MPRA
 Munich Personal RePEc Archive

An Economical Study When Cost of Irregular Raw Materials of an Industry Increases for Nonlinear Budget Constraint

Mohajan, Devajit and Mohajan, Haradhan
Department of Civil Engineering, Chittagong University of Engineering Technology, Chittagong, Bangladesh, Department of Mathematics, Premier University, Chittagong, Bangladesh

3 May 2023

Online at https://mpra.ub.uni-muenchen.de/118176/
MPRA Paper No. 118176, posted 03 Aug 2023 06:53 UTC

An Economical Study When Cost of Irregular Raw Materials of an Industry Increases for Nonlinear Budget Constraint

Devajit Mohajan
Department of Civil Engineering, Chittagong University of Engineering \& Technology,
Chittagong, Bangladesh
Email: devajit1402@gmail.com
Mobile: +8801866207021
Haradhan Kumar Mohajan
Department of Mathematics, Premier University, Chittagong, Bangladesh
Email: haradhan1971@gmail.com
Mobile: +8801716397232

Abstract

Very few researches try to work with nonlinear budget constraint. This study attempts to discuss the sensitivity analysis with the use of nonlinear budget constraint. For the efficient use of inputs every industry should inspects economic analysis for the profit maximization. In this study Lagrange multiplier technique is applied with the bordered Hessian and Jacobian. For the sustainability of an industry in the competitive global economy, the industry should proceed through the application of scientific method, such as application of optimization policy.

Keywords: Profit maximization, nonlinear budget constraint, irregular input

1. Introduction

Mathematical modeling finds its floor in field of social sciences, such as in economics, sociology, psychology, political science, etc. (Samuelson, 1947; Carter, 2001). On the other hand, mathematical modeling in economics is the application of mathematics in economics to represent theories and analyze problems (Mohajan, 2018b). It plays a leading role in modern economics to analyze optimization (Ferdous \& Mohajan, 2022). In the society economists and sociologists search for the social benefits and their own benefits (Eaton \& Lipsey, 1975). At present optimization investigation becomes a fundamental concept in business, economics, industry, factory, firm, and some other related fields (Samuelson, 1947).

In this study we have used Cobb-Douglas production function as our profit function (Cobb \& Douglas, 1928). We have developed this study through the analysis of determinant of 6×6 bordered Hessian matrix and 6×6 Jacobian to predict on the future production. We are always sincere to show the mathematical calculations very clearly.

2. Literature Review

A literature review is an overview of the previously published works, which allows a researcher to identify relevant theories, methods, and gaps in the existing research (Creswell, 2007). It is an introductory section of a research, which highlights the contributions of other scholars in the same field within the existing knowledge (Polit \& Hungler, 2013). A good literature review can ensure that a proper research question has been asked and a proper research methodology has been chosen (Torraco, 2016). Cobb-Douglas production function is a seminal work of two American scholars; mathematician Charles W. Cobb (1875-1949) and economist Paul H. Douglas (1892-1976) that can be utilized in profit maximization studies (Cobb \& Douglas, 1928). Another two US professors; mathematician John V. Baxley and economist John C. Moorhouse have worked on optimization with sufficient mathematical techniques (Baxley \& Moorhouse, 1984).

Famous mathematician Jamal Nazrul Islam (1939-2013) and his coauthors have discussed both profit maximization and utility maximization (Islam et al., 2010, 2011). Lia Roy and her coauthors have studied cost minimization, where they have utilized Cobb-Douglas production function (Roy et al., 2021). Pahlaj Moolio and his coworkers have also worked very eagerly on profit maximization (Moolio et al., 2009). Jannatul Ferdous and Haradhan Kumar Mohajan have discussed both necessary and sufficient conditions to determine the profit maximization and to verify it (Ferdous \& Mohajan, 2022). Devajit Mohajan and Haradhan Kumar Mohajan have worked on a series of papers to show the optimum results in economics (Mohajan \& Mohajan, 2022a-f, 2023a-g).

3. Research Methodology of the Study

Research is a logical and systematic search for new useful information on a specific topic (Rajasekar et. al., 2013). Methodology is the systematic and theoretical analysis of the methods applied to a field of study (Patel \& Patel, 2019). Sandra Harding has tried to find a relationship between method and methodology as: method is "techniques for gathering evidence"; whereas methodology is "a theory and analysis of how research does or should proceed" (Harding, 1987). Methodology makes relationship with the nature and power to science, truth, and epistemology (Ramazanoglu \& Holland, 2002). It is the guideline of a research work (Kothari, 2008). It shows the research design and analysis procedures (Hallberg, 2006). Therefore, research methodology is the procedure to perform a research in a systematic way (Abbasi, 2015). To choose a research methodology, a researcher must understand its philosophical origins and unique characteristics (Mohajan, 2017b; Rieger, 2019).

In this study we have depended on the optimization related mathematical secondary data sources (Islam et al., 2009a,b; Mohajan, 2017a, 2018b, 2020). These are collected from research articles of renowned journals, books of famous authors, internet, websites, etc. (Mohajan, 2018a, 2021a,b).

4. Objective of the Study

The principal objective of this article is to analyze the economic effects of various inputs when the cost of irregular raw material is increased. Other minor objectives of the study are as follows:

- to show the mathematical terms elaborately, and
- to provide the economic results precisely.

5. Lagrangian Function

We consider that an industry tries to make a maximum profit from its products. Let the industry uses D_{1} amount of capital, D_{2} quantity of labor, D_{3} quantity of principal raw materials, and D_{4} quantity of irregular raw material for its annual production. Let us consider the Cobb-Douglas production function $f\left(D_{1}, D_{2}, D_{3}, D_{4}\right)$ as a profit function for our model (Cobb \& Douglas, 1928; Mohajan \& Mohajan, 2022a),

$$
\begin{equation*}
P\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=f\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}, \tag{1}
\end{equation*}
$$

where A is the efficiency parameter that reflects the level of technology, i.e., technical process, economic system, etc., which represents total factor productivity. Moreover, A reflects the skill and efficient level of the workforce. Here α, β, γ, and δ are parameters; α indicates the output of elasticity of capital measures the percentage change in $P\left(D_{1}, D_{2}, D_{3}, D_{4}\right)$ for 1% change in D_{1}, while D_{2}, D_{3}, and D_{4} are held constants. Similarly, β indicates the output of elasticity of labor, γ indicates the output of elasticity of principal raw materials, and δ indicates the output of elasticity of irregular raw material. Now these four parameters α, β, γ, and δ must satisfy the following four inequalities (Islam et al., 2010; Moolio et al., 2009; Mohajan, 2022):

$$
\begin{equation*}
0<\alpha<1,0<\beta<1,0<\gamma<1, \text { and } 0<\delta<1 . \tag{2}
\end{equation*}
$$

A strict Cobb-Douglas production function, in which $\mathfrak{R}=\alpha+\beta+\gamma+\delta<1$ indicates decreasing returns to scale, $\mathfrak{R}=1$ indicates constant returns to scale, and $\mathfrak{R}>1$ indicates increasing returns to scale. Now we consider that the profit function is subject to a nonlinear budget constraint as (Moolio et al., 2009; Roy et al., 2021; Mohajan \& Mohajan, 2022f, 2023d),

$$
\begin{equation*}
B\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=k D_{1}+l D_{2}+m D_{3}+n\left(D_{4}\right) D_{4}, \tag{3}
\end{equation*}
$$

where k is rate of interest or services of capital per unit of capital $D_{1} ; l$ is the wage rate per unit of labor $D_{2} ; m$ is the cost per unit of principal raw material D_{3}; and n is the cost per unit of irregular raw material D_{4}. In nonlinear budget equation (3) we consider (Mohajan \& Mohajan, 2023a),

$$
\begin{equation*}
n\left(D_{4}\right)=n_{0} D_{4}-n_{0}, \tag{4}
\end{equation*}
$$

where n_{0} being the discounted price of the irregular input D_{4}. Therefore, the nonlinear budget constraint (3) takes the form (Mohajan, 2021b; Mohajan \& Mohajan, 2023e);

$$
\begin{equation*}
B\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=k D_{1}+l D_{2}+m D_{3}+n_{0} D_{4}^{2}-n_{0} D_{4} . \tag{5}
\end{equation*}
$$

We now formulate the maximization problem for the profit function (1) in terms of single Lagrange multiplier λ by defining the Lagrangian function $T\left(D_{1}, D_{2}, D_{3}, D_{4}, \lambda\right)$ as (Ferdous \& Mohajan, 2022; Mohajan \& Mohajan, 2023c),

$$
\begin{equation*}
T\left(D_{1}, D_{2}, D_{3}, D_{4}, \lambda\right)=A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}+\lambda\left\{B\left(D_{1}, D_{2}, D_{3}, D_{4}\right)-k D_{1}-l D_{2}-m D_{3}-n_{0} D_{4}^{2}+n_{0} D_{4}\right\} . \tag{6}
\end{equation*}
$$

Relation (6) is a 5-dimensional unconstrained problem that is obtained from (1) and 4dimensional constrained problem (3), where Lagrange multiplier λ, is considered as a device in our profit maximization model.

6. Analysis on Four Inputs

For maximization, first order differentiation equals to zero; then from (6) we can write (Islam et al., 2011; Mohajan, 2021a; Mohajan \& Mohajan, 2022g),

$$
\begin{gather*}
T_{\lambda}=B-k D_{1}-l D_{2}-m D_{3}-n_{0} D_{4}^{2}+n_{0} D_{4}=0, \tag{7a}\\
T_{1}=\alpha A D_{1}^{\alpha-1} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}-\lambda k=0, \tag{7b}\\
T_{2}=\beta A D_{1}^{\alpha} D_{2}^{\beta-1} D_{3}^{\gamma} D_{4}^{\delta}-\lambda l=0, \tag{7c}\\
T_{3}=\gamma A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma-1} D_{4}^{\delta}-\lambda m=0, \tag{7d}
\end{gather*}
$$

$$
\begin{equation*}
T_{4}=\delta A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta-1}-\lambda n_{0}\left(2 D_{4}-1\right)=0, \tag{7e}
\end{equation*}
$$

where, $\frac{\partial T}{\partial \lambda}=T_{\lambda}, \frac{\partial T}{\partial D_{1}}=T_{1}, \frac{\partial T}{\partial D_{2}}=T_{2}$, etc. indicate first-order partial differentiations of multivariate Lagrangian function.

Using equations (2) to (7) we can decide the values of D_{1}, D_{2}, D_{3}, and D_{4} as follows (Ferdous \& Mohajan 2022; Mohajan \& Mohajan, 2022b):

$$
\begin{align*}
& D_{1}=\frac{\alpha B}{k \Re}, \tag{8a}\\
& D_{2}=\frac{\beta B}{l \mathfrak{R}}, \tag{8b}\\
& D_{3}=\frac{\gamma B}{m \Re}, \tag{8c}\\
& D_{4}=\frac{\delta B}{n \mathfrak{R}} . \tag{8d}
\end{align*}
$$

7. Bordered Hessian Matrix Analysis

Let us consider the determinant of the 5×5 bordered Hessian matrix as (Islam et al. 2010; Mohajan \& Mohajan, 2023d),

$$
|H|=\left|\begin{array}{ccccc}
0 & -B_{1} & -B_{2} & -B_{3} & -B_{4} \tag{9}\\
-B_{1} & T_{11} & T_{12} & T_{13} & T_{14} \\
-B_{2} & T_{21} & T_{22} & T_{23} & T_{24} \\
-B_{3} & T_{31} & T_{32} & T_{33} & T_{34} \\
-B_{4} & T_{41} & T_{42} & T_{43} & T_{44}
\end{array}\right| .
$$

Taking first-order partial differentiations of (5) we get,

$$
\begin{equation*}
B_{1}=k, B_{2}=l, B_{3}=m, \text { and } B_{4}=2 n_{0} D_{4}-n_{0} . \tag{10}
\end{equation*}
$$

Taking second-order and cross-partial derivatives of (6) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023c),

$$
\begin{align*}
& T_{11}=\alpha(\alpha-1) A D_{1}^{\alpha-2} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}, \\
& T_{22}=\beta(\beta-1) A D_{1}^{\alpha} D_{2}^{\beta-2} D_{3}^{\gamma} D_{4}^{\delta}, \\
& T_{33}=\gamma(\gamma-1) A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma-2} D_{4}^{\delta}, \\
& T_{44}=\delta(\delta-1) A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta-2}, \\
& T_{12}=T_{21}=\alpha \beta A D_{1}^{\alpha-1} D_{2}^{\beta-1} D_{3}^{\gamma} D_{4}^{\delta}, \\
& T_{13}=T_{31}=\alpha \gamma A D_{1}^{\alpha-1} D_{2}^{\beta} D_{3}^{\gamma-1} D_{4}^{\delta}, \\
& T_{14}=T_{41}=\alpha \delta A D_{1}^{\alpha-1} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta-1}, \tag{11}\\
& T_{23}=T_{32}=\beta \gamma A D_{1}^{\alpha} D_{2}^{\beta-1} D_{3}^{\gamma-1} D_{4}^{\delta}, \\
& T_{24}=T_{42}=\beta \delta A D_{1}^{\alpha} D_{2}^{\beta-1} D_{3}^{\gamma} D_{4}^{\delta-1}, \\
& T_{34}=T_{43}=\gamma \delta A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma-1} D_{4}^{\delta-1} .
\end{align*}
$$

where $\frac{\partial^{2} T}{\partial D_{1} \partial D_{2}}=T_{12}=T_{21}, \frac{\partial^{2} T}{\partial D_{2}^{2}}=T_{22}$, etc. indicate cross-partial, second order differentiations of multivariate Lagrangian function, respectively, etc.

