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Abstract

A recent literature has provided empirical evidence that markups are in-

creasing and are heterogeneous across firms. In standard monopolistic com-

petition models, such heterogeneity implies inefficiency even in the presence

of free entry. We enrich the standard model of monopolistic competition

with heterogeneous firms to incorporate off-market time use that is non-

separable with market consumption into the consumer problem. Within

this framework the constancy of equilibrium markups is neither sufficient

nor necessary for efficiency. Whether or not the competitive level of produc-

tion and market concentration of firms are efficient depends on the degree to

which consumption time and market goods are complements or substitutes.

Such inefficiencies are the result of time use being misallocated toward home

production at the expense of market production.
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1 Introduction

Measures of markups find large heterogeneity across firms.1 Are heterogeneous

markups inefficient? In this paper we revisit the analyses of markups and ef-

ficiency in monopolistically competitive settings previously undertaken by Dixit

and Stiglitz (1977), Zhelobodko et al. (2012), and Dhingra and Morrow (2019). We

consider how the connection between markups and efficiency changes in a model in

which consumers’ off-market time use is not separable from market consumption

in the home production sense; consumers choose how many hours to work and how

much time to devote to home production. Within this context, we revisit several

core questions. Namely, can efficient allocations be achieved even when markups

are heterogeneous? And, how is markup heterogeneity related to the elasticity

of substitution across varieties of market goods when off-market time and market

consumption are non-separable?

Whether heterogeneous markups are efficient will depend on the cause of

markups. In standard models of monopolistic competition, like the benchmark

Dixit and Stiglitz (1977) environment with constant elasticity of substitution

(CES) preferences, the distribution of markups is determined solely by prefer-

ences for varieties of market consumption. More recent papers, such as Zhelobodko

et al. (2012) and Dhingra and Morrow (2019), enrich the consumer’s preference

structure beyond CES, exploring the implications for markups and welfare when

elasticities of substitution are variable (VES). Meanwhile, Behrens et al. (2020)

allow for different elasticities between sectors and quantify the welfare losses as-

sociated with markups. In each paper time use is inelastic, and CES preferences

are both necessary and sufficient for markups to be constant and allocations to be

efficient when cost structures are heterogeneous across firms.

We show that when firms are heterogeneous in costs and off-market time use

is both elastic and non-separable with market consumption, CES preferences over

market consumption are necessary but not sufficient to achieve allocative effi-

ciency. Further, CES preferences over market consumption are necessary to ensure

markups are constant, but constant markups are neither necessary nor sufficient to

ensure allocations are efficient. The commonly posited relationship from the liter-

ature between the constancy of markups, elasticities of substitution, and efficiency

is broken under a home production preference structure.

We also examine the positive role preferences play in generating general equi-

librium outcomes, in particular, markups and markup dispersion. In this way

1See, e.g., Epifani and Gancia (2011), De Loecker et al. (2020), Peters (2020), and Edmond
et al. (2022).
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our work is close in spirit to that of Parenti et al. (2017). Both Parenti et al.

(2017) and our paper posit that consumers face a richer decision-making prob-

lem than what is typically assumed in the monopolistic-competition literature. In

Parenti et al. (2017) consumers have uncertainty over their love for variety which

yields variable markups that can (possibly) be socially optimal. Alternatively, our

approach assumes consumption requires time. This microfounded enrichment of

the consumer’s problem can generate heterogeneous markups in equilibrium that

are efficient. This is because when consumers also require time in order to de-

rive utility from a consumption activity, the shadow price of final consumption

is fundamentally different from the posted, market price. We show, under cer-

tain conditions, that this model can sometimes lead to variable markups that are

socially optimal. Particularly, if the cost of final consumption is the sum of the

price of market inputs and the marginal cost of a consumer’s off-market time, then

markups are variable but also socially optimal.

By allowing for home production, and thus non-separable market consump-

tion and off-market time, we introduce a new channel through which distortions

may operate. We show that markups over the marginal cost of production, which

monopolistically competitive firms choose when making pricing decisions, are not

the same as the markups experienced by consumers when they choose to allocate

time toward using market purchases in off-market activities. The latter account for

both the degree to which market consumption and off-market time are complimen-

tary or substitutable and how consumers value their off-market time. Meanwhile,

markups as chosen by firms (what we call “posted” markups) are merely markups

on a single, but not exclusive, input in consumers’ home production processes.

We show that these posted markups always exceed the “holistic” markups over

marginal-cost pricing that consumers actually experience. This is because, in the

face of increasing market prices, consumers have several intensive margin choices:

1) they can reallocate their off-market time toward utilization of different kinds of

high- or low-cost market products; 2) they can work more or less and thus supply

less or more time toward off-market, home-production activities.

The results in this paper also have several normative implications. First, our

main result challenges the idea that variable markups are always distortionary.2

Given that estimates of markup dispersion suggest it has increased over the last

forty years (see, e.g., De Loecker et al. (2020, Figure 3) and Flynn et al. (2019,

Figure 2) ), that this increase has resulted in a decline in consumer surplus relative

2In many models, higher markup dispersion reduces welfare. In models such as Peters (2020)
and Edmond et al. (2022), markup dispersion creates misallocation and ultimately reduces TFP
relative to a benchmark with no dispersion.
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to an environment where such an increase had not occurred should be re-examined.

Second, the strict focus on posted, observable markups, as opposed to the holistic

markups our model generates, may overstate both the welfare implications of

markups (and, by extension, market concentration) and the degree to which they

have effectively impacted consumers’ budgets.

Our theoretical model reflects the fundamental idea first discussed in Becker

(1965) and analyzed in depth in Ghez and Becker (1974) that utility derived

from off-market time (i.e., “leisure”) cannot be separated from utility derived

from market consumption. That is, in order to enjoy consumption, consumers

must allocate time toward doing so. The literature has often referred to this

process as “home production,” implying that there exist shadow “commodities”

or “experiences” that yield utility but which we cannot directly measure, yet

which are produced by combining inputs of time and market purchases (i.e., what

is often referred to as “consumption”) in order to yield some final output over

which consumers have utility. In this sense time-use and market consumption are

non-separable in preferences, since each market purchase is also associated with a

unique time-use decision.

This modeling approach is motivated by strong empirical evidence that time-

use and consumption are not separable in preferences.3 Further, the literature has

only recently begun to consider the implications of incorporating non-separable

preferences for consumption and leisure time into studies involving broader out-

comes that are only indirectly related to the study of consumer time-use itself.

Boerma and Karabarbounis (2021) and Pretnar (2022) use models with consump-

tion and time-use non-separabilities to measure welfare inequality, each coming

to opposite conclusions which depend on modeling assumptions. Meanwhile,

Bridgman et al. (2018) and Bednar and Pretnar (2023) study how accounting

for time-use non-separabilities in home production affect implications for struc-

tural change, while Bridgman (2016) uses a model with consumption and time

use non-separabilities to study how in-home productivities associated with using

different types of market products have changed over time.

The findings throughout the macroeconomics literature provide evidence that

allowing for non-separabilities between market purchases and off-market time may

fundamentally change other economic inferences. In this paper we add to these

findings by studying the welfare implications of consumption and time-use non-

separabilities in a monopolistically competitive economy.

When one incorporates off-market time, it is natural to also allow the labor

3See, e.g., Aguiar and Hurst (2005), Aguiar and Hurst (2007), Pretnar (2022), and Fang et al.
(2022).
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supply to be elastic. To this point, the literature exploring models of monopolistic

competition has sometimes allowed for elastic labor, though leisure preferences are

almost always separable from consumption. Bilbiie et al. (2012) explore how the

allocation of labor across sectors and the number of products and producers varies

over the business cycle. Bilbiie et al. (2019) consider the role that elastic factors

of production (labor and capital) play in amplifying distortions on a dynamic

path along which firms may enter and exit. Boar and Midrigan (2022) also have

additively separable consumption and time, though they focus on how markup dis-

tortions redistribute income from laborers to entrepreneurs. Meanwhile, Edmond

et al. (2022) disentangle the degree to which markups, misallocation of factors of

production, and inefficient entry contribute to welfare costs.

The paper proceeds as follows. Section 2 outlines the broad ingredients re-

quired for the benchmark model. All units are denominated in units of time.

Consumers are identical but enjoy experiences associated with market products of

different varieties. Firms, however, are not identical, as each faces a unique cost

structure. Finally, we define the problem faced by agents in a decentralized set-

ting before also describing the choices faced by a planner seeking to tax/subsidize

labor, production, and profits in order to achieve allocative efficiency. In Section

3 we separately characterize the efficient and equilibrium allocations. Section 4

discusses the relationship between our results and models with no off-market time,

while characterizing conditions under which equilibrium allocations are efficient.

Section 5 concludes.

2 Model

We first describe the physical environment, starting with quite general formu-

lations of the problems faced by consumers and firms, before turning to formal

definitions of both the efficient allocation and the monopolistically competitive

equilibrium with free entry.

2.1 Physical environment

In this section we describe the physical environment, specifying the preferences of

agents, the technology available to firms, and aggregate resources in the economy.

Subsequent sections will characterize efficient allocations and impose a particular

market structure.

Consumers. There exists a unit mass of identical consumers who have pref-

erences over a continuum of consumption experiences, indexed by a set i ∈ I ⊆ R.
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We denote consumption experiences by ci. A consumption experience is defined as

the act of combining goods and services which are purchased on the market with

off-market time in order to generate an experience which yields final utility. Con-

sumers produce these experiences using a Becker (1965) production function which

can take market quantities, qi, and off-market time, ni, as inputs. Our experiences

are analogous to what Aguiar et al. (2012), Aguiar and Hurst (2013), and Aguiar

and Hurst (2016) refer to, in different contexts, as “commodities” which gener-

ate utility but, which in order to be produced, require market inputs and time.

Throughout this analysis we may also refer to these ci’s as “final consumption”

that are distinct from qi’s which we sometimes call “market consumption.”

Each qi is a particular good or type of good that consumers buy on the market.4

Therefore, each ci := c(qi, ni) can be thought of as an output of a particular home

production process. We will assume that each consumption experience is produced

with a production function that is constant elasticity of substitution (CES) in

market quantities and off-market time, so that

ci := c(qi, ni) = (αqξi + (1− α)(ζni)
ξ)1/ξ (2.1)

where α ∈ [0, 1] represents the weight of market consumption in home production,

ζ ≥ 0 is proportional to the in-home value of off-market time, and the elasticity of

substitution between a particular market purchase and its associated allocation of

off-market time is governed by ξ ≤ 1. Note that this is object is distinct from both

the elasticities of substitution across final consumption experiences and the elastic-

ities of substitution across market consumption. The latter is an important object

of study in models of monopolistic competition, such as Zhelobodko et al. (2012)

and Dhingra and Morrow (2019) who show, to varying degrees, that markups

are efficient if and only if the elasticity of substitution for market consumption is

constant. Our setup, heretofore, places no restrictions on the constancy of this

object. Further, we will show that in our setup it need not be constant in order

for monopolistically competitive equilibria to be efficient.

Let u be a strictly positive, strictly increasing, and strictly concave func-

tion that takes as its argument consumption experiences. We will assume that

u(ci) ≡ cρi for some parameter ρ governing the substitutability of final experiences

satisfying max{0, ξ} ≤ ρ < 1. Consumer preferences are a linear aggregate of

consumption experiences,

C =

∫

I

u(ci)di. (2.2)

4In the language of Dhingra and Morrow (2019), each qi corresponds to a particular “variety.”
We first index quantities by the dummy variable i, and later index by marginal cost, κ.
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Note that when α = 1, consumption experiences coincide with market consump-

tion and the specification of preferences in (2.2) is nested within the frameworks

of Zhelobodko et al. (2012) and Dhingra and Morrow (2019). In this formulation

consumers’ love for variety is, more specifically, a love for a variety of consumption

experiences, not just the goods and services which can be bought and sold on the

market. That is, consumers want to engage in a variety of different activities with

the goods and services they buy, and for that they have a love of variety.

