
Munich Personal RePEc Archive

Bertrand-Edgeworth game under

oligopoly. General results and

comparisons with duopoly

De Francesco, Massimo A. and Salvadori, Neri

University of Siena, University of Pisa and Accademia dei Lincei

8 August 2023

Online at https://mpra.ub.uni-muenchen.de/118237/

MPRA Paper No. 118237, posted 09 Aug 2023 13:30 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/118237/


Bertrand-Edgeworth game under oligopoly. General

results and comparisons with duopoly∗

Massimo A. De Francesco

University of Siena

Neri Salvadori

University of Pisa

August 8, 2023

Abstract

This paper studies price competition among a given number of
capacity-constrained producers of a homogeneous commodity under
the efficient rationing rule and constant (and identical) marginal cost
until full capacity, when demand is a continuous, non-increasing, and
non-negative function defined on the set of non-negative prices and is
positive, strictly decreasing, twice differentiable and (weakly) concave
when positive. The focus is on general properties of equilibria in the
region of the capacity space in which no pure strategy equilibria exist.
We study how the properties that are known to hold for the duopoly
are generalized to the oligopoly and, on the contrary, what properties
do not need to hold in oligopoly. Our inquiry reveals, among other
properties, the possibility of an atom in the support of a firm smaller
than the largest one and the properties that such an atom entails.
Although the characterization of equilibria is far from being complete,
this paper provides substantial elements in this direction.

Keywords: Bertrand-Edgeworth; Price game; Oligopoly; Duopoly;
Mixed strategy equilibrium.

JEL: C72, D43, L13

1 Introduction

Price setting interaction among capacity-constrained sellers has been an
active and varied field of research over the last forty years. Part of this

∗We would like to express our gratitude to Jiawei Chen, Giuseppe Freni, Daisuke
Hirata, Dan Kovenock, and Attila Tasnadi for valuable comments and suggestions on
earlier versions of this paper and to Luis Ubeda, for sharing with us an unpublished
manuscript of his. The responsibility for any remaining errors rests entirely with the
authors.
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research has proceeded along the lines of the analysis of duopoly in Levitan
and Shubik (1972), where (i) a homogeneous commodity is produced at
a constant (and identical across firms) average variable cost up to each
firm’s capacity, (ii) any rationing of demand at the cheaper firm is made
according to the consumers’ surplus maximizing rule, and (iii) demand is
a non-negative, strictly decreasing, twice differentiable and weakly concave
function on the price range from zero to the lowest price where demand is
zero. Then for any number of firms the capacity space can be partitioned
into three parts: in two of them a pure strategy equilibrium exists; in the
third no pure strategy equilibrium exists.1 For any capacity configuration
in this last region, hereafter referred to as ”the no-pure strategy equilibrium
region”, it follows from Das Gupta and Maskin’s (1986) existence theorem
for discontinuous games that a mixed strategy equilibrium necessarily exists,
as was proved constructively by Levitan and Shubik (1972) for the duopoly
under linear demand and equal capacity.

The set of equilibria of the price game was subsequently characterized by
Kreps and Scheinkman (1983) for the duopoly under constant average vari-
able cost and concave demand, in the context of a two-stage game in which
the firms first simultaneously invest in costly capacity and afterwards, in
the knowledge of capacity decisions, set prices. That same context was sub-
sequently adopted to allow for convexities in demand (Osborne and Pitchik,
1986) or for differences in unit cost (Deneckere and Kovenock, 1996). These
partial departures from the assumptions in Kreps and Scheinkman also led
to the possibility that the supports of the equilibrium strategies of the price
subgame are disconnected and non-identical for the duopolists. Further gen-
eralizations of Kreps and Scheinkman’s model consisted in extending the
two-stage capacity and price setting to oligopoly (among others, see Mad-
den, 1998, Boccard and Wauthy, 2000, Acemoglu, Bimpikis, and Ozdaglar,
2009). This extension did not require to characterize the equilibria through-
out the no-pure strategy region of the capacity space as the determination of
the equilibrium profit of the largest firm(s) in any price subgame was enough
to determine the subgame perfect equilibrium of the two stage game.

Comparatively less effort has been devoted to the characterization of
equilibria throughout the no-pure strategy region of the capacity space, al-
though a few important results have emerged in the recent literature. One
major result is that the equilibrium payoff of the largest firm, or any of the

1This is a folk theorem. It is obtained along the lines of the analogous Theorem for
the duopoly. As far as we know it is not available in the literature and its proof is here
provided in Appendix A.
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largest firms sharing the same size, is equal to the payoff of the Stackelberg
follower when the rivals supply their entire capacity (Boccard and Wauthy
2000 and De Francesco 2003; see also Ubeda, 2007, and Hirata, 2009).2

Based on this property, Ubeda (2007) proved, among other things, that the
maximum and the minimum price at a mixed strategy equilibrium are the
maximum and the minimum of the support of the equilibrium strategy of
the largest firm (or any of the largest firms sharing the same size).3 Other
results were provided by De Francesco and Salvadori (2010) in a provisional
way.

Progress on the characterization of equilibria of the price game under
given capacities and downward-sloping demand has been made along sev-
eral directions. One direction focused on portions of the no-pure strategy
region of the capacity space. The equal capacity case for the oligopoly is
analized by Vives (1986), where the (symmetric) mixed strategy equilibrium
is determined. In a subsequent contribution, besides showing uniqueness of
equilibrium in the symmetric case, De Francesco and Salvadori (2011) char-
acterized the unique equilibrium under ”almost symmetric” capacity config-
urations, in which differences in capacities among the firms are sufficiently
small. A number of equilibrium features were discovered: the minimum of
the support of the equilibrium strategy is the same for all firms so that
payoffs are proportional to capacities; all equilibrium distributions are con-
tinuously increasing and, finally, for all firms smaller than the second largest
one, the maximum of the support is lower than for any larger firm. More
recently, De Francesco and Salvadori (2022) have characterized equilibria
for capacity configurations in which it is possible to distinguish between two
groups of firms according to the following criterion: the total capacity of
the ”large” firms can meet even the highest level of demand that can arise
at an equilibrium whereas the total industry capacity minus the capacity of
any of the large firms is lower than (in a specific case, equal to) the smallest
level of demand that can arise at an equilibrium. It is proved that, for each
large firm, equilibrium features are precisely the same as in the almost sym-
metric oligopoly previously described. Neat results have also been obtained
for small firms. The equilibrium payoff-capacity ratio is the same for each

2The proof by Boccard and Wauthy (2000) proceeded along the lines of Kreps and
Sheinkman (1983). A mistake in that proof was subsequently pointed out and the proof
was correctly finalized in De Francesco (2003).

3These results are obtained for a discriminatory auction in which each buyer actually
pays the price bid of the seller he purchases from and in which any rationing is such
as to maximize consumers’ surplus. This context is equivalent to Bertrand-Edgeworth
competition under efficient rationing (Ubeda, 2007, p. 10).
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small firm and (apart from the aforementioned specific case) it is strictly
higher than the analogous ratio for large firms. Furthermore, while there is
a continuum of equilibrium distributions for the small firms, the capacity-
weighted average of their distributions is unique as well as the minimum and
the maximum of the union of the supports of their equilibrium strategies:
the minimum is higher than (in the aforementioned specific case, equal to)
the minimum of the supports of the large firms while the maximum is always
lower than the maximum of the support of each large firm.

A second direction of research focused on restricting the number of com-
peting firms. Hirata (2009) and De Francesco and Salvadori (2010, 2015,
2016) have analyzed the triopoly price game with a decreasing and concave
demand function, independently establishing a number of features of equi-
libria.4 A third direction of research focused on a different demand function:
inelastic market demand was adopted (Acemoglu, Bimpikis, and Ozdaglar,
2009, and Mark Armstrong and John Vickers, 2018).

Having examined how complex it might be to characterize equilibria in
portions of the no-pure strategy equilibrium region, the present paper aims
at providing some building blocks in order to effectively tackle this task.
These are represented by some general results concerning mixed strategy
equilibria, which in many cases can be derived by using the properties of
the payoff function of any firm in the range between the minimum and the
maximum of the union of the supports of the equilibrium strategies. Several
properties of a duopolistic mixed strategy equilibrium may be generalized to
oligopoly: among them the values of the minimum and maximum of the sup-
port of the equilibrium strategy for any firm with the highest capacity and
the equilibrium payoff of any firm with the second highest capacity. Unlike
what happens in a duopoly, under some circumstances there is a continuum
of equilibria as far as ”small” firms are concerned and even when a unique
equilibrium does exist, the equilibrium distributions do not necessarily in-
crease for all firms, or even for any firm. We identify some circumstances
which must necessarily hold when a price lower than the maximum of the
union of the supports of equilibrium strategies is charged with strictly pos-
itive probability by some firm. Among other things, it is shown that such
a firm must necessarily be smaller than the largest one; furthermore, in
the event of such an ”atom” the union of the supports of the equilibrium
strategies is not connected: an open right neighbourhood of the atom is not
included in it. Another result relates to the second largest firm. Its equilib-

4Basic properties of equilibria under the triopoly were discovered almost at the same
time by Hirata (2008) and De Francesco and Salvadori (2008).
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rium payoff-capacity ratio equals that of any firm smaller than the largest
one whose support includes the minimum of the union of the supports. This
implies that the minimum of its support is either equal to the minimum of
the union of the supports or larger than a determined threshold (or both,
in some specific circumstances). This property is indeed extended to any
firm not smaller than a firm whose support includes the minimum of the
union of the supports. Finally we investigate a property that concerns the
case in which two, or more, firms are equal. If several firms have the largest
capacity, then they share the same equilibrium strategies.5 This symmetry
may not hold for equally-sized firms that are smaller than the largest one.