Now we expand the Hessian (9) as $|H|>0$ (Moolio et al., 2009; Mohajan et al., 2013; Mohajan \& Mohajan, 2023f),

$$
\begin{equation*}
|H|=\frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B^{2}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2} \mathfrak{R}^{2}}(\alpha+\beta+\gamma+\delta)(\delta+3)>0, \tag{12}
\end{equation*}
$$

where efficiency parameter, $A>0$, and budget of the firm, $B>0 ; D_{1}, D_{2}, D_{3}$, and D_{4} are four different types of inputs; and consequently, $D_{1}, D_{2}, D_{3}, D_{4}>0$. Parameters, $\alpha, \beta, \gamma, \delta>0$; also in the model either $0<\mathfrak{R}=\alpha+\beta+\gamma+\delta<1, \mathfrak{R}=1$ or $\mathfrak{R}>1$. Hence, equation (12) gives; $|H|>0$ (Islam et al., 2010; Mohajan \& Mohajan, 2022c, 2023d).

8. Determination of Lagrange Multiplier λ

Now using the necessary values from (8) in (7a) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023f),

$$
\begin{gather*}
B=\frac{\alpha A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}}{\lambda}+\frac{\beta A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}}{\lambda}+\frac{\gamma A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}}{\lambda}+\frac{\delta A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta}}{\lambda} \\
\lambda=\frac{A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta} \mathfrak{R}}{B} . \tag{13}
\end{gather*}
$$

9. Jacobian Matrix Analysis

We have observed that the second-order condition is satisfied, so that the determinant of (5) survives at the optimum, i.e., $|J|=|H|$; and hence, we can apply the implicit function theorem. Now we compute twenty-five partial derivatives, such as $\frac{\partial \lambda}{\partial k}, \frac{\partial D_{1}}{\partial k}, \frac{\partial D_{3}}{\partial l}, \frac{\partial D_{4}}{\partial B}$, etc. that are referred to as the comparative statics of the model (Chiang, 1984; Mohajan \& Mohajan, 2022a).

Let \mathbf{G} be the vector-valued function of ten variables $\lambda^{*}, D_{1}^{*}, D_{2}^{*}, D_{3}^{*}, D_{4}^{*}, k, l, m, n$, and B, and we define the function \mathbf{G} for the point $\left(\lambda^{*}, D_{1}^{*}, D_{2}^{*}, D_{3}^{*}, D_{4}^{*}, k, l, m, n, B\right) \in R^{10}$, and take the values in R^{5}. By the Implicit Function Theorem of multivariable calculus, the equation (Mohajan, 2021b; Mohajan \& Mohajan, 2022f, 2023b),

$$
\begin{equation*}
F\left(\lambda^{*}, D_{1}^{*}, D_{2}^{*}, D_{3}^{*}, D_{4}^{*}, k, l, m, n, B\right)=0 \tag{14}
\end{equation*}
$$

may be solved in the form of

$$
\left[\begin{array}{c}
\lambda \tag{15}\\
D_{1} \\
D_{2} \\
D_{3} \\
D_{4}
\end{array}\right]=\mathbf{G}(k, l, m, n, B)
$$

Now the 5×5 Jacobian matrix for $\mathbf{G}(k, l, m, n, B)$; regarded as $J_{G}=\frac{\partial\left(\lambda, D_{1}, D_{2}, D_{3}, D_{4}\right)}{\partial\left(k, l, m, n_{0}, B\right)}$, and is represented by;

$$
\begin{align*}
& J_{G}=\left[\begin{array}{ccccc}
\frac{\partial \lambda}{\partial k} & \frac{\partial \lambda}{\partial l} & \frac{\partial \lambda}{\partial m} & \frac{\partial \lambda}{\partial n_{0}} & \frac{\partial \lambda}{\partial B} \\
\frac{\partial D_{1}}{\partial k} & \frac{\partial D_{1}}{\partial l} & \frac{\partial D_{1}}{\partial m} & \frac{\partial D_{1}}{\partial n_{0}} & \frac{\partial D_{1}}{\partial B} \\
\frac{\partial D_{2}}{\partial k} & \frac{\partial D_{2}}{\partial l} & \frac{\partial D_{2}}{\partial m} & \frac{\partial D_{2}}{\partial n_{0}} & \frac{\partial D_{2}}{\partial B} \\
\frac{\partial D_{3}}{\partial k} & \frac{\partial D_{3}}{\partial l} & \frac{\partial D_{3}}{\partial m} & \frac{\partial D_{3}}{\partial n_{0}} & \frac{\partial D_{3}}{\partial B} \\
\frac{\partial D_{4}}{\partial k} & \frac{\partial D_{4}}{\partial l} & \frac{\partial D_{4}}{\partial m} & \frac{\partial D_{4}}{\partial n_{0}} & \frac{\partial D_{4}}{\partial B}
\end{array}\right] . \tag{16}\\
& =-J^{-1}\left[\begin{array}{ccccc}
-D_{1} & -D_{2} & -D_{3} & -D_{4}^{2}+D_{4} & 1 \\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & -2 \lambda D_{4}+\lambda & 0
\end{array}\right] .
\end{align*}
$$

The inverse of Jacobian matrix is, $J^{-1}=\frac{1}{|J|} C^{T}$, where $C=\left(C_{i j}\right)$, the matrix of cofactors of J, where T for transpose, then (16) becomes (Moolio et al., 2009; Roy et al., 2021; Mohajan, 2021c),
$=-\frac{1}{|J|}\left[\begin{array}{ccccc}C_{11} & C_{21} & C_{31} & C_{41} & C_{51} \\ C_{12} & C_{22} & C_{32} & C_{42} & C_{52} \\ C_{13} & C_{23} & C_{33} & C_{43} & C_{53} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{54} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55}\end{array}\right]\left[\begin{array}{ccccc}-D_{1} & -D_{2} & -D_{3} & -D_{4}^{2}+D_{4} & 1 \\ -\lambda & 0 & 0 & 0 & 0 \\ 0 & -\lambda & 0 & 0 & 0 \\ 0 & 0 & -\lambda & 0 & 0 \\ 0 & 0 & 0 & -2 \lambda D_{4}+\lambda & 0\end{array}\right]$

$$
J_{G}=-\frac{1}{|J|}\left[\begin{array}{lllll}
-D_{1} C_{11}-\lambda C_{21} & -D_{2} C_{11}-\lambda C_{31} & -D_{3} C_{11}-\lambda C_{41} & -D_{4}^{2} C_{11}+D_{4} C_{11}-2 \lambda D_{4} C_{51}+\lambda C_{51} & C_{11} \tag{17}\\
-D_{1} C_{12}-\lambda C_{22} & -D_{2} C_{12}-\lambda C_{32} & -D_{3} C_{12}-\lambda C_{42} & -D_{4}^{2} C_{12}+D_{4} C_{12}-2 \lambda D_{4} C_{52}+\lambda C_{52} & C_{12} \\
-D_{1} C_{13}-\lambda C_{23} & -D_{2} C_{13}-\lambda C_{33} & -D_{3} C_{13}-\lambda C_{43} & -D_{4}^{2} C_{13}+D_{4} C_{13}-2 \lambda D_{4} C_{53}+\lambda C_{53} & C_{13} \\
-D_{1} C_{14}-\lambda C_{24} & -D_{2} C_{14}-\lambda C_{34} & -D_{3} C_{14}-\lambda C_{44} & -D_{4}^{2} C_{14}+D_{4} C_{14}-2 \lambda D_{4} C_{54}+\lambda C_{54} & C_{14} \\
-D_{1} C_{15}-\lambda C_{25} & -D_{2} C_{15}-\lambda C_{35} & -D_{3} C_{15}-\lambda C_{45} & -D_{4}^{2} C_{15}+D_{4} C_{15}-2 \lambda D_{4} C_{55}+\lambda C_{55} & C_{15}
\end{array}\right] .
$$

In (17) total 25 comparative statics are available, and in this study we deal only with four of them when discounted price of the irregular input is increased. The firm always attempts for the profit maximization production (Baxley \& Moorhouse, 1984; Islam et al., 2010).

10. Sensitivity Analysis

Now we analyze the effect on capital D_{1} when the discounted price of the irregular raw material, n_{0} increases. Taking T_{24} (i.e., term of $2^{\text {nd }}$ row and $4^{\text {th }}$ column) from both sides of (17) we get (Moolio et al., 2009; Islam et al., 2011; Mohajan, 2018b),

$$
\frac{\partial D_{1}}{\partial n_{0}}=-\frac{D_{4}^{2}}{|J|}\left[C_{12}\right]+\frac{D_{4}}{|J|}\left[C_{12}\right]-2 \lambda \frac{D_{4}}{|J|}\left[C_{52}\right]+\frac{\lambda}{|J|}\left[C_{52}\right]
$$

$$
=-\frac{D_{4}^{2}}{|J|} \text { Cofactor of } C_{12}+\frac{D_{4}}{|J|} \text { Cofactor of } C_{12}-2 \lambda \frac{D_{4}}{|J|} \text { Cofactor of } \mathrm{C}_{52}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{52}
$$

$$
=-\frac{D_{4}^{2}-D_{4}}{|J|}\left|\begin{array}{llll}
-B_{1} & T_{12} & T_{13} & T_{14} \\
-B_{2} & T_{22} & T_{23} & T_{24} \\
-B_{3} & T_{32} & T_{33} & T_{34} \\
-B_{4} & T_{42} & T_{43} & T_{44}
\end{array}\right|-\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left|\begin{array}{cccc}
0 & -B_{2} & -B_{3} & -B_{4} \\
-B_{1} & T_{12} & T_{13} & T_{14} \\
-B_{2} & T_{22} & T_{23} & T_{24} \\
-B_{3} & T_{32} & T_{33} & T_{34}
\end{array}\right|
$$

$$
=-\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
T_{22} & T_{23} & T_{24} \\
T_{32} & T_{33} & T_{34} \\
T_{42} & T_{43} & T_{44}
\end{array}\right|-T_{12}\left|\begin{array}{lll}
-B_{2} & T_{23} & T_{24} \\
-B_{3} & T_{33} & T_{34} \\
-B_{4} & T_{43} & T_{44}
\end{array}\right|+T_{13}\left|\begin{array}{lll}
-B_{2} & T_{22} & T_{24} \\
-B_{3} & T_{32} & T_{34} \\
-B_{4} & T_{42} & T_{44}
\end{array}\right|-T_{14}\left|\begin{array}{lll}
-B_{2} & T_{22} & T_{23} \\
-B_{3} & T_{32} & T_{33} \\
-B_{4} & T_{42} & T_{43}
\end{array}\right|\right\}
$$

$$
-\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{B_{2}\left|\begin{array}{ccc}
-B_{1} & T_{13} & T_{14} \\
-B_{2} & T_{23} & T_{24} \\
-B_{3} & T_{33} & T_{34}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
-B_{1} & T_{12} & T_{14} \\
-B_{2} & T_{22} & T_{24} \\
-B_{3} & T_{32} & T_{34}
\end{array}\right|+B_{4}\left|\begin{array}{ccc}
-B_{1} & T_{12} & T_{13} \\
-B_{2} & T_{22} & T_{23} \\
-B_{3} & T_{32} & T_{33}
\end{array}\right|\right\}
$$