Consumers desire to choose market purchases and off-market time to max-

imize C. In this sense time-use and market consumption are non-separable in

preferences. This is the key innovation of our paper as it pertains to the litera-

ture on monopolistic competition. Bilbiie et al. (2012) and Bilbiie et al. (2019)

feature variable labor supply and leisure, but it is separable in preferences from

market consumption. In Zhelobodko et al. (2012) and Dhingra and Morrow (2019)

time-use is inelastic and does not enter into an agent’s utility function.

We denote by N :=
∫
I
ni di the total amount of time spent engaged in the

production of experiences. Every consumer is endowed with T units of efficiency

time. Consumers, generally speaking, may supply two types of labor: 1) start-up

effort to firms in order to set them up; 2) variable labor hours in efficiency units

of time which are the sole inputs to production. Let E denote the total amount of

start-up effort a consumer supplies in efficiency units of labor, and let L denote

the total amount of variable efficiency hours of labor supplied. The representative

consumer’s time-use constraint is then

E + L+N ≤ T . (2.3)

Firms. Following Dhingra and Morrow (2019) there is a continuum of possible

firms which each produce a given variety of goods. Firms are ex-ante identical

and must pay a fixed cost fe in order to exist (these are akin to entry costs) and

draw a marginal cost κ from some distribution G. We will consider two separate

assumptions/cases on this distribution of productivity. In the homogeneous firms

case, we assume that G is a point mass at some point κ > 0. In contrast, in

the heterogeneous firms case, we assume that G has continuous, positive density

g defined on an interval [κ,∞) for some minimal cost κ ∈ (0, κ). Upon drawing

their productivity, the firms choose whether or not to pay an additional fixed cost

f to remain in business. Both of these fixed costs are denominated in units of

effective labor and are interpreted as real resource costs for setting up a firm (i.e.,

they are not costs imposed by, e.g., regulation). We index firms by κ and refer to

this as the firm’s “type.” The output of a firm of type κ who employs ℓ units of
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effective labor is then

y(κ, ℓ) = ℓ/κ (2.4)

so that κ is the marginal cost of the firm, and 1/κ is the firm’s labor productivity.

Aggregate Resources. Since labor is the only input to production and all

fixed costs are denominated in units of effective labor, and since the consumer is

representative, the consumer’s individual time-use constraint is also the aggregate

resource constraint in this economy. If we denote by Me the mass of firms that

enter and draw a productivity κ, then total effective labor used in production

is L =
∫ κ
κ
ℓ(κ)MeG(dκ). Total fixed costs paid by firms are then given by E =

(fe+ fG(κ))Me. To relate output and costs to this resource constraint we impose

the following assumption on the uniqueness of productive outputs in the set of

consumption experiences.

Assumption 1. The experience set, I, is identical to the production set, [κ, κ],

so that each qi is associated with one and only one firm output, q(κ) = y(κ, ℓ).

This implies that we can index consumer preferences over varieties by κ ∈ [κ, κ].

Assumption 1 states that each firm produces one and only one type of consumption

good, with quantity denoted q(κ), and consumers supply off-market time, n(κ),

toward engaging in consumption activities associated with that particular type-κ

consumption good. We can then write c(κ) = c(q(κ), n(κ)), so that

C =

∫ κ

κ

u(c(κ))MeG(dκ). (2.5)

Since labor inputs to production can be written ℓ(κ) = κq(κ), the economy-wide

resource constraint can then be written

(fe + fG(κ))Me +

∫ κ

κ

(κq(κ) + n(κ))MeG(dκ) ≤ T . (2.6)

Definition 2.1. The problem of the planner is to maximize (2.5) subject to the

resource constraint (2.6).

Note that because consumers are identical, the planner is constrained only by the

aggregate resource constraint (2.6) and can safely ignore the separate time con-

straints of individual agents. If consumers were not identical, the planner would

be additionally constrained by the entire set of all consumers’ time constraints,

since time endowments cannot be redistributed.

This completely describes the physical environment. Note that there are no

prices or government transfers in the above, because we have yet to describe the

nature of trade between agents.
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2.2 Monopolistically competitive equilibrium

We now define the monopolistically competitive equilibrium with free entry. Con-

sumers take prices as given in both product and labor markets, while firms behave

in a monopolistically competitive fashion in the product market, in the sense

that they take the prices of their rival firms as given but internalize the effect

of their own price on consumer demand. Firms will enter if doing so gives them

non-negative expected profits, and will operate if doing so provides them with

non-negative operating profits.

Consumers. A consumer earns labor income from supplying time toward

setting-up firms, E , and variable hours toward production, L. Hourly wages are

normalized to unity. Consumers collectively own the firms in the economy, and so

in principle may earn profits Π net of fixed costs. After invoking Assumption 1

the consumer’s budget constraint is

∫ κ

κ

p(κ)q(κ)MeG(dκ) = E + L+Π (2.7)

where the left-hand side is total expenditure and p(κ) are prices for market-traded

goods q(κ). Because the model is expressed in terms of efficiency units of time,

each p(κ) is technically the price of market-traded goods q(κ) relative to the value

of off-market time, which is equal to the hourly wage and normalized to unity.

Combining (2.7) with (2.3) we get the Beckerian budget constraint:

∫ κ

κ

(p(κ)q(κ) + n(κ))MeG(dκ) = T +Π. (2.8)

Definition 2.2. The problem of a consumer receiving profits Π and facing a con-

tinuum of goods indexed by [κ, κ], a mass of firms Me, and prices p, is to maximize

the objective (2.5) subject to the budget constraint (2.8).

Firms. Each firm chooses their own price taking the prices of all other firms

as given. We denote the demand functions implied by Definition 2.2 by q(κ, p; p̃),

for a firm of type κ who chooses their price p given the set p̃ of all other prices.

The problem of a firm who has paid both fixed costs f (operating cost) and fe

(entry cost) is then described in the following definition.

Definition 2.3. Given the prices p̃ chosen by other firms, the problem of a firm

of type κ who has paid both fixed costs is given by

π(κ; p̃) := max
p≥0

(p− κ)q(κ, p; p̃), (2.9)

9



so that the quantity π(κ; p̃) can be interpreted as ex-post operating profits.

Definition 2.3 describes the problem of a firm who has already paid the two

possible fixed costs. A firm who has paid the entry cost, fe, will pay the second,

operating cost, f , if and only if π(κ) ≥ f . We then have two separate conditions

for firm entry, depending upon whether we are in the homogeneous firms case, or

the heterogeneous firms case. In the homogeneous firms case everyone who pays

fe draws the same κ and chooses to operate, paying f . In the heterogeneous firms

case we denote by κ the solution to π(κ) = f , which characterizes the firm that

is indifferent between operating and shutting down. Firms will be indifferent to

entering (paying fe) if and only if expected profits net of fixed costs are zero, or

∫ κ

κ

π(κ)G(dκ) = fe + fG(κ).

Aggregate profits are

Π :=Me

(∫ κ

κ

π(κ)G(dκ)− fe − fG(κ)

)
(2.10)

and we have the following definition.

Definition 2.4. A monopolistically competitive equilibrium consists of a mass of

firms Me, a cutoff value for productivity κ, market quantities and off-market time

(q, n) = (q(κ), n(κ))κ∈[κ,κ], and prices p = (p(κ))κ∈[κ,κ], such that:

(i) given the cutoff κ and prices p, the market quantities q and off-market time

n solve the consumer problem in Definition 2.2;

(ii) given prices p, mass of firms Me, and cutoff κ, for each κ ∈ [κ, κ], p(κ)

solves the firm problem in Definition 2.3;

(iii) a firm of type κ produces if and only if π(κ) ≥ f ;

(iv) aggregate profits in (2.10) are zero, Π = 0.

Remark 1. With homogeneous firms a non-negligible mass of firms could, in

principle, be indifferent between producing and not producing. However, if we

write η for the fraction of entering firms that operate, then expected profits are

Π := Me(ηπ(κ)− (fe + fη)). Rearranging this expression for profits and setting

to zero then gives η(π(κ)−f) = fe, and so the requirement π(κ) ≥ f must be strict

and hence η = 1. Intuitively, when productivity is known ex-ante, the decision to

operate is redundant given that firms have chosen to enter.
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Remark 2. Note that when ρ = ξ preferences attain a special case of Bilbiie

et al. (2019) in which consumption exhibits CES, and time use and consumption

are additively separable. The α = 1 case yields a CES version of Dhingra and

Morrow (2019). When production is Leontief, the ratio n/q in that it does not

depend on κ in the solution to the planner’s problem or p(κ) in the equilibrium

allocation. Given the constancy of n/q, we can recover a disguised form of the

CES environment of Dhingra and Morrow (2019) in which effective costs are not

κ but instead κ+1/ζ. The difference between the production costs actually faced

by firms, κ, and the cost of consumption experienced by the consumer will be key

to our model’s implications for the possible efficiency of variable markups.

3 Analysis

We now turn to characterizing both efficient and monopolistically competitive

equilibrium allocations, while comparing them. We will show that accounting for

off-market time use in a non-separable fashion affects implications pertaining to

the efficiency of equilibrium markups and allocations because final consumption

is achieved by not merely making a market purchase but from making such a

purchase and allocating time toward using that purchase.

As we progress through our analyses, we will eventually distinguish between the

markups on market quantities (i.e., q’s) that the firms post versus total, what we

call “holistic” markups, which comprise the markup of the value of final consump-

tion experiences in equilibrium over the same value under marginal-cost pricing

for q’s. The former we will call “posted” markups, which to some extent are ob-

servable as a result of firm behavior, and the latter we will call “holistic” markups,

which are the markups experienced by consumers. The total holistic price of a

final consumption experience, from the perspective of the consumer, is thus a

function of the posted price (and, therefore, posted markup) of the market good,

the value of the consumer’s off-market time, and the degree to which time and

market purchases are complementary or substitutable within the act of producing

in-home final consumption.

Consider now the implications of our model parameterization, where the elas-

ticity of substitution across experiences is constant. In Dhingra and Morrow

(2019), where firms are heterogeneous in costs/productivities and consumer time

use is inelastic, CES preferences over market purchases are both sufficient and

necessary for decentralized allocations from a monopolistically competitive equi-

librium to be socially optimal. In our environment the elasticity of substitution

across final consumption experiences is constant, but the prices of final experi-

11



ences are only equivalent to the prices of market goods when consumers supply

time inelastically (i.e., α = 1). Thus, we seek to explore the effect of markups on

the efficiency of allocations outside of this particular asymptotic case.

3.1 Efficient allocations

The problem of the planner is

max
q,n,Me,κ

∫ κ

κ

(αq(κ)ξ + (1− α)(ζn(κ))ξ)ρ/ξMeG(dκ)

(fe + fG(κ))Me +

∫ κ

κ

(κq(κ) + n(κ))MeG(dκ) ≤ T .

(3.1)

where the objective function in (3.1) composes (2.1) with u(x) = xρ for max{0, ξ} ≤

ρ < 1.

We first solve for off-market time in the above problem in order to reduce the

problem to one of choosing consumption experiences, c(κ), only. The reason for

doing this is to show that the efficient price of final consumption embeds both

the firm’s marginal cost of production κ, as well as the degree to which market

consumption and off-market time are complementary, ξ, and the intensity of final

consumption in market goods, α, from the perspective of the consumer. The first-

order conditions for n and q combine to give the efficient ratio of off-market time

to market goods

n(κ)/q(κ) = ζ
ξ

1−ξ [(1/α− 1)κ]
1

1−ξ , (3.2)

which satisfies the following comparative statics.

