the 3-dimensional vector of state-level moments given

by:27

µn
j

(
ηn

j , z j ; Θ
)
=

1

C j
∑

t
∑
c( j)

zct · η
n
c( j),t (12)

The vector µn
j

(
ηn

j , z j ; Θ
)

gives the sample analogue of state- j population mo-

ments in equation (11) for good n. We stack µ
g
j , µs

j, and µc
j into a 9-dimensional

vector µ j (without the superscript), which contains all of the orthogonally pro-

jected moments for state j. Let µ be the 144-element column vector stacking the

µ j from each of the 16 states in our sample. This brings us to our primary exclu-

sion restriction, which is as follows:

E

[
µ
(
η, z ; Θ

)]
= 0144×1 (13)

which takes η, the stack of η
g
j , ηs

j, and ηc
j for each state j, the set of instruments z

which stacks z j from each state, and structural parameters Θ as arguments.

4.4 GMM Estimator and Structural Parameter Estimates

Our GMM estimator operates on the identifying assumption in (13). We use

Stata’s two-step GMM routine where the initial weight matrix is the 144 × 144

identity matrix. In the second-stage we compute a robust weight matrix, allow-

ing for heteroskedasticity in errors across each moment condition. Let Ŵ be the

26Note that our panel is unbalanced; a few counties in our dataset do not have sufficient data
in the early years of our sample period to be included.

27This object is 3-dimensional because we use 3 instrumental variables.
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estimated second-stage, robust optimal-weighting matrix. The estimated vector

of structural parameters solves

Θ̂ = argmin
Θ

µ
(
η, z ; Θ

)⊤
Ŵ µ

(
η, z ; Θ

)
(14)

Our approach gives 144 moments which over-identify the 36 structural parame-

ters of interest.

Table 2: Structural Parameter Estimates

Parameter Mean [Min : Median : Max]

κ 1.281

(0.084) [0.252]

ρ 4.385

(0.501) [0.417]

g 4,501

(0.055) [14,837]

s 0.602

(0.055) [0.095]

γ j [ 0.66 : 0.81 : 0.95 ]

δ j [ 0.01 0.02 : 0.03 ]

N 5,110

Asymptotic robust standard errors are shown in parentheses

and bootstrapped standard errors are in brackets.

Table 2 shows our point estimates along with the 10-50-90 percentile ranges

for the state-level structural weight parameters, γ j and δ j. The top part of Table

2 shows our estimates of the two structural parameters, κ and ρ, governing sub-

stitution elasticities as well as the two reference levels for each form of electricity,

g and s. Substitution elasticities κ and ρ are precisely estimated and are such that

ρ̂ > κ̂ > 1. Our estimate of the reference level for solar electricity is a small
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positive value, and we can reject the null hypothesis that s < 0. At face value

the reference level for grid consumption, g, corresponds to about 37% of average

household electricity consumption in our sample.

Note that because s ≥ 0, Proposition 1 tells us that rebound effects are guar-

anteed regardless of heterogeneity in the elasticities of county-level price indices.

Thus, in all counties over all periods, our quantitative model will predict that sub-

sidizing residential solar leads to higher levels of composite electricity consump-

tion, qe
ct. While it is clear that reducing the unit price of residential solar electricity

leads to rebound effects, whether backfiring effects (whereby grid consumption,

gct also increases as a response to a fall in ps
ct) occur is ambiguous. Turning to

Proposition 2 note that condition 3 is the relevant one for our parameter esti-

mates, since neither conditions 1 or 2 are satisfied. The local values of the price-

index elasticities, as well as local average income, yct, will determine whether

grid consumption is associated with a positive cross-price elasticity, which is in-

dicative of the presence of backfiring effects.

Our estimated substitution parameter between grid and solar electricity, ρ̂,

substantially exceeds one, indicating that lowering solar prices should increase

the share of electricity derived from PV systems. Further, we cannot rule out

backfiring entirely, though in our quantitative analyses we find that it occurs in

only a very small number of counties. While the structural parameters are pre-

cisely estimated, a Sargan-Hansen test of the over-identifying restrictions fails to

hold at standard levels. This suggests the assumption of mean-zero econometric

errors for all states and all goods may fail. For this reason, we evaluate in-sample

model fit below. We also discuss the results of various out-of-sample extrapola-

tion exercises in Technical Appendix B.3.