$$
\begin{aligned}
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left[-B_{1}\left\{T_{22}\left(T_{33} T_{44}-T_{43} T_{34}\right)+T_{23}\left(T_{42} T_{34}-T_{32} T_{44}\right)+T_{24}\left(T_{32} T_{43}-T_{42} T_{33}\right)\right\}\right. \\
& -T_{12}\left\{-B_{2}\left(T_{33} T_{44}-T_{43} T_{34}\right)+T_{23}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{43}+B_{4} T_{33}\right)\right\} \\
& +T_{13}\left\{-B_{2}\left(T_{32} T_{44}-T_{42} T_{34}\right)+T_{22}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{42}+B_{4} T_{32}\right)\right\} \\
& \left.-T_{14}\left\{-B_{2}\left(T_{32} T_{43}-T_{42} T_{33}\right)+T_{22}\left(-B_{4} T_{33}+B_{3} T_{43}\right)+T_{23}\left(-B_{3} T_{42}+B_{4} T_{32}\right)\right\}\right] \\
& -\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left[B_{2}\left\{-B_{1}\left(T_{23} T_{34}-T_{33} T_{24}\right)+T_{13}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{33}+B_{3} T_{23}\right)\right\}\right. \\
& -B_{3}\left\{-B_{1}\left(T_{22} T_{34}-T_{32} T_{24}\right)+T_{12}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{32}+B_{3} T_{22}\right)\right\} \\
& \left.+B_{4}\left\{-B_{1}\left(T_{22} T_{33}-T_{32} T_{23}\right)+T_{12}\left(-B_{3} T_{23}+B_{2} T_{33}\right)+T_{13}\left(-B_{2} T_{32}+B_{3} T_{22}\right)\right\}\right] \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1} T_{22} T_{33} T_{44}+B_{1} T_{22} T_{34}^{2}-B_{1} T_{23} T_{42} T_{34}+B_{1} T_{23}^{2} T_{44}-B_{1} T_{24} T_{32} T_{43}+B_{1} T_{24}^{2} T_{33}+B_{2} T_{12} T_{33} T_{44}\right. \\
& -B_{2} T_{12} T_{34}^{2}+B_{4} T_{12} T_{23} T_{34}-B_{3} T_{12} T_{23} T_{44}+B_{3} T_{12} T_{24} T_{43}-B_{4} T_{12} T_{24} T_{33}-B_{2} T_{13} T_{32} T_{44}+B_{2} T_{13} T_{42} T_{34} \\
& -B_{4} T_{13} T_{22} T_{34}+B_{3} T_{13} T_{22} T_{44}-B_{3} T_{13} T_{24}^{2}+B_{4} T_{13} T_{24} T_{32}+B_{2} T_{14} T_{32} T_{43}-B_{2} T_{14} T_{42} T_{33}+B_{4} T_{14} T_{22} T_{33} \\
& \left.-B_{3} T_{14} T_{22} T_{43}+B_{3} T_{14} T_{23} T_{42}-B_{4} T_{14} T_{23}^{2}\right\}-\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{-B_{1} B_{2} T_{23} T_{34}+B_{1} B_{2} T_{33} T_{24}+B_{2} B_{3} T_{13} T_{24}-B_{2}^{2} T_{13} T_{34}\right. \\
& +B_{2}^{2} T_{14} T_{33}-B_{2} B_{3} T_{14} T_{23}+B_{1} B_{3} T_{22} T_{34}-B_{1} B_{3} T_{32} T_{24}+B_{3}^{2} T_{12} T_{24}-B_{2} B_{3} T_{12} T_{34}+B_{2} B_{3} T_{14} T_{32}-B_{3}^{2} T_{14} T_{22} \\
& \left.-B_{1} B_{4} T_{22} T_{33}+B_{1} B_{4} T_{32} T_{23}+B_{3} B_{4} T_{12} T_{23}+B_{2} B_{4} T_{12} T_{33}-B_{2} B_{4} T_{13} T_{32}+B_{3} B_{4} T_{13} T_{22}\right\} \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k D_{1}^{2} \beta(\beta-1) \gamma(\gamma-1) \delta(\delta-1)+k D_{1}^{2} \beta(\beta-1) \gamma^{2} \delta^{2}-k D_{1}^{2} \beta^{2} \gamma^{2} \delta^{2}\right. \\
& +k D_{1}^{2} \beta^{2} \gamma^{2} \delta(\delta-1)-k D_{1}^{2} \beta^{2} \gamma^{2} \delta^{2}+k D_{1}^{2} \beta^{2} \gamma(\gamma-1) \delta^{2}+l D_{1} D_{2} \alpha \beta \gamma(\gamma-1) \delta(\delta-1)-l D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2} \\
& +n D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta-m D_{1} D_{3} \alpha \beta^{2} \gamma \delta(\delta-1)+m D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}-n D_{1} D_{4} \alpha \beta^{2} \gamma(\gamma-1) \delta \\
& -l D_{1} D_{2} \alpha \beta \gamma^{2} \delta(\delta-1)+l D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2}-n D_{1} D_{4} \alpha \beta(\beta-1) \gamma^{2} \delta+m D_{1} D_{3} \alpha \beta(\beta-1) \gamma \delta(\delta-1) \\
& -m D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}+n D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta+l D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2}-l D_{1} D_{2} \alpha \beta \gamma(\gamma-1) \delta^{2}+n D_{1} D_{4} \alpha \beta(\beta-1) \gamma(\gamma-1) \delta \\
& \left.-m D_{1} D_{3} \alpha \beta(\beta-1) \gamma \delta^{2}+m D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}-n D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta\right\}-\frac{\lambda\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 x} D_{2}^{2 y} D_{3}^{2 z} D_{4}^{2 w}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}} \\
& \left\{-k l D_{1}^{2} D_{2} D_{4} \beta \gamma^{2} \delta+k l D_{1}^{2} D_{2} D_{4} \beta \gamma(\gamma-1) \delta+l m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta-l^{2} D_{1} D_{2}^{2} D_{4} \alpha \gamma^{2} \delta\right. \\
& +l^{2} D_{1} D_{2}^{2} D_{4} \alpha(\gamma-1) \delta-l m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+k m D_{1}^{2} D_{3} D_{4} \beta(\beta-1) \gamma \delta-k m D_{1}^{2} D_{3} D_{4} \beta^{2} \gamma \delta \\
& +m^{2} D_{1} D_{3}^{2} D_{4} \alpha \beta^{2} \delta-l m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+l m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta-m^{2} D_{1} D_{3}^{2} D_{4} \alpha \beta(\beta-1) \delta \\
& -k n D_{1}^{2} D_{4}^{2} \beta(\beta-1) \gamma(\gamma-1)+k n D_{1}^{2} D_{4}^{2} \beta^{2} \gamma^{2}+m n D_{1} D_{3} D_{4}^{2} \alpha \beta^{2} \gamma+n l D_{1} D_{2} D_{4}^{2} \alpha \beta \gamma(\gamma-1) \\
& \left.-n l D_{1} D_{2} D_{4}^{2} \alpha \beta \gamma^{2}+m n D_{1} D_{3} D_{4}^{2} \alpha \beta(\beta-1) \gamma\right\}
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k D_{1}^{2} \alpha^{-1}(\beta-1)(\gamma-1)(\delta-1)+k D_{1}^{2} \alpha^{-1}(\beta-1) \gamma \delta-k D_{1}^{2} \alpha^{-1} \beta \gamma \delta\right. \\
& +k D_{1}^{2} \alpha^{-1} \beta \gamma(\delta-1)-k D_{1}^{2} \alpha^{-1} \beta \gamma \delta+k D_{1}^{2} \alpha^{-1} \beta(\gamma-1) \delta+l D_{1} D_{2}(\gamma-1)(\delta-1)-l D_{1} D_{2} \gamma \delta+n D_{1} D_{4} \beta \gamma \\
& -m D_{1} D_{3} \beta(\delta-1)+m D_{1} D_{3} \beta \delta-n D_{1} D_{4} \beta(\gamma-1)-l D_{1} D_{2} \gamma(\delta-1)+l D_{1} D_{2} \gamma \delta-n D_{1} D_{4}(\beta-1) \gamma \\
& +m D_{1} D_{3}(\beta-1)(\delta-1)-m D_{1} D_{3} \beta \delta+n D_{1} D_{4} \beta \gamma+l D_{1} D_{2} \gamma \delta-l D_{1} D_{2}(\gamma-1) \delta+n D_{1} D_{4}(\beta-1)(\gamma-1) \\
& \left.-m D_{1} D_{3}(\beta-1) \delta+m D_{1} D_{3} \beta \delta-n D_{1} D_{4} \beta \gamma\right\}-\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}} \frac{A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta} \mathfrak{R}}{B} \\
& \left\{-k l D_{1} D_{2} \beta \gamma^{2} \delta+k l D_{1} D_{2} \beta \gamma(\gamma-1) \delta-l^{2} D_{2}^{2} \alpha \gamma^{2} \delta+l^{2} D_{2}^{2} \alpha \gamma(\gamma-1) \delta+k m D_{1} D_{3} \beta(\beta-1) \gamma \delta\right. \\
& -k m D_{1} D_{3} \beta^{2} \gamma \delta+m^{2} D_{3}^{2} \alpha \beta^{2} \delta-m^{2} D_{3}^{2} \alpha \beta(\beta-1) \delta-k n D_{1} D_{4} \alpha(\alpha-1) \gamma(\gamma-1)+k n D_{1} D_{4} \alpha^{2} \gamma^{2} \\
& \left.+m n D_{3} D_{4} \alpha \beta^{2} \gamma+m n D_{3} D_{4} \alpha \beta(\beta-1) \gamma+n l D_{2} D_{4} \alpha \beta \gamma(\gamma-1)-n l D_{2} D_{4} \alpha \beta \gamma^{2}\right\} \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k D_{1} \alpha^{-1}(\beta-1)(\gamma-1)(\delta-1)+k D_{1} \alpha^{-1}(\beta-1) \gamma \delta-2 k D_{1} \alpha^{-1} \beta \gamma \delta\right. \\
& +k D_{1} \alpha^{-1} \beta \gamma(\delta-1)+k D_{1} \alpha^{-1} \beta \gamma(\gamma-1) \delta+l D_{2}(\gamma-1)(\delta-1)-l D_{2} \gamma(\delta-1)-l D_{2}(\gamma-1) \delta+l D_{2} \gamma \delta \\
& -m D_{3} \beta(\delta-1)+m D_{3} \beta \delta+m D_{3}(\beta-1)(\delta-1)-m D_{3}(\beta-1) \delta+n D_{4}(\beta-1)(\gamma-1)-n D_{4} \beta(\gamma-1) \\
& \left.-n D_{4}(\beta-1) \gamma+n D_{4} \beta \gamma\right\}-\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \beta \gamma D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} \mathfrak{R}}{D_{1} D_{2}^{2} D_{3}^{2} D_{4} B}\left\{-k l D_{1} D_{2} \beta \gamma^{2} \delta+k l D_{1} D_{2} \beta \gamma(\gamma-1) \delta w\right. \\
& -l^{2} D_{2}^{2} \alpha \gamma^{2} \delta+l^{2} D_{2}^{2} \alpha \gamma(\gamma-1) \delta+k m D_{1} D_{3} \beta(\beta-1) \gamma \delta-k m D_{1} D_{3} \beta^{2} \gamma \delta+m^{2} D_{3}^{2} \alpha \beta^{2} \delta \\
& -m^{2} D_{3}^{2} \alpha \beta(\beta-1) \delta-k n D_{1} D_{4} \beta(\beta-1) \gamma(\gamma-1)+k n D_{1} D_{4} \beta^{2} \gamma^{2}+m n D_{3} D_{4} \alpha \beta^{2} \gamma+m n D_{3} D_{4} \alpha \beta(\beta-1) \gamma \\
& \left.+n l D_{2} D_{4} \alpha \beta \gamma(\gamma-1)-n l D_{2} D_{4} \alpha \beta \gamma^{2}\right\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1} D_{2}^{2} D_{3}^{2} D_{4} \Re}\{-(\beta-1)(\gamma-1)(\delta-1)+\beta(\gamma-1)(\delta-1)-\beta \gamma(\delta-1) \\
& +(\beta-1) \gamma(\delta-1)+\left(2 D_{4}-1\right)(\beta-1)(\gamma-1) \delta-\left(2 D_{4}-1\right) \beta(\gamma-1) \delta-\left(2 D_{4}-1\right)(\beta-1) \gamma \delta \\
& \left.+\left(2 D_{4}-1\right) \beta \gamma \delta\right\}-\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1} D_{2}^{2} D_{3}^{2} D_{4} \mathfrak{R}}\{-\beta \gamma+\beta(\gamma-1)-(\beta-1)(\gamma-1)+(\beta-1) \gamma\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1} D_{2}^{2} D_{3}^{2} D_{4} \Re}\left(2 D_{4} \delta-2 \delta+1\right)-\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1} D_{2}^{2} D_{3}^{2} D_{4} \Re} \\
& \frac{\partial D_{1}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1} D_{2}^{2} D_{3}^{2} \mathfrak{R}}\left(2 D_{4} \delta-4 \delta-1\right) . \tag{18}
\end{align*}
$$

Now using $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\mathfrak{R}=1$, i.e., for constant returns to scale, in (18) we get,

$$
\begin{equation*}
\frac{\partial D_{1}}{\partial n_{0}}=\frac{1}{|J|} \frac{A^{3} D_{4}^{\frac{3}{4}} B}{2^{9} D_{1}^{\frac{1}{4}} D_{2}^{\frac{5}{4}} D_{3}^{\frac{5}{4}}}\left(4-D_{4}\right) . \tag{19}
\end{equation*}
$$

Now we consider $D_{4}>4$ in (19) then we see that,

$$
\begin{equation*}
\frac{\partial D_{1}}{\partial n_{0}}>0 . \tag{20}
\end{equation*}
$$

Inequality (20) indicates that if the discounted price of the irregular raw material, n_{0} increases; the amount of capital also increases. It seems that the demand of the commodities and profit of the industry has increased, and the industry has increased its capital structure.

From (19) if $D_{4}<4$ we see that,

$$
\begin{equation*}
\frac{\partial D_{1}}{\partial n_{0}}<0 . \tag{21}
\end{equation*}
$$

Inequality (21) shows that if the discounted price of the irregular raw material, n_{0} increases; the amount of capital decreases, which is reasonable. In this situation the industry may decrease the production due to the shortage of capital. Hence, the industry faces unsustainable circumstances. Now we consider $D_{4}=4$ in (19) then we see that,

$$
\begin{equation*}
\frac{\partial D_{1}}{\partial n_{0}}=0 . \tag{22}
\end{equation*}
$$

Equation (22) shows that if the discounted price of the irregular raw material, n_{0} increases; there is no change of amount of capital. In this situation it seems that there is no relation between irregular raw material and capital of the industry.

Now we analyze the effect on wage D_{2} when the discounted price of the irregular raw material, n_{0} increases. Taking T_{34} (i.e., term of $3^{\text {rd }}$ row and $4^{\text {th }}$ column) from both sides of (17) we get (Roy et al., 2021; Mohajan \& Mohajan, 2023c),

$$
\begin{aligned}
& \frac{\partial D_{2}}{\partial n_{0}}=-\frac{D_{4}^{2}}{|J|}\left[C_{13}\right]+\frac{D_{4}}{|J|}\left[C_{13}\right]-2 \lambda \frac{D_{4}}{|J|}\left[C_{53}\right]+\frac{\lambda}{|J|}\left[C_{53}\right] \\
& =-\frac{D_{4}^{2}}{|J|} \text { Cofactor of } C_{13}+\frac{D_{4}}{|J|} \text { Cofactor of } C_{13}-2 \lambda \frac{D_{4}}{|J|} \text { Cofactorof } \mathrm{C}_{53}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{53}
\end{aligned}
$$

$$
=-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{k D_{1} D_{2} \alpha \beta \gamma(\gamma-1) \delta(\delta-1)-k D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2}+k D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2}\right.
$$

$$
-k D_{1} D_{2} \alpha \beta \gamma^{2} \delta(\delta-1)+k D_{1} D_{2} \alpha \beta \gamma^{2} \delta^{2}-k D_{1} D_{2} \alpha \beta \gamma(\gamma-1) \delta^{2}-l D_{2}^{2} \alpha(\alpha-1) \gamma(\gamma-1) \delta(\delta-1)
$$