The remainder of the paper is organized as follows. Section 2 describes
the assumptions and provides the basic notation; it also identifies the no-
pure strategy equilibrium region of the capacity space. Section 3 presents
general results for the no-pure strategy equilibrium region. Section 4 dis-
cusses four numerical examples of determination of mixed strategy equilibria.
Example 1 refers to a quadriopoly in which the whole support of the second
largest firm is above the mentioned threshold and clarifies how this may
occur; there is also a continuum of equilibrium distributions for the second
and the third largest firms and the payoff per unit of capacity is higher for
the smallest firm. All the other examples refer to the triopoly; in each of
them there is a unique equilibrium and the payoff per unit of capacity is
higher for the smallest firm. In Example 2 there is a gap in the support of
the intermediate-size firm; in Examples 3 and 4 the smallest firm charges its
highest price with positive probability: in either case a thorough discussion
is provided of how to determine the minimum of the support of the smallest
firm and the gaps in the supports of the two larger firms. Section 5 briefly
concludes. Appendix A contains the proof of the Proposition that identifies
the regions of the capacity space where pure-strategy equilibria exist, and,
consequently, the region where pure-strategy equilibria do not exist. Ap-
pendix B begins with Lemma 1, which discusses the properties of the payoff
function of any firm in the range between the minimum and the maximum
of the union of the supports of the equilibrium strategies; it then proceeds
with the proofs of the propositions stated in the main text.

5To undertand the relevance of this result consider, for instance, that Vives (1986), in
his analysis of symmetric oligopoly, specifies that he is ”restricting attention to symmetric
equilibria”. See also Hirata (2009, p. 5 and n. 7), who leaves open, for the oligopoly, the
possibility of asymmetric distributions for the two firms with the same largest capacity.
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2 Preliminaries

Assumption 1. There are n firms producing a homogeneous good at the
same constant unit cost (normalized to zero), up to capacity.

Let N = {1, 2, ..., n} be the set of firms and N−i = N−{i}. Without loss
of generality, we consider the subset of the capacity space (K1,K2, ...,Kn)
where

K1 > K2 > ... > Kn > 0 (1)

and we define K = K1 +K2 + ...+Kn.
Assumption 2. The market demand function is given by D(p) (de-

mand as a function of price p) and P (x) (price as a function of quantity
x). Function D(p) is strictly positive on some bounded interval [0, p⋆),
on which it is continuously differentiable, strictly decreasing and such that
pD(p) is strictly concave; it is continuous for p > 0 and equals 0 for p > p⋆;
X = D(0) < ∞. P (x) = D−1(x) on the bounded interval [0, X]; the func-
tion P (x) is continuous for x > 0 and equal to 0 for x > X; p⋆ = P (0) <∞.

Assumption 3. Any rationing is in accordance with the efficient rule.
Consequently, let Ω(p) be the set of firms charging price p: the residual

demand forthcoming to all firms in Ω(p) is max
{
0, D(p)−

∑
j:pj<p

Kj

}
=

Y (p). If
∑

i∈Ω(p)Ki > Y (p), the residual demand forthcoming to any firm
i ∈ Ω(p) is a fraction αi(Ω(p), Y (p)) of Y (p), namely, Di(p1, p2, ... , pn) =
αi(Ω(p), Y (p))Y (p).6

Let pc be the competitive price, that is

pc = P (K). (2)

Necessary and sufficient conditions for the existence of a pure strategy equi-
librium for the oligopoly are easily found as straightforward generalizations
of similar results for the duopoly; as a consequence no pure-strategy equilib-
rium actually exists when the competitive price is not an equilibrium. These
results are

Proposition 1 Let Assumptions 1, 2, and 3 hold. (i) (p1, p2, ..., pn) =
(pc, pc, ..., pc) is an equilibrium if and only if either

K −K1 > X, if X 6 K, (3)

6Our analysis does not depend on the specific assumption being made on
αi(Ω(p), Y (p)): for example, it is consistent with αi(Ω(p), Y (p)) = Ki/

∑

r∈Ω(p)Kr as
well as with the assumption that residual demand is shared evenly, apart from capacity
constraints, among firms in Ω(p). In this case, αi(Ω(p), Y (p)) = min{Ki/Y (p), α̂(p)}
where α̂(p) is the solution in α of equation

∑

i∈Ω(p) min{Ki/Y (p), α} = 1.
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or

K1 6 −pc
[
D′(p)

]
p=pc

= −
P (K)

P ′(K)
, if X > K. (4)

In the former case the set of equilibria includes any strategy profile such that∑
s∈Ω(0)−{j}Ks > X for each j ∈ Ω(0) 6= ∅. In the latter, (pc, pc, ... , pc) is

the unique equilibrium.
(ii) No pure strategy equilibrium exists if neither (3) nor (4) holds so

that

K1 > max

{
K −X,−

P (K)

P ′(K)

}
. (5)

A formal proof is provided in Appendix A. As is well known, condition
(3) gives rise to the classic Bertrand equilibrium, whereas condition (4)
can be interpreted in terms of the Cournot model of quantity competition
among capacity-unconstrained firms. Indeed, condition (4) identifies, in the
(K1,K2, ...,Kn)-space, the region in which each firm’s capacity is not higher
than its best (capacity-unconstrained) quantity response when the rivals
supply their entire capacity (namely, the region that is bounded above by
the lower envelope of the Cournot best-response functions).7 Proposition 1
states that the existence of a pure strategy equilibrium depends upon total
capacity and the capacity of the largest firm. This is depicted in Figure 1
which is based on the assumption that P (x) = a − bx when positive and
the given number of existing firms is n. According to inequalities (1), the
relevant region is that in which K/n 6 K1 < K. Note that the relevant
region depends on n, but not on P (x). If P (x) = a − bx, then X = a/b
while −P (K)/P ′(K) = (a/b)−K if K 6 a/b. According to Proposition 1,
a pure strategy equilibrium exists in region A (with pc > 0), including the
points where K1 = −a/b+K, and in region B (with pc = 0), including the
points where K1 = −a/b +K, whereas no pure strategy equilibrium exists
in region C.

In order to study equilibria in the region where pure strategy equilibria
do not exist, we need to enrich our notation. A strategy by firm i is denoted
by σi : (0,∞) → [0, 1], where σi(p) = Prσi(pi < p) is the probability of firm
i charging less than p under strategy σi. Of course, any function σi(p) is
non-decreasing and everywhere continuous except at p′ such that Prσi(pi =

7It should be noted that Assumption 1 does not guarantee the uniqueness of the
Cournot equilibrium. Uniqueness would be ensured if, for instance, one assumed
D′(p) + pD′′(p) < 0 on (0, p⋆). (On this, see Dechenaux and Kovenock, 2007).
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Figure 1: Taxonomy of equilibria

p′) > 0, where it is left-continuous (σi(p
′−) = σi(p

′)), but not continuous.8

An equilibrium is denoted by φ = (φ1, φ2, ..., φn), where φi(p) = Prφi(pi < p)
and firm i’s payoff (expected profit) at strategy profile (σi, σ−i) is denoted by
Πi(σi, σ−i). As a consequence, Πi(φ) = Πi(φi, φ−i) is firm i’s expected profit
at the equilibrium strategy profile φ; Πi(p, φ−i) is firm i’s expected profit
when it charges p with certainty and the rivals are playing their equilibrium
profile of strategies φ−i, and Πi(φi, φ−i) > Πi(σi, φ−i) for each i and each σi.
When no doubt can arise, and for the sake of brevity, we write Π⋆i rather than
Πi(φi, φ−i) and Πi(p) rather than Πi(p, φ−i). Further, we denote by Si(φi)

the support of φi and by p
(i)
M (φi) and p

(i)
m (φi) the maximum and minimum of

Si(φi), respectively. More specifically, we say that p ∈ Si(φi) when φi(·) is
increasing at p, that is, when there is δ > 0 such that φi(p+ h) > φi(p− h)
for any 0 < h < δ. Obviously, Π⋆i = Πi(p) almost everywhere in Si(φi).
Once again, when no doubt can arise and for the sake of brevity, we write

Si, p
(i)
M , and p

(i)
m rather than Si(φi), p

(i)
M (φi), and p

(i)
m (φi), respectively. If

Si is not connected, i.e. if φi(p) is constant in an open interval (p̃, ˜̃p) and is

8In order to shorten notation, we denote limp→h+ f(p) and limp→h− f(p) as f(h+) and
f(h−), respectively, for any function f(p).
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increasing in p̃ and in ˜̃p, then the interval (p̃, ˜̃p) will be referred to as a gap
in Si.

So long as firm i’s rivals’ equilibrium strategies φ−i(p) are continuous in
p, Πi(p) = Zi(p;φ−i(p)), where

Zi(p;ϕ−i) := p
∑

ψ∈P(N−i)

qi,ψ(p)
∏

r∈ψ

ϕr
∏

s∈N−i−ψ

(1− ϕs), (6)

ϕj ∈ [0, 1] (each j 6= i) is an independent variable, P(N−i) is the power
set of N−i, and qi,ψ(p) = max{0,min{D(p) −

∑
r∈ψKr,Ki}} is firm i’s

output when it charges p, any firm r ∈ ψ charges less than p and any
firm s ∈ N−i − ψ charges more than p.9 If instead Prφj (pj = p′) > 0
for some j 6= i, then Zi(p

′;φ−i(p
′)) > Πi(p

′) > Zi(p
′+;φ−i(p

′+)).10 The
RHS of (6) is a weighted arithmetic mean of the functions pqi,ψ(p)’s since∑

ψ∈P(N−i)

∏
r∈ψ ϕr

∏
s∈N−i−ψ

(1− ϕs) = 1. As a consequence, pqi,N−i(p) 6
Zi(p;φ−i) 6 pqi,∅(p). Note that the coefficient of pqi,ψ(p) is positive if and
only if ̟i ⊇ ψ ⊇ Ξ, where ̟i = {h ∈ N−i : ϕh > 0} and Ξ = {h ∈ N−i :
ϕh = 1}. Indeed ϕh = 0 for some h ∈ ψ if and only if ̟i + ψ and ϕh = 1
for some h ∈ N−i − ψ if and only if ψ + Ξ (obviously ̟i and Ξ depend on
φ). Our analysis below will rely on a number of properties of the functions
Zi(p;ϕ−i) that are established in Lemma 1 in Appendix B.

Finally, let us define11

pM = min argmax
p>0

pq1,N−1(p), (7)

pm = min

{
p : pq1,∅(p) = max

p>0
pq1,N−1(p)

}
. (8)

Note that pM = pm = pc if either inequalities (3) or inequalities (4) hold;
otherwise pm < pM . If firm 1 charges with certainty pM , then it will get a
profit higher than or equal to maxp pq1,N−1(p). Hence Π

⋆
1 > maxp pq1,N−1(p)

(obviously the same is true for any i such that ki = k1). On the other hand,
if firm 1 charges with certainty pm, it will get a profit lower than or equal to
maxp pq1,N−1(p). Hence, if firm 1 charges a price lower than pm, it will get a

profit lower than Π⋆1 and therefore p
(i)
m > pm for each i such that Ki = K1.