4.5 Model Fit

Before moving on to our counterfactual exercises, we assess model fit. Ta-

ble 3 displays a selection of four fitted moments generated by our model along

with their sample analogs, two of which are not targeted directly by our estima-

tion procedure (solar percentage of grid and electricity expenditure share). The

columns “Sample Mean” and “Sample Median” contain the observed data mo-

ments from our sample of counties over time, while the columns “Model Mean”
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and “Model Median” contain the analogous moments over the fitted values. The

final column displays the portion of observed variance in the data explained by

the model as measured by an R2 statistic. Note that the values in Table 3 are sum-

mary statistics over the entire 2010-2018 sample period in only those county/year

pairs for which we have sufficient data to include them in the estimating sample.

Table 3: Model Fit for County/Year Level Moments, 2010-2018

Moment Sample

Mean

Model

Mean

Sample

Median

Model

Median

Model

Fit (R2)

Average Solar Consumption (kWh/yr) 66.6 52.7 4.94 5.38 0.49

Average Grid Consumption (kWh/yr) 10,153 10,369 9,220 9,326 0.68

Solar as Percent of Grid (%) 0.93 0.77 0.05 0.05 0.57

Elec. Expenditure Share (%) 1.98 1.97 1.89 1.89 0.75

N 5,085 5,085 5,085 5,085 5,085

Table 3 displays four sample moments against their fitted values. We winsorize the set of county/year pairs at the 0.5% level

(dropping 25 observations from the right tail of the distribution over modeled solar consumption among the 5,110 observations)

prior to comparing model fit. Note that, as a sensitivity analysis, we also winsorized the right rail at 1% and 2% of observations:

the fitness results did not change. The R2 measure displays an unadjusted coefficient of determination relative to a simple

mean. Our procedure for computing the fitted values, which cover consumption of solar and grid electricity over the entire set

of counties used in our structural estimation, is described in Technical Appendix B.3.1

The modeled moments match the data well. The mean fitted values are near

the observed sample means for both types of electricity. Simple R2 values for

the solar-grid ratio and electricity expenditure share suggest the model is able

to explain about half of county level variation during our sample period. The

model underestimates mean solar electricity consumption slightly while overes-

timating median consumption. The fitted values for solar consumption are also

right skewed, but cannot match the thickness of tails in the data. More formal sta-

tistical tests for how the fitted aggregates compare to their sample counterparts

also fair well. Student’s-t tests allowing for unequal variances fail to reject the

equivalence of means for the model and sample values for grid consumption and

electricity expenditure share values at the 5% level. However, these tests nar-

rowly reject the equivalence of solar electricity consumption and the solar-grid

ratio with sample means at the 5% level. We conclude that the structural model

is able to account for approximately half of observed variation in county-level

electricity consumption in our sample.
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Finally, we note our sample contains county-level observations in only 16

states. To perform counterfactual exercises we ideally would like to examine how

demand responds to policy changes nationally, not just in the 16 states for which

we have full data. Thus, since counties across states only differ in terms of their

state-level amenity weights, γ j and δ j, we extrapolate our estimates for these

weight parameters to all counties in states not featured in our estimating sample,

matching on a vector of county-level demographic and climatological covariates

taken from Stanford’s DeepSolar dataset. Technical Appendix B.3.2 explains our

amenity-weight extrapolation procedure in detail.

5 Quantitative Exercises

We now engage in several quantitative exercises, referring to simulations in-

volving the estimated model parameters as well as reduced-form evidence us-

ing state-level data. First, we use the structural model to simulate counterfac-

tual scenarios that vary prices and preferences to understand how both of these

channels affect demand for electricity. Second, given our counterfactual results

demonstrate how displacement of grid consumption by new solar demand is not

one-to-one, we provide reduced-form evidence from state-level time series that

suggest this crowding out is indeed imperfect and grid and residential-solar elec-

tricity appear to be imperfect substitutes. Third, we consider how demand pat-

terns vary geographically and what such heterogeneity implies for the efficacy of

existing subsidies. Finally, we use the model to estimate the implied local and

national cost of carbon abatement associated with residential PV subsidization

policies.