Lemma 3.1. The efficient ratio of off-market time use to market consumption is

concave in κ for ξ ∈ (−∞, 0), convex in κ for ξ ∈ (0, ρ], and is strictly increasing

in κ for all −∞ < ξ ≤ ρ. When home production is Leontief, the ratio is 1/ζ and

is thus constant.

Proof. See Appendix B.

Lemma 3.1 discusses how n(κ)/q(κ) varies in κ, which will be informative for

many of our later analyses. For high-cost/low-productivity varieties (high κ)

consumers supply relatively more off-market time and engage in relatively less

off-market consumption than for low-cost/high-productivity varieties. However,

the rate at which the relative provision of time toward home production changes

depends on whether n and q are complements or substitutes. When time and

market consumption are complementary, the allocative difference between simi-

lar low-cost/high-productivity firms is greater than the same difference between

12



high-cost/low-productivity firms. The opposite is true when time and market con-

sumption are substitutes. In this case, as marginal costs rise consumers substitute

time for market consumption at increasing rates. The result in Lemma 3.1 will

be important for understanding how the total, time-inclusive cost of consumption

experiences varies.

Using the expression in (3.2) for the efficient ratio of off-market time to market

consumption, we can write

κq(κ) + n(κ) =
κ

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ

c(κ) (3.3)

and so it is instructive to define a new function

ψ(κ) = ψ(κ;α, ξ) :=
κ

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ

(3.4)

that represents the total per unit resource cost of a consumption experience in-

clusive of off-market time along the upper envelope of the consumer’s choice set.5

The expression (3.4) is valid for ξ > −∞, but when home production is Leontief,

it can be shown that ψ(κ) = κ+ 1/ζ since q is linear in n.

Using the envelope theorem, it is straightforward to show that the efficient

ratio of market consumption, q(κ), to total consumption experiences, c(κ), is

q(κ)/c(κ) = ψ′(κ;α, ξ). (3.5)

The object in (3.5) is simply the efficient marginal cost of using a market product,

q(κ), to make an experience, c(κ). Similarly, its inverse is a productivity term,

characterizing the efficient in-home production level associated with utilization of

the type-κ market product. Notice that for all κ, α, and ξ we have ψ′(κ; 1, ξ) ≡

ψ′(κ;α,−∞) ≡ 1, so that market consumption and final consumption coincide

both when off-market time and consumption are perfect complements and when

the share of off-market time in consumption experiences vanishes. Further, for all κ

and ξ we have ψ(κ; 0, ξ) = 1/ζ and ψ(κ; 1, ξ) = κ. Thus, when consumers only care

about off-market time, the efficient value of one final consumption experience is

just the inverse of the consumer’s off-market, time-use productivity ζ, while when

time is inelastic this value is equal to the marginal cost of production. Finally, in

the Cobb-Douglas case we have ψ(κ) = α−α[(1− α)ζ]−(1−α)κα.6

Lemma 3.2. The total cost function, ψ(κ), is strictly increasing and concave in

5The function ψ(κ) is analogous to the same object in Becker (1965).
6Special cases are proved in Lemma A.2.

13



κ for all ξ, and the elasticity with respect to κ is

ϵ(κ;ψ) =
κψ′(κ)

ψ(κ)
=

1

1 + (1/α− 1)
1

1−ξ [κζ]
ξ

1−ξ

. (3.6)

This elasticity is bounded above by unity, increasing in κ when ξ ∈ [−∞, 0), de-

creasing in κ when ξ ∈ (0, ρ], and constant and equal to α when ξ = 0.

Proof. See Appendix B.

Equation (3.6) in Lemma 3.2 defines an elasticity, unique to this model, which

describes how the total cost function, ψ(κ), varies in κ. This elasticity will be

important in order for us to understand how firms’ markups over marginal cost

are actually experienced (i.e., passed through) to the consumer. In models with-

out consumption time, markups affect the cost associated with final consumption

one-for-one. In this model, the shape of ψ(κ) will determine the degree to which

the imperfect substitution between market purchases and time use affects how

consumers experience markups. The elasticity in (3.6) will thus help us charac-

terize the effective efficient markup of final consumption experiences, which can

then be compared to the posted markups over the marginal cost of production.

Note that ψ is always inelastic in κ.

Further, ψ is monotonically increasing (in levels), and so low-productivity (i.e.,

high κ) firms are also associated with a high final resource cost of experienced

consumption. Since both n(κ) and q(κ) are “normal” goods, from the consumer’s

perspective, higher κ means higher input costs overall, given the resource cost of

n(κ) is fixed. But, the rate at which ψ(κ) increases falls as κ rises, regardless of

the sign of ξ. The final-cost differential for experiences associated with market

outputs between two high-productivity (low κ) firms is greater than the final-

cost differential for two experiences associated with market outputs from low-

productivity firms (high κ). However, given the result from Lemma 3.1, the reasons

driving this second-order phenomenon still pertain to the sign of ξ, which governs

the rate at which time is allocated to different market purchases.

To illustrate, we consider two comparative statics: 1) the difference in final cost,

ψ(κ), between two, similar low-cost/high-productivity firms; 2) the difference in

final cost, ψ(κ), between two, similar high-cost/low-productivity firms. Let dκ be

the marginal cost differential between the two different pair-wise sets of firms from

cases (1) and (2), and suppose this marginal cost differential is the same across

both cases. In case (2) the final cost differential, dψ, is less than that in case (1)

due to the concavity of ψ(κ). This is true regardless of the sign of ξ.
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Now, returning to Lemma 3.1, note that when ξ < 0, the rate at which con-

sumers substitute from market consumption towards off-market time slows as the

marginal cost of producing a variety rises. Thus, when ξ < 0, differences in dψ

at the high-cost/low-productivity end of the distribution of κ are diminished pre-

cisely because of consumption/time-use complementarities. Note that the power

term in (3.4) is such that 1 − 1/ξ →+ 1 as ξ → −∞, so that if n(κ)/q(κ) were

convex with ξ < 0 then we would expect ψ(κ) to actually rise faster as κ rises.

Since this is not the case we can conclude that the complementarities causing

substitution from q(κ) to n(κ) to slow as κ rises are what primarily contribute to

the concavity of ψ(κ) when ξ < 0. Complementarities in home production thus

imply that consumers derive utility from final consumption by substituting time

away from low-κ final experiences at lower rates as the cost of production rises.

When ξ ∈ (0, ρ], so that time use and market consumption are substitutes,

Lemma 3.1 shows that n(κ)/q(κ) is increasing and convex in κ. Consequently,

substitution away from market consumption and toward off-market time acceler-

ates as the cost of producing varieties rises. Because 1− 1/ξ < 0 when ξ ∈ (0, ρ],

this leads to smaller final cost differentials at the low end of the marginal cost dis-

tribution relative to differences at the high end of the marginal cost distribution.

We can now use the above to write both the objective and the constraint in the

planner’s problem described in (3.1) in terms of consumption experiences, c(κ),

rather than market consumption, q(κ), and off-market time, n(κ):

max
c,Me,κ

∫ κ

κ

c(κ)ρMeG(dκ)

(fe + fG(κ))Me +

∫ κ

κ

ψ(κ)c(κ)MeG(dκ) ≤ T .

(3.7)

Writing the planner’s problem like (3.7) shows that the efficient allocations coin-

cide with a special case of Dhingra and Morrow (2019), in which preferences are

CES over final consumption and the cost is not κ but instead ψ(κ). To anticipate

our later analyses, much of the interest (and difficulty) in the characterization of

equilibrium markups and welfare arises from the fact that despite the isomorphism

between the problem in (3.7) and planning problems without off-market time, the

firms in our decentralized environment sell market consumption (not consumption

experiences) and face only the technological costs κ of producing the variety (and

not the total cost ψ(κ)). Proposition 3.3 characterizes efficient allocations of final

consumption experiences c(κ) and, by extension, market consumption q(κ), the

mass of firms Me, and the productivity cutoff κ. We characterize allocations for

both the case with heterogeneous firms and the case with homogeneous firms.
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Proposition 3.3 (Efficient Allocations). In the heterogeneous firms case there

exists a unique solution to the equation

f ×

∫ κ

κ

ψ(κ)−
ρ

1−ρG(dκ) = (fe + fG(κ))× ψ(κ)−
ρ

1−ρ , (3.8)

which gives the cutoff productivity in the solution to the planner’s problem. For

this value of κ, the efficient mass Me of entering firms is given by

Me =
(1− ρ)T

fe + fG(κ)
. (3.9)

The efficient quantity of final consumption experiences of every variety is

c(κ) =
ρTψ(κ)−

1
1−ρ

Me

∫ κ
κ
ψ(κ)−

ρ
1−ρG(dκ)

(3.10)

while the efficient market consumption of each variety is q(κ) = ψ′(κ)c(κ). In the

homogeneous firms case, the mass of entering firms is

Me =
(1− ρ)T

fe + f
, (3.11)

each consumption experience is c = (fe + f)/((1/ρ − 1)ψ(κ)), and market con-

sumption of each variety is q = ψ′(κ)c.

Proof. See Appendix B.

Some discussion around Proposition 3.3 is warranted. First, note that in equa-

tion (3.8), the integral
∫ κ
κ
ψ(κ)−

ρ
1−ρG(dκ) may be interpreted as an index that

describes the aggregate, total resource cost of all consumption experiences. The

left-hand side of (3.8) is then the total operating cost in units of final consumption

experiences, while the right-hand side describes the cost of entry plus operation

for the last firm to enter, denominated in units of final consumption experiences.

Firms ought to produce q(κ) > 0 only if the final consumption value of their fixed

costs is less than or equal to the total consumption value of all production, as is

apparent by inspecting the left-hand side of (3.8). The presence of the total cost

functions demonstrates how consumer behavior in home production impacts the

efficient entry margin and firm profitability: ψ(κ) needs to be low enough relative

to economy-wide costs in order for entry to be profitable. Equation (3.9) also

shows that the optimal fraction of the endowment of labor T devoted to setup

costs is always 1 − ρ, regardless of the distribution G, costs f and fe, or the
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preference parameters ξ and α.

Equation (3.10) characterizes the level of final consumption experiences for

each variety. Final consumption is proportional to ψ(κ)−
1

1−ρ , while market con-

sumption differs from this by the factor ψ′(κ), the marginal cost of home pro-

duction. When α = 1 we obtain the familiar constant elasticity of demand with

respect to κ, as c ≡ q ∝ κ−
1

1−ρ .

3.2 Monopolistically competitive allocations

We now turn to the characterization of monopolistically competitive equilibria.

We will proceed in a manner similar to that adopted in Section 3.1 in order to

highlight the similarities and differences between the efficient and equilibrium

allocations. To this end we first characterize the off-market time chosen by the

consumer in order to reduce the problem to one in which consumption experiences

are the sole object of choice. From here we will then turn to an analysis of the

pricing and entry decisions of the firms.

Faced with a continuum of firms distributed over the interval [κ, κ] according

to the CDF G, with pricing schedule p, the consumer problem is to choose market

consumption and off-market time (q, n) = (q(κ), n(κ))k∈[κ,κ] satisfying

V (p) = max
q,n

∫ κ

κ

(
αq(κ)ξ + (1− α)(ζn(κ))ξ

)ρ/ξ
MeG(dκ)

∫ κ

κ

(p(κ)q(κ) + n(κ))MeG(dκ) = T +Π.

Taking first-order conditions for consumption and time and rearranging provides

us with an analog of equation (3.2) for the decentralized economy,

n(κ)/q(κ) = ζ
ξ

1−ξ [(1/α− 1)p(κ)]
1

1−ξ . (3.12)

Substituting the ratio (3.12) into the consumer problem gives

V (p) = max
q

∫ κ

κ

c(κ)ρMeG(dκ)

∫ κ

κ

ψ(p(κ))c(κ)MeG(dκ) = T +Π.