9Note that
∏

r∈ψ ϕr is the empty product, hence equal to 1, when ψ = ∅; and it is
similarly

∏

s∈N
−i−ψ

(1− ϕs) = 1 when ψ = N−i.
10The exact value of Πi(p

′) when Prφj
(pj = p′) > 0 for some j 6= i depends on function

αi(Ω(p), Y (p)).
11Equation (7) reads pM = argmaxp>0 pq1,N

−1(p) unless inequalities (3) hold.
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3 Equilibria under oligopoly when no pure strat-

egy equilibrium exists: some general results

The analysis developed in this section refers to the region of the capacity
space where no pure strategy equilibrium exists, i.e. the region where in-
equalities (1) and (5) hold. The definitions of pM and pm make it possible to
characterize the region where inequalities (1) and (5) hold by substituting
inequality (5) with inequality

P (K) < pm. (9)

Indeed, if K1 6 K −X, then pm = P (K) = 0 whereas if K1 6 − P (K)
P ′(K) ,

then pm = pM = P (K) > 0. Conversely, if inequality (5) holds, then
inequality (9) holds too. Finally, note that in the region where inequalities
(5) and (1) hold we have:

pM = argmax
p
p


D(p)−

∑

j 6=1

Kj


 (10)

pm = max{p̂, ̂̂p}, (11)

where

p̂ =
maxp p[D(p)−

∑
j 6=1Kj ]

K1
(12)

̂̂p = min



p : pD(p) = max

p
p


D(p)−

∑

j 6=1

Kj





 . (13)

Note that ̂̂p > p̂ if and only if D(̂̂p) 6 D(p̂) 6 K1. This is so since
̂̂pD(̂̂p) = p̂K1, the demand function is decreasing, and the function pD(p) is
increasing throughout the range [0, pM ].

Since Kreps and Sheinkman (1983) it is known that, in a duopoly,

D.1 Π⋆1 = maxp pq1,N−1(p);

D.2 p
(1)
M = p

(2)
M = pM ;

D.3 p
(1)
m = p

(2)
m = pm;

D.4 Π⋆2 = pmK2;

10



D.5 if K1 = K2, then φ1(p) = φ2(p) throughout [pm, pM ] and φ1(pM ) =
φ2(pM ) = 1, whereas if K1 > K2, φ1(pM ) < φ2(pM ) = 1.

Some of these results also hold in the oligopoly, as will be shown in this
section. More precisely in an oligopoly

O.1 Π⋆1 = maxp pq1,N−1(p);

O.2 there is h ∈ N−1 such that p
(1)
M = p

(h)
M = pM ;

O.3 there is h ∈ N−1 such that p
(1)
m = p

(h)
m = pm; moreover either p

(2)
m = pm

or p
(2)
m > P

(
K1 +

∑
h:p

(h)
M

6p
(2)
m
Kh

)
, or both;

O.4 Π⋆2 = pmK2;

O.5 if K1 = K2, then φ1(p) = φ2(p) throughout [pm, pM ] and φ1(pM ) =
φ2(pM ) = 1, whereas if K1 > K2, φ1(pM ) < φ2(pM ) = 1.

The following proposition states in our formalism a proposition available
in the literature. It generalizes to oligopoly statement D.1 and part of
statement D.2. For a complete proof see Boccard and Wauthy (2000) and
De Francesco (2003). See also Ubeda, 2007, Loertscher, 2008, and Hirata
(2009).

Proposition 2 Let Assumptions 1, 2, and 3 and inequality (9) hold. In

any equilibrium φj(pM ) = 1 for any j such that Kj < K1; p
(i)
M = pM =

maxj∈N p
(j)
M and p

(i)
m = pm = minj∈N p

(j)
m for some i such that Ki = K1, and

Π⋆i = max
p
p


D(p)−

∑

j 6=1

Kj


 (14)

for any i such that Ki = K1.

Corollary 1 If K1 = K2, then Prφi(pi = pM ) = 0 for any i ∈ N .

Corollary 2 If p̂ > ̂̂p, then for any i such that Ki = K1, the equilibrium
payoff can also be written Π⋆i = pmK1.

Corollary 3 If ̂̂p > p̂, then the equilibrium payoff of firm 1 can also be
written Π⋆1 = pmD(pm) and K1 > D(pm) > D(pM ) >

∑
j 6=1Kj .

Let M = {i ∈ N : p
(i)
M = pM} and L = {i ∈ N : p

(i)
m = pm}. The

following proposition establishes basic properties of equilibria in the region

11



defined by inequalities (5) and (1). Proofs of parts (i)-(vi) can be found in
De Francesco and Salvadori (2022, Proposition 1(i)-(ii)). The proof of parts
(vii)-(ix) is in Appendix B. Parts (i) and (vi) generalize statement D.3 to
the oligopoly, by establishing the first part of statement O.3, whereas part
(v) completes the generalization of statement D.2. A similar generalization
was also provided by Ubeda (2007) in a different context.

Proposition 3 Let Assumptions 1, 2, and 3 and inequality ((9) hold. In
any equilibrium φ:

(i) #L > 2;
(ii) D(pm) <

∑
i∈LKi;

(iii) Pr(pj = pm) = 0 (each j);
(iv) for any i ∈ L− {1}, Π⋆i = pmKi;
(v) #M > 2;

(vi) p
(i)
m = pm for any firm i such that Ki = K1;

(vii) for any i ∈ N , Π⋆i = Πi(p) for p in the interior of Si and for

p = p
(i)
m ;

(viii) if α ⊂ Si, where α is a non degenerate interval, then α ⊂ ∪j 6=iSj;
(ix) for any i 6= 1 such that

p
(i)
M > P


K1 +

∑

h:p
(h)
M
<p

(i)
M

Kh


 , (15)

Π⋆i = pmKi.

Example 1 in the following section is useful to understand the role of
inequality (15).

Corollary 4 Π⋆j > pmKj (each j 6= 1).

In the duopoly, equilibrium distributions are continuously increasing
and uniquely determined for both firms throughout the range [pm, pM ):
Prφi(pi = p) = 0 and φ′i(p) > 0 (each i = 1, 2, each p ∈ [pm, pM )).12

As mentioned in the introduction, this need not be so with more than two
firms. The following proposition, whose proof is in Appendix B, provides

12Osborne and Pitchik(1986) showed that this need not to be so if function pD(p) is
not concave.
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general results on any atom in the support of any equilibrium strategy in
the range [pm, pM ). In Example 2 in the next section a support is not con-
nected, but there is no such an atom. In Examples 3 and 4 an atom exists

in S3 at p
(3)
M in a triopoly.

⋂
i=N Si = {p

(3)
m } in Example 3, whereas

⋂
i=N Si

is a non-degenerate interval [p
(3)
m , ˜̃p], with ˜̃p < p

(3)
M , in Example 4.

Proposition 4 Let Assumptions 1, 2, and 3 and inequality (9) hold. As-
sume that φ is an equilibrium in which φj(p̃) < φj(p̃+) for some j and some
p̃ ∈ [pm, pM ). Then

(i) Π⋆j = Πj(p̃) = Zj(p̃;φ−j(p̃));
(ii.a) there is no χ ⊆ ̟ such that

∑
h∈χ∪ΞKh > D(p̃) > Kj+

∑
h∈̟∪ΞKh−

Km, where ̟ = {h ∈ N−j , p
(h)
m 6 p̃ 6 p

(h)
M }, Ξ = {h ∈ N−j , p

(h)
M 6 p̃}, and

m = maxχ;

(ii.b) if φh(p̃) = 0 (some h ∈ N), then p
(h)
m > p̃ and Π⋆h > Πh(p̃);

(iii) pm < p̃ < P (K1);
(iv) φi(p̃+) = φi(p̃) (each i 6= j);
(v) there is p◦ > p̃ such that (∪i∈NSi) ∩ (p̃, p◦) = ∅ and p◦ ∈ ∪i∈NSi;
(vi) there is a right neighborhood of p̃ in which the function Zj(p, φ−j(p̃))

is decreasing in p;
(vii) Kj < K1.

The following Proposition 5 (proof in Appendix B) generalizes to oligopoly
statement D.5; furthermore, it shows that if several firms have the largest
capacity, then their equilibrium strategies are necessarily the same. This
result depends on the fact that Z1(p, φ−1(p)) depends on φi(p) (any i 6= 1)
throughout [pm, pM ]: as a consequence, if φ1(p) 6= φ2(p) and K1 = K2, then
Π2(p) 6= Π1(p), which in turn inevitably leads to a contradiction.

Proposition 5 Let Assumptions 1, 2, and 3 and inequality (9) hold. In
any equilibrium φ:

(i) if K1 > K2, then φ1(pM ) < 1;
(ii) if K1 = Kj (some j 6= 1), then φj(p) = φ1(p) throughout [pm, pM ];

(iii) if K1 = K2 = ... = Ks > Ks+1, then p
(s+1)
M , p

(s+2)
M , ..., p

(n)
M < pM .

The following Proposition (proof in Appendix B) demonstrates that no
firm can have, in equilibrium, a profit-to-capacity ratio lower than that any
larger firm has.13 An immediate consequence is that if the minimum of the

13See also Proposition 10 in Ubeda (2007) where the result of Proposition 6(i) was
obtained in the context of a discriminatory auction.

13



support of a firm is larger than pm whereas the minimum of the support of
a smaller firm equals pm, then the two firms have, in equilibrium, the same
profit-to-capacity ratio pm. Finally, although equally-sized firms smaller
than the largest one have the same equilibrium profit, this does not imply
that the equilibrium distributions are the same, as is the case with firms
with the same largest capacity (see Proposition 5(ii)). The reason is that,
if Ki = Kj < K1, then Zi(p, φ−i(p)) may not depend on φj(p) on a left
neighborhood of pM . As a consequence, there might be a subset of that
neighbourhood in which, for instance, p ∈ Si ∩ Sj even if φi(p) > φj(p).