5.1 Counterfactual Experiments

We engage in two counterfactual simulations to help us understand how solar

panel subsidies interact with preference heterogeneity and price dispersion to af-

fect demand. Our experiments compare a baseline calibrated model to alternative

regimes which change solar electricity prices and preferences. We examine how

policy and preference changes affect electricity consumption and the solar-grid

ratio. We also look at subsidy efficacy, price elasticities, and marginal abatement
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costs.

All of our counterfactual analyses operate on the 2018 demand environment

over the entire contiguous United States. We form a baseline scenario by solv-

ing the model for 3,074 U.S. counties in the lower-48 states for which we have

sufficient data on household income and electricity prices in 2018. We weight

each county by the number of households and aggregate it to the national level.

Columns (2) through (4) of Table 4 display our baseline model along with results

from our counterfactual experiments.

In aggregate we can judge our model performance against values in column

(1), which displays national levels of residential grid and solar consumption taken

directly from administrative data for 2018, as reported by the EIA. For the United

States as a whole the baseline model over-predicts aggregate residential solar

consumption relative to the EIA’s estimates. While this undoubtedly reflects a

degree of limitation in the explanatory power of the model, we believe this may

stem from the EIA having different information on the total level of systems in-

stalled through the entirety of the 2018 calendar year than what is catalogued in

the TTS dataset which we use to estimate the model.

Table 4: National Electricity Aggregates

Data Aggregates Model Baseline No Subsidies Median Gammas

(1) (2) (3) (4)

Solar Consumption (Billion kWh) 17.11 27.19 7.60 4.47

Grid Consumption (Billion kWh) 1,469 1,803 1,813 1,819

Solar-Grid Ratio 0.012 0.015 0.004 0.002

Table 4 shows electrical aggregates over simulated demand for 3,074 counties. Units for electricity are in billions of kilowatt-

hours for solar and grid consumption to aid readability and allow for meaningful comparisons of magnitudes across sce-

narios. The solar-grid ratio is the ratio of the two electricity sources aggregated over all households at the national level.

Aggregate residential solar generation for the U.S. is taken from the EIA’s annual electricity module here.

Columns (3) and (4) present aggregate outcomes under two different counter-

factual experiments. Our main result is featured in column (3). In this experiment

we set all incentives and flat transfers to zero in all counties. The lion’s share of

the resulting price change stems from removing the 30% federal ITC. We then

re-solve the model in each county to calculate hypothetical quantities of 2018
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demand for sc, gc, and cc without any government subsidization of residential

solar. The simulations in (3) thus predict how much solar and grid electricity U.S.

households would consume in a world where no subsidies for residential solar

installations were present. Government price support increases residential so-

lar demand by 19.5 billion kWh — a 255% increase relative to our counterfactual

where there are no subsidies. We conclude from this that historical subsidies have

been a dominant force driving residential PV uptake; the model suggests well

over two-thirds of existing demand would not exist absent government support.

We run an additional simulation to illustrate how much of the variation in so-

lar demand is determined by the geographic dispersion in solar-specific prefer-

ences (heterogeneousγ j) suggested by the estimated model. Column (4) sets each

county’s grid electricity weight equal to the median U.S. level (γ = 0.815). This

experiment turns off preference heterogeneity across counties while maintaining

observed dispersion in county-level incomes and prices. Preference heterogene-

ity drives the vast majority of variation in solar panel uptake. As ρ̂ is substantially

larger than unity, local values of electricity preference weights along with solar-

grid price differentials play a very important role in determining how households

construct their optimal electricity bundle.

5.2 Rebound Effects

In accordance with Proposition 1 subsidies increase aggregate electricity con-

sumption when going from the counterfactual in column (3) to our baseline model

in (2). The magnitude is small, with subsidies increasing consumption by 9.7 bil-

lion kWh, or about 0.6% of U.S. residential electricity consumption. The increase

in solar consumption of 19.5 billion kWh is offset only partially by a decrease in

grid consumption of 9.8 billion kWh. The implied aggregate rate of displacement

is -0.50: households purchased 0.50 fewer kWh from the grid for each additional

unit of solar electricity consumed, implying a rebound effect of 50 percent.