(3.13)

The consumer problem in (3.13) is similar to the planner’s problem in (3.7)

except for a few key differences. First, the consumer obviously does not choose the

mass of entering firmsMe or the cutoff κ. Second, the resources devoted to setting
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up firms appear nowhere in the consumer’s problem. However, in spite of these

obvious differences, the function ψ capturing the role of off-market time in affecting

quality and costs appears in both the centralized and decentralized environments.

In the planner’s problem the function ψ is evaluated at the technological cost κ,

while in the equilibrium allocation it is evaluated at the (yet-to-be-determined)

price p chosen by the firm.

The degree to which posted markups pass through to consumers depends on

the structure of ψ. Firms, therefore, must take a consumer’s known value of

their off-market time, ζ, as given and then choose a markup that maximizes their

profits subject to the knowledge of this ζ. But as long as ψ has curvature (i.e.,

off-market time and market consumption are neither perfect complements nor

perfect substitutes in home production), the holistic markup experienced by the

consumer will be different from the posted markup the firm sets. Home production

thus augments effective markups, which may have both implications for whether or

not they are economically efficient and theoretical implications for the relationship

between efficiency, markups, and the structure of demand (i.e., constancy versus

variability of the elasticity of substitution for market consumption).

After solving for the solution to the consumer’s problem, q(p), the firm’s prob-

lem in Definition 2.3 may now be written

π(κ) = max
p≥0

(p− κ)q(p) =:
(T/Me)∫ κ

κ
ψ(p(κ))−

ρ
1−ρG(dκ)

× π̂(κ) (3.14)

where the second equality defines π̂(κ), which may be viewed as the profits of the

firm up to a constant that is independent of the firm’s choices. Now note that for

any demand schedule q faced by the firm, the first-order condition of the firm’s

problem may be rearranged to obtain

p/κ =
ϵ(p; q)

ϵ(p; q)− 1
(3.15)

where

ϵ(p; q) := −
pq′(p)

q(p)
(3.16)

is the own-price elasticity of demand. Outside of special cases considered below,

the firm’s problem does not have a closed-form solution precisely because this

price elasticity is, in general, not constant in market prices.

Proposition 3.4 characterizes the equilibrium markups under different para-

metric conditions. We identify three cases in which markups have a closed-form

solution, and two cases in which markups are constant. Note that constancy of
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markups does not necessarily imply efficiency, because the posted markups are

not the holistic markups which are actually internalized by the consumer. We will

discuss this more below.

Proposition 3.4 (Markups). If ξ ≤ ρ then the price p(κ) chosen by the firm is

unique for all κ and increasing in κ. Further, the markup m(κ) := p(κ)/κ always

weakly exceeds 1/ρ, and in the special cases in which ξ ∈ {−∞, 0, ρ}, satisfies:

(i) (Leontief) For ξ = −∞ we have m(κ) = 1/ρ+ (1/ρ− 1)/[ζκ].

(ii) (Cobb-Douglas) For ξ = 0, we have m(κ) = 1/ρ+ (1/ρ− 1)(1/α− 1).

(iii) (CES) For ξ = ρ, we have m(κ) = 1/ρ.

Proof. See Appendix C.

Markups are thus only constant when time use and market consumption are unit

elastic in terms of their input substitutability (i.e., Cobb-Douglas home produc-

tion) or preferences take a Bilbiie et al. (2019) flavor with elastic leisure that is

separable from market consumption (i.e., ξ = ρ). In the latter case we get the

constant markup that we would expect under the Bilbiie et al. (2019) model with

CES preferences but with heterogeneous firms as in Dhingra and Morrow (2019).

To our knowledge, however, whether or not constant markups from CES prefer-

ences are efficient in an environment with endogenous labor and heterogeneous

firms has yet to be explored. We consider their potential efficiency in the next

section.

The envelope theorem implies that π̂′(κ) = −q(p(κ)), and so the elasticity of

profits with respect to productivity may be written as a function of the markup,

κπ′(κ)

π(κ)
=
κπ̂′(κ)

π̂(κ)
= −

1

m(κ)− 1
. (3.17)

The price of market consumption does not admit a closed-form solution outside

of the special cases stated in Proposition 3.4. Nonetheless, we can qualitatively

describe how markups vary in marginal costs under different values of ξ.

Lemma 3.5. The markup is weakly decreasing in κ when ξ ∈ [−∞, 0) and weakly

increasing in κ when ξ ∈ (0, ρ].

Proof. See Appendix C.

Lemma 3.5 states that markups decline in per-unit marginal costs when time

use and market consumption are complementary, and they rise when time use
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and market consumption are substitutes. We now provide some intuition for

the variation of markups in productivity, in the spirit of the discussion following

Lemma 3.1 (variation of efficient n/q) and Lemma 3.2 (variation of efficient ψ).

First, consider the case when ξ < 0, so that time use and market consump-

tion are complements. Lemma 3.5 tells us that differences in final experienced

(effective) prices, ψ(p(κ)), at the high-end of the marginal-cost distribution are

small precisely because of markup compression as costs rise and productivities

fall. This is a bit counterintuitive, however. Consider, now, the result in Lemma

3.1: substitution away from market consumption and toward time use slows as κ

rises when ξ < 0. This result would seem to suggest that firms at the high-end

of the cost distribution would then have relatively higher pricing power because

consumers always need some non-insignificant amount of market consumption to

achieve production of final experiences, given the complementarities in c(q, n).

However, final experiences themselves are substitutes because ρ ∈ (0, 1), so that

rising ψ(p(κ)) in κ forces consumers to substitute away from final consumption of

high ψ experiences with less productive inputs overall (i.e., lower levels of n and

q).7 This channel dominates, forcing low-productivity firms to markup at lower

rates.

The opposite occurs when ξ ∈ (0, ρ], so that time use and market consumption

are substitutes. In this case low-productivity firms have the highest markups.

Intuitively, these firms charge a higher markup in order to remain profitable pre-

cisely because consumers substitute time for their market consumption at increas-

ing rates as costs rise. Nonetheless, the final costs faced by the consumer, ψ(p(κ)),

do not accelerate as κ rises, because consumers deploy lower-cost inputs (i.e., their

off-market time) toward production of those final experiences in place of heavily-

marked-up market consumption.

The above analysis has characterized the behavior of firms in partial equilib-

rium. In order to characterize the monopolistically competitive equilibrium, we

now impose two further conditions: 1) the marginal firm with productivity κ is

indifferent between producing and not producing; and 2) firms make zero profits

(net of entry costs) in expectation. The following Proposition 3.6 is the analogue

of Proposition 3.3, insofar as it describes the equilibrium mass of entrants, the pro-

ductivity cutoff level κ, which Dhingra and Morrow (2019) refer to as productivity

“selection,” and final consumption.

Proposition 3.6 (Equilibrium Allocations). In the heterogeneous firms case there

is a unique monopolistically competitive equilibrium, with cutoff productivity κ

7Note that this is because p(κ) is increasing in κ despite the fact that markups over marginal
costs may be either increasing or decreasing, depending on ξ.
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satisfying

f ×

∫ κ

κ

π̂(κ)G(dκ) = (fe + fG(κ))× π̂(κ) (3.18)

where π̂ is defined in equation (3.14). Given κ the mass of firms Me in the envi-

ronment with heterogeneity is

Me =
T π̂(κ)

f
∫ κ
κ
ψ(p(κ))−

ρ
1−ρG(dκ)

. (3.19)

Note that Π = 0 in equilibrium. The equilibrium quantity of final consumption

experiences of every variety is

c(p(κ)) =
Tψ(p(κ))−

1
1−ρ

Me

∫ κ
κ
ψ(p(κ))−

ρ
1−ρG(dκ)

, (3.20)

and q(p(κ)) = ψ′(p(κ))c(p(κ)) for market consumption. When firms are homoge-

neous and possess the same productivity level κ and thus the same price p = p(κ),

the mass of firms is

Me =
(1− κ/p) ϵ(p;ψ) T

fe + f
, (3.21)

each consumption experience is c = (fe + f)/((1 − κ/p)ϵ(p;ψ)ψ(p)), and market

consumption of each variety is q = ψ′(κ)c.

Proof. See Appendix C.

We will now discuss how the selection and competition conditions characteriz-

ing general equilibrium outcomes in a competitive environment differ from efficient

allocations. In the next section we will dive into the details as to exactly how (via

sign) and why equilibrium allocations may be inefficient. Our points of comparison

between Proposition 3.6 and Proposition 3.3 are the pairs of equations, (3.8) and

(3.18), (3.9) and (3.19), and (3.10) and (3.20). Recall from previous discussion

that π̂(κ) represents operating profits in units of final consumption experiences

(not efficiency units of time). Similar to (3.8) which equates total operating costs

of final consumption associated with type-κ market goods with that of the last

entering firm, (3.18) equates the total operating profits of all production with the

operating profits of the last firm to enter. When ψ(p(κ))−
ρ

1−ρ/π̂(κ) is constant

in κ, efficient selection is achieved in a competitive environment. Comparing the

concentrating conditions, (3.9) and (3.19), note that a constant fraction of time is

devoted to aggregate production in an efficient environment, but in the competi-

tive environment the competition level will depend on the degree of selection via
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the function π̂(κ).

Briefly, we would like to comment on the equilibrium mass of firms in the

homogeneous firms case, as given by (3.21). Note that when all firms are ho-

mogeneous the zero aggregate profit condition dictates that fixed costs for entry

plus fixed costs for operation must equate with operating profits. For this reason

both fe and f enter into the expression in (3.21), as they do in the efficient al-

location. However, whereas the elasticity of substitution directly determines the

mass in the efficient allocation, it is apparent, both with heterogeneous and ho-

mogeneous firms, that markups will determine the market-clearing mass. This

is somewhat trivial when firms are homogeneous since the model yields a single,

economy-wide markup, whereas when firms are heterogeneous, markups for the

last entrant (embedded in π̂(κ)) determine the equilibrium mass. It should then

be clear by comparing Propositions 3.6 and 3.3 that as long as markups are not

equal to 1/ρ, the mass of firms (and thus degree of competition) in a competitive

equilibrium will not necessarily be efficient.

Finally, note that, depending on a specification for G(·), the level of final con-

sumption experiences at each variety may be higher or lower than the efficient

allocation. This is because κ may be too low or too high in equilibium relative to

the socially optimal outcome. We thus will not sign how the individual allocations

of c(p(κ)) differ relative to their efficient counterparts. Still though, we will even-

tually show that total consumption utility, C, is equivalent to the efficient level of

utility in a particular case (ξ = −∞) when markups are also variable.

4 Welfare analysis and discussion

Section 3.1 characterizes efficient allocations and Section 3.2 characterizes the

allocations that are attained in monopolistically competitive equilibria. We now

wish to compare and contrast these two. Are there “too many firms” operating

in equilibrium? Is market concentration “too high” in equilibrium? Under what

conditions on the structure of competition and home production are allocations

first-best from a welfare standpoint?

It will become apparent that the fulcrum driving our results is the parameter ξ.

As has already been seen in Proposition 3.4 and Lemma 3.5, this elasticity dictates

the conditions under which markups are constant and how they vary in firm costs.

It is also integral in determining whether selection and concentration are efficient,

whether the elasticity of substitution for market purchases is constant or variable,

and whether the economy itself achieves first-best outcomes. Table 1 summarizes

our findings regarding efficiency and constancy of markups and elasticities in the
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Table 1: Efficiency and Constancy

Special Cases for ξ

Object Description −∞ 0 ρ

κ Selection Yes Yes No
Me Concentration Yes No∗ No∗

C Welfare Yes No No

Economy First-best? Yes No No

Markups Constant? No Yes Yes

CES in q’s? Yes Yes Yes

∗ We can only explicitly show this when firms are homogeneous.

special cases we have heretofore considered. In the pages that follow we will

first compare efficient allocations with equilibrium allocations before moving on

to a culminating discussion in Section 4.1 which relates allocative efficiency back

to elasticities of substitution. Our goal in Section 4.1 will be to compare our

results to the notion, widely held in the literature, that CES preferences are both

necessary and sufficient to ensure that both markups are constant and allocations

are efficient.