Proposition 6 Let Assumptions 1, 2, and 3 and inequality (9) hold and
K1 > Ki > Kj. Then:

(i) in any equilibrium
Π⋆j
Kj

>
Π⋆i
Ki

;

(ii.a) in any equilibrium in which j ∈ L, Π⋆i = pmKi and (ii.b) there

is χ ⊆ {h : p
(h)
m 6 p

(i)
m } − {h ∈ L : Kh 6 Ki} such that Π⋆i = (1 −

Πh∈χφh(p
(i)
m ))p

(i)
mKi and Πl(p

(i)
m ) = (1 − Πh∈χφh(p

(i)
m ))p

(i)
mKl = Π⋆l , each l ∈

{h ∈ L : Kh 6 Ki}; (ii.c) as a consequence either p
(i)
m = pm or p

(i)
m >

P
(∑

h∈χ∪{h:p
(h)
M

6p
(i)
m }

Kh

)
,14 or both.15

(iii.a) If K1 > Ki = Kj, then in any equilibrium Π⋆j = Π⋆i ; further, in
an equilibrium in which j ∈ L and φj(p

′) < φi(p
′) < 1 for some p′ ∈ Si ∪ Sj

(iii.b) either p′ ∈ Si − Sj, or there is χ ⊆ {h : p
(h)
m 6 p′} − {h ∈ L :

Kh 6 Ki} such that Πi(p
′) = (1 − Πh∈χφh(p

′))p′Ki. More precisely, (iii.c)

if p′ ∈ Si ∩ Sj, then there is χ ⊆ {h : p
(h)
m < p′} − {h ∈ L : Kh 6 Ki} such

that Πi(p
′) = (1 − Πh∈χφh(p

′))p′Ki; whereas (iii.d) if there is no χ ⊆ {h :

p
(h)
m 6 p′} − {h ∈ L : Kh 6 Ki} such that Πi(p

′) = (1 − Πh∈χφh(p
′))p′Ki,

then there is p′′ > p′ such that Sj ∩ [p′, p′′) = ∅ and there is χ ⊆ {h : p
(h)
m 6

p′′} − {h ∈ L : Kh 6 Ki} such that Πi(p
′′) = (1−Πh∈χφh(p

′′))p′′Ki.

Finally the following proposition, whose proof is in Appendix B, gener-
alizes to oligopoly statement D.4 and completes the generalization of state-
ment D.3 by establishing the second part of statement O.3.

14Note that necessarily 1 ∈ χ and therefore P
(

∑

h∈χ∪{h:p
(h)
M

6p
(i)
m }

Kh

)

6

P
(

K1 +
∑

h:p
(h)
M

6p
(i)
m
Kh

)

. The equality holds if and only if Πh∈χφh(p
(i)
m ) = φ1(p

(i)
m );

that is φh(p
(i)
m ) = 1 for each h ∈ χ− {1}.

15It is easily recognized that both conditions hold when pm > P
(

∑

h∈χKh

)

and χ ⊆

{h ∈ L : Kh > Ki}, which is certainly the case when pm > P (K1).
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Proposition 7 Let Assumptions 1, 2, and 3 and inequality (9) hold. In
any equilibrium φ:

(i) Π⋆i = pmKi for any i such that Ki = K2;

(ii) if K1 > K2, then for any i such that Ki = K2, Π
⋆
i = (1−φ1(p

(i)
m ))p

(i)
mK2

and Πj(p
(i)
m ) = (1−φ1(p

(i)
m )p

(i)
mKj, each j ∈ L−{1}; as a consequence either

p
(i)
m = pm or p

(i)
m > P

(
K1 +

∑
h:p

(h)
M

6p
(i)
m
Kh

)
, or both;

(iii) if K1 > K2 = Kj and φj(p
′) < φ2(p

′) < 1 for some p′ ∈ S2∪Sj, then
either p′ ∈ S2, or Π2(p

′) = (1−φ1(p
′))p′K2, or both; further, if p

′ ∈ S2∩Sj,
then Π2(p

′) = (1 − φ1(p
′))p′K2; whereas if Π2(p

′) 6= (1 − φ1(p
′))p′K2, then

there is p′′ > p′ such that Π2(p
′′) = (1− φ1(p

′′))p′′K2 and Sj ∩ [p′, p′′) = ∅.

Example 1 in the following section discusses a case in which p
(2)
m > pm,

highlighting the role of the inequalities appearing in Propositions 6(i.c) and
7(ii).

4 Examples

In this section we present four numerical examples which are useful in un-
derstanding the Propositions stated in the previous section.

4.1 Example 1

Here is an example in which Π2(p
(2)
m ) =

[
1− φ1(p

(2)
m )

]
p
(2)
m K2, Πj(p

(2)
m ) =

[
1− φ1(p

(2)
m )

]
p
(2)
m Kj , each j such that p

(j)
m = pm, and p

(2)
m > pm. Let D(p) =

14.4− p; (K1,K2,K3,K4) = (13.2; 4; 3; 0.4). P (K1 +K2) = P (K1 +K3) =
0 < P (K1 + K4) = 0.8 < pm = 0.928030 < P (K1) = 1.2 < pM = 3.5.
Therefore, Π⋆1 = 12.25 and Π⋆2 = 3.712, by Propositions 2 and 6(ii).

We first prove that a continuum of equilibria in which L = {1, 3} ex-
ists. Any such equilibria has the following features: S1 = [pm, pM ], S4 =

[p
(4)
m , p

(4)
M ] = [1.001838002, 1.086817875], and p

(2)
m > p

(4)
M . Therefore, φ1(p) =

φ⋆13(p) := (p−pm)K3

p[K1+K3−D(p)] and φ3(p) = φ⋆3(p) := (p−pm)K1

p[K1+K3−D(p)] over the

range [pm, p
(4)
m ], φ⋆13(p) and φ

⋆
3(p) being the solutions to equations pmK3 =

Z3(p;ϕ1, 0, 0) and pmK1 = Z1(p; 0, ϕ3, 0), respectively. Note that Π⋆4 >
pmK4 since Z4(p, φ

⋆
13(p), 0, φ

⋆
3(p)) is increasing on a right neighbourhood

of pm. More specifically, p
(4)
m = argmaxp∈(pm,P (K1)) Z4(p, φ

⋆
13(p), 0, φ

⋆
3(p))

and Π⋆4 = maxp∈(pm,P (K1)) Z4(p, φ
⋆
13(p), 0, φ

⋆
3(p)) = 0.3793489392. Over the
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range [p
(4)
m , p

(4)
M ], (φ1(p), φ2(p), φ3(p), φ4(p)) = (φ◦1(p), 0, φ

◦
3(p), φ

◦
4(p)), where

(φ◦1(p), φ
◦
3(p), φ

◦
4(p)) is the solution in (ϕ1, ϕ3, ϕ4) of the equation system

pmKi = Zi(p, ϕ−i−2, 0) (i = 1, 3),

Π⋆4 = Z4(p, ϕ−4−2, 0).

Therefore, in any such equilibrium, [pm, p
(4)
M ) ⊆ S1 ∩ S3 − S2. Note that

inequality p
(2)
m > P

(
K1 +

∑
h:p

(h)
M

6p
(2)
m
Kh

)
(see Propositions 3(ix), 6(ii.b),

and 7(ii)) is equivalent to p
(2)
m > p

(4)
M . Indeed, if p

(2)
m < p

(4)
M , then P

(
K1 +

∑
h:p

(h)
M

6p
(i)
m
Kh

)
=

P (K1) and the inequality cannot hold. On the contrary, if p
(2)
m > p

(4)
M , then

P
(
K1 +

∑
h:p

(h)
M

6p
(i)
m
Kh

)
= P (K1 +K4) < pm and the inequality holds.

Let us complete the analysis: over the range [p
(4)
M , pM ] φ1(p) = p−pm

p

whereas φ2(p) and φ3(p) are such that φ2(p)K2 + φ3(p)K3 = D(p) −K4 −
pmK1

p
. Notice that, over that range, p

(2)
m can be any p ∈ [p

(4)
M , p

(2)
m ], where

p
(2)
m = 1.257359313 is the solution in p to the equation pmK1 = Z1(p, 0, 1, 1)

(namely, pmK1 = p[D(p) − K3 − K4]), and p
(2)
M can be any p ∈ [p

(2)
M , pM ]

where p
(2)
M = 1.895466445 is the solution in p to the equation pmK1 =

Z1(p, 1, φ3(p
(4)
M ), 1).

Finally, we will prove that in no equilibrium L 6= {1, 3}. If L = {1, 2},

then φ1(p) = φ⋆12(p) := (p−pm)K2

p[K1+K2−D(p)] and φ2(p) = φ⋆2(p) := (p−pm)K1

p[K1+K2−D(p)]

over the range [pm,min{p
(3)
m , p

(4)
m }], φ⋆12(p) and φ⋆2(p) being the solutions

to equations pmK2 = Z2(p;ϕ1, 0, 0) and pmK1 = Z1(p;ϕ2, 0), respectively.
Then Π⋆i > pmKi (each i ∈ {3, 4}) since, as one can check, Zi(p, φ

⋆
12(p), φ

⋆
2(p), 0) >

pmKi (i ∈ {3, 4}) for p larger than and close enough to pm. Then Πi(p
(i)
M )− >

(1 − φ1(p
(3)
M ))p

(i)
MKi > pmKi (each i ∈ {3, 4}) and therefore Π2(p

(i)
M )− =

(1 − φ1(p
(i)
M ))p

(i)
MK2 > pmK2, which contradicts Proposition 3(ix). If L ⊃

{1, 2}, the two-equation system Z2(p, φ−2) = pmK2 and Zi(p, φ−i) = pmKi

(i ∈ L−{1, 2}) implies that K2(1−φ2(p)) = K3(1−φ3(p)) on a right neigh-
bourhood of pm, which contradicts the requirement that limp→pm φ2(p) =

limp→pm φi(p) = 0. If L = {1, 4}, then φ1(p) = φ⋆14(p) :=
(p−pm)K4

p[K1+K4−D(p)] and

φ4(p) = φ⋆4(p) := (p−pm)K1

p[K1+K4−D(p)] on a right neighbourhood of pm where,

similarly to the above, φ⋆14(p) and φ⋆4(p) are the solutions to equations
pmK4 = Z4(p;ϕ1, 0, 0) and pmK1 = Z1(p; 0, 0, ϕ4), respectively. Then, it
follows that Z2(p, φ

⋆
14(p), 0, φ

⋆
4(p)) < pmK2 and Z3(p, φ

⋆
14(p), 0, φ

⋆
4) < pmK3

throughout (pm, P (K1)), whereas φ
⋆
4(p) = 1 at p = 0.9378221735 < P (K1).