Our estimated solar rebound effect is admittedly higher than existing esti-

mates in the literature derived from quasi-experimental estimates on household

panel data. Deng and Newton (2017) and Qiu, Kahn, and Xing (2019) respec-

tively find rebound effects between 17 and 21 percent in Australia and 18 percent

in Phoenix, Arizona. Aydın, Brounen, and Ergün (2023) find smaller effects in the
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Netherlands of 7.7 percent after controlling for demand shifting between periods.

However, these estimates exclusively capture an intensive rebound margin. A

regression of household level total electricity consumption on concurrent house-

hold PV system generation identifies the marginal effect of higher generation on

consumption for households with PV systems installed. This will not account

for how the extensive effects of subsidies that induce new PV system adoption

will change baseline household electricity consumption after uptake, a channel

we believe our model captures on aggregate.

Finally, the model suggests that backfiring, as described in Proposition 2, is

unlikely to be a concern. This is not to say that local backfiring effects do not

occur (they do in a few places), but rather that across the entire economy isolated

instances of backfiring are not large enough to cause an aggregate backfiring ef-

fect. If the ultimate goal of policymakers is to subsidize solar in order to reduce

carbon-intensive grid consumption, it works: relative to the no-subsidy scenario,

aggregate grid consumption falls by more than total electrical consumption rises.

5.3 Empirical Evidence of Imperfect Substitution

Our counterfactual simulations imply that increases in solar uptake due to so-

lar subsidies do not directly offset an equal amount of grid consumption. This

lack of one-for-one displacement of grid demand by induced solar generation in

our counterfactuals is testable. If new residential solar generation does not fully

displace grid consumption, we should see a similar pattern of imperfect crowd-

ing out in aggregate time series for residential grid demand as residential solar

consumption has risen over the past decade. We test this hypothesis using panel

data at the monthly frequency across U.S. states. If households on average were

exactly substituting their consumption of grid electricity with that from residen-

tial PV systems, we would expect to see measured average grid consumption per

household fall on a one-for-one basis with measured average residential solar

production. This effect is captured in equation (15) below:

g jmt = β s jmt︸   ︷︷   ︸
H0 : β=−1

+ θ⊤X jmt + υ j + νm + ǫ jmt (15)

where the variables g jmt and s jmt are average customer-level consumption of grid
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and residential solar electricity in state j in month m of year t. The vector X jmt

contains a time series of state-level cooling and heating degree days (CDDs and

HDDs) to account for the fluctuations in demand owing to variation in weather,

while υ j and νm are state and month fixed effects.28 This empirical strategy is

similar to those used in Cullen (2013), Callaway, Fowlie, and McCormick (2018),

Sexton et al. (2021), and Dauwalter and Harris (2023) who examine how additions

of renewable capacity affect generation by carbon-intensive existing producers.

We estimate (15) in levels as a Dickey-Fuller test rejects the null hypothesis for

the presence of unit roots for in time series for per-customer grid consumption in

all states.

Since demand for residential PV systems is unlikely to be independent of grid

prices (which in-turn determine the quantities of electricity demanded) estima-

tion of equation (15) using OLS may suffer from omitted variable bias. To ac-

count for potential endogeneity we use a one-year lagged value of cumulative

U.S. solar panel imports (measured in kilowatts) as an instrument for average so-

lar consumption. This variable is highly correlated with state-level residential so-

lar generation (first-stage F statistics are over 100 in all specifications below). We

use cumulative shipments as our baseline instrument due to a better first-stage

fit and a closer intrinsic connection between cumulative wattage and generation.

We believe the exclusion restriction is reasonable as local grid demand is unlikely

to be influenced directly by the cumulative imports of solar panels to the U.S. in

the prior year.

Table 5 displays results from iterating over different specifications of the re-

gression in Equation (15) above. Point estimates for the coefficient on solar gen-

eration are negative in all five specifications and become significant at traditional

levels once controls for CDDs and HDDs are added. This negative and signifi-

cant association remains even when an alternative variable (lagged cumulative

U.S. imports of solar panels in dollar terms) is used to instrument for solar gen-

eration. These results suggest that there is indeed a “crowding out” effect as

residential generation displaces electricity consumed from the grid.