Preliminary to our welfare discussion, we must first introduce a useful math-

ematical object. The equilibrium cutoff value of productivity is given by (3.18),

while the efficient cutoff value of productivity is given by (3.8). Defining

J(κ;F ) :=

∫ κ

κ

(F (κ)/F (κ))G(dκ) (4.1)

for an arbitrary function F , note that the efficient cutoff is characterized by the

solution to J(κ;F ) = fe/f + G(κ) for F (κ) := ψ(κ)−
ρ

1−ρ , and the equilibrium

cutoff is a root of the same equation for F (κ) := π̂(κ). The equilibrium cutoff

productivity will therefore be inefficiently high if J(κ; π) ≤ J(κ;ψ−
ρ

1−ρ ) for all κ.

Proposition 4.1 (Selection). The equilibrium cutoff κ is inefficiently high if ξ ∈

(−∞, 0), inefficiently low if ξ ∈ (0, ρ], and efficient if ξ ∈ {−∞, 0}.

Proof. See Appendix D.

Proposition 4.1 is our first indication that when time use is elastically supplied and

(sometimes) non-separable with market consumption, the link between markup

constancy and efficiency is broken. Further, Proposition 4.1 together with Propo-

sition 3.4 say that constancy of markups is neither necessary nor sufficient for
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efficient selection and, thus, first-best outcomes to be achieved. This is because

when home production is Cobb-Douglas, markups are constant and selection is

efficient, but markups are variable when home production is Leontief and selec-

tion is still efficient. Further, when ξ = ρ time use and market consumption are

strongly separable in preferences, and yet selection is still inefficiently low even

though markups are constant. In this latter case consumers supply excess time to-

ward home production, so that high-cost/low-productivity firms cannot profitably

enter and less varieties are produced. Thus, consumers’ preferences for engaging

in off-market activities ensure they have less options (in terms of market goods)

with which to engage in such activities.

We have thus far discussed how our model breaks the link between constant

posted markups and efficiency. But the model generates two different kinds of

markups: posted markups, chosen by the firm, and holistic markups, which re-

flect the total value of consumption over marginal-cost pricing that the consumer

experiences when choosing to allocate time in order to use market purchases.

Definition 4.2 defines these holistic markups.

Definition 4.2. The holistic markup is φ(κ) := ψ(p(κ))/ψ(κ).

Definition 4.2 describes how much the final cost of consumption experiences, from

the consumer’s perspective, is marked up over an economic environment where

firms charge marginal cost for all inputs. The posted markup gives the familiar

price over the cost of market consumption, while the holistic markup is the price

of final consumption experiences given market prices relative to the technological

cost of final consumption.

Note that the object ψ(κ) is not a marginal cost per-se from the perspective

of an in-home producer: in a competitive equilibrium the marginal cost of home

production is 1/ψ′(p) because consumers must take market prices of inputs, q, as

given. Rather, ψ(κ) is the cost a consumer would theoretically incur if firms set

posted prices equal to their marginal costs of production.

Lemma 4.3. If the equilibrium cutoff κ is efficient then holistic markups φ(κ) are

constant.

Proof. See Appendix D.

Lemma 4.3 establishes that constancy of holistic markups is necessary for se-

lection to be efficient, despite the fact that posted markups (i.e., what the firms

actually choose) are non-constant in the Leontief case and constant but different

from 1/ρ in the Cobb-Douglas case. This is because when ξ ∈ {−∞, 0} pref-

erences in q net of time use are CES, but firms still must internalize either the
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consumer’s off-market productivity, ζ (in the Leontief case) and/or the consumer’s

time-intensity of home production, α (in the Cobb-Douglas case). What is further

notable is that constancy of posted markups is not sufficient for either efficient

selection or constant holistic markups, because the ξ = ρ case provides a nice

counterexample to such a claim.

Comparing holistic versus posted markups has implications for how we under-

stand whether monopolistic competition is indeed efficient. One question which

inspired our exploration of a model with consumption time is as follows: if we ac-

count both for consumers’ market-purchasing decisions and their associated time-

allocation decisions toward utilizing their market purchases, how are our infer-

ences regarding markups affected? That is, we can hypothetically measure firms’

posted markups in data, but these may not be the actual or holistic markup after

accounting for the time-use trade-offs consumers face when making market pur-

chase decisions. When accounting for these trade-offs, as we do in this paper, how

do holistic markups experienced by consumers compare to firms’ posted markups?

Lemma 4.4 provides an answer, showing that the markups we measure based on

firm behavior are not the same as the markups over hypothetical, marginal-cost

pricing that consumers experience.

Lemma 4.4. Posted markups always weakly exceed holistic markups and coincide

if and only if α = 1.

Proof. See Appendix D.

We now turn to a discussion of the mass of firms. Proposition 4.5 shows that in

the case of homogeneous firms, we can unambiguously sign the difference between

the equilibrium and efficient number of firms. Intuitively, from the point of view of

the planner, it is as if the consumers are devoting “too much” time to off-market

time, to the detriment of profits and the incentives for firm entry.

Proposition 4.5 (Concentration with Homogeneous Firms). In the homogeneous

firms case the equilibrium mass of firms is lower than the efficient mass of firms

unless off-market time and market consumption are perfect complements (ξ =

−∞).

Proof. See Appendix D.

Generally speaking, for heterogeneous firms, comparing the efficient mass to the

equilibrium mass is not so straightforward. Even without off-market time use

Dhingra and Morrow (2019) acknowledge that knowing the cost distribution func-

tion G(κ) is required in order to sign the difference between efficient and equi-

librium Me. Nocco et al. (2013) (cited in Dhingra and Morrow (2019)) show
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that even if demand is linear and the cost distribution well-specified (Pareto), the

difference cannot be signed. In our model, though, there is one particular case

wherein it is straightforward to compare efficient and equilibrium concentration

levels. Proposition 4.6 characterizes this.

Proposition 4.6 (Concentration with Heterogeneous Firms). When firms are

heterogeneous in κ and off-market time and market consumption are perfect com-

plements, the equilibrium mass of firms is efficient.

Proof. See Appendix D.

The results in Propositions 4.5 and 4.6 follow directly from the fact that selection

is efficient with Leontief home production. The fact that final costs are just shifted

by a constant, 1/ζ, is crucial to understanding Propositions 4.5 and 4.6. In this

case only, efficient final costs are just κ + 1/ζ and holistic markups are just 1/ρ,

which is equivalent to the constant markup from Dhingra and Morrow (2019) in

an environment with inelastic time use.

It is rather intuitive why efficiency attains in the Leontief case when q/n is

exogenous. The basic insight is that this case is essentially a disguised version of

the CES case considered in Dhingra and Morrow (2019), in which the technological

cost is not κ but κ + 1/ζ. To understand how this intuition is borne out of our

model, note that under Leontief home production we simply add and subtract 1/ζ

from the profit margin of the firm to obtain

π̂(κ) = max
ψ(p)≥0

(ψ(p)− ψ(κ))ψ(p)−
1

1−ρ

which shows that the firm charges a constant markup of the total price over the

total cost. The results of Dhingra and Morrow (2019) pertaining to efficiency of

markups, selection, and concentration, then all follow immediately. This simple

observation is particularly noteworthy because the markups in this case are not

constant across firms. This is apparent by inspecting condition (i) of Proposition

3.4, which depends on κ.

By now it is obvious that the conventional wisdom from the literature with

regards to the relationship between markup constancy and efficiency breaks in

our model. Constant markups are neither necessary nor sufficient to ensure allo-

cations are efficient. We have shown the existence of a parameterization of our

model (ξ = −∞) in which the economy achieves efficient selection and concen-

tration, and thus efficient allocations of final consumption. Further, within this

allocation markups are variable and decreasing in marginal costs (increasing in

productivity). A consensus seems to suggest an increasing empirical relationship
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between markups and productivities.8 Indeed, such variable markups may be effi-

cient if consumers’ time allocation decisions are accounted for, and the total value

of final consumption is linear in a consumer’s marginal cost of off-market time

utilization, 1/ζ (i.e., at ξ = −∞).

4.1 Efficiency and demand elasticities

In the foregoing analyses we have characterized efficient and equilibrium alloca-

tions in an environment in which consumers value variety in market consumption

but also have some capacity to substitute off-market time for market consump-

tion. We now wish to relate this once more to the analysis of Dhingra and Morrow

(2019), who allow for an arbitrary utility function over consumption but do not

allow for off-market time. Have we simply considered a disguised form of their en-

vironment for a different choice of utility? That is, does incorporating off-market

time simply change demand elasticities but not the interpretation of these elastici-

ties? We will show by way of an example that the answer to both of these questions

is unambiguously “no.” The environments appear to be fundamentally different.

To show this we will produce the exact same demand schedules in Dhingra and

Morrow (2019), but show that whereas theirs are inefficient, ours are efficient.

Consider an environment in which firms are homogeneous and consumers do

not value off-market time and have utility function u(q) = qρ− ηq for some η > 0.

The elasticity of utility is then

ϵ(q; u) =
qu′(q)

u(q)
= ρ−

(1− ρ)η

qρ−1 − η

and so ϵ′(q; u) < 0. The results of Dhingra and Morrow (2019) (see Section B

in page 211) then imply that there is too much entry in equilibrium. Given a

multiplier λ on the budget constraint, the first-order conditions of the consumer

for demand of product type κ are ρq(κ)ρ−1 = λp(κ) + η, which rearrange to give

q(κ) = (λ/ρ)−
1

1−ρ (p(κ) + η/λ)−
1

1−ρ , (4.2)

with λ and the mass of firms Me then determined by the zero profits condition

and the consumer’s budget constraint. The point of this calculation is that the

equilibrium demand schedules in the economy with u(q) = qρ − ηq and no home

production are identical to those in an economy with Leontief preferences and

home production in which ζ = λ/η (although T will differ). However, the equilib-

8See, e.g., Edmond and Veldkamp (2009); Berry et al. (2019); Peters (2020).
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rium in the economy with time constraints is efficient while the equilibrium in the

above example economy is not. How can this be? Note that in the latter economy,

the 1/ζ term appearing in the demand schedule is exogenous and represents the

real resource cost of time use, while the η/λ term appearing in the demand sched-

ule of the former economy is endogenous and can be affected by taxes or subsidies

on entry.

While Dhingra and Morrow (2019) focus on the relationship between markups

and their utility elasticity defined above, their results speak to the efficiency of

equilibrium allocations when the elasticity of substitution is either constant (CES)

or variable (VES) across product types. Indeed, the relationship between the elas-

ticity of substitution for market consumption and markups is an important feature

of models with monopolistic competition. In the original Dixit and Stiglitz (1977)

with homogeneous firms, this elasticity is a constant function of average aggregate

markups. Dhingra and Morrow (2019) show that when firms are heterogeneous in

costs (productivities) then competitive markups are only efficient if and only if this

elasticity is constant and identical for substitution between all pairs of products

(CES). Both the original Dixit and Stiglitz (1977) and Dhingra and Morrow (2019),

however, consider environments with inelastic time use. Bilbiie et al. (2012) were

the first to introduce labor into a model of monopolistic competition to study

business cycle dynamics around the relationship between new varieties and firm

entry. In Bilbiie et al. (2019) the authors build upon their analyses in Bilbiie et al.

(2012) by exploring the welfare implications of a monopolistic competition model

with labor. Several of their results are important for our analyses, primary of

which is to show, as in Dhingra and Morrow (2019), that CES preferences over

market quantities achieve allocative efficiency. Two fundamental differences be-

tween the setup in Bilbiie et al. (2019) and ours is that we assume time use is not

necessarily separable with market consumption while also allowing for consumers

to make multiple off-market time-use decisions.