This contradicts Proposition 3(viii).
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4.2 Example 2

The example here is a case in which there is a unique equilibrium, all
distributions are continuous over the range (pm, pM ) and there is a gap
in the support of the strategy of one of the firms. Let D(p) = 20 − p,
n = 3, and (K1,K2,K3) = (16, 5, 0.8). Then pM = 7.1 and hence Π⋆1 =
50.41, pm = 3.150625 and Π⋆2 = 15.753125. Furthermore, L = {1, 2} and

[pm, p
(3)
m ] ⊂ S1 ∩ S2, so that, over the range [pm, p

(3)
m ], φ1(p) = φ⋆12(p)

and φ2(p) = φ⋆2(p), where φ⋆12(p) and φ⋆2(p) are defined as in Example

1. Therefore, Π3(p) = Z3(p, φ
⋆
12(p), φ

⋆
2(p)) over the range [pm, p

(3)
m ]. Next,

let β := argmaxp∈(pm,pM ) Z3(p, φ
⋆
12(p), φ

⋆
2(p)) = 3.426978457 and Π⋆3(β) :=

Z3(β, φ
⋆
12(β), φ

⋆
2(β)) = 2.618610069, and denote by (φ◦1(p,Π

⋆
3(β)), φ

◦
2(p,Π

⋆
3(β)), φ

◦
3(p,Π

⋆
3(β)))

the solution in (ϕ1, ϕ2, ϕ3) of the equation system

Π⋆i = Zi(p, ϕ−i) (i = 1, 2),

Π⋆3(β) = Z3(p, ϕ−3),

and by p
(3)
M (β) = 3.719278412 the solution to the equation φ◦3(p,Π

⋆
3(β))) = 1.

It is found that φ◦1(p,Π
⋆
3(β)) and φ◦3(p,Π

⋆
3(β)) are both increasing over

the range (β, p
(3)
M (β)) whereas φ◦2(p,Π

⋆
3(β)) is first increasing and then de-

creasing over that range, with φ◦2(p
(3)
M (β),Π⋆3(β)) > φ◦2(β,Π

⋆
3(β)). It fol-

lows that there is an equilibrium in which Π⋆3 = Π⋆3(β). In this equilib-

rium, S3 = [p
(3)
m , p

(3)
M ] = [β, p

(3)
M (β)], S1 = [pm, pM ], and S2 = [pm; γ] ∪

[p
(3)
M ; pM ], where γ = 3.600955035 is such that φ2(γ) = φ◦2(γ,Π

⋆
3(β)) =

φ2(p
(3)
M ) = φ◦2(p

(3)
M ,Π⋆3(β)). Clearly, over the range (γ, p

(3)
M ), φ1(p) and φ3(p)

are the solutions in ϕ1 and ϕ3 to the equations Z3(p, ϕ1, φ
◦
2(γ,Π

⋆
3(β))) = Π⋆3

and Z1(p, φ
◦
2(γ,Π

⋆
3(β)), ϕ3)) = Π⋆1, respectively. Finally, over the range

[p
(3)
M , pM ], φ1(p) = φ⋆⋆1 (p) and φ2(p) = φ⋆⋆2 (p), where φ⋆⋆1 (p) and φ⋆⋆2 (p)

are the solutions to equation pmK2 = Z2(p, ϕ1, 1) and pmK1 = Z1(p, 1, ϕ2),
respectively. We omit the proof of uniqueness of the equilibrium, which is
tedious although straightforward.

4.3 Example 3

Here is an example of a triopoly in which there is an atom in S3 at p
(3)
M

and
⋂
i=N Si = {p

(3)
m }. Let D(p) = 20 − p, (K1,K2,K3) = (16; 5; 0.2).

Then pM = 7.40, Π⋆1 = 54.76, pm = 3.4225, and Π⋆2 = 17.1125. Note that

P (K1 + K2) = 0 < pm < P (K1 + K3) = 3.8. In order to determine p
(3)
m ,

p
(3)
M , and Π⋆3, note that, at any p ∈ S1 ∩ S2 ∩ S3, (φ1(p), φ2(p), φ3(p)) =
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(φ◦1(p,Π
⋆
3), φ

◦
2(p,Π

⋆
3), φ

◦
3(p,Π

⋆
3)), the solution to the three-equation system

pmKi = Zi(p, ϕ−i) (i = 1, 2),

Π⋆3 = Z3(p, ϕ−3). (16)

Such a solution is (
√

K2
K1

pK3−Π⋆3
pK3

,
√

K1
K2

pK3−Π⋆3
pK3

, (p−pm)
√

K1K2
(pK3−Π⋆3)K3p

+D(p)−K1−K2

K3
)

for p ∈ [pm, P (K1 +K3)]. Therefore, it cannot be L = {1, 2, 3}. Otherwise
Π⋆3 = pmK3 because of Proposition 3(iv) and, as a consequence, φ3(pm)

would be equal to D(pm)−K1−K2

K3
< 0. Furthermore, it cannot be L = {1, 3},

because of Proposition 3(ii). Therefore L = {1, 2} and φ1(p) = φ⋆12(p) and

φ2(p) = φ⋆2(p) over the range [pm, p
(3)
m ], where φ⋆12(p) and φ

⋆
2(p) are defined

as in Example 1. As a consequence, Π∗
3 > pmK3 since Z3(p, φ

⋆
12(p), φ

⋆
2(p)) =

p(1− φ⋆12(p)φ
⋆
2(p))K3 is increasing on a right neighbourhood of pm. This in

turn implies that p
(3)
M < min{P (K1), pM} = P (K1) since otherwise Propo-

sition 3(ix) would be violated; therefore, φ1(p) = φ⋆⋆12(p) and φ2(p) = φ⋆⋆2 (p)

over the range [p
(3)
M , pM ]∩ (S1 ∩ S2), where φ

⋆⋆
12(p) and φ

⋆⋆
2 (p) are defined as

in Example 2.
Actually, Z3(p, φ

⋆
12(p), φ

⋆
2(p)) is increasing over the range (pm, P (K1 +

K3)) and decreasing over the range (P (K1 + K3), P (K1)): hence p◦◦ :=
argmaxp∈(pm,P (K1)) Z3(p, φ

⋆
12(p), φ

⋆
2(p)) = P (K1 + K3) = 3.8 and πm :=

maxp∈(pm,P (K1)) Z3 = 3212971
4377600 ≈ 0.7339571913. A distinguishing feature of

this example, though, is that even Z3(p;φ
⋆
12(P (K1+K3)), φ

⋆
2(P (K1+K3)) =

Z3(p;φ
◦
1(P (K1 + K3), πm), φ

◦
2(P (K1 + K3), πm)) is decreasing on the right

of p◦◦. Moreover, one can easily check that there is no equilibrium in which

p
(3)
m = p

(3)
M = P (K1 +K3) since φ

⋆
12(p) and φ

⋆
2(p) are proportional to capac-

ities of firms 1 and 2, whereas φ⋆⋆1 (p) and φ⋆⋆2 (p) are not.

In order to determine p
(3)
m when p

(3)
m < p◦◦, it must preliminarily be un-

derstood that p /∈ ∩S1 ∩ S2 ∩ S3 for p larger than and close enough to p
(3)
m .

More specifically, there is p′ > p◦◦ such that [p
(3)
m , p′] ∩ S2 = {p

(3)
m , p′}.16

Hence, on the right of p
(3)
m , whatever this may be, φ1(p) and φ3(p) are

the solutions of the equations in ϕ1 and ϕ3 Π⋆3 = Z3(p, ϕ1, φ
⋆
2(p

(3)
m )] and

Π⋆1 = Z1(p, φ
⋆
2(p

(3)
m ), ϕ3], respectively. But then again Z3(p, φ1(P (K1 +

16Here is a sketch of proof. If p
(3)
m < p◦◦ then Π⋆3 = Z3(p

(3)
m , φ⋆1(p

(3)
m ), φ⋆2(p

(3)
m )) =

Z3(p, φ
◦
1(p,Π

⋆
3), φ

◦
1(p,Π

⋆
3)) < Z3(p, φ

⋆
1(p), φ

⋆
2(p)) for p larger than and close enough to

p
(3)
m . Then, because of Lemma 1(v)&(v.b)&(v.f) in Appendix B, φ◦

1(p,Π
⋆
3) > φ⋆12(p),

φ◦
2(p,Π

⋆
3) > φ⋆2(p), and φ◦

3(p,Π
⋆
3) < 0, an obvious contradiction. Thus there is p′ such

that either [p
(3)
m , p′] ∩ S1 = {p

(3)
m , p′} or [p

(3)
m , p′] ∩ S2 = {p

(3)
m , p′}. It is easy to check that

the former alternative leads to a contradiction.
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K3), φ2(P (K1 +K3)) is decreasing in p on the right of p◦◦ = P (K1 +K3) =

3.8, implying that p
(3)
M = P (K1 +K3). Finally, it is checked that an equi-

librium exists in which p
(3)
m < p

(3)
M = P (K1 +K3), Pr(p3 = P (K1 +K3)) =

0.90793742 > 0, S1 = [pm, p
◦◦] ∪ [p◦, pM ], S2 = [pm, p

(3)
m ] ∪ [p◦, pM ], S3 =

[p
(3)
m , p◦◦], and p◦ ∈ (p◦◦, P (K1)):

φ1(p) =





φ⋆12(p) =
5(p−pm)
p(1+p) p ∈ [pm, p

(3)
m ]

pK3−Π⋆3

pK3φ
⋆
2(p

(3)
m )

p ∈ [p
(3)
m , P (K1 +K3)]

P (K1+K3)K3−Π⋆3

P (K1+K3)K3φ
⋆
2(p

(3)
m )

p ∈ [P (K1 +K3), p
◦]

φ⋆⋆12(p) =
p−pm
p

p ∈ [p◦; pM ]

φ2(p) =





φ⋆2(p) =
16(p−pm)
p(1+p) p ∈ [pm, p

(3)
m ]

φ⋆2(p
(3)
m ) p ∈ [p

(3)
m , p◦]

φ⋆⋆2 (p) = p(19.8−p)−54.76
5p p ∈ [p◦, pM ]

φ3(p) =





0 p ∈ [pm, p
(3)
m ]

K1
K3

p−pm

pφ⋆2(p
(3)
m )