$$
\begin{aligned}
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left|\begin{array}{llll}
-B_{1} & T_{11} & T_{13} & T_{14} \\
-B_{2} & T_{21} & T_{23} & T_{24} \\
-B_{3} & T_{31} & T_{33} & T_{34} \\
-B_{4} & T_{41} & T_{43} & T_{44}
\end{array}\right|+\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left|\begin{array}{cccc}
0 & -B_{1} & -B_{3} & -B_{4} \\
-B_{1} & T_{11} & T_{13} & T_{14} \\
-B_{2} & T_{21} & T_{23} & T_{24} \\
-B_{3} & T_{31} & T_{33} & T_{34}
\end{array}\right| \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
T_{21} & T_{23} & T_{24} \\
T_{31} & T_{33} & T_{34} \\
T_{41} & T_{43} & T_{44}
\end{array}\right|-T_{11}\left|\begin{array}{lll}
-B_{2} & T_{23} & T_{24} \\
-B_{3} & T_{33} & T_{34} \\
-B_{4} & T_{43} & T_{44}
\end{array}\right|+T_{13}\left|\begin{array}{lll}
-B_{2} & T_{21} & T_{24} \\
-B_{3} & T_{31} & T_{34} \\
-B_{4} & T_{41} & T_{44}
\end{array}\right|-T_{14}\left|\begin{array}{lll}
-B_{2} & T_{21} & T_{23} \\
-B_{3} & T_{31} & T_{33} \\
-B_{4} & T_{41} & T_{43}
\end{array}\right|\right\} \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{B_{1}\left|\begin{array}{lll}
-B_{1} & T_{13} & T_{14} \\
-B_{2} & T_{23} & T_{24} \\
-B_{3} & T_{33} & T_{34}
\end{array}\right|-B_{3}\left|\begin{array}{lll}
-B_{1} & T_{11} & T_{14} \\
-B_{2} & T_{21} & T_{24} \\
-B_{3} & T_{31} & T_{34}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
-B_{1} & T_{11} & T_{13} \\
-B_{2} & T_{21} & T_{23} \\
-B_{3} & T_{31} & T_{33}
\end{array}\right|\right\} \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left[-B_{1}\left\{T_{21}\left(T_{33} T_{44}-T_{43} T_{34}\right)+T_{23}\left(T_{41} T_{34}-T_{31} T_{44}\right)+T_{24}\left(T_{31} T_{43}-T_{41} T_{33}\right)\right\}\right. \\
& -T_{11}\left\{-B_{2}\left(T_{33} T_{44}-T_{43} T_{34}\right)+T_{23}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{43}+B_{4} T_{33}\right)\right\} \\
& +T_{13}\left\{-B_{2}\left(T_{31} T_{44}-T_{41} T_{34}\right)+T_{21}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{41}+B_{4} T_{31}\right)\right\} \\
& \left.-T_{14}\left\{-B_{2}\left(T_{31} T_{43}-T_{41} T_{33}\right)+T_{21}\left(-B_{4} T_{33}+B_{3} T_{43}\right)+T_{23}\left(-B_{3} T_{41}+B_{4} T_{31}\right)\right\}\right] \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left[B_{1}\left\{-B_{1}\left(T_{23} T_{34}-T_{33} T_{24}\right)+T_{13}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{33}+B_{3} T_{23}\right)\right\}\right. \\
& -B_{3}\left\{-B_{1}\left(T_{21} T_{34}-T_{31} T_{24}\right)+T_{11}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\} \\
& \left.+B_{4}\left\{-B_{1}\left(T_{21} T_{33}-T_{31} T_{23}\right)+T_{11}\left(-B_{3} T_{23}+B_{2} T_{33}\right)+T_{13}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\}\right] \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left\{B_{1} T_{21} T_{33} T_{44}-B_{1} T_{21} T_{43} T_{34}+B_{1} T_{23} T_{41} T_{24}-B_{1} T_{23} T_{31} T_{44}+B_{1} T_{24} T_{31} T_{43}-B_{1} T_{24} T_{41} T_{33}\right. \\
& -B_{2} T_{11} T_{33} T_{44}+B_{2} T_{11} T_{43} T_{34}-B_{4} T_{11} T_{23} T_{34}+B_{3} T_{11} T_{23} T_{44}-B_{3} T_{11} T_{24} T_{43}+B_{4} T_{11} T_{24} T_{33}+B_{2} T_{13} T_{31} T_{44} \\
& -B_{2} T_{13} T_{41} T_{34}+B_{4} T_{13} T_{21} T_{34}-B_{3} T_{13} T_{21} T_{44}+B_{3} T_{13} T_{24} T_{41}-B_{4} T_{13} T_{24} T_{31}-B_{2} T_{14} T_{31} T_{43}+B_{2} T_{14} T_{41} T_{33} \\
& \left.-B_{4} T_{14} T_{21} T_{33}+B_{3} T_{14} T_{21} T_{43}-B_{3} T_{14} T_{23} T_{41}+B_{4} T_{14} T_{23} T_{31}\right\}+\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{B_{1}^{2} T_{23} T_{34}-B_{1}^{2} T_{33} T_{24}+B_{1} B_{3} T_{13} T_{24}\right. \\
& -B_{1} B_{2} T_{13} T_{34}+B_{1} B_{2} T_{14} T_{33}-B_{1} B_{3} T_{14} T_{23}+B_{1} B_{3} T_{21} T_{34}-B_{1} B_{3} T_{31} T_{24}+B_{3}^{2} T_{11} T_{24}-B_{2} B_{3} T_{11} T_{34}+B_{2} B_{3} T_{14} T_{31} \\
& \left.-B_{3}^{2} T_{14} T_{21}-B_{1} B_{4} T_{21} T_{33}+B_{1} B_{4} T_{31} T_{23}-B_{3} B_{4} T_{11} T_{23}+B_{2} B_{4} T_{11} T_{33}-B_{2} B_{4} T_{13} T_{31}+B_{3} B_{4} T_{13} T_{21}\right\}
\end{aligned}
$$

$$
\begin{align*}
& +l D_{2}^{2} \alpha(\alpha-1) \gamma^{2} \delta^{2}-n D_{2} D_{4} \alpha(\alpha-1) \beta \gamma^{2} \delta+m D_{2} D_{3} \alpha(\alpha-1) \beta \gamma \delta(\delta-1)-m D_{2} D_{3} \alpha(\alpha-1) \beta \gamma \delta^{2} \\
& +n D_{2} D_{4} \alpha(\alpha-1) \beta \gamma(\gamma-1) \delta+l D_{2}^{2} \alpha^{2} \gamma^{2} \delta(\delta-1)-l D_{2}^{2} \alpha^{2} \gamma^{2} \delta^{2}+n D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta \\
& -m D_{2} D_{3} \alpha^{2} \beta \gamma \delta(\delta-1)+m D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2}-n D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta-l D_{2}^{2} \alpha^{2} \gamma^{2} \delta^{2}+l D_{2}^{2} \alpha^{2} \gamma(\gamma-1) \delta^{2} \\
& \left.-n D_{2} D_{4} \alpha^{2} \beta \gamma(\gamma-1) \delta+m D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2}-m D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2}+n D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta\right\} \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{k^{2} D_{1}^{2} D_{2} D_{4} \beta \gamma^{2} \delta-k^{2} D_{1}^{2} D_{2} D_{4} \beta \gamma(\gamma-1) \delta+k m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta\right. \\
& -k l D_{1} D_{2}^{2} D_{4} \alpha \gamma^{2} \delta+k l D_{1} D_{2}^{2} D_{4} \alpha \gamma(\gamma-1) \delta-k m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+k m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta \\
& -k m D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+m^{2} D_{2} D_{3}^{2} D_{4} \alpha(\alpha-1) \beta \delta-l m D_{2}^{2} D_{3} D_{4} \alpha(\alpha-1) \gamma \delta+l m D_{2}^{2} D_{3} D_{4} \alpha^{2} \gamma \delta \\
& -m^{2} D_{2} D_{3}^{2} D_{4} \alpha^{2} \beta \delta-k n D_{1} D_{2} D_{4}^{2} \alpha \beta \delta(\delta-1)+k n D_{1} D_{2} D_{4}^{2} \alpha \beta \delta^{2}-m n D_{2} D_{3} D_{4}^{2} \alpha(\alpha-1) \beta \gamma \\
& \left.+n l D_{2}^{2} D_{4}^{2} \alpha(\alpha-1) \gamma(\gamma-1)-n l D_{2}^{2} D_{4}^{2} \alpha^{2} \gamma^{2}+m n D_{2} D_{3} D_{4}^{2} \alpha^{2} \beta \gamma\right\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2} D_{3}^{2} D_{4}}\{\alpha(\gamma-1)(\delta-1)-(\alpha-1)(\gamma-1)(\delta-1)+(\alpha-1) \gamma(\delta-1) \\
& \left.-\alpha \gamma(\delta-1)-\left(2 D_{4}-1\right)(\alpha-1) \gamma \delta+\left(2 D_{4}-1\right)(\alpha-1)(\gamma-1) \delta-\left(2 D_{4}-1\right) \alpha(\gamma-1) \delta+\left(2 D_{4}-1\right) \alpha \gamma \delta\right\} \\
& +\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2} D_{3}^{2} D_{4}}\{(\alpha-1)(\gamma-1)-(\alpha-1) \gamma\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2} D_{3}^{2} D_{4}}\left(2 \delta D_{4}-2 \delta+1\right)-\frac{\left(1-2 D_{4}\right) A^{3} \alpha \beta \gamma \delta D_{2}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{2}^{2} D_{3}^{2} D_{4}}(\alpha-1) \\
& \frac{\partial D_{2}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2} D_{3}^{2} D_{4}}\left\{2 D_{4}^{2} \delta-D_{4}(4 \delta+2 \alpha-3)+\alpha+2 \delta-2\right\} . \tag{23}
\end{align*}
$$

Now using $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\mathfrak{R}=1$, i.e., for constant returns to scale, in (23) we get,

$$
\begin{align*}
\frac{\partial D_{2}}{\partial n_{0}}= & -\frac{1}{|J|} \frac{A^{3} B}{2^{10} D_{1}^{\frac{5}{4}} D_{2}^{\frac{1}{4}} D_{3}^{\frac{5}{4}} D_{4}^{\frac{1}{4}}}\left(2 D_{4}^{2}+6 D_{4}-5\right) \\
& \frac{\partial D_{2}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} B}{2^{9} D_{1}^{\frac{5}{4}} D_{2}^{\frac{1}{4}} D_{3}^{\frac{5}{4}} D_{4}^{\frac{1}{4}}}\left\{\left(D_{4}+\frac{3}{2}\right)^{2}-\frac{19}{4}\right\} . \tag{24}
\end{align*}
$$

In (24) if $D_{4}>(\sqrt{19}-3) / 2$ then we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}<0 . \tag{25}
\end{equation*}
$$

Inequality (25) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of workers decrease. In this situation the industry may decrease the production due to the shortage of workers. Hence, the industry faces unsustainable circumstances for constant returns to scale, it can follow the increasing or decreasing returns to scale, but increasing returns to scale will not be favorable if the industry faces shortage of workers.
In (24) if $D_{4}<(\sqrt{19}-3) / 2$ then we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}>0 \tag{26}
\end{equation*}
$$

Inequality (26) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of workers increase. We have observed that a constant return to scale is suitable for the industry.

In (24) if $D_{4}=(\sqrt{19}-3) / 2$ then we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}=0 . \tag{27}
\end{equation*}
$$

Equation (27) shows that if the discounted price of the irregular raw material, n_{0} increases; there is no change of the level of workers. In this situation it seems that there is no relation between irregular raw material and workers of the industry.

Now using $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\mathfrak{R}=2$, i.e., for increasing returns to scale, in (23) we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} B}{2^{6} D_{1}^{\frac{5}{4}} D_{3}^{\frac{1}{4}} D_{3}^{\frac{5}{4}} D_{3}^{\frac{1}{4}}}\left(D_{4}^{2}-\frac{1}{2}\right) . \tag{28}
\end{equation*}
$$

In (28) if $D_{4}>\frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}<0 . \tag{29}
\end{equation*}
$$

Inequality (29) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of workers decrease. Hence, in this situation the industry faces unsustainable circumstances
for increasing returns to scale. In this situation constant or decreasing returns to scale may give more benefits to the industry for the profit maximization environment.

In (28) if $D_{4}<\frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}>0 \tag{30}
\end{equation*}
$$

Inequality (30) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of workers increase. In this situation it seems that irregular raw material is essential for the industry, and workers faces comfortable environment utilizing this material. As a result, both production and profit of the industry may increase.

In (28) if $D_{4}=\frac{1}{\sqrt{2}}$ we get,

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial n_{0}}=0 . \tag{31}
\end{equation*}
$$

Equation (31) shows that if the discounted price of the irregular raw material, n_{0} increases; there is no change of the level of workers. In this situation it seems that there is no relation between irregular raw material and workers of the industry.

