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Why Machines Will Not Replace Entrepreneurs. On the Inevitable LimitaƟons of 
ArƟficial Intelligence in Economic Life.  

By: Ludwig Van Den Hauwe, PhD 

Abstract 

This paper criƟcally explores some supposed implicaƟons of the development of arƟficial 
intelligence (AI), parƟcularly also machine learning (ML), for