+ D(p)−K1−K2

K3
p ∈ [p

(3)
m , P (K1 +K3))

1 p ∈ [P (K1 +K3), pM ]

where (p
(3)
m ,Π⋆3, p

◦) = (3.7982466455, 0.7338170986, 3.821618795) is the so-
lution to system

Π⋆3 = p(3)m

[
1− φ∗12(p

(3)
m )φ∗2(p

(3)
m )

]
K3 (17)

P (K1 +K3)K3 −Π⋆3

P (K1 +K3)K3φ⋆2(p
(3)
m )

= φ⋆⋆12(p
◦) (18)

φ⋆2(p
(3)
m ) = φ⋆⋆2 (p◦). (19)

For the sake of brevity, we omit the proof of the uniqueness of equilib-
rium.
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4.4 Example 4

Here is an example in which there is again an atom in S3 at p
(3)
M , but, unlike

in Example 3,
⋂
i=N Si = [p

(3)
m , ˜̃p] is a non-degenerate interval, p

(3)
m = p◦◦,

and Π⋆3 = πm.
Let D(p) = 30 − p, (K1,K2,K3) = (24; 12; 0.4). Then pM = 8.8, Π⋆1 =

77.44, pm = 3.226, and Π⋆2 = 38, 72. Note that P (K1 + K2) = 0 < pm =
3.226 < P (K1 + K3) = 5.6 < P (K1) = 6 < pM . Just as in Example 3,

L = {1, 2}, Π⋆3 > pmK3 and p
(3)
M < P (K1). Now p◦◦ ≈ 4.168813866 <

P (K1 + K3) = 5.6 and πm ≈ 1.430313412. We will see that there is an

equilibrium in which p
(3)
m = p◦◦ and Π⋆3 = πm. In order to characterize it,

it must be noted that φ◦3(P (K1 +K3), πm) < 1 and that Z3(p;φ
◦
1(P (K1 +

K3), πm), φ
◦
2(P (K1 + K3), πm)) is decreasing on the right of P (K1 + K3).

Taking into account the discussion of Example 3, there exists an equilibrium

in which p
(3)
M = P (K1+K3) is an atom in S3, Prφ3(p3 = p

(3)
M ) = 0.693830492,

S2 = [pm, ˜̃p]∪ [p◦, pM ] and S1 = [pm, P (K1+K3)]∪ [p◦, pM ], where ˜̃p and p◦

are to be determined. Prices ˜̃p and p◦ must be such that

φ◦2(
˜̃p, πm) = φ⋆⋆2 (p◦),

φ1(P (K1 +K3)) = φ⋆⋆1 (p◦),

that is √
K1

K2

˜̃pK3 − πm
˜̃pK3

=
p◦(D(p◦)−K3)− pmK1

p◦K2
, (20)

P (K1 +K3)K3 − πm

P (K1 +K3)K3

√
K1
K2

˜̃pK3−πm
˜̃pK3

=
p◦ − pm
p◦

. (21)

The relevant solution for p◦ is the unique solution to the third-degree equa-
tion

pK2[P (K1 +K3)K3 − πm]

P (K1 +K3)K3[p(D(p)−K3)− pmK1]
=
p− pm
p

(22)

over the range (P (K1 + K3), P (K1)), that is p◦ ≈ 5.6161244. Then ˜̃p is

easily and uniquely found: ˜̃p ≈ 5.594998554. Then it is checked that the
equilibrium we are looking for is given by the following distributions:
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φ1(p) =





φ⋆12(p) =
12[p−3.226]
p[6+p] p ∈ [pm, p

(3)
m ]

1.118033989
√

0.4p−1.430313412
p

p ∈ [p
(3)
m , ˜̃p]

2.942616835(0.4p−1.430313412)
p

p ∈ [˜̃p, P (K1 +K3)]

0.4254638187 p ∈ [P (K1 +K3), p
◦]

φ⋆⋆12(p) =
p−3.226

p
p ∈ [p◦; pM ]

φ2(p) =





φ⋆2(p) =
24[p−3.226]
p[6+p] p ∈ [pm, p

(3)
m ]

2.236067978
√

0.4p−1.430313412
p

p ∈ [p
(3)
m , ˜̃p]

0.8495839383 p ∈ [˜̃p, p◦]
φ⋆⋆2 (p) = p(29.6−p)−77.44000001

12p p ∈ [p◦, pM ]

φ3(p) =





0 p ∈ [pm, p
(3)
m ]

26.83281574(p−3.226)
0.4p−−1.4303134127

√
0.4p−1.430313412

p
− 15− 2.5p p ∈ [p

(3)
m , ˜̃p)

2.942616835× 24p−77.44000001−0.8495839383p(6+p)
p

p ∈ [˜̃p, P (K1 +K3))

1 p ∈ [P (K1 +K3), pM ]

For the sake of brevity, we omit the proof of the uniqueness of equilib-
rium.

5 Concluding remarks

This paper has first shown what equilibrium features which need to hold
in the no-pure strategy equilibrium region of a duopoly need to hold in
the analogous region of an oligopoly. Secondly, it has shown how varied
equilibrium features can be, in that region, under oligopoly: unlike in the
duopoly, the supports of the equilibrium strategies need not coincide, the
supports are not always connected for all the firms, and even the union of the
supports may not be connected. Indeed, it is not connected when there is an
atom in the support of a firm with a capacity lower than the largest one, and
we have analized the logic behind the event of such an atom. Furthermore,
Examples 3 and 4 have constructively proved for the triopoly that such an
atom can arise in the support of the smallest firm’s equilibrium strategy at
its maximum price. We have also proved that the minimum of the support
of the second largest firm is either pm, the minimum of the union of the
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supports, or a price not below a threshold - that we have identified - in such
a way that its equilibrium profit is in any case equal to pmK2. This property
has been extended to other firms with an equilibrium payoff-capacity ratio
equal to pm. Finally we have proved that, while equilibrium distributions
are necessarily symmetric for firms with the same largest capacity, this need
not be the case for equally-sized firms smaller than the largest one and we
have made explicit a number of properties concerning this issue.

Further research would clearly be needed in order to fully characterize
equilibria throughout the entire no-pure strategy equilibrium region. In par-
ticular, a task still to be fully accomplished is that of finding the equilibrium
payoffs of firms that are smaller than the two largest ones. Other research
questions that also deserve to be addressed are whether uniqueness of each
firm’s equilibrium payoffs generally holds in the event of multiple equilibria
and whether multiple equilibria necessarily mean a continuum of equilibria,
as suggested by the results obtained so far. We are confident that the results
of this paper will provide helpful insights for substantial progress on these
and other relevant issues concerning mixed strategy equilibria.

6 Appendix A

Proof of Proposition 1
(i) Let K > X. A best response for firm i to all rivals charging pc = 0

is pc if and only if
∑

j 6=iKj > X. This holds for each i if and only if∑
j 6=1Kj > X. Any strategy profile such that

∑
s∈Ω(0)−{j}Ks > X for each

j ∈ Ω(0) 6= ∅ is an equilibrium: all firms get a profit equal to 0, but no firm
may get more by deviating. Let X > K. A best response for firm i to all

rivals charging pc > 0 is pc if and only if
[
d[p(D(p)−

∑
j 6=iKj)]/dp

]
p=pc

6 0.

Also because of Assumption 2, this holds for each i if and only if K1 6

−pc [D′(p)]p=pc . There are no further equilibria. First of all max∪j∈NSj =
p > pc since no p < pc can be in Si, any i ∈ N , otherwise firm i can
obtain a profit of pcKi > pKi. Then it is enough to prove that p = pc. By
way of contradiction, let pc < p ∈ Si for some i and assume first that p is
charged with zero probability by any firm j 6= i - whether firm i charges
p with zero or positive probability. Then firm i earns a profit lower than
pcKi by charging p or a price very close to p. If, instead, p is charged with
positive probability by more than one firm, then for at least one of them it
would pay to charge a price slightly less than p: indeed, expected output
when charging p is lower than min{Ki, D(p)−

∑
j:pj<p

Kj} whereas slightly
undercutting the other most expensive firms would make residual demand
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jump to min{Ki, D(p)−
∑

j:pj<p
Kj}.

(ii) In the assumed circumstances (pc, pc, ... , pc) is not an equilibrium.
Hence we just have to rule out pure strategy profiles such that p := maxj∈N pj >
pc. Assume first that D(p)−

∑
j:pj<p

Kj > 0. If #Ω(p) < n, then any firm

h /∈ Ω(p) is selling its entire capacity, but it would still do so if it raised
the price to any level less than p. If #Ω(p) = n, then residual demand is
less than capacity for at least some firm j ∈ Ω(p), whereas its output would
jump up by undercutting rivals. Next assume D(p)−

∑
j:pj<p

Kj 6 0. Firm

i, any i ∈ #Ω(p) has failed to make a best response unless pc = 0 and∑
j∈Ω(0)Kj > X. The first condition implies that K > X. The second

implies a contradiction: if 1 /∈ Ω(0), inequality (5) cannot hold; if 1 ∈ Ω(0),
firm 1 has not made a best response because of inequality (5).

7 Appendix B

This appendix is devoted to providing proofs to Propositions 3(vii)-(ix) and
4-7. Some of these proofs are obtained by exploiting the properties of func-
tions Zi(p;ϕ−i) (see equations (6)) when p ∈ (pm, pM ) and therefore the
following inequalities hold

A.1 0 < ϕ1 < 1, because of Proposition 2;

A.2 ϕh > 0 for some h 6= 1, because of Proposition 3(i);

A.3 the set ̟i = {h ∈ N−i : ϕh > 0} is such that D(p) < Ki+
∑

h∈̟i
Kh,

because of Proposition 3(ii) since for p > pm, D(p) < D(pm) <∑
j∈LKj 6

∑
i:p

(i)
m 6p

Ki;

A.4 D(p) > K −K1, since D(p) > D(pM ).

These properties will be explored by the following Lemma 1. Sometimes we
factorize ϕj and (1− ϕj) (some j 6= i) in equation (6) to obtain

Zi(p;ϕ−i−j , ϕj) = ϕjZi(p;ϕ−i−j , 1) + (1− ϕj)Zi(p;ϕ−i−j , 0). (23)

In equation (23) Zi(p;ϕ−i−j , 1) and Zi(p;ϕ−i−j , 0)) have a clear inter-
pretation: they are the payoffs of firm i when it charges p with certainty
conditional on pj < p and pj > p, respectively, in the assumption that
ϕr = Pr(pr < p) and 1− ϕr = Pr(pr > p), any r 6= i, j.
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Lemma 1 Function Zi(p;ϕ−i), defined by equation (6), has the following
properties when p ∈ (pm, pM ) and therefore inequalities A.1, A.2, A.3, and
A.4 hold.