Now we analyze the economic effects on principal raw material D_{3} when the discounted price of the irregular raw material, n_{0} increases. Taking T_{44} (i.e., term of $4^{\text {th }}$ row and $4^{\text {th }}$ column) from both sides of (17) we get (Islam et al., 2010; Mohajan \& Mohajan, 2022a, 2023d),

$$
\frac{\partial D_{3}}{\partial n_{0}}=-\frac{D_{4}^{2}}{|J|}\left[C_{14}\right]+\frac{D_{4}}{|J|}\left[C_{14}\right]-2 \lambda \frac{D_{4}}{|J|}\left[C_{54}\right]+\frac{\lambda}{|J|}\left[C_{54}\right]
$$

$=-\frac{D_{4}^{2}}{|J|}$ Cofactor of $C_{14}+\frac{D_{4}}{|J|}$ Cofactor of $C_{14}-2 \lambda \frac{D_{4}}{|J|}$ Cofactor of $\mathrm{C}_{54}+\frac{\lambda}{|J|}$ Cofactor of C_{54}
$=-\frac{D_{4}^{2}-D_{4}}{|J|}\left|\begin{array}{llll}-B_{1} & T_{11} & T_{12} & T_{14} \\ -B_{2} & T_{21} & T_{22} & T_{24} \\ -B_{3} & T_{31} & T_{32} & T_{34} \\ -B_{4} & T_{41} & T_{42} & T_{44}\end{array}\right|-\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left|\begin{array}{cccc}0 & -B_{1} & -B_{2} & -B_{4} \\ -B_{1} & T_{11} & T_{12} & T_{14} \\ -B_{2} & T_{21} & T_{22} & T_{24} \\ -B_{3} & T_{31} & T_{32} & T_{34}\end{array}\right|$

$$
\begin{aligned}
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
T_{21} & T_{22} & T_{24} \\
T_{31} & T_{32} & T_{34} \\
T_{41} & T_{42} & T_{44}
\end{array}\right|-T_{11}\left|\begin{array}{lll}
-B_{2} & T_{22} & T_{24} \\
-B_{3} & T_{32} & T_{34} \\
-B_{4} & T_{42} & T_{44}
\end{array}\right|+T_{12}\left|\begin{array}{lll}
-B_{2} & T_{21} & T_{24} \\
-B_{3} & T_{31} & T_{34} \\
-B_{4} & T_{41} & T_{44}
\end{array}\right|-T_{14}\left|\begin{array}{lll}
-B_{2} & T_{21} & T_{22} \\
-B_{3} & T_{31} & T_{32} \\
-B_{4} & T_{41} & T_{42}
\end{array}\right|\right\} \\
& -\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{B_{1}\left|\begin{array}{lll}
-B_{1} & T_{12} & T_{14} \\
-B_{2} & T_{22} & T_{24} \\
-B_{3} & T_{32} & T_{34}
\end{array}\right|-B_{2}\left|\begin{array}{ccc}
-B_{1} & T_{11} & T_{14} \\
-B_{2} & T_{21} & T_{24} \\
-B_{3} & T_{31} & T_{34}
\end{array}\right|+B_{4}\left|\begin{array}{lll}
-B_{1} & T_{11} & T_{12} \\
-B_{2} & T_{21} & T_{22} \\
-B_{3} & T_{31} & T_{32}
\end{array}\right|\right\} \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left[-B_{1}\left\{T_{21}\left(T_{32} T_{44}-T_{42} T_{34}\right)+T_{22}\left(T_{41} T_{34}-T_{31} T_{44}\right)+T_{24}\left(T_{31} T_{42}-T_{41} T_{32}\right)\right\}\right. \\
& -T_{11}\left\{-B_{2}\left(T_{32} T_{44}-T_{42} T_{34}\right)+T_{22}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{42}+B_{4} T_{32}\right)\right\} \\
& +T_{12}\left\{-B_{2}\left(T_{31} T_{44}-T_{41} T_{34}\right)+T_{21}\left(-B_{4} T_{34}+B_{3} T_{44}\right)+T_{24}\left(-B_{3} T_{41}+B_{4} U_{31}\right)\right\} \\
& \left.-T_{14}\left\{-B_{2}\left(T_{31} T_{42}-T_{41} T_{32}\right)+T_{21}\left(-B_{4} T_{32}+B_{3} T_{42}\right)+T_{22}\left(-B_{3} T_{41}+B_{4} T_{31}\right)\right\}\right] \\
& -\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left[B_{1}\left\{-B_{1}\left(T_{22} T_{34}-T_{32} T_{24}\right)+T_{12}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{32}+B_{3} T_{22}\right)\right\}\right. \\
& -B_{2}\left\{-B_{1}\left(T_{21} T_{34}-T_{31} T_{24}\right)+T_{11}\left(-B_{3} T_{24}+B_{2} T_{34}\right)+T_{14}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\} \\
& \left.+B_{4}\left\{-B_{1}\left(T_{21} T_{32}-T_{31} T_{22}\right)+T_{11}\left(-B_{3} T_{22}+B_{2} T_{32}\right)+T_{12}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\}\right] \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1} T_{21} T_{32} T_{44}+B_{1} T_{21} T_{42} T_{34}-B_{1} T_{22} T_{41} T_{34}+B_{1} T_{22} T_{31} T_{44}-B_{1} T_{24} T_{31} T_{42}+B_{1} T_{24} T_{41} T_{32}\right. \\
& +B_{2} T_{11} T_{32} T_{44} \quad-B_{2} T_{11} T_{42} T_{34} \quad+B_{4} T_{11} T_{22} T_{34} \quad-B_{3} T_{11} T_{22} T_{44} \quad+B_{3} T_{11} T_{24} T_{42}-B_{4} T_{11} T_{24} T_{32} \quad-B_{2} T_{12} T_{31} T_{44} \\
& +B_{2} T_{12} T_{41} T_{34} \quad-B_{4} T_{12} T_{21} T_{34} \quad+B_{3} T_{12} T_{21} T_{44} \quad-B_{3} T_{12} T_{24} T_{41}+B_{4} T_{12} T_{24} T_{31} \quad+B_{2} T_{14} T_{31} T_{42} \quad-B_{2} T_{14} T_{41} T_{32} \\
& \left.+B_{4} T_{14} T_{21} T_{32} \quad-B_{3} T_{14} T_{21} T_{42} \quad+B_{3} T_{14} T_{22} T_{41}-B_{4} T_{14} T_{22} T_{31}\right\}-\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{-B_{1}^{2} T_{22} T_{34} \quad+B_{1}^{2} T_{32} T_{24}\right. \\
& -B_{1} B_{3} T_{12} T_{24}+B_{1} B_{2} T_{12} T_{34} \quad-B_{1} B_{2} T_{14} T_{32} \quad+B_{1} B_{3} T_{14} T_{22} \quad+B_{1} B_{2} T_{21} T_{34} \quad-B_{1} B_{2} T_{31} T_{24} \quad+B_{2} B_{3} T_{11} T_{24} \\
& -B_{2}^{2} T_{11} T_{34} \quad+B_{2}^{2} T_{14} T_{31}-B_{2} B_{3} T_{14} T_{21} \quad-B_{1} B_{4} T_{21} T_{32} \quad+B_{1} B_{4} T_{31} T_{22} \quad-B_{3} B_{4} T_{11} T_{22} \quad+B_{2} B_{4} T_{11} T_{32} \\
& \left.-B_{2} B_{4} T_{12} T_{31}+B_{3} B_{4} T_{12} T_{21}\right\} \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k D_{1} D_{3} \alpha \beta^{2} \gamma \delta(\delta-1)+k D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}-k D_{1} D_{3} \alpha \beta(\beta-1) \gamma \delta^{2}\right. \\
& +k D_{1} D_{3} \alpha \beta(\beta-1) \gamma \delta(\delta-1)-k D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}+k D_{1} D_{3} \alpha \beta^{2} \gamma \delta^{2}+l D_{2} D_{3} \alpha(\beta-1) \beta \gamma \delta(\delta-1) \\
& -l D_{2} D_{3} \alpha(\alpha-1) \beta \gamma \delta^{2}+n D_{3} D_{4} \alpha(\alpha-1) \beta(\beta-1) \gamma \delta-m D_{3}^{2} \alpha(\alpha-1) \beta(\beta-1) \delta(\delta-1)
\end{aligned}
$$

$$
\begin{align*}
& +m D_{3}^{2} \alpha(\alpha-1) \beta^{2} \delta^{2}-n D_{3} D_{4} \alpha(\alpha-1) \beta^{2} \gamma \delta-l D_{2} D_{3} \alpha^{2} \beta \gamma \delta(\delta-1)+l D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2}-n D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta \\
& +m D_{3}^{2} \alpha^{2} \beta^{2} \delta(\delta-1)-m D_{3}^{2} \alpha^{2} \beta^{2} \delta^{2}+n D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta+l D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2}-l D_{2} D_{3} \alpha^{2} \beta \gamma \delta^{2} \\
& \left.+n D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta-m D_{3}^{2} \alpha^{2} \beta^{2} \delta^{2}+m D_{3}^{2} \alpha^{2} \beta(\beta-1) \delta^{2}-n D_{3} D_{4} \alpha^{2} \beta(\beta-1) \gamma \delta\right\} \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k^{2} D_{1}^{2} D_{3} D_{4} \beta(\beta-1) \gamma \delta+k^{2} D_{1}^{2} D_{3} D_{4} \beta^{2} \gamma \delta-k m D_{1} D_{3}^{2} D_{4} \alpha \beta^{2} \delta\right. \\
& +k l D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta-k l D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+k m D_{1} D_{3}^{2} D_{4} \alpha \beta(\beta-1) \delta+k l D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta \\
& -k l D_{1} D_{2} D_{3} D_{4} \alpha \beta \gamma \delta+l m D_{2} D_{3}^{2} D_{4} \alpha(\alpha-1) \beta \delta-l^{2} D_{2}^{2} D_{3} D_{4} \alpha(\alpha-1) \gamma \delta+l^{2} D_{2}^{2} D_{3} D_{4} \alpha^{2} \gamma \delta \\
& -l m D_{2} D_{3}^{2} D_{4} \alpha^{2} \beta \delta-k n D_{1} D_{3} D_{4}^{2} \alpha \beta^{2} \gamma+k n D_{1} D_{3} D_{4}^{2} \alpha \beta(\beta-1) \gamma-m n D_{3}^{2} D_{4}^{2} \alpha(\alpha-1) \beta(\beta-1) \\
& \left.+n l D_{2} D_{3} D_{4}^{2} \alpha(\alpha-1) \gamma \delta-n l D_{2} D_{3} D_{4}^{2} \alpha^{2} \gamma \delta+m n D_{3}^{2} D_{4}^{2} \alpha^{2} \beta^{2}\right\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3} D_{4}}\left\{-k D_{1} \beta(\delta-1)-k D_{1}(\beta-1) \delta+k D_{1}(\beta-1)(\delta-1)+k D_{1} \beta \delta\right. \\
& +l D_{2}(\alpha-1)(\delta-1)-l D_{2} \alpha(\delta-1)+l D_{2} \alpha \delta-l D_{2}(\alpha-1) \delta-2 m D_{3} \alpha \beta \gamma^{-1} \delta+m D_{3} \alpha(\beta-1) \gamma^{-1} \delta \\
& -m D_{3}(\alpha-1)(\beta-1) \gamma^{-1}(\delta-1)+m D_{3} \alpha \beta \gamma^{-1}(\delta-1)+m D_{3}(\alpha-1) \beta \gamma^{-1} \delta+n D_{4}(\alpha-1)(\beta-1) \\
& \left.-n D_{4}(\alpha-1) \beta+n D_{4} \alpha \beta-n D_{4} \alpha(\beta-1)\right\}+\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta}}{D_{1}^{2} D_{2}^{2} D_{3} D_{4}} \frac{A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta} \mathfrak{R}}{B} \\
& \left\{-k^{2} D_{1}^{2} \beta(\beta-1) \gamma \delta+k^{2} D_{1}^{2} \beta^{2} \gamma \delta-k m D_{1} D_{3} \alpha \beta^{2} \delta+k m D_{1} D_{3} \alpha \beta(\beta-1) \delta-l m D_{2} D_{3} \alpha^{2} \beta \delta\right. \\
& +l m D_{2} D_{3} \alpha(\alpha-1) \beta \delta-l^{2} D_{2}^{2} \alpha(\alpha-1) \gamma \delta+l^{2} D_{2}^{2} \alpha^{2} \gamma \delta-k n D_{1} D_{4} \alpha \beta^{2} \gamma+k n D_{1} D_{4} \alpha \beta(\beta-1) \gamma \\
& \left.+n l D_{2} D_{4} \alpha(\alpha-1) \beta \gamma-n l D_{2} D_{4} \alpha^{2} \beta \gamma-m n D_{3} D_{4} \alpha(\alpha-1) \beta(\beta-1)+m n D_{3} D_{4} \alpha^{2} \beta^{2}\right\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3} D_{4} \Re}\{-\alpha \beta(\delta-1)+\alpha(\beta-1)(\delta-1)+(\alpha-1) \beta(\delta-1) \\
& -(\alpha-1)(\beta-1)(\delta-1)+\left(2 D_{4}-1\right)(\alpha-1)(\beta-1) \delta-\left(2 D_{4}-1\right)(\alpha-1) \beta \delta+\left(2 D_{4}-1\right) \alpha \beta \delta \\
& \left.-\left(2 D_{4}-1\right) \alpha(\beta-1) \delta\right\}+\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3} D_{4} \mathfrak{R}}\{\alpha(\beta-1)+(\alpha-1) \beta-\alpha \beta \\
& -(\alpha-1)(\beta-1)\} \\
& \frac{\partial D_{3}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3} D_{4} \mathfrak{R}}\left\{2 D_{4}^{2} \delta+D_{4}(3-4 \delta)+2 \delta-2\right\} . \tag{32}
\end{align*}
$$

Now using $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ then we get, $\mathfrak{R}=1$, i.e., for constant returns to scale, in (32) we get,

$$
\begin{equation*}
\frac{\partial D_{3}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} B}{2^{9} D_{1}^{\frac{5}{4}} D_{2}^{\frac{5}{4}} D_{3}^{\frac{1}{4}} D_{4}^{\frac{1}{4}}}\left\{\left(D_{4}+2\right)^{2}-10\right\} . \tag{33}
\end{equation*}
$$

If $D_{4}>(\sqrt{10}-2)$ in (33) we get,

$$
\begin{equation*}
\frac{\partial D_{3}}{\partial n_{0}}<0 \tag{34}
\end{equation*}
$$

Inequality (34) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of principal raw material is decreased. The industry may face unsustainable circumstances for constant returns to scale, and irregular raw material related products should be reduced for the sustainability of the industry.
If $D_{4}<(\sqrt{10}-2)$ in (33) we get,

$$
\begin{equation*}
\frac{\partial D_{3}}{\partial n_{0}}>0 \tag{35}
\end{equation*}
$$

Inequality (35) shows that if the discounted price of the irregular raw material, n_{0} increases; the level of purchasing principal raw material also increases. It seems that irregular raw material is complementary to principal raw material.
If $D_{4}=(\sqrt{10}-2)$ in (33) we get,

$$
\begin{equation*}
\frac{\partial D_{3}}{\partial n_{0}}=0 . \tag{36}
\end{equation*}
$$

Equation (35) shows that if the discounted price of the irregular raw material, n_{0} increases; the there is no change of purchasing principal raw material. It seems that there is no relation between principal and irregular raw materials.