Given these differences our approach thus warrants further analysis pertain-

ing to the elasticities of substitution for market consumption that come out of

our model. When it comes to elasticities of substitution, the literature has es-

tablished a relationship between markups and the elasticity of substitution for

market consumption. This object need not be constant in our model, despite hav-

ing a constant elasticity of substitution for final consumption (i.e., 1/(1−ρ)). Let

σ(p, p′) = ln(p′/p) (i.e., the log of the price ratios of two different firms’ chosen

p′ ̸= p, where the firm associated with price p′ has cost κ′). The elasticity of
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substitution is defined as

µ
(
p, p′, σ(p, p′)

)
:=

∂ ln(q(p)/q(p′))

∂σ
.

We allow for µ to depend not only on relative prices, σ, but also the price levels,

p and p′. It actually turns out that price levels, not just relatives, will matter

for this elasticity except under very specific parameterizations. Thus, our model,

under various parameter conditions, allows for variable elasticities of substitution

(VES) across varieties.

The literature has established that when time use is either inelastic or elas-

tic and additively separable with market consumption, CES preferences are both

necessary and sufficient to generate efficient markups, which themselves are con-

strained to be constant. We seek to understand how the relationship between the

elasticity of substitution and markups affects allocative efficiency when relaxing

the assumptions of inelastic time use and additive separability between time use

and market consumption. Proposition 4.7 establishes conditions under which the

elasticity of substitution is constant. It turns out that the relationship between ξ

and ρ is important for determining whether preferences in q(p) are VES or CES.

There are three specific cases in which preferences are CES, where two of those

three (when ξ = −∞ or ρ) yield elasticities of substitution that are identical to

those in Dixit and Stiglitz (1977) and Dhingra and Morrow (2019).

Proposition 4.7. For α ∈ (0, 1), preferences are VES in market consumption,

q(p), except in the special cases in which ξ ∈ {−∞, 0, ρ}, when we have CES

preferences, and the elasticities of substitution are:

(i) For ξ = −∞, µ = 1
1−ρ

.

(ii) For ξ = 0, µ = ρ+1
1−ρ

.

(iii) For ξ = ρ, µ = 1
1−ρ

.

Proof. See Appendix D.

When home production is Leontief or ξ = ρ, the elasticities of substitution

for q’s are constant and equivalent to those for c’s. This is somewhat surprising

because markups are non-constant but efficient when ξ = −∞, even though they

are constant and inefficient when ξ = ρ. Further, holistic markups are constant

when ξ = −∞ or ξ = 0, even though at ξ = 0 the elasticity of substitution for

q’s is not equivalent to the same elasticties for c’s: it is shifted by the additive

constant ρ/(1 − ρ). Still, it appears that CES preferences in q with off-market
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time use are still necessary to achieve efficiency (see ξ ∈ {−∞, 0} cases), but they

are not sufficient (see ξ = ρ case).

5 Conclusion

This paper has presented a parsimonious model that shows how the welfare effects

of markups depend upon the extent to which consumers value off-market time.

The key insight is that in our model, markups (which we have termed “posted”

markups) differ from a more holistic definition of markups that incorporates the

fact that the price paid by the consumer is not the sole economic cost they incur

when consuming a good. For the case of perfect complements between market

consumption and off-market time, we have shown that heterogeneous markups

can be consistent with a first-best allocation.

We believe that our work ought to encourage researchers to continue to con-

sider how accounting for different household decision structures affect inferences

regarding efficiency when faced with market structures that allow for prices to

exceed marginal costs. Further, from a policy standpoint, the notion that markup

heterogeneity in and of itself leads to welfare losses should be reconsidered. We

have shown that there exists an economy in which variable markups are indeed

efficient. The recent work of Parenti et al. (2017) represents a different enrich-

ment of the standard consumer problem in which efficiency is also consistent with

heterogeneous markups. It thus remains for researchers to determine which deci-

sion structures themselves are most plausible when assessing what such structures

imply for the efficiency of environments in which firms operate with imperfect

competition.
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A Preliminary algebra

In this appendix we derive some preliminary observations and algebra that are used

throughout the paper. First recall the definition of the total cost of a consumption

experience given in the main text,

ψ(κ;α, ξ) =
κ

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ
(A.1)

and the ratio of equilibrium market consumption to consumption experiences,

ψ′(κ;α, ξ) =
(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)−1/ξ

. (A.2)

Lemma A.1. For any α, ζ or κ we have

lim
z→0

(α + (1− α)[(1/α− 1)ζκ]z)1/z = [(1/α− 1)ζκ]1−α.

Proof. we first use l’Hopital’s rule to obtain

lim
z→0

1

z
ln (α + (1− α)[(1/α− 1)ζκ]z)

= lim
z→0

(1− α) ln[(1/α− 1)ζκ]
ez ln[(1/α−1)ζκ]

α + (1− α)ez ln[(1/α−1)ζκ]

= lim
z→0

(1− α) ln[(1/α− 1)ζκ]

(A.3)

from which the limit in the lemma follows by raising to the exponential.

Lemma A.1 gives the following expressions for the total cost ψ and marginal

total ψ′ in the Cobb-Douglas and Leontief cases.

Lemma A.2. When ξ = −∞ or ξ = 0, the total cost ψ and marginal cost ψ′

become
ψ(κ;α, 0) = α−α[(1− α)ζ]−(1−α)κα

ψ′(κ;α, 0) = [(1/α− 1)ζκ]−(1−α)

ψ(κ;α,−∞) = κ+ 1/ζ

ψ′(κ;α,−∞) = 1.

(A.4)

Proof. Calculation is straightforward by noting that n = q/ζ in the Leontief case

and n = (1/α − 1)κq in the Cobb-Douglas case. Then use (3.3), (3.4), and (3.5)

to get the answer.

Recalling the definition π̂(κ;α, ξ) := maxp≥0 (p − κ)ψ′(p;α, ξ)ψ(p;α, ξ)−
1

1−ρ ,

we have the following.
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Lemma A.3 (Special cases for π̂). When ξ = 0, the function π̂ becomes

π̂(κ;α, 0) = E(α, ζ, ρ)κ−
ρα
1−ρ (A.5)

for some constant E(α, ζ, ρ), while for ξ = −∞ we have

π̂(κ;α,−∞) = ρ
1

1−ρ (1/ρ− 1)(κ+ 1/ζ)−
ρ

1−ρ . (A.6)

Proof. Omitting arguments for ease of notation, when ξ = 0 we have

π̂(κ;α, 0) = max
p≥0

(p− κ)[(1/α− 1)ζp]−(1−α)
(
α−α[(1− α)ζ]−(1−α)pα

)− 1
1−ρ

= D(α, ζ, ρ)max
p≥0

(p− κ)p−
ρα
1−ρ

−1

where D(α, ζ, ρ) := α
1

1−ρ [(1/α − 1)ζ]
ρ(1−α)
1−ρ is a constant that is irrelevant to the

firm’s pricing decision. The first-order condition for the price is

0 = −

(
ρα

1− ρ
+ 1

)
(p− κ)p−

ρα
1−ρ

−2 + p−
ρα
1−ρ

−1

which then simplifies to (ρα/(1− ρ) + 1)(p− κ) = p, and hence

p/κ = 1/ρ+ (1/ρ− 1)(1/α− 1).

Substitution then gives p− κ = [(1/ρ− 1)/α]κ

π̂(κ) = D(α, ζ, ρ)[(1/ρ− 1)/α]κ((1/ρ+ (1/ρ− 1)(1/α− 1))κ)−
ρα
1−ρ

−1

=: E(α, ζ, ρ)κ−
ρα
1−ρ

for some (again unimportant) constant E(α, ζ, ρ). For the Leontief case, we have

π̂(κ;α,−∞) := max
p≥0

(p− κ)(p+ 1/ζ)−
1

1−ρ .

The first-order condition is then

0 = −
1

1− ρ
(p− κ)(p+ 1/ζ)−

1
1−ρ

−1 + (p+ 1/ζ)−
1

1−ρ

which simplifies to p + 1/ζ = (κ + 1/ζ)/ρ. Substitution then gives the claimed

expression for π̂.
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B Efficient allocations

We now record the proofs for all claims pertaining to the characterization of effi-

cient allocations.

Proof of Lemma 3.1. The derivatives are

∂(n/q)

∂κ
=
ζ

ξ
1−ξ (1/α− 1)

1− ξ
[(1/α− 1)κ]

ξ
1−ξ

∂2(n/q)

∂κ2
=
ξ ζ

ξ
1−ξ (1/α− 1)2

(1− ξ)2
[(1/α− 1)κ]

2ξ+1
1−ξ

where ∂(n/q)/∂κ > 0 for all ξ and ∂2(n/q)/∂κ2 < 0 only when ξ < 0. When home

production is Leontief, q = ζn and the ratio follows.

Proof of Lemma 3.2. Explicit calculation gives

ψ′(κ) =
1

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ

+ (1− 1/ξ)×
ξ

1− ξ
× (1− α)[(1/α− 1)ζκ]

ξ
1−ξκ−1

×
κ

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)−1/ξ

=
1

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ

− (1− α)[(1/α− 1)ζκ]
ξ

1−ξ
1

α

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)−1/ξ

which yields

ψ′(κ) =
(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)−1/ξ

> 0

always. For the second-order condition we have

ψ′′(κ) = −
1

ξ

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)−1/ξ−1

×
ξ

1− ξ
× (1− α)[(1/α− 1)ζκ]

ξ
1−ξ × κ−1 < 0

always. Using the above expression for ψ′(x), we have

ψ(κ)

ψ′(κ)
= κ+ (1/α− 1)κ[(1/α− 1)ζκ]

ξ
1−ξ

which gives the claimed expression for the elasticity. When ξ = −∞ the elasticity
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is just κ/(κ + 1/ζ), which is still increasing in κ. At ξ = 0 it is readily apparent,

by direct calculation, that ϵ(κ;ψ) = α.

Lemma B.1. The elasticity of the marginal total cost with respect to productivity

is given by ϵ(κ;ψ′) = (ϵ(κ;ψ)− 1)/(1− ξ).

Proof. Using the expression for the second derivative derived in the proof of

Lemma 3.2, we have

ϵ(κ;ψ′) =
κψ′′(κ)

ψ′(κ)
= −

1

1− ξ

(
(1/α− 1)[(1/α− 1)ζκ]

ξ
1−ξ

1 + (1/α− 1)[(1/α− 1)ζκ]
ξ

1−ξ

)

which simplifies as claimed.

Proof of Proposition 3.3. The first-order conditions for consumption experiences

in the problem (3.7) are ρc(κ)ρ−1 = λpψ(κ) or

c(κ) = (ρ/λp)
1

1−ρψ(κ)−
1

1−ρ . (B.1)

The multiplier λp is obtained by substituting (B.1) into the resource constraint.

We define I(κ,Me) := T − (fe + fG(κ))Me. This is the value of all remaining

resources after efficient entry margins have been established. Note that if (3.9)

holds, then I(κ,Me) = ρT . From I(κ,Me) efficient allocations of final consumption

experiences will satisfy the following resource constraint:

I(κ,Me) =

∫ κ

κ

ψ(κ)c(κ)MeG(dκ) = (ρ/λp)
1

1−ρ

∫ κ

κ

ψ(κ)−
ρ

1−ρMeG(dκ).

Given (3.5) the efficient level of market consumption, q(κ), is obvious. The ex-

pression (B.1) then becomes that in (3.10). Substitution of (3.10) into (3.7) gives

the planner’s problem for a particular Me and κ. Denoting the last quantity by

W (Me, κ), we have

W (Me, κ) =

∫ κ

κ

c(κ)ρMeG(dκ) = I(κ,Me)
ρM1−ρ

e

(∫ κ

κ

ψ(κ)−
ρ

1−ρG(dκ)

)1−ρ

.