28The data we use for this regression comes from the EIA for years 2014-2022. The EIA tracks
monthly consumption of grid electricity by the residential sector in each of the 50 states along
with the District of Columbia. Monthly estimates of residential solar electricity generation at
the state level are also available. We use these values along with the data on monthly end-use
residential customers to create a time series of average per-customer grid and solar consumption.
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Table 5: Residential Customer Solar/Grid Tradeoff

Dep. Var: g jmt (1) (2) (3) (4) (5)

Solar per Customer (s jmt) -0.815 -0.594 -0.658 -0.899 -0.529

(0.957) (0.388) (0.259) (0.269) (0.257)

HDDs - - 0.242 0.245 0.236

(0.013) (0.013) (0.013)

CDDs - - 1.074 1.069 1.079

(0.033) (0.034) (0.033)

State and Month Fixed Effects No Yes Yes Yes Yes

Instrument Imports Imports Imports Value ($) Overid.

p (H0 : β = −1) 0.85 0.29 0.19 0.71 0.07

Observations are weighted by the number of customers each month at the state level using Stata’s

aweights command. Robust standard errors are shown in parenthesis. State-level population-

weighted time series for CDDs and HDDs are taken from NOAA’s Climate Prediction Center.

However, in all specifications examined we see a coefficient on solar con-

sumption smaller than unity in magnitude. Test statistics of the null hypothesis

that β = −1 are shown in the bottom row of Table 5. While the estimates are not

precise enough to reject the null entirely, they are fairly low in two of the three

specifications we examine that allow for both climatological controls and fixed ef-

fects. The relatively low p-value for the null hypothesis under the over-identified

specification in column (5) remains present regardless of the choice of IV esti-

mator.29 Results from the panel data indicate that there is likely substantial but

incomplete displacement of grid electricity consumption by household PV sys-

tems, which our model rationalizes. Our preferred estimation of β̂ = −0.66 in

column (3) is qualitatively similar to the aggregate displacement rate of −0.50 we

find in our structural simulations, providing evidence that our structural results

are not merely by-products of model selection.

29This result is also robust to the sign of measurement error we may expect in household solar
generation; if some household solar generation goes unobserved by utilities or unreported to the

EIA we would expect β̂ to be biased upward.

30



5.4 Geographical Heterogeneity in Induced Demand

How are counties associated with demand profiles that may respond differ-

ently to subsidies? Figure 4 displays the modeled increase in solar electricity

consumption due to subsidization across all counties in the lower-48 states. Sub-

sidies raise aggregate solar electricity consumption by 255 percent relative to our

modeled counterfactual. There is substantial regional variation in household re-

sponsiveness to solar subsidization. The modeled county-level responsiveness

ranges from an 86% increase at the 10th responsiveness percentile to an over ten-

fold increase in demand at the 90th percentile. This counterfactual also allows us

to calculate both local and aggregate own-price elasticities of solar demand. At

the national level we find a population-weighted price elasticity of demand for

solar of -3.20, larger than existing estimates for the extensive margin of adoption

in the literature (Pless and Benthem 2019; Gillingham and Tsvetanov 2019). At

the county level the mean (median) elasticity is closer to -3.45 (-2.92).
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 Solar Electricity Consumption

Figure 4: Increase in 2018 residential solar electrical induced by modeled subsi-
dies.

We find that policies are cost-effective in terms of the cost of induced demand

relative to observed electricity prices. The modeled subsidies induce 19.5 billion
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kWh of demand at the cost of $1.44 billion in outlays by all levels of government.

This translates to an average cost of induced demand of slightly under $0.07 per

kWh. Figure 5 shows this measure of efficiency at the county level, mapping the

changes in solar demand between our counterfactual and baseline scenarios di-

vided by total government subsidy expenditure in the baseline model in each

county. This ratio captures the average expenditure by a combined local, state,

and national government, in dollars per kilowatt-hour, per unit of residential

solar generation induced through subsidies. We find a wide range for the effec-

tiveness on a per-dollar basis across counties. Our estimates suggest a range of

costs between $0.06 per kWh in the 10th percentile county to over $0.31 per kWh at

the 90th percentile. While the government cost of induced demand is lower than

the private costs of solar electricity in over 2,500 of 3,074 counties, our estimates

show that misallocation is likely if the singular goal of subsidies is to increase

solar demand.
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Figure 5: Subsidies per induced unit of solar demand.