Now we study the effect of irregular raw materials α_{4} when if the discounted price of the irregular raw material, n_{0} increases. Taking T_{54} (i.e., term of $5^{\text {th }}$ row and $4^{\text {th }}$ column) from both sides of (17) we get (Islam et al., 2011; Mohajan, 2017a; Mohajan \& Mohajan, 2022c, 2023f), $\frac{\partial D_{4}}{\partial n_{0}}=-\frac{D_{4}^{2}}{|J|}\left[C_{15}\right]+\frac{D_{4}}{|J|}\left[C_{15}\right]-2 \lambda \frac{D_{4}}{|J|}\left[C_{55}\right]+\frac{\lambda}{|J|}\left[C_{55}\right]$

$$
\begin{aligned}
& =-\frac{D_{4}^{2}}{|J|} \text { Cofactor of } C_{15}+\frac{D_{4}}{|J|} \text { Cofactor of } C_{15}-2 \lambda \frac{D_{4}}{|J|} \text { Cofactor of } \mathrm{C}_{55}+\frac{\lambda}{|J|} \text { Cofactor of } \mathrm{C}_{55} \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left|\begin{array}{cccc}
-B_{1} & T_{11} & T_{12} & T_{13} \\
-B_{2} & T_{21} & T_{22} & T_{23} \\
-B_{3} & T_{31} & T_{32} & T_{33} \\
-B_{4} & T_{41} & T_{42} & T_{43}
\end{array}\right|+\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left|\begin{array}{cccc}
0 & -B_{1} & -B_{2} & -B_{3} \\
-B_{1} & T_{11} & T_{12} & T_{13} \\
-B_{2} & T_{21} & T_{22} & T_{23} \\
-B_{3} & T_{31} & T_{32} & T_{33}
\end{array}\right| \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1}\left|\begin{array}{lll}
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33} \\
T_{41} & T_{42} & T_{43}
\end{array}\right|-T_{11}\left|\begin{array}{ccc}
-B_{2} & T_{22} & T_{23} \\
-B_{3} & T_{32} & T_{33} \\
-B_{4} & T_{42} & T_{43}
\end{array}\right|+T_{12}\left|\begin{array}{ccc}
-B_{2} & T_{21} & T_{23} \\
-B_{3} & T_{31} & T_{33} \\
-B_{4} & T_{41} & T_{43}
\end{array}\right|-T_{13}\left|\begin{array}{ccc}
-B_{2} & T_{21} & T_{22} \\
-B_{3} & T_{31} & T_{32} \\
-B_{4} & T_{41} & T_{42}
\end{array}\right|\right\} \\
& \left.+\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{\left.B_{1}\left|\begin{array}{lll}
-B_{1} & T_{12} & T_{13} \\
-B_{2} & T_{22} & T_{23} \\
-B_{3} & T_{32} & T_{33}
\end{array}\right|-B_{2}\left|\begin{array}{lll}
-B_{1} & T_{11} & T_{13} \\
-B_{2} & T_{21} & T_{23} \\
-B_{3} & T_{31} & T_{33}
\end{array}\right|+B_{3} \right\rvert\, \begin{array}{lll}
-B_{1} & T_{11} & T_{12} \\
-B_{2} & T_{21} & T_{22} \\
-B_{3} & T_{31} & T_{32}
\end{array}\right\}\right\} \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left[-B_{1}\left\{T_{21}\left(T_{32} T_{43}-T_{42} T_{33}\right)+T_{22}\left(T_{41} T_{33}-T_{31} T_{43}\right)+T_{23}\left(T_{31} T_{42}-T_{41} T_{32}\right)\right\}\right. \\
& -T_{11}\left\{-B_{2}\left(T_{32} T_{43}-T_{42} T_{33}\right)+T_{22}\left(-B_{4} T_{33}+B_{3} T_{43}\right)+T_{23}\left(-B_{3} T_{42}+B_{4} T_{32}\right)\right\} \\
& +T_{12}\left\{-B_{2}\left(T_{31} T_{43}-T_{41} T_{33}\right)+T_{21}\left(-B_{4} T_{33}+B_{3} T_{43}\right)+T_{23}\left(-B_{3} T_{41}+B_{4} T_{31}\right)\right\} \\
& \left.-T_{13}\left\{-B_{2}\left(T_{31} T_{42}-T_{41} T_{32}\right)+T_{21}\left(-B_{4} T_{32}+B_{3} T_{42}\right)+T_{22}\left(-B_{3} T_{41}+B_{4} T_{31}\right)\right\}\right] \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left[B_{1}\left\{-B_{1}\left(T_{22} T_{33}-T_{32} T_{23}\right)+T_{12}\left(-B_{3} T_{23}+B_{2} T_{33}\right)+T_{13}\left(-B_{2} T_{32}+B_{3} T_{22}\right)\right\}\right. \\
& -B_{2}\left\{-B_{1}\left(T_{21} T_{33}-T_{31} T_{23}\right)+T_{11}\left(-B_{3} T_{23}+B_{2} T_{33}\right)+T_{13}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\} \\
& \left.+B_{3}\left\{-B_{1}\left(T_{21} T_{32}-T_{31} T_{22}\right)+T_{11}\left(-B_{3} T_{22}+B_{2} T_{32}\right)+T_{12}\left(-B_{2} T_{31}+B_{3} T_{21}\right)\right\}\right] \\
& =\frac{D_{4}^{2}-D_{4}}{|J|}\left\{-B_{1} T_{21} T_{32} T_{43}+B_{1} T_{21} T_{42} T_{33}-B_{1} T_{22} T_{41} T_{33}+B_{1} T_{22} T_{31} T_{43}-B_{1} T_{23} T_{31} T_{42}+B_{1} T_{23} T_{41} T_{32}\right. \\
& +B_{2} T_{11} T_{32} T_{43}-B_{2} T_{11} T_{42} T_{33}-B_{4} T_{11} T_{22} T_{33}+B_{3} T_{11} T_{22} T_{43}-B_{3} T_{11} T_{23} T_{42}+B_{4} T_{11} T_{23} T_{32} \\
& -B_{2} T_{12} T_{31} T_{43}+B_{2} T_{12} T_{41} T_{33}-B_{4} T_{12} T_{21} T_{33}+B_{3} T_{12} T_{21} T_{43}-B_{3} T_{12} T_{23} T_{41}+B_{4} T_{12} T_{23} T_{31} \\
& \left.+B_{2} T_{13} T_{31} T_{42}-B_{2} T_{13} T_{41} T_{32}+B_{4} T_{13} T_{21} T_{32}-B_{3} T_{13} T_{21} T_{42}+B_{3} T_{13} T_{22} T_{41}-B_{4} T_{13} T_{22} T_{31}\right\} \\
& +\frac{\lambda\left(1-2 D_{4}\right)}{|J|}\left\{-B_{1}^{2} T_{22} T_{33}+B_{1}^{2} T_{32} T_{23}-B_{1} B_{3} T_{12} T_{23}+B_{1} B_{2} T_{12} T_{33}-B_{1} B_{2} T_{13} T_{32}+B_{1} B_{3} T_{13} T_{22}\right.
\end{aligned}
$$

$$
\begin{align*}
& +B_{1} B_{2} T_{21} T_{33}-B_{1} B_{2} T_{31} T_{23}+B_{2} B_{3} T_{11} T_{23}-B_{2}^{2} T_{11} T_{33}+B_{2}^{2} T_{13} T_{31}-B_{2} B_{3} T_{13} T_{21} \\
& \left.-B_{1} B_{3} T_{21} T_{32}+B_{1} B_{3} T_{31} T_{22}-B_{3}^{2} T_{11} T_{22}+B_{2} B_{3} T_{11} T_{32}-B_{2} B_{3} T_{12} T_{31}+B_{3}^{2} T_{12} T_{21}\right\} \\
& =-\frac{D_{4}^{2}-D_{4}}{|J|} \frac{A^{3} D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}}\left\{-k D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta+k D_{1} D_{4} \alpha \beta^{2} \gamma(\gamma-1) \delta-k D_{1} D_{4} \alpha \beta(\beta-1) \gamma(\gamma-1) \delta\right. \\
& +k D_{1} D_{4} \alpha \beta(y-1) \gamma(\gamma-1) \delta-k D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta+k D_{1} D_{4} \alpha \beta^{2} \gamma^{2} \delta+l D_{2} D_{4} \alpha(\alpha-1) \beta \gamma^{2} \delta \\
& -l D_{2} D_{4} \alpha(\alpha-1) \beta \gamma(\gamma-1) \delta-n D_{4}^{2} \alpha(\alpha-1) \beta(\beta-1) \gamma(\gamma-1)+m D_{3} D_{4} \alpha(\alpha-1) \beta(\beta-1) \gamma \delta \\
& -m D_{3} D_{4} \alpha(\alpha-1) \beta^{2} \gamma \delta-n D_{4}^{2} \alpha(\alpha-1) \beta^{2} \gamma^{2}-l D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta+l D_{2} D_{4} \alpha^{2} \beta \gamma(\gamma-1) \delta \\
& -n D_{4}^{2} \alpha^{2} \beta^{2} \gamma(\gamma-1)+m D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta-m D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta+n \alpha_{4}^{2} x^{2} y^{2} z^{2}+l D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta \\
& \left.-l D_{2} D_{4} \alpha^{2} \beta \gamma^{2} \delta+n D_{4}^{2} \alpha^{2} \beta^{2} \gamma^{2}-m D_{3} D_{4} \alpha^{2} \beta^{2} \gamma \delta+m D_{3} D_{4} \alpha^{2} \beta(\beta-1) \gamma \delta-n D_{4}^{2} \alpha^{2} \beta(\beta-1) \gamma^{2}\right\} \\
& +\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta}}{D_{1}^{2} D_{2}^{2} D_{3}^{2} D_{4}^{2}} \frac{A D_{1}^{\alpha} D_{2}^{\beta} D_{3}^{\gamma} D_{4}^{\delta} \mathfrak{R}}{B}\left\{-k^{2} D_{1}^{2} D_{4}^{2} \beta(\beta-1) \gamma(\gamma-1)+k^{2} D_{1}^{2} D_{4}^{2} \beta^{2} \gamma^{2}\right. \\
& -l^{2} D_{2}^{2} D_{4}^{2} \alpha(\alpha-1) \gamma(\gamma-1)+l^{2} D_{2}^{2} D_{4}^{2} \alpha^{2} \gamma^{2}+m^{2} D_{3}^{2} D_{4}^{2} \alpha^{2} \beta^{2}+k l D_{1} D_{2} D_{4}^{2} \alpha \beta \gamma(\gamma-1) \\
& -2 k l D_{1} D_{2} D_{4}^{2} \alpha \beta \gamma^{2}+k l D_{1} D_{2} D_{4}^{2} \alpha \beta \gamma(\gamma-1)-2 k m D_{1} D_{3} D_{4}^{2} \alpha \beta^{2} \gamma-k m D_{1} D_{3} D_{4}^{2} \alpha \beta^{2} \gamma \\
& +k m D_{1} D_{3} D_{4}^{2} \alpha \beta(\beta-1) \gamma+k m D_{1} D_{3} D_{4}^{2} \alpha \beta(\beta-1) \gamma-m^{2} D_{3}^{2} D_{4}^{2} \alpha(\alpha-1) \beta(\beta-1) \\
& \left.+\operatorname{lm} D_{2} D_{3} D_{4}^{2} \alpha(\alpha-1) \beta \gamma+\operatorname{lm} D_{2} D_{3} D_{4}^{2} \alpha(\alpha-1) \beta \gamma-2 l m D_{2} D_{3} D_{4}^{2} \alpha^{2} \beta \gamma\right\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3}^{2} \Re}\{-2 \alpha \beta \gamma+2 \alpha \beta(\gamma-1)+\alpha(\beta-1) \gamma+(\alpha-1)(\beta-1) \gamma \\
& -(\alpha-1) \beta \gamma-\left(2 D_{4}-1\right)(\alpha-1) \beta \gamma-\left(2 D_{4}-1\right) \alpha \beta(\gamma-1)+\left(2 D_{4}-1\right) \alpha \beta \gamma \\
& \left.-\left(2 D_{4}-1\right)(\alpha-1)(\beta-1)(\gamma-1)-\left(2 D_{4}-1\right) \alpha(\beta-1) \gamma\right\}+\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{3} \alpha \beta \gamma D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3}^{2} \mathfrak{R}} \\
& \{-\alpha(\beta-1)(\gamma-1)-(\alpha-1) \beta(\gamma-1)-(\alpha-1)(\beta-1) \gamma+2 \alpha \beta(\gamma-1)-3 \alpha \beta \gamma+2 \alpha(\beta-1) \gamma \\
& +2(\alpha-1) \beta \gamma\} \\
& =-\frac{D_{4}-1}{|J|} \frac{A^{3} \alpha \beta \gamma \delta D_{1}^{3 \alpha} D_{2}^{3 \beta} D_{3}^{3 \gamma} D_{4}^{3 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3}^{2} \mathfrak{R}}\left\{D_{4}(-2 \alpha \beta \gamma+2 \alpha+2 \beta+2 \gamma-2)+(2 \alpha \beta \gamma-2 \alpha \beta-2 \alpha \gamma-\alpha-\beta+1)\right\} \\
& -\frac{\left(1-2 D_{4}\right)}{|J|} \frac{A^{2} \alpha \beta \gamma D_{1}^{2 \alpha} D_{2}^{2 \beta} D_{3}^{2 \gamma} D_{4}^{2 \delta} B}{D_{1}^{2} D_{2}^{2} D_{3}^{2} \mathfrak{R}}(\alpha+\beta-\gamma) . \tag{37}
\end{align*}
$$

Now using $\alpha=\beta=\gamma=\delta=\frac{1}{2}$ then we get, $\mathfrak{R}=2$, i.e., for increasing returns to scale, in (37) we get,

$$
\begin{equation*}
\frac{\partial D_{4}}{\partial n_{0}}=-\frac{1}{|J|} \frac{A^{3} D_{4}^{\frac{3}{2}} B}{2^{7} D_{1}^{\frac{1}{2}} D_{2}^{\frac{1}{2}} D_{3}^{\frac{1}{2}}}\left(D_{4}-1\right)\left(3 D_{4}-7\right) \tag{38}
\end{equation*}
$$

If $D_{4}<1$ or $D_{4}>\frac{7}{3}$ in (38) we get,

$$
\begin{equation*}
\frac{\partial D_{4}}{\partial n_{0}}<0 . \tag{39}
\end{equation*}
$$

Inequality (39) shows that if the discounted price of the irregular raw material, n_{0} increases; the purchasing level of it decreases, which is reasonable. In this situation the industry may decrease the production of irregular raw material related products.