Taking logs and dividing by ρ then gives the problem

max
Me,κ

{
ln(T − (fe + fG(κ))Me) + (1/ρ− 1) lnMe

+ (1/ρ− 1) ln

(∫ κ

κ

ψ(κ)−
ρ

1−ρG(dκ)

)}
.

(B.2)
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The first-order condition with respect to Me then implies that the optimal mass

of firms is given by (3.9). Finally, the problem of the planner choosing the cutoff

is then equivalent to

max
κ>0

{
ln

(∫ κ

κ

ψ(κ)−
ρ

1−ρG(dκ)

)
− ln(fe + fG(κ))

}
.

The optimal cutoff κ is then characterized by the first-order condition (3.8). Fi-

nally, clearly with homogeneous firms G(κ) = 1, and the expressions for c and q

are immediate.

C Equilibrium allocations

We now record the proofs for all claims pertaining to the characterization of the

monopolistically competitive equilibrium allocations. We first use Lemma B.1 to

characterize the price elasticity of demand in terms of the cost elasticity.

Lemma C.1. The price elasticity of demand is given by

ϵ(p; q) =
1

1− ξ

(
1 +

(ρ− ξ)

(1− ρ)
ϵ(p;ψ)

)
. (C.1)

Consequently, ϵ(p; q) is increasing in p when ξ ∈ (−∞, 0) and decreasing in p

when ξ ∈ (0, ρ).

Proof. Demand is a multiple of ψ′(p)ψ(p)−
1

1−ρ , and so we compute

d

dκ

[
ψ′(p)ψ(p)−

1
1−ρ

]
= ψ′′(p)ψ(p)−

1
1−ρ −

1

1− ρ
[ψ′(p)]2ψ(p)−

1
1−ρ

−1.

Dividing by ψ′(p)ψ(p)−
1

1−ρp−1 and using Lemma B.1, we have

ϵ(p; q) = −

(
ϵ(p;ψ)− 1

1− ξ
−
ϵ(p;ψ)

1− ρ

)

which gives the result.

Proof of Proposition 3.4. Using Lemma C.1, the first-order condition (3.15) of the

firm becomes

p

p− κ
= ϵ(p; q) =

1

1− ξ

(
1−

(ξ − ρ)

(1− ρ)
ϵ(p;ψ)

)
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which is equivalent to the equation Ξ(p;κ) = 0 where

Ξ(p;κ) = −
(1− ρ)

(1− ξ)
+

(1− ρ)p

p− κ
− ϵ(p;ψ)

(ρ− ξ)

(1− ξ)
. (C.2)

Note that because ξ ≤ ρ and ϵ(p;ψ) ≤ 1 for all p ≥ 0, any root of (C.2) weakly

exceeds the solution to 1 + (ρ− ξ)/(1− ρ) = (1− ξ)p/(p− κ), which is precisely

p = κ/ρ. If ξ < 0, then the right-hand side of (C.2) is decreasing and tends to

1 + (ξ − 1)ρ/(1 − ρ) < 1 as p → ∞, and so there exists a unique solution to the

equation Ξ(p;κ) = 0. For ξ > 0, we can rearrange the first-order condition to

ϵ(p;ψ)−1 =
(ρ− ξ)/(1− ρ)

(1− ξ)κ/(p− κ)− ξ
=

(p− κ)(ρ− ξ)

(κ− ξp)(1− ρ)
.

Ignoring irrelevant constants and taking logarithms, at the points at which the

first-order condition is satisfied, the objective of the firm agrees with the function

Y (p) := (1− ρ) ln(p− κ)− ln p+ (ρ/ξ − 1) ln

(
p− κ

κ− ξp

)

= ρ(1/ξ − 1) ln(p− κ)− ln p+ (1− ρ/ξ) ln (κ− ξp).

Note that since ξ ≤ ρ, the derivative satisfies

Y ′(p) =
ρ(1/ξ − 1)

p− κ
− 1/p+

ρ− ξ

κ− ξp
≥

(
ρ(1/ξ − 1)p

p− κ
− 1

)
p−1

and so it will suffice to show that the right-hand side of this last inequality is

positive for all candidate solutions. Using (C.2), we have

ρ/ξ + (ρ/ξ)
(ρ− ξ)

(1− ρ)
ϵ(p;ψ) =

ρ(1/ξ − 1)p

p− κ

and hence ρ(1/ξ − 1)p/(p − κ) ≥ ρ/ξ ≥ 1, as desired. There is therefore a

unique maximum in the firm’s problem and it is the largest solution to the first-

order conditions. The comparative statics with respect to κ follow from Topkis’

theorem, while the case-by-case analysis follows from direct calculations.

Proof of Lemma 3.5. This follows Topkis’ theorem, the first-order condition (3.15),

and the comparative statics in Lemma C.1.

Lemma C.2. If F,H : [κ,∞) → R are two smooth, decreasing, positive-valued

functions satisfying F ′(x)/F (x) ≥ H ′(x)/H(x) for all x ∈ [κ,∞), then J(κ;F ) ≤

J(κ;H) for all κ ∈ [κ,∞).
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Proof. First note that J(κ;F ) = J(κ;G) = 0 and that the derivative of J with

respect to productivity is

J ′(κ;F ) = g(κ)− F ′(κ)

∫ κ

κ

(F (κ)/F (κ)2)G(dκ)

= g(κ)− (F ′(κ)/F (κ))J(κ;F ).

The desired conclusion then follows from the non-negativity of J(κ;F ) together

with the assumption −F ′(x)/F (x) ≤ −H ′(x)/H(x).

Lemma C.3 and Lemma C.4 are technical observations that will be used in the

proof of Proposition 4.1.

Lemma C.3. If ξ < 0, then the inequality

(1− ρ/ξ + z)(1 + z)ξ/(1−ξ) > ρ
1

1−ξ (1− 1/ξ). (C.3)

holds for all ρ ∈ (0, 1) and z ≥ 0.

Proof. We will prove (C.3) by showing that it holds for z = 0 and that the left-

hand side is increasing. For z = 0, (C.3) becomes 1− ρ/ξ > ρ
1

1−ξ (1− 1/ξ), which

for ξ < 0 is equivalent to ξ − ρ < ρ
1

1−ξ (ξ − 1) or ξ < ρ − ρ
1

1−ξ + ρ
1

1−ξ ξ. This

last inequality is an equality at ρ = 1 and the derivative with respect to ρ of the

right-hand side is 1− ρ
ξ

1−ξ /(1− ξ)+ ρ
ξ

1−ξ ξ/(1− ξ) = 1− ρ
ξ

1−ξ < 0 for all ρ ∈ (0, 1],

which shows that equation (C.3) holds for z = 0. We now take logarithms of the

left-hand side of (C.3) and take the derivative with respect to z to obtain

1

1− ρ/ξ + z
+

(1 + z)−1

1/ξ − 1
. (C.4)

The expression in (C.4) is positive for z ≥ 0 if and only if 1− 1/ξ + z(1− 1/ξ) >

1− ρ/ξ + z, or −z/ξ > (1− ρ)/ξ, which is always true.

Lemma C.4. If ξ ∈ (0, ρ) then the inequality

(1 + z)ξ/(1−ξ)[ρ− ξ(1 + z)] < ρ1/(1−ξ)(1− ξ) (C.5)

holds for all z ≥ 0 and ρ ∈ (0, 1).

Proof. When z = 0, (C.5) becomes 0 < ρ1/(1−ξ)(1 − ξ) + ξ − ρ. For ρ = 1 this

last inequality holds with equality, and the derivative of the right-hand side with

respect to ρ is ρξ/(1−ξ) − 1, which is negative for all ρ ∈ (0, 1). This ensures that
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the inequality (C.5) holds for all ρ ∈ (0, 1) when z = 0. To establish (C.5) for all

z ≥ 0, note that we may rewrite it as

0 < ρξ/(1−ξ)(1− ξ) + (1 + z)1/(1−ξ)(ξ/ρ)− (1 + z)ξ/(1−ξ)

The derivative of the right-hand side with respect to z is then

(1 + z)1/(1−ξ)−1(ξ/ρ)/(1− ξ)− (1 + z)ξ/(1−ξ)−1ξ/(1− ξ),

which is non-negative if and only if ξ ≤ (1+z)(ξ/ρ), which is true for all z ≥ 0.

Proof of Proposition 3.6. Indifference at the cutoff is given by π(κ) = f , and

aggregate profits per firm net of fixed costs are given by
∫ κ
κ
π(κ)G(dκ)−fe−fG(κ).

Combining these two conditions and using the fact that π̂(κ)/π(κ) is independent

of κ, we obtain equation (3.18). To establish that there exists a unique solution

to equation (3.18), first note that π̂′(κ) < 0 everywhere by the envelope theorem.

The desired κ is a positive root of the function

H(κ) :=
f
∫ κ
κ
π̂(κ)G(dκ)

π̂(κ)(fe + fG(κ))
− 1.

Note that H(κ) = −1 and lim supκ→∞H(κ) = ∞, because the numerator is

increasing and the denominator is bounded above by π̂(κ)(fe + f) and therefore

vanishes as κ→ ∞. Now consider the function L(κ) := f
∫ κ
κ
π̂(κ)G(dκ)−π̂(κ)(fe+

fG(κ)) and note that

L′(κ) = fπ̂(κ)g(κ)− fπ̂(κ)g(κ)− π̂′(κ)(fe + fG(κ)) > 0

which establishes uniqueness. To determine the equilibrium mass of firms in the

environment with firm heterogeneity, note that by (3.14), the profits of a firm with

productivity κ ∈ [κ, κ] are equal to

π(κ) =
(T/Me)(p(κ)− κ)
∫ κ
κ
ψ(p(κ))−

ρ
1−ρG(dκ)

ψ′(p(κ))ψ(p(κ))−
1

1−ρ .

It follows that π(κ) = f if and only if the mass of firms satisfies (3.19). Finally,

note that when firms are homogeneous aggregate profits must equate with the

sum of both fixed and operating costs, f + fe. Because q(p) = T
Mep

(1 + (1/α −

1)1/(1−ξ)[ζp]ξ/(1−ξ)) profit maximization clearly yields (3.21).

Finally, to obtain c(p(κ)), note that the first-order conditions for the prob-

lem (3.13) give the demand for each variety as a function of the price, c(p) =
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(ρ/λ)
1

1−ρψ(p)−
1

1−ρ , where λ is the multiplier on the budget constraint. The market

consumption per unit of final consumption demanded from the firm is q(p)/c(p) =

ψ′(p). The multiplier λ is then obtained by substituting consumption into the

budget constraint and rearranging, which gives (3.20). For c note that G(κ) is a

point mass, and the result follows.