5.5 Carbon Abatement Costs

Finally, we examine the relative efficacy of solar subsidies in the context of

32



social marginal costs associated with changes in demand for electricity from the

grid. This follows a recent strain of literature examining the spatial heterogene-

ity in externalities associated with the marginal generation of electricity which in

turn lead to the benefits of displacing demand to change across locations (Call-

away, Fowlie, and McCormick 2018; Sexton et al. 2021; Borenstein and Bush-

nell 2022; Dauwalter and Harris 2023). These studies show that the marginal

social costs of electricity generation, both in terms of local pollutants and carbon

emissions, vary substantially across space due to variation in the composition

of marginal electricity generation as well as the distance between customers and

generators.

Our model allows us to examine how changes in grid electricity demand due

to residential solar subsidies translate to emissions reductions at the county level.

As we also solve for the value of subsidies in the baseline scenario, we can com-

bine these two figures to calculate the implied carbon abatement costs associated

with solar subsidies at the county level. To translate our estimates for displaced

grid consumption into carbon abatement, we take each county-level change in

grid demand and multiply it by a local emission factor estimated by Borenstein

and Bushnell (2022). These emissions factors give the carbon emissions associ-

ated with a marginal kWh of electricity consumed in each county due to the ad-

ditional fuels used by generators. Figure 6 displays the geographic distribution

of county-level marginal abatement costs. The missing gray counties are include

those which experience backfiring as shown in Figure 6 leading to negative abate-

ment costs.

We find that the implied local costs of abatement vary wildly across geogra-

phies. As this estimate combines dispersion in baseline grid prices, local subsi-

dies, and emissions factors associated with marginal grid demand, our county

level estimates range from $150 per metric ton of carbon (MTCO2) at the 10th

percentile to over $500 per MTCO2 at the 90th percentile. At the national level,

our estimates indicate the total reduction in grid demand from PV subsidies re-

duced emissions from the electricity sector by 4.3 million metric tons of CO2 in
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Figure 6: County-level implied carbon abatement costs from solar subsidies in
units of $ per MTCO2.

2018. This translates to an aggregate abatement cost of $332 per MTCO2.30 The

highly disperse nature of abatement costs implied by our model reflect findings

in the literature on PV deployment (Lamp and Samano 2023) and environmental

policy more broadly (Cruz and Rossi-Hansberg 2022) that illustrate the impor-

tance of spatial heterogeneity when considering the effects of uniform taxes and

subsidies at large scales.

6 Conclusion

This paper provides a structural model to analyze the effects of PV subsidies

in the presence of geographic heterogeneity in income, prices, and preferences.

Avoiding the assumption that electricity from residential solar panels is perfectly

30The range of existing estimates of the abatement costs associated with solar PV subsidies
is quite broad (Gillingham and Stock 2018). For residential systems, Gillingham and Tsvetanov
(2019) estimate solar subsidies in Connecticut were associated with abatement costs of $364 per
MTCO2, while back of the envelope calculations in Crago and Chernyakhovskiy (2017) find costs
of $184.
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substitutable with retail purchases from the grid allows us to more carefully ex-

amine implications for aggregate electricity consumption from all sources. We

leverage rich data from multiple academic and administrative sources to illus-

trate that uptake is spatially diffuse, imperfectly correlated with factors such as

insolation and income, and often remains high in locales where solar prices ex-

ceed prices of electricity from the grid. With aggregate time series we show how

the apparent imperfect substitutability suggested by observed price dispersion

emerges in the form of imperfect crowding out of residential grid consumption

by households’ PV production.

We then form and estimate a structural model for preferences over a compos-

ite electricity good comprising solar- and grid-drawn electricity along with out-

side consumption. The model allows for flexible amenity parameters at the state

level and performs reasonably well at fitting uptake for counties across the con-

tiguous United States. When estimated, our findings suggest that solar subsidies

have increased aggregate consumption at the national level by 255%. Subsidies

succeeded at displacing demand from the grid at a relatively high cost, in part

due to imperfect crowding out of grid consumption by induced solar demand. At

the national level we estimate on average that $0.07 of subsidy expenditure was

required to induce an additional kWh of demand for electricity from PV systems.

This point estimate masks substantial heterogeneity in spatial responsiveness to

subsidies; targeted policies would be much more cost-effective.

More importantly, our results suggest that subsidies inducing an additional

one kWh of residential PV generation do not perfectly crowd out one unit of de-

mand from the grid. Our reduced-form evidence suggests this displacement is

between 0.6 and 0.8, and our model suggests more substantial rebound effects

of 50%. This imperfect crowding out is quantitatively important; our point esti-

mate of a national abatement cost of $332 per MTCO2 is twice as high as it would

be absent the rebound effect described above. Existing policies promoting res-

idential PV adoption are costly in terms of reducing emissions from electricity

consumption.

Recent policies such as the ten-year extension of the 30% residential Invest-

ment Tax Credit for PV systems or the solar mandate in Title 24 of California’s

Building Energy Efficiency Standards indicate continued intentions of policy-

makers to adopt second-best solutions for mitigating pollution associated with
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electricity demand. The high costs of abatement and evidence of imperfect crowd-

ing out suggest policymakers should exercise caution when viewing residential

solar subsidies as alternatives to traditional abatement. This is exacerbated by

the inherent regressive aspect of green consumption subsidies both implied in

our model and born out in the data (Borenstein and Davis 2016; Borenstein 2017).

Our findings add to the growing body of evidence that second-best policies, even

if more politically palatable, are unlikely to be substitutes for addressing exter-

nalities at the source.

Our work shows that amenity preferences play an important role in both the

uptake of environmental goods and the efficacy of government policy. Future

work could attempt to examine more closely the underlying structures of envi-

ronmental preferences and adopt a dynamic setting for PV system uptake that

allows for heterogeneity in household-level investment decisions across other

forms of green durables.31 Crucial to these (and other) investigations will be de-

termining the rate at which households substitute between existing goods and the

emerging “green” alternatives.32 If environmentally friendly goods prove insuf-

ficiently adequate substitutes for current products, subsidies may be ineffective

at abating the use of existing products.

31Buchsbaum (2023) examines how long-run changes in electricity prices affect households’
uptake of energy-efficient durable goods and PV systems in the Californian setting.

32Lyu (2023) finds that PV system adoption itself has a positive spillover in terms of inducing
additional electric vehicle demand, suggesting the potential for latent complementarity to further
complicate this calculation.
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Cruz, José-Luis and Esteban Rossi-Hansberg (2022). Local Carbon Policy. Tech. rep.

National Bureau of Economic Research (cit. on p. 34).

Cullen, Joseph (2013). “Measuring the environmental benefits of wind-generated

electricity”. American Economic Journal: Economic Policy 5.4, pp. 107–133 (cit. on

p. 29).

Dauwalter, Travis E and Robert I Harris (2023). “Distributional Benefits of Rooftop

Solar Capacity”. Journal of the Association of Environmental and Resource Economists

10.2, pp. 487–523 (cit. on pp. 5, 6, 29, 33).

Davis, Lucas W (2023). The Economic Determinants of Heat Pump Adoption. Tech.

rep. National Bureau of Economic Research (cit. on p. 3).

De Groote, Olivier and Frank Verboven (2019). “Subsidies and time discount-

ing in new technology adoption: Evidence from solar photovoltaic systems”.

American Economic Review 109.6, pp. 2137–72 (cit. on pp. 5, 12, 19).

Deng, Gary and Peter Newton (2017). “Assessing the impact of solar PV on do-

mestic electricity consumption: Exploring the prospect of rebound effects”.

Energy Policy 110, pp. 313–324 (cit. on pp. 5, 27).

EIA (2020). “Monthly energy review”. DOE/EIA-0035 (2020/9). Office of Energy

Statistics, US Department of Energy Washington (cit. on p. 4).

Feger, Fabian, Nicola Pavanini, and Doina Radulescu (2022). “Welfare and redis-

tribution in residential electricity markets with solar power”. The Review of

Economic Studies 89.6, pp. 3267–3302 (cit. on pp. 5, 12).

Flowers, Mallory E et al. (2016). “Climate impacts on the cost of solar energy”.

Energy Policy 94, pp. 264–273 (cit. on p. 17).

Gillingham, Kenneth and James H Stock (2018). “The cost of reducing greenhouse

gas emissions”. Journal of Economic Perspectives 32.4, pp. 53–72 (cit. on p. 34).

Gillingham, Kenneth and Tsvetan Tsvetanov (2019). “Hurdles and steps: Estimat-

ing demand for solar photovoltaics”. Quantitative Economics 10.1, pp. 275–310

(cit. on pp. 5, 19, 31, 34).

IRS, Internal Revenue Service (2019). “Statistics of Income - Individual Income

Tax Returns, Line Item Estimates” (cit. on p. 19).

38



Ito, Koichiro (2014). “Do consumers respond to marginal or average price? Ev-

idence from nonlinear electricity pricing”. American Economic Review 104.2,

pp. 537–63 (cit. on p. 12).

Khazzoom, J Daniel (1980). “Economic implications of mandated efficiency in

standards for household appliances”. The energy journal 1.4 (cit. on p. 4).

Kulmer, Veronika and Sebastian Seebauer (2019). “How robust are estimates of

the rebound effect of energy efficiency improvements? A sensitivity analysis

of consumer heterogeneity and elasticities”. Energy Policy 132, pp. 1–14 (cit. on

p. 13).

Lamp, Stefan and Mario Samano (2023). “(Mis) allocation of Renewable Energy

Sources”. Journal of the Association of Environmental and Resource Economists

10.1, pp. 195–229 (cit. on pp. 3, 5, 6, 34).

Langer, Ashley and Derek Lemoine (2022). “Designing dynamic subsidies to spur

adoption of new technologies”. Journal of the Association of Environmental and

Resource Economists 9.6, pp. 1197–1234 (cit. on p. 5).

Lewbel, Arthur (1989). “Exact aggregation and a representative consumer”. The

Quarterly Journal of Economics 104.3, pp. 621–633 (cit. on p. 12).

— (2001). “Demand Systems with and without Errors”. American Economic Re-

view 91.3, pp. 611–618 (cit. on p. 16).

Lyu, Xueying (2023). “Are Electric Cars and Solar Panels Complements?” Journal

of the Association of Environmental and Resource Economists 10.4, pp. 1019–1057

(cit. on pp. 19, 36).

Pless, Jacquelyn and Arthur A van Benthem (2019). “Pass-through as a test for

market power: An application to solar subsidies”. American Economic Journal:

Applied Economics 11.4, pp. 367–401 (cit. on pp. 4, 19, 31).

Qiu, Yueming, Matthew E Kahn, and Bo Xing (2019). “Quantifying the rebound

effects of residential solar panel adoption”. Journal of Environmental Economics

and Management 96, pp. 310–341 (cit. on pp. 3, 5, 13, 27).

Sexton, Steven et al. (2021). “Heterogeneous solar capacity benefits, appropriabil-

ity, and the costs of suboptimal siting”. Journal of the Association of Environmen-

tal and Resource Economists 8.6, pp. 1209–1244 (cit. on pp. 5, 6, 29, 33).

Yu, Jiafan et al. (2018). “DeepSolar: A machine learning framework to efficiently

construct a solar deployment database in the United States”. Joule 2.12, pp. 2605–

2617 (cit. on pp. 6–8).

39


	Introduction
	Background
	Existing Literature
	U.S. Residential Solar
	Decomposing Solar Panel Uptake

	Model
	Comparative Statics

	Estimating the Model
	Estimating Equations
	Residential PV Electricity Pricing and Consumption
	Identification
	GMM Estimator and Structural Parameter Estimates
	Model Fit

	Quantitative Exercises
	Counterfactual Experiments
	Rebound Effects
	Empirical Evidence of Imperfect Substitution
	Geographical Heterogeneity in Induced Demand
	Carbon Abatement Costs

	Conclusion