If $1<D_{4}<\frac{7}{3}$ in (38) we get,

$$
\begin{equation*}
\frac{\partial D_{4}}{\partial n_{0}}>0 \tag{40}
\end{equation*}
$$

Inequality (40) shows that if the discounted price of the irregular raw material, n_{0} increases; the purchasing level of it also increases. It seems that irregular raw material is essential for the industry and it has no substitutes.

If $D_{4}=1$ or $D_{4}=\frac{7}{3}$ in (38) we get,

$$
\begin{equation*}
\frac{\partial D_{4}}{\partial n_{0}}=0 . \tag{41}
\end{equation*}
$$

Inequality (41) shows that if the discounted price of the irregular raw material, n_{0} increases; there is no change of the purchasing level of it. It seems that the industry is indifferent about the discounted price of the irregular raw material.

11. Conclusions

In this study we have discussed the economic effects of various inputs of an industry when the discounted price of the irregular raw material is increased. Very few researchers consider nonlinear budget constraint in their study. But we have considered here nonlinear budget constraint to provide economic predictions through the profit maximization investigations. In this
paper we have included Cobb-Douglas productions function as our profit function. We have used 5×5 bordered Hessian matrix and 5×5 Jacobian to operate the mathematical formulations.

References

Abbasi, M. I. (2015). Marxist Feminism in Alice Walker's Novels: The Temple of My Familiar, Meridian and The Color Purple. PhD Thesis, National University of Modern Languages, Islamabad.

Baxley, J. V., \& Moorhouse, J. C. (1984). Lagrange Multiplier Problems in Economics. The American Mathematical Monthly, 91(7), 404-412.

Carter, M. (2001). Foundations of Mathematical Economics. MIT Press, Cambridge, London.
Chiang, A. C. (1984). Fundamental Methods of Mathematical Economics ($3^{\text {rd }}$ Ed.). Singapore: McGraw-Hill.

Cobb, C. W., \& Douglass, P. H. (1928). A Theory of Production. American Economics Review, 18(1), 139-165.

Creswell, J. W. (2007). Qualitative Inquiry and Research Design: Choosing Among Five Approaches. Thousand Oaks, CA: Sage Publications.

Das, S., \& Mohajan, H. K. (2014a). Generating Function for M(m,n). Turkish Journal of Analysis and Number Theory, 2(4), 125-129.

Das, S., \& Mohajan, H. K. (2014b). Development of Partition Functions of Ramanujan's Works. Journal of Environmental Treatment Techniques, 2(4), 143-149.

Das, S., \& Mohajan, H. K. (2014c). Generating Functions for $\beta_{1}(n)$ and $\beta_{2}(n)$. International Journal of Scientific Knowledge, 5(3), 27-35.

Das, S., \& Mohajan, H. K. (2014d). Generating Functions for $P_{1}{ }^{r}(n)$ and $P_{2}{ }^{r}(n)$. Journal of Environmental Treatment Techniques, 2(2), 55-57.

Datta, R., \& Mohajan, H. K. (2013a). Financial Intermediaries in Development of Capital Market in Bangladesh. Lambert Academic Publishing, Germany.

Datta, R., \& Mohajan, H. K. (2013b). Home Loan Repayment Performance in Bangladesh. Lambert Academic Publishing, Germany.

Eaton, B., \& Lipsey, R. (1975). The Principle of Minimum Differentiation Reconsidered: Some New Developments in the Theory of Spatial Competition. Review of Economic Studies, 42(1), 27-49.

Ferdous, J., \& Mohajan, H. K. (2022). Maximum Profit Ensured for Industry Sustainability. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Hallberg, L. (2006). The "Core-Category" of Grounded Theory: Making Constant Comparisons. International Journal of Qualitative Studies on Health and Well-being, 1(3), 141-148.

Harding, S. (1987). Introduction: Is There a Feminist Method? In S. Harding (Ed), Feminism and Methodology, pp. 1-14. Bloomington: Indiana University Press.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009a). Preference of Social Choice in Mathematical Economics. Indus Journal of Management \& Social Sciences, 3(1), 17-38.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2009b). Political Economy and Social Welfare with Voting Procedure. KASBIT Business Journal, 2(1), 42-66.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2010). Utility Maximization Subject to Multiple Constraints. Indus Journal of Management \& Social Sciences, 4(1), 15-29.

Islam, J. N., Mohajan, H. K., \& Moolio, P. (2011). Output Maximization Subject to a Nonlinear Constraint. KASBIT Business Journal, 4(1), 116-128.

Legesse, B. (2014). Research Methods in Agribusiness and Value Chains. School of Agricultural Economics and Agribusiness, Haramaya University.

Mohajan, D., \& Mohajan, H. K. (2022a). Mathematical Analysis of SEIR Model to Prevent COVID-19 Pandemic. Journal of Economic Development, Environment and People, 11(4), 5-30.

Mohajan, D., \& Mohajan, H. K. (2022b). Utility Maximization Analysis of an Emerging Firm: A Bordered Hessian Approach. Annals of Spiru Haret University. Economic Series, 22(4), 292-308.

Mohajan, D., \& Mohajan, H. K. (2022c). Sensitivity Analysis among Commodities and Coupons during Utility Maximization. Frontiers in Management Science, 1(3), 13-28.

Mohajan, D., \& Mohajan, H. K. (2022d). Importance of Total Coupon in Utility Maximization: A Sensitivity Analysis. Law and Economy, 1(5), 65-67.

Mohajan, D., \& Mohajan, H. K. (2022e). Development of Grounded Theory in Social Sciences: A Qualitative Approach. Studies in Social Science \& Humanities, 1(5), 13-24.

Mohajan, D., \& Mohajan, H. K. (2022f). Exploration of Coding in Qualitative Data Analysis: Grounded Theory Perspective. Research and Advances in Education, 1(6), 50-60.

Mohajan, D., \& Mohajan, H. K. (2022g). Memo Writing Procedures in Grounded Theory Research Methodology. Studies in Social Science \& Humanities, 1(4), 10-18.

Mohajan, D., \& Mohajan, H. K. (2022h). Constructivist Grounded Theory: A New Research Approach in Social Science. Research and Advances in Education, 1(4), 8-16.

Mohajan, D., \& Mohajan, H. K. (2022i). Feminism and Feminist Grounded Theory: A Comprehensive Research Analysis. Journal of Economic Development, Environment and People, 11(3), 49-61.

Mohajan, D., \& Mohajan, H. K. (2022j). Profit Maximization Strategy in an Industry: A Sustainable Procedure. Law and Economy, 1(3), 17-43.

Mohajan, D., \& Mohajan, H. K. (2023a). Sensitivity Analysis among Commodities and Prices: Utility Maximization Perceptions. Law and Economy, 2(2), 1-16.

Mohajan, D., \& Mohajan, H. K. (2023b). Straussian Grounded Theory: An Evolved Variant in Qualitative Research. Studies in Social Science \& Humanities, 2(2), 33-40.

Mohajan, D., \& Mohajan, H. K. (2023c). Sensitivity Analysis between Lagrange Multipliers and Consumer Coupon: Utility Maximization Perspective. Frontiers in Management Science, 2(1), 14-25.

Mohajan, D., \& Mohajan, H. K. (2023d). Utility Maximization Analysis of an Organization: A Mathematical Economic Procedure. Law and Economy, 2(1), 1-15.

Mohajan, D., \& Mohajan, H. K. (2023e). Classic Grounded Theory: A Qualitative Research on Human Behavior. Studies in Social Science \& Humanities, 2(1), 1-7.

Mohajan, D., \& Mohajan, H. K. (2023f). Sensitivity Analysis between Commodity and Budget: Utility Maximization Case. Law and Economy, 2(3), 10-21.

Mohajan, D., \& Mohajan, H. K. (2023g). Sensitivity Analysis for Profit Maximization with Respect to Per Unit Cost of Subsidiary Raw Materials. Frontiers in Management Science, 2(2), 13-27.

Mohajan, D., \& Mohajan, H. K. (2023h). Families of Grounded Theory: A Theoretical Structure for Novel Researchers. Studies in Social Science \& Humanities, 2(1), 56-65.

Mohajan, D., \& Mohajan, H. K. (2023i). Broca Index: A Simple Tool to Measure Ideal Body Weight. Innovation in Science and Technology, 2(2), 21-24.

Mohajan, D., \& Mohajan, H. K. (2023j). Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. Journal of Innovations in Medical Research, 2(3), 12-23.

Mohajan, D., \& Mohajan, H. K. (2023k). A Study on Body Fat Percentage for Physical Fitness and Prevention of Obesity: A Two Compartment Model. Journal of Innovations in Medical Research, 2(4), 1-10.

Mohajan, D., \& Mohajan, H. K. (2023l). Sensitivity Analysis of Inputs of an Organization: A Profit Maximization Exploration. Law and Economy, 2(4), 32-48.

Mohajan, D., \& Mohajan, H. K. (2023m). Ponderal Index: An Important Anthropometric Indicator for Physical Growth. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023n). Long-Term Regular Exercise Increases \dot{V}_{2} max for Cardiorespiratory Fitness. Innovation in Science and Technology, 2(2), 38-43.

Mohajan, D., \& Mohajan, H. K. (2023o). Sensitivity Analysis between Lagrange Multipliers and Consumer Budget: Utility Maximization Case. Annals of Spiru Haret University. Economic Series, 23(1), 167-185.

Mohajan, D., \& Mohajan, H. K. (2023p). Glaserian Grounded Theory and Straussian Grounded Theory: Two Standard Qualitative Research Approaches in Social Science. Journal of Economic Development, Environment and People, 12(1), 72-81.

Mohajan, D., \& Mohajan, H. K. (2023q). Economic Situations of Lagrange Multiplier When Costs of Various Inputs Increase for Nonlinear Budget Constraint. Studies in Social Science \& Humanities, 2(4), 40-64.

Mohajan, D., \& Mohajan, H. K. (2023r). Sensitivity Analysis for Utility Maximization: A Study on Lagrange Multipliers and Commodity Coupons. Journal of Economic Development, Environment, and People, 12(1), 25-40.

Mohajan, D., \& Mohajan, H. K. (2023s). Anorexia Nervosa: A Dreadful Psychosocial Health Complication. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023t). Bulimia Nervosa: A Psychiatric Problem of Disorder. Innovation in Science and Technology, 2(3), 26-32.

Mohajan, D., \& Mohajan, H. K. (2023u). Binge-Eating: A Life-Threatening Eating Disorder. Innovation in Science and Technology, 2(4), 62-67.

Mohajan, D., \& Mohajan, H. K. (2023v). Panniculus Morbidus: A New Global Health Crisis Due to Extreme Obesity. Unpublished Manuscript.

Mohajan, D., \& Mohajan, H. K. (2023w). Abdominal Elephantiasis: An Obstructive Disease Due to Extreme Obesity. Journal of Innovations in Medical Research, 2(7), 13-15.

Mohajan, D., \& Mohajan, H. K. (2023x). Bulimia Nervosa: A Psychiatric Problem of Disorder. Innovation in Science and Technology, 2(3), 26-32.

Mohajan, D., \& Mohajan, H. K. (2023y). A Study on Nonlinear Budget Constraint of a Local Industrial Firm of Bangladesh: A Profit Maximization Investigation. Law and Economy, 2(5), 27-33.

Mohajan, D., \& Mohajan, H. K. (2023z). Mathematical Model for Nonlinear Budget Constraint: Economic Activities on Increased Budget. Studies in Social Science \& Humanities, 2(5), 20-40.

Mohajan, D., \& Mohajan, H. K. (2023A). Body Mass Index (BMI) is a Popular Anthropometric Tool to Measure Obesity among Adults. Journal of Innovations in Medical Research, 2(4), 2533.

Mohajan, D., \& Mohajan, H. K. (2023B). Ponderal Index: An Important Anthropometric Indicator for Physical Growth. Journal of Innovations in Medical Research, 2(6), 15-19.

Mohajan, D., \& Mohajan, H. K. (2023C). Historical View of Diabetics Mellitus: From Ancient Egyptian Polyuria to Discovery of Insulin. Studies in Social Science \& Humanities, 2(7), 26-34.

Mohajan, D., \& Mohajan, H. K. (2023D). Effects of Various Inputs for Increased Interest Rate of Capital: A Nonlinear Budget Constraint Consideration. Frontiers in Management Science, 2(4), 15-33.

Mohajan, D., \& Mohajan, H. K. (2023E). Economic Investigation of Lagrange Multiplier if Cost of Inputs and Budget Size of a Firm Increase: A Profit Maximization Endeavor. Annals of Spiru Haret University. Economic Series, 23(2), 340-364.

Mohajan, D., \& Mohajan, H. K. (2023F). Various Problems Arise in Industrial Economics If Wage Rate Increases: A Study for Nonlinear Budget Constraint. Law and Economy, 2(6), 1-19.

Mohajan, D., \& Mohajan, H. K. (2023G). Economic Aspects of Profit Maximization if Cost of Principal Raw Material Increases. Frontiers in Management Science, 2(3), 28-42.

Mohajan, D., \& Mohajan, H. K. (2023H). Discovery of Insulin is a Great Achievement for the Diabetes Patients. Studies in Social Science \& Humanities, 2(8), 8-16.