D Welfare analyses

Proof of Proposition 4.1. The claims regarding ξ ∈ {−∞, 0} follow from the ex-

plicit calculations stated in Lemma A.3, because in this case ψ(κ)−
ρ

1−ρ/π̂(κ) is

constant in κ. For the remaining claims, by (3.17) and Lemma C.2, it will suffice

to establish that for ξ ∈ (−∞, 0), we have

−
1

p(κ)− κ
=
π̂′(κ)

π̂(κ)
≥

(d/dκ)ψ(κ)−
ρ

1−ρ

ψ(κ)−
ρ

1−ρ

= −
ψ′(κ)/ψ(κ)

1/ρ− 1
(D.1)

for all κ ≥ 0, and that the reverse inequality in (D.1) holds for ξ ∈ (0, ρ). The

inequality (D.1) may then be written

p(κ)/κ ≥
1/ρ− 1

ϵ(κ;ψ)
+ 1 =: p̂(κ)/κ (D.2)

where the equality on the right-hand side of (D.2) defines p̂(κ). For ease of nota-

tion, in this proof we will write

z(κ) := (1− ρ)(1/α− 1)
1

1−ξ [ζκ]
ξ

1−ξ (D.3)

for κ ≥ 0. As shown in the proof of Proposition 3.4, the price chosen by the firm

is a solution to Ξ(p;κ) = 0, where Ξ is defined in equation (C.2). We then want

to show that Ξ(p̂(κ);κ) > 0 for all κ > 0 when ξ < 0, and Ξ(p̂(κ);κ) < 0 for all

κ > 0 when ξ ∈ (0, ρ). Substitution gives

Ξ(p̂(κ);κ) = −
(1− ρ)ξ

(1− ξ)
+ ρϵ(κ;ψ)− ϵ(p̂(κ);ψ)

(ρ− ξ)

(1− ξ)
. (D.4)

We first suppose that ξ < 0, in which case Ξ(p̂(κ);κ) > 0 is equivalent to

(ρ− ξ)ϵ(p̂(κ);ψ) < ρ(1− ξ)ϵ(κ;ψ)− (1− ρ)ξ. (D.5)
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When ξ < 0, both sides of (D.5) are positive and so taking the reciprocal and

simplifying gives

ϵ(p̂(κ);ψ)−1 − 1 >
ρ(1− ξ)[1− ϵ(κ;ψ)]

ρ(1− ξ)ϵ(κ;ψ)− (1− ρ)ξ

=
ρ(1− ξ)[ϵ(κ;ψ)−1 − 1]

ρ− ξ − (1− ρ)ξ[ϵ(κ;ψ)−1 − 1]
.

Using the expression for the elasticity in Lemma 3.2 and simplifying gives

(1 + z(κ))ξ/(1−ξ) = [ρp̂(κ)/κ]ξ/(1−ξ) >
ρ

1
1−ξ (1− ξ)

ρ− ξ − (1− ρ)ξ(1/α− 1)
1

1−ξ [ζκ]
ξ

1−ξ

=
ρ

1
1−ξ (1− 1/ξ)

1− ρ/ξ + z(κ)
,

which is true by Lemma C.3. For ξ > 0, the desired inequality Ξ(p̂(κ);κ) < 0 is

equivalent to

(1− ρ)ξ + (ρ− ξ)ϵ(p̂(κ);ψ) > ρ(1− ξ)ϵ(κ;ψ). (D.6)

Since ξ ∈ (0, ρ), both sides of (D.6) are positive and so taking the reciprocal gives

ρ(1− ξ)

(1− ρ)ξ + (ρ− ξ)ϵ(p̂(κ);ψ)
<

1

ϵ(κ;ψ)
.

This is equivalent to

ρ(1− ξ)ϵ(p̂(κ);ψ)

(1− ρ)ξ + (ρ− ξ)ϵ(p̂(κ);ψ)
<
ϵ(p̂(κ);ψ)

ϵ(κ;ψ)

ϵ(κ;ψ)

ϵ(p̂(κ);ψ)
<

(1− ρ)ξ + (ρ− ξ)ϵ(p̂(κ);ψ)

ρ(1− ξ)ϵ(p̂(κ);ψ)

Simplifying further then gives

ϵ(p̂(κ);ψ)−1 − ϵ(κ;ψ)−1

ϵ(κ;ψ)−1
<
ξ(1− ρ)

ρ(1− ξ)

(
ϵ(p̂(κ);ψ)−1 − 1

)

p̂(κ)ξ/(1−ξ) − κξ/(1−ξ) <
ξ(1− ρ)

ρ(1− ξ)
p̂(κ)ξ/(1−ξ)ϵ(κ;ψ)−1.

Further rearrangement gives

[p̂(κ)/κ]ξ/(1−ξ)
[
1−

ξ(1− ρ)

ρ(1− ξ)
ϵ(κ;ψ)−1

]
< 1

[ρp̂(κ)/κ]ξ/(1−ξ)
[
1− ξ − (ξ/ρ)(1− ρ)ϵ(κ;ψ)−1

]
< ρξ/(1−ξ)(1− ξ)
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which is equivalent to (1 + z(κ))ξ/(1−ξ)[ρ− ξ − ξz(κ)] < ρ1/(1−ξ)(1 − ξ), and is

therefore true by Lemma C.4.

Finally, at the limit when ξ = ρ, (D.6) simply becomes

(1− ρ)ρ > ρ(1− ρ)ϵ(κ;ψ)

which is always true since ϵ(κ;ψ) < 1 always.

Proof of Lemma 4.3. First, when ξ = −∞, p(κ) = κ(1/ρ + (1/ρ − 1)/ζ) and

ψ(x) = x + 1/ζ for arbitrary x, yielding φ = 1/ρ. Second, when ξ = 0, p(κ) is

linear in κ and φ = mα−1, where m is the posted markup which is constant, as

described in Proposition 3.4.

Proof of Lemma 4.4. Noting that p(κ) = m(κ)κ, the holistic markup is

φ(κ) =
ψ(m(κ)κ)

ψ(κ)
= m(κ)

(
α + (1− α)[(1/α− 1)ζm(κ)κ]

ξ
1−ξ

)1−1/ξ

(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ
. (D.7)

Clearly from the proof of Lemma 4.3 φ = 1/ρ < m when ξ = −∞ and φ =

mα−1 < m, since α ∈ (0, 1) when ξ = 0. When ξ < 0, note that m > 1 implies

mκ > κ and (mκ)
ξ

1−ξ < κ
ξ

1−ξ since ξ/(1− ξ) < 0. It is thus readily apparent that

φ < m. When 0 < ξ ≤ ρ, we have that mκ > κ implies

α + (1− α)[(1/α− 1)ζmκ]
ξ

1−ξ > α + (1− α)[(1/α− 1)ζκ]
ξ

1−ξ

⇒
(
α + (1− α)[(1/α− 1)ζmκ]

ξ
1−ξ

)1−1/ξ

<
(
α + (1− α)[(1/α− 1)ζκ]

ξ
1−ξ

)1−1/ξ

since 1− 1/ξ < 0, and the result is attained.

Proof of Proposition 4.5. In view of Proposition 3.3 and Proposition 3.6, there

will be too few firms in equilibrium precisely when

1 >
1− κ/p(κ)

1− ρ
× ϵ(p(κ);ψ). (D.8)

Note that by (C.2), p(κ) satisfies

1− κ/p(κ) = 1− ξ − (1− κ/p(κ))
(ρ− ξ)

(1− ρ)
ϵ(p;ψ) (D.9)
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and more simplification gives

κ/p(κ)− ξ

ρ− ξ
=

1− κ/p(κ)

1− ρ
× ϵ(p;ψ)

which is the right-hand side of (D.8). The equilibrium mass of firms will therefore

be too low if κ/p(κ)− ξ < ρ− ξ, which is always true for finite ξ by Proposition

3.4. When ξ = −∞, ϵ(p;ψ) = 1, κ/p = ρ, and the efficient and equilibrium Me

are identical.

Proof of Proposition 4.6. Here, ξ = −∞. Note that in equilibrium ψ(p(κ)) =
1
ρ
(κ+ 1/ζ), and π̂(κ) = (1− ρ)

[
(1/ρ)(κ+ 1/ζ)

]− ρ
1−ρ , so that (3.19) becomes

Me =
T (1− ρ)

[
(1/ρ)(κ+ 1/ζ)

]− ρ
1−ρ

f
∫ κ
κ

[
(1/ρ)(κ+ 1/ζ)

]− ρ
1−ρG(dκ)

,

which reduces to

Me =
T (1− ρ) ψ(κ)−

ρ
1−ρ

f
∫ κ
κ
ψ(κ)−

ρ
1−ρG(dκ)

. (D.10)

Setting (D.10) equal to (3.9) (the efficient mass) and rearranging gives the expres-

sion for (3.8), the efficient cutoff. This can only be true if the equilibrium mass

when ξ = −∞ is itself efficient.

Proof of Proposition 4.7. Note that when home production is Leontief, q(p) =

ζn(p), and C =
∫ κ
κ
q(p(κ))ρMeG(dκ), so that the elasticity of substitution is clearly

just 1/(1− ρ). For finite ξ we start with the ratio

q(p)

q(p′)
=
ψ′(p)

ψ′(p′)

(
ψ(p)

ψ(p′)

)− 1
1−ρ

. (D.11)

In a slight abuse of notation, note that ψ′(p′) and ψ′(p) can be written

ψ′(p) ≡ ψ′((p′/p)−1; p′) = (p′)
1

ξ−1

(
α(p′)

ξ
ξ−1 + (1− α)[(1/α− 1)ζ(p′/p)−1]

ξ
1−ξ

)−1/ξ

ψ′(p′) ≡ ψ′(p′/p; p) = p
1

ξ−1

(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζ(p′/p)]

ξ
1−ξ

)−1/ξ

.

A similar expression can be derived for ψ:

ψ(p) ≡ ψ((p′/p)−1; p′) =
1

α

(
p′

p

)−1(
α(p′)

ξ
ξ−1 + (1− α)[(1/α− 1)ζ(p′/p)−1]

ξ
1−ξ

) ξ−1
ξ

ψ(p′) ≡ ψ(p′/p; p) =
1

α

(
p′

p

)(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζ(p′/p)]

ξ
1−ξ

) ξ−1
ξ

.
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Equation (D.11) can then be written

q(p)

q(p′)
=
ψ′((p′/p)−1; p′)

ψ′(p′/p; p)

(
ψ((p′/p)−1; p′)

ψ(p′/p; p)

)− 1
1−ρ

. (D.12)

Replacing ln(p′/p) = σ in (D.12) and taking logs, note that we can split the

right-hand side into two pieces:

ln

(
ψ′(σ−1; p′)

ψ′(σ; p)

)
=

1

ξ − 1
σ −

1

ξ
ln
(
α(p′)

ξ
ξ−1 + (1− α)[(1/α− 1)ζe−σ]

ξ
1−ξ

)

+
1

ξ
ln
(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζeσ]

ξ
1−ξ

)

1

ρ− 1
ln

(
ψ(σ−1; p′)

ψ(σ; p)

)
=

2

1− ρ
σ

−
ξ − 1

ξ(1− ρ)
ln
(
α(p′)

ξ
ξ−1 + (1− α)[(1/α− 1)ζe−σ]

ξ
1−ξ

)

+
ξ − 1

ξ(1− ρ)
ln
(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζeσ]

ξ
1−ξ

)
.

Let µ̃(σ; p) = ln
(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζeσ]

ξ
1−ξ

)
. Combining the two pieces

and their like terms gives

ln

(
q(p)

q(p′)

)
=

2 ξ − ρ− 1

(ξ − 1)(1− ρ)
σ +

ρ− ξ

ξ(1− ρ)
µ̃(σ−1; p′) +

ξ − ρ

ξ(1− ρ)
µ̃(σ; p).

Generally speaking, the elasticity of substitution is

µ
(
p, p′, σ(p, p′)

)
=

2 ξ − ρ− 1

(ξ − 1)(1− ρ)
−

ρ− ξ

ξ(1− ρ)

∂µ̃(σ−1; p′)

∂σ−1
+

ξ − ρ

ξ(1− ρ)

∂µ̃(σ; p)

∂σ

When ξ = ρ the latter two terms in the above expression are 0. Note that ∂µ̃/∂σ =

0 when ξ ∈ {−∞, 0}, otherwise

∂µ̃

∂σ
=

ξ(1− α)[(1/α− 1)ζ]
ξ

1−ξ e
2σξ−σ
1−ξ

(1− ξ)
(
αp

ξ
ξ−1 + (1− α)[(1/α− 1)ζeσ]

ξ
1−ξ

)

which varies in σ and p non-trivially.

45


	Introduction
	Model
	Physical environment
	Monopolistically competitive equilibrium

	Analysis
	Efficient allocations
	Monopolistically competitive allocations

	Welfare analysis and discussion
	Efficiency and demand elasticities

	Conclusion
	Preliminary algebra
	Efficient allocations
	Equilibrium allocations
	Welfare analyses