(i) 0 < Zi(p;ϕ−i) < pKi (each i), and (i.a) Zi(p;ϕ−i) > (1 − ϕ1)pKi

(each i 6= 1).
(ii) Zi(p;ϕ−i) (each i) is continuous, and almost everywhere twice dif-

ferentiable in p throughout (pm, pM ). Singular points may only exist at
p = P (K1 +

∑
j∈ωKj) ∈ (pm, pM ), where ω ∈ P(N−1). More specifically,

• if either i = 1 or i 6= 1 and i ∈ ω, then at p = P (K1 +
∑

j∈ωKj) the
right derivative jumps down by− [pD′(p)]p=P (K1+

∑
j∈ωKj)

∏
r∈ψ ϕr

∏
s∈N−i−ψ

(1−

ϕs), where ψ = ω ∪ {1} − {i};

• if i 6= 1 and i /∈ ω, then at p = P (K1 +
∑

j∈ωKj) the right derivate
jumps up by − [pD′(p)]p=P (K1+

∑
j∈ωKj)

∏
r∈ψ ϕr

∏
s∈N−i−ψ

(1 − ϕs),

where ψ = ω ∪ {1}.

Jumps up and down may happen simultaneously when there is χ such that
ω ∩ χ = ∅,

∑
j∈χKj = Ki, and either i = 1 or i 6= 1 and i ∈ ω.

(iii) Zi(p;ϕ−i) is concave in p over any range in which it is differentiable
and if it is not strictly concave, then it is increasing in p.

(iv) Z1(p;ϕ−1) is strictly concave and increasing in p.
(v) Zi(p;ϕ−i) is continuous and differentiable in ϕj and ∂Zi/∂ϕj 6 0

(each i and j 6= i). Moreover, (v.a) ∂Zi/∂ϕj = 0 if and only if there is no
ψ ∈ P(N−i) such that̟i−{j} ⊇ ψ ⊇ Ξ, where Ξ = {h ∈ ̟i−{j} : ϕh = 1},
and Ki +Kj +

∑
h∈ψKh > D(p) >

∑
h∈ψKh, so that

Zi(p;ϕ−i) =
∑

ψ∈Ψ

∏

h∈ψ

ϕh
∏

h∈̟i−{j}−ψ

(1− ϕh)pKi, (24)

where Ψ = {ψ ∈ P(N−i) : ̟i − {j} ⊇ ψ ⊇ Ξ, D(p) > Ki +Kj +
∑

h∈ψKh}.
More precisely, (v.b) ∂Zi/∂ϕj = 0 if and only if there is χ ⊆ ̟i−{j}−Ξ such
that

∑
h∈χ∪ΞKh > D(p) > Ki+

∑
h∈̟i∪{j}

Kh−Km, where m = maxχ, so
that

Zi(p;ϕ−i) = (1−Πh∈χϕh)pKi. (25)

Note that (v.c)Km > Ki+Kj ; (v.d) ∂Zi/∂ϕj = 0 if and only if ∂Zj/∂ϕi = 0;
(v.e) if l ∈ ̟i − {j} − Ξ − χ, then ∂Zi/∂ϕl = 0; (v.f) ∂Z1/∂ϕh < 0 and
∂Zh/∂ϕ1 < 0, each h 6= 1; (v.g) ∂Z2/∂ϕh = 0 and ∂Zh/∂ϕ2 = 0 (each
h 6= 1, 2) if and only if p > P (K1 +

∑
r∈ΞKr).

(vi) IfK1 > K2 = Kj , j > 2, and ϕ2 > ϕj , then Z2(p;ϕ−2) > Zj(p;ϕ−j),
with Z2(p;ϕ−2) > Zj(p;ϕ−j) if and only if ϕ2 > ϕj and ∂Z2/∂ϕj < 0.
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(vii) IfK1 > Ki > Kj , j > i, and ϕj > ϕi = 0, then (Kj/Ki)Zi(p;ϕ−i) 6
Zj(p;ϕ−j); strict inequality holds if ∂Zi/∂ϕj < 0 and ϕj > 0.

Proof
(i) Zi(p;ϕ−i) is a sum of nonnegative functions; hence to prove that

Zi(p;ϕ−i) > 0 it is enough to prove that at least one of the addends is
positive. Let χ = ̟i − {1}. Then qi,χ(p)

∏
r∈χ ϕr

∏
s∈N−i−χ

(1 − ϕs) >
0. Indeed, if i 6= 1, then qi,χ(p) = Ki and

∏
r∈χ ϕr

∏
s∈N−i−χ

(1 − ϕs) =
(1 − ϕ1)

∏
r∈̟i−{1} ϕr > 0, whereas, if i = 1, then 0 < q1,χ(p) < K1 and∏

r∈χ ϕr
∏
s∈N−i−χ

(1− ϕs) =
∏
r∈χ ϕr > 0.17

Zi(p;ϕ−i) is an average of functions lower than or equal to pKi; hence to
prove that Zi(p;ϕ−i) < pKi it is enough to prove that at least one of them is
lower than pKi and its weight is positive. Indeed, qi,̟i(p) = max{0, D(p)−∑

j∈̟i
Kj} < Ki and

∏
r∈̟i

ϕr
∏
s∈N−i−̟i

(1− ϕs) =
∏
r∈̟i

ϕr > 0.
(i.a) Zi(p;ϕ−1−i, ϕ1) > (1 − ϕ1)Zi(p;ϕ−1−i, 0) because of equation (23)

and part (i). Zi(p;ϕ−1−i, 0) is an average of functions pqi,ψ(p); but if ψ ∈
N−1−i, then pqi,ψ(p) = pKi.

(ii) For given ϕ−i, Zi(p;ϕ−i) is a weighted arithmetic mean of functions
pqi,ψ(p), each of which is almost everywhere twice differentiable. Singular
points and their properties are easily determined by taking into account the
fact that pqi,ψ(p) has two singular points, one at p = P (Ki +

∑
j∈ψKj),

where pqi,ψ(p) is locally concave with the right derivative jumping down by
− [pD′(p)]p=P (Ki+

∑
j∈ψKj)

, and one at p = P (
∑

j∈ψKj), where pqi,ψ(p) is lo-

cally convex with the right derivative jumping up by − [pD′(p)]p=P (
∑
j∈ψKj)

.

Note that if there is χ such that ω ∩ χ = ∅,
∑

j∈χKj = Ki, and either
i = 1 or i 6= 1 and i ∈ ω, then qi,ω∪{1}(p) = Ki and qi,ω∪χ∪{1}(p) = 0 at
p = P (K1 +

∑
j∈ωKj).

(iii) Functions pqi,ψ(p) are either strictly concave or linearly increasing
whenever they are differentiable and positive.

(iv) Since
∑

j∈ψKj < D(pM ) each ψ ⊆ N−1, pq1,ψ(p) is increasing,
concave, and positive. To prove strict concavity it is enough to remark that
pq1,̟(p) is strictly concave and its weight is positive.

(v) For any given p and ϕ−i−j , Zi(p;ϕj , ϕ−i−j) is a polynomial of de-
gree 1 (or lower) in ϕj . Hence Zi(p;ϕj , ϕ−i−j) is everywhere continuously
differentiable with respect to ϕj . Partial differentiation of (23) yields ∂Zi

∂ϕj
=

Zi(p;ϕ−i−j , 1)− Zi(p;ϕ−i−j , 0) 6 0.
(v.a) ∂Zi

∂ϕj
= 0 if and only if Zi(p;ϕ−i) is independent of ϕj , that is

Zi(p;ϕ−i) = Zi(p;ϕ−i−j , 1) = Zi(p;ϕ−i−j , 0). This requires that qi,ψ(p) =

17Note that the argument holds also when ̟i − {1} = ∅.
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qi,ψ∪{j}(p) for each ψ ⊆ N−{i, j} such that
∏
h∈ψ ϕh

∏
s∈N−i−j−ψ

(1−ϕs) >

0, that is ̟i − {j} ⊇ ψ ⊇ Ξ. Note that qi,ψ(p) > qi,ψ∪{j}(p) and qi,ψ(p) =
qi,ψ∪{j}(p) when either qi,ψ∪{j}(p) = Ki or qi,ψ(p) = 0. In other words
Zi(p;ϕ−i) is independent of ϕj if and only if for each ψ ⊆ N − {i, j} such
that ̟i − {j} ⊇ ψ ⊇ Ξ either

1. D(p) 6
∑

h∈ψKh, or

2. D(p) > Ki +Kj +
∑

h∈ψKh.

Hence if ̟i − {j} ⊇ ψ ⊇ Ξ, the two inequalities Ki + Kj +
∑

h∈ψKh >
D(p) >

∑
h∈ψKh cannot both hold.

(v.b) Let us first prove the if part. Let ̟i − {j} ⊇ ψ ⊇ Ξ. If ψ ⊇ χ,
the first alternative mentioned in the proof of part (v.a) holds. If ψ + χ,
then there is l ∈ χ such that ψ ⊆ ̟i − {l, j} and therefore

∑
h∈ψKh 6∑

h∈̟i−{l,j}Kh 6
∑

h∈̟i−{m,j}Kh. Hence the second alternative holds.
Let us prove now the only if part. Let χl = χl−1 − {ml−1}, where ml−1 =
maxχl−1 and χ0 = ̟i − {j} − Ξ. Since Ki +

∑
h∈̟i

Kh > D(p), we obtain
from part (v.a) that

∑
h∈χ0∪Ξ

Kh > D(p). If D(p) > Ki +
∑

h∈̟i∪{j}
Kh −

Km0 , then χ0 = χ. If D(p) < Ki +
∑

h∈̟i∪{j}
Kh −Km0 , then, because of

part (v.a),
∑

h∈χ1∪Ξ
Kh > D(p). Then, by iterating the same procedure we

obtain χ since D(p) > Ki +
∑

h∈̟i∪{j}
Kh −K1 > K −K1.