Mohajan, D., \& Mohajan, H. K. (2023I). The Responses of an Organization for the Increase in Wage Rates: Profit Maximization Cases. Law and Economy, 2(8), 14-29.

Mohajan, D., \& Mohajan, H. K. (2023J). Basic Concepts of Diabetics Mellitus for the Welfare of General Patients. Studies in Social Science \& Humanities, 2(6), 23-31.

Mohajan, H. K. (2011a). The NNP and Sustainability in Open Economy: Highlights on Recent World Economy and on Open Economy of Bangladesh. KASBIT Business Journal, 4(2), 32-47.

Mohajan, H. K. (2011b). Optimal Environmental Taxes Due to Health Effect. KASBIT Business Journal, 4(1), 1-19.

Mohajan, H. K. (2011c). The Real Net National Product in Sustainable Development. KASBIT Business Journal, 4(2), 90-103.

Mohajan, H. K. (2011d). Approval Voting: A Multi-outcome Election. KASBIT Business Journal, 4(2), 77-88.

Mohajan, H. K. (2012b). Aspects of Green Marketing: A Prospect for Bangladesh. International Journal of Economics and Research, 3(3), 1-11.

Mohajan, H. K. (2012c). Importance of Green Marketing at Present and Future. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2012d). Greenhouse Gas Emissions of the USA. Indus Journal of Management \& Social Sciences, 6(2), 132-148.

Mohajan, H. K. (2012e). Relation between Lease Finance and Purchase. International Journal of Economics and Research, 3(3), 146-158.

Mohajan, H. K. (2012f). Air Pollution Causes Health Effects and Net National Product of a Country Decreases: A Theoretical Framework. International Journal of Development Research and Quantitative Techniques, 2(2), 3-10.

Mohajan, H. K. (2012g). Social Welfare and Social Choice in Different Individuals' Preferences. International Journal of Human Development and Sustainability, 5(1), 11-22.

Mohajan, H. K. (2012h). Valuing Health Impacts of the Workers in Bangladesh Due to Air Pollution. International Journal of Economics and Research, 3(1), 123-132.

Mohajan, H. K. (2012i). Single Transferable Vote in Local and National Elections. International Journal of Strategic Organization and Behavioural Science, 2(2), 3-18.

Mohajan, H. K. (2012j). The Lease Financing in Bangladesh: A Satisfied Progress in Business and Industrialization. International Journal of Finance and Policy Analysis, 4(1), 9-24.

Mohajan, H. K. (2013a). Economic Development of Bangladesh. Journal of Business Management and Administration, 1(4), 41-48.

Mohajan, H. K. (2013b). Ethiopia: A Socio-economic Study. Journal of Business Management and Administration, 1(5), 59-74.

Mohajan, H. K. (2013c). Friedmann, Robertson-Walker (FRW) Models in Cosmology. Journal of Environmental Treatment Techniques, 1(3), 158-164.

Mohajan, H. K. (2013d). Global Greenhouse Gas Emissions and Climate Change. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013e). Global Food Price Hike is a Burden to the Poor. International Journal of Information Technology and Business Management, 19(1), 1-15.

Mohajan, H. K. (2013f). Food, Agriculture and Economic Situation of Bangladesh. Proceedings of 2nd International Conference on Global Sustainable Development (2nd ICGSD-2013), held on 05-06, October, 2013. Khadim Ali Shah Bukhari Institute of Technology (KASBIT). MPRA Paper No. 54240.

Mohajan, H. K. (2013g). Greenhouse Gas Emissions from Small Industries and its Impact on Global Warming. KASBIT Business Journal, 6(1\&2), 1-13.

Mohajan, H. K. (2013h). Violation of Human Rights in Bangladesh. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013i). Net National Product and Sustainability. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013j). An Introduction to Voting System. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013k). Environmental Taxes for the Improvement of Health. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2013m). Declining Economy in Zambia and its Impact in Food Security. Peak Journal of Food Science and Technology, 1(3), 27-34.

Mohajan, H. K. (2014a). Greenhouse Gas Emissions of China. Journal of Environmental Treatment Techniques, 1(4), 190-202.

Mohajan, H. K. (2014b). Chinese Sulphur Dioxide Emissions and Local Environment Pollution. International Journal of Scientific Research in Knowledge, 2(6), 265-276.

Mohajan, H. K. (2014c). The Most Fatal 2014 Outbreak of Ebolavirus Disease in Western Africa. American Journal of Epidemiology and Infectious Disease, 2(4), 101-108.

Mohajan, H. K. (2014d). Food and Nutrition of Bangladesh. Peak Journal of Food Science and Technology, 2(1), 1-17.

Mohajan, H. K. (2014e). An Introduction to Business. Open Science Book Publishing, The USA.

Mohajan, H. K. (2014f). Food and Economics of the Poor. Open Science Book Publishing, The USA.

Mohajan, H. K. (2015a). Sustainable Development Policy of Global Economy. American Journal of Environmental Protection, 3(1), 12-29.

Mohajan, H. K. (2015b). Present and Future of Nestlé Bangladesh Limited. American Journal of Food and Nutrition, 3(2), 34-43.

Mohajan, H. K. (2015c). Basic Concepts of Differential Geometry and Fibre Bundles. ABC Journal of Advanced Research, 4(1), 57-73.

Mohajan, H. K. (2015d). Tuberculosis is a Fatal Disease among Some Developing Countries of the World. American Journal of Infectious Diseases and Microbiology, 3(1), 18-31.

Mohajan, H. K. (2016a). An Analysis of Knowledge Management for the Development of Global Health. American Journal of Social Sciences, 4(4), 38-57.

Mohajan, H. K. (2016b). Amartya Sen's Peasant Economies: A Review with Examples. Open Access Library Journal, 3, e2337, 1-15.

Mohajan, H. K. (2017a). Research Methodology. Aspects of Mathematical Economics, Social Choice and Game Theory, PhD Thesis. Munich Personal RePEc Archive, 10, 1-20.

Mohajan, H. K. (2017b). Optimization Models in Mathematical Economics. Journal of Scientific Achievements, 2(5), 30-42.

Mohajan, H. K. (2017c). A Brief Analysis of de Sitter Universe in Relativistic Cosmology. Journal of Scientific Achievements, 2(11), 1-17.

Mohajan, H. K. (2017d). Analysis of Reciprocity and Substitution Theorems, and Slutsky Equation. Noble International Journal of Economics and Financial Research, 2(3), 54-75.

Mohajan, H. K. (2017e). The Nature of Naked Singularity in Cosmology. Engineering International, 5(1), 9-26.

Mohajan, H. K. (2018a). Aspects of Mathematical Economics, Social Choice and Game Theory. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K. (2018b). The Rohingya Muslims in Myanmar are Victim of Genocide! ABC Journal of Advanced Research, 7(1), 59-72.

Mohajan, H. K. (2018c). Medical Errors Must be Reduced for the Welfare of the Global Health Sector. International Journal of Public Health and Health Systems, 3(5), 91-101.

Mohajan, H. K. (2018d). Analysis of Food Production and Poverty Reduction of Bangladesh. Annals of Spiru Haret University Economic Series, 18(1), 191-205.

Mohajan, H. K. (2019). The First Industrial Revolution: Creation of a New Global Human Era. Journal of Social Sciences and Humanities, 5(4), 377-387.

Mohajan, H. K. (2020a). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development, Environment and People, 9(4), 50-79.

Mohajan, H. K. (2020b). COVID-19-The Most Fatal Pandemic Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020c). The COVID-19 in Italy: Remedies to Reduce the Infections and Deaths. Malaysian Journal of Medical and Biological Research, 7(2), 59-66.

Mohajan, H. K. (2020d). Most Fatal Pandemic COVID-19 Outbreak: An Analysis of Economic Consequences. Annals of Spiru Haret University Economic Series, 20(2), 127-146.

Mohajan, H. K. (2020e). Circular Economy can Provide a Sustainable Global Society. Journal of Economic Development, Environment and People, 9(3), 38-62.

Mohajan, H. K. (2020f). The Second Industrial Revolution has Brought Modern Social and Economic Developments. Journal of Social Sciences and Humanities, 6(1), 1-14.

Mohajan, H. K. (2021a). Aspects of Global COVID-19 Pandemic. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2021b). Aspectos de la pandemia mundial de COVID-19. Lambert Academic Publishing, Spanish Edition, Germany.

Mohajan, H. K. (2021c). Aspecten van de wereldwijde COVID-19 pandemie. Lambert Academic Publishing, Dutch Edition, Germany.

Mohajan, H. K. (2021d). Aspekte der globalen COVID-19-Pandemie. Lambert Academic Publishing, German Edition, Germany.

Mohajan, H. K. (2021e). Aspects de la pandémie mondiale de COVID-19. Lambert Academic Publishing, French Edition, Germany.

Mohajan, H. K. (2021f). Aspetti della pandemia globale di COVID-19. Lambert Academic Publishing, Italian Edition, Germany.

Mohajan, H. K. (2021g). Aspekty globalnej pandemii COVID-19. Lambert Academic Publishing, Polish Edition, Germany.

Mohajan, H. K. (2021h). Aspectos da Pandemia Global da COVID-19. Lambert Academic Publishing, Portuguese Edition, Germany.

Mohajan, H. K. (2021i). Global COVID-19 Pandemic: Prevention and Protection Techniques. Journal of Economic Development, Environment and People, 10(1), 51-72.

Mohajan, H. K. (2021j). Estimation of Cost Minimization of Garments Sector by Cobb-Douglass Production Function: Bangladesh Perspective. Annals of Spiru Haret University. Economic Series, 21(2), 267-299.

Mohajan, H. K. (2021k). Product Maximization Techniques of a Factory of Bangladesh: A Sustainable Procedure. American Journal of Economics, Finance and Management, 5(2), 23-44.

Mohajan, H. K. (2021m). Third Industrial Revolution Brings Global Development. Journal of Social Sciences and Humanities, 7(4), 239-251.

Mohajan, H. K. (2021n). Space-Time Singularities in Cosmology Due to Gravitation. Lambert Academic Publishing, Germany.

Mohajan, H. K. (2021o). Circular Economy in China: Towards the Progress. International Journal of Economics and Business Administration, 7(3), 89-96.

Mohajan, H. K. (2021p). Germany is Ahead to Implement Sustainable Circular Economy. Journal of Economic Development, Environment and People, 10(2), 46-64.

Mohajan, H. K. (2022a). Four Waves of Feminism: A Blessing for Global Humanity. Studies in Social Science \& Humanities, 1(2), 1-8.

Mohajan, H. K. (2022b). An Overview on the Feminism and Its Categories. Research and Advances in Education, 1(3), 11-26.

Mohajan, H. K. (2022c). Cost Minimization Analysis of a Running Firm with Economic Policy. Annals of Spiru Haret University. Economic Series, 22(3), 317-337.

Mohajan, H. K. (2022d). Mathematical Analysis of SIR Model for COVID-19 Transmission. Journal of Innovations in Medical Research, 1(2), 1-18.

Mohajan, H. K. (2022e). Food Insecurity and Malnutrition of Africa: A Combined Attempt Can Reduce Them. Journal of Economic Development, Environment and People, 11(1), 24-34.

Mohajan, H. K., \& Das, S. (2015). Generalization of Euler and Ramanujan's Partition Functions. Lambert Academic Publishing, Germany.

Mohajan, H. K., \& Datta, R. (2012). Capital Budgeting for Foreign Direct Investment: Bangladesh Overview. Lambert Academic Publishing, Germany.

Mohajan, H. K., \& Datta, R. (2013). Stress Management Policy. Lambert Academic Publishing, Germany.

Mohajan, H. K., Datta, R., \& Das, A. K. (2012). Emerging Equity Market and Economic Development: Bangladesh Perspective. International Journal of Economics and Research, 3(3), 128-145.

Mohajan, H. K., Islam, J. N., \& Moolio, P. (2013). Optimization and Social Welfare in Economics. Lambert Academic Publishing, Germany.

Moolio, P., Islam, J. N., \& Mohajan, H. K. (2009). Output Maximization of an Agency. Indus Journal of Management and Social Sciences, 3(1), 39-51.

Ojo, S. O. (2003). Productivity and Technical Efficiency of Poultry Egg Production in Nigeria. International Journal of Poultry Science, 2(6), 459-464.

Pandey, P., \& Pandey, M. M. (2015). Research Methodology: Tools and Techniques. Bridge Center, Romania, European Union.

Polit, D. F., \& Hungler, B. P. (2013). Essentials of Nursing Research: Methods, Appraisal, and Utilization ($8^{\text {th }}$ Ed.). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.

Remenyi, D. S. J., Swartz, E., Money, A., \& Williams, B. (1998). Doing Research in Business and Management: An Introduction to Process and Method. SAGE Publications, London.

Rahman, M. M., \& Mohajan, H. K. (2019). Rohingya-The Stateless Community Becoming the Lost Generation. Journal of Economic Development, Environment and People, 8(2), 24-36.

Rahman, M. M., \& Mohajan, H. K., \& Bose, T. K. (2021). Future of Rohingyas: Dignified Return to Myanmar or Restoring Their Rights or Both. The Indonesian Journal of Southeast Asian Studies, 4(2), 145-170.

Roy, L., Molla, R., \& Mohajan, H. K. (2021). Cost Minimization is Essential for the Sustainability of an Industry: A Mathematical Economic Model Approach. Annals of Spiru Haret University Economic Series, 21(1), 37-69.

Samuelson, P. A. (1947). Foundations of Economic Analysis. Harvard University Press, Cambridge, MA.

Shome, F., \& Mohajan, H. K. (2016). A Case Study on Successful Shipping Management of American President Line (APL): Local and Global Analysis. Higher Education Quality

Enhancement Project (HEQEP). Business Cases, Faculty of Business Studies, Premier University, Chittagong, Bangladesh, 1(1), 99-102.

Zhao, Q., Zhang, Y., \& Friedman, D. (2017). Multi-Product Utility Maximization for Economic Recommendation. WSDM, 435-443.