(v.c) Inequality
∑

h∈χKh > Ki+
∑

h∈̟i∪{j}
Kh−Km implies that Km−

Ki >
∑

h∈̟i∪{j}−χ
Kh > Kj .

(v.d) A straightforward consequence of the fact thatKi+
∑

h∈̟i∪{j}
Kh =

Kj +
∑

h∈̟j∪{i}
Kh.

(v.e) Clearly χ ⊆ ̟i − {j} − {l} − Ξ ⊆ ̟i − {l} − Ξ and D(p) >

Ki +
∑

h∈̟i∪{j}
Kh −Km > Ki +

∑
h∈̟i∪{l}

Kh −Km since l ∈ ̟i.
(v.f) Follows straightforwardly from parts (v.c) and (v.d), according to

which neither i nor j can be 1.
(v.g) Follows straightforwardly from parts (v.c) and (v.d), according to

which if either i = 2 or j = 2, then m = 1, and therefore χ = {1}.
(vi) Since K2 = Kj , Z2(p;ϕ−2−j , β) = Zj(p;ϕ−2−j , β). Hence, taking

into account equation (23), Z2(p;ϕ−2) − Zj(p;ϕ−j) = ϕjZ2(p;ϕ−2−j , 1) +
(1−ϕj)Z2(p;ϕ−2−j , 0)−ϕ2Z2(p;ϕ−2−j , 1)− (1−ϕ2)Z2(p;ϕ−2−j , 0) = (ϕj−
ϕ2) [Z2(p;ϕ−2−j , 1)− Z2(p;ϕ−2−j , 0)] = (ϕj − ϕ2)∂Z2/∂ϕj . Part (v) com-
pletes the proof.

(vii) From equation (23), we obtain that (Kj/Ki)Zi(p;ϕ−i)−Zj(p;ϕ−j) =
ϕj(Kj/Ki)[Zi(p;ϕ−i−j , 1)−Zi(p;ϕ−i−j , 0)]+[(Kj/Ki)Zi(p;ϕ−i−j , 0)−Zj(p;ϕ−i−j , 0)].
The first bracket is strictly negative if ∂Zi/∂ϕj < 0, otherwise it is non-
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positive; the second bracket is non-positive since (Kj/Ki)qi,ψ(p)− qj,ψ(p) 6
0, where ψ ∈ N−i−j .

Proof of parts (vii)-(ix) of Proposition 3
(vii) Suppose contrariwise that Πi(p

′) < Π⋆i for some p′ in the interior of
Si. The inequality can only arise if Prφj (pj = p′) > 0 (some j 6= i); but then
a fortiori Πi(p) < Π⋆i on a right neighborhood of p′, contrary to p′ being

internal to Si. The event of Πi(p
(i)
m ) < Π⋆i is similarly ruled out.

(viii) By way of contradiction, let φ−i(p) be constant over a subset of α,
say φ−i(p) = φ−i(p

′). Then dΠi(p)/dp = ∂Zi(p;φ−i(p
′))/∂p 6= 0 over that

subset of Si; the inequality derives from Lemma 1(iii)-(iv).
(ix) If i ∈ L, the claim holds because of part (iv). Let i /∈ L; because

of parts (i) and (iv) Π⋆j = pmKj for j ∈ L − {1} 6= ∅. If p > P (K1 +∑
h:p

(h)
M
<p

(i)
M

Kh), then D(p) 6 K1 +
∑

h:p
(h)
M
<p

(i)
M

Kh and therefore Πi(p) =

(1−φ1(p))pKi; hence if Πi(p) > pmKi, then Πj(p) > (1−φ1(p))pKj > pmKj

and firm j has not made a best response; the first inequality is a consequence
of Lemma 1(i.a).

Proof of Proposition 4
(i) Otherwise firm j has not made a best response by charging p̃ with

positive probability.
(ii.a) Otherwise, in a right neighborhood of p̃, Zj(p;φ−j(p)) = (1 −

Πh∈χφh(p))pKj , because of Lemma 1(v.b), while Zh(p;φ−h(p)) < Π⋆h (each
h ∈ χ). Then φ−j(p) = φ−j(p̃) on that neighbourhood and hence, as a
consequence of part (i), Zj(p;φ−j(p)) > Π⋆j .

(ii.b) If p
(h)
m = p̃, then p̃ ∈ Sh, part (ii.a) applies and

[
∂Zj
∂ϕh

]
ϕ−j=φ−j(p̃)

< 0

because of Lemma 1(v)&(v.b). Hence Πh(p̃) < Πh(p̃−) 6 Π⋆h and p
(h)
m > p̃.

(iii) Proposition 3(iii) implies that pm < p̃. Let p̃ > P (K1): then Πj(p) =
p(1 − φ1(p̃))Kj > Π⋆j for p larger than and close enough to p̃, which is an
obvious contradiction. The inequality is a consequence of part (i).

(iv) It is an obvious consequence of part (ii).
(v) Because of part (ii), Πh(p) < Zh(p̃, φ−h(p̃)) 6 Π⋆h (each h 6= j) on

a right neighbourhood of p̃ and hence (p̃, p◦) ∩ (∪i 6=jSj) = ∅ (some p◦ ∈
(p̃, pM )); therefore, by Proposition 3(vii), (p̃, p◦) ∩ Sj = ∅ too.

(vi) Otherwise Πj(p) > Πj(p̃) = Π⋆j for p larger than and close enough
to p̃ because of parts (i) and (v) and Lemma 1(iii)-(iv).

(vii) Otherwise, because of Lemma 1(iv), part (vi) cannot hold.

Proof of Proposition 5
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(i) See the proof of Proposition 1(iv) in De Francesco and Salvadori
(2022).

(ii) By way of contradiction, let φj(p
′) < φ1(p

′) at some p′ ∈ (pm, pM ).
Then, because of Lemma 1(v.f), Πj(p

′) < Z1(p
′, φ−1(p

′)) 6 Π⋆1 = Π⋆j and
hence p′ /∈ Sj . Then there should be p′′ := min{p ∈ Sj : p > p′} and
φj(p) = φj(p

′) in the whole range (p′, p′′); but this is not possible because
of Lemma 1(v.f).

(iii) If p
(j)
M = pM , then 0 < Π⋆j = Zj(pM ;φ−j(pM )) =

∑
i 6=j pMqi(pM ).Then,

∂Zj(p;1,1,...,1)
∂p

|p=pM= D(pM )+pMD
′(pM )−K+Kj < D(pM )+pMD

′(pM )−
K +K1 = 0 whenever Kj < K1, and therefore Πj(p) is decreasing in a left

neighborhood of p
(j)
M = pM whenever Kj < K1.

Proof of Proposition 6

(i) By way of contradiction, let
Π⋆i
Ki

>
Π⋆j
Kj

. Then p
(i)
m > pm because of

Proposition 3(iv) and Corollary 4. But then Π⋆i = [Zi(p, ϕ−i−j , ϕj)]p=p(i)m ,ϕ=φ(p
(i)
m )

6

Ki
Kj

[Zj(p, ϕ−i−j , 0)]p=p(i)m ,ϕ=φ(p
(i)
m )

6
Ki
Kj

Π⋆j ; the first weak inequality is a con-

sequence of Lemma 1(vii).
(ii.a) It is an obvious consequence of Proposition 3(iv), Corollary 4, and

part (i).
(ii.b) The set {h ∈ L : Kh 6 Ki} is not empty since j ∈ {h ∈ L : Kh 6

Ki}. Because of part (ii.a) the claim holds if p
(i)
m = pm. Let p

(i)
m > pm.

Then, either [∂Zi/∂ϕl]ϕ=φ(p(i)m )
= 0 or [∂Zi/∂ϕl]ϕ=φ(p(i)m )

< 0, each l ∈ {h ∈

L : Kh 6 Ki}, because of Lemma 1(v). The latter case leads to a contradic-

tion: pmKi = (Ki/Kl)Π
⋆
l > (Ki/Kl)Zl(p

(i)
m ;φ−l(p

(i)
m )) > Zi(p

(i)
m ;φ−i(p

(i)
m )) =

Π⋆i = pmKi. The equalities and the first inequality are obvious. The second
inequality is a consequence of Lemma 1(vii) since [∂Zi/∂ϕl]ϕ=φ(p(i)m )

< 0 and

φl(p
(i)
m ) > φi(p

(i)
m ) = 0. Hence [∂Zi/∂ϕl]ϕ=φ(p(i)m )

= 0 each l ∈ {h ∈ L : Kh 6

Ki} and the claim is obtained by Lemma 1(v.b)&(v.d).
(ii.c) A straightforward consequence of part (ii.b) and Lemma 1(v.a)&(v.b).
(iii.a) An obvious consequence of part (i).
(iii.b) Zj(p

′;φ−j(p
′)) 6 Zi(p

′;φ−i(p
′)) because of Lemma 1(v). If Zj(p

′;φ−j(p
′)) <

Zi(p
′;φ−i(p

′)), then p′ ∈ Si − Sj . If Zj(p
′;φ−j(p

′)) = Zi(p
′;φ−i(p

′)), then
[∂Zi/∂ϕj ]ϕ=φ(p′) = 0 and the claim is obtained by Lemma 1(v.b)&(v.d).

(iii.c) Otherwise, by Lemma 1(v.b)&(v.d), Π⋆j = Zj(p
′;φ−j(p

′)) < Zi(p
′;φ−i(p

′)) =
Π⋆i , contrary to part (iii.a).

(iii.d) Since parts (iii.b)-(iii.c) hold, p′ ∈ Si−Sj . Let p
′′ = min [p′, pM ]∩

Sj . Clearly, Sj ∩ [p′, p′′) = ∅, p′′ ∈ Sj , and φj(p
′′) = φj(p

′) < φi(p
′) 6 φi(p

′′);

28



then there is χ ⊆ {h : p
(h)
m 6 p′′} − {h ∈ L : Kh 6 Ki} such that Πi(p

′′) =
(1−Πh∈χφh(p

′′))p′′Ki because of parts (iii.b) and (iii.c), whether p′′ ∈ Si or
not.

Proof of Proposition 7
(i) If K1 = K2, the claim holds because of Corollaries 2 and 3. If

K1 > K2, the claim holds because of Propositions 6(i) and 3(i)&(iv).
(ii)-(iii) Are obvious consequences of Proposition 6(ii)&(iii), respectively,

and Lemma 1(v.g).
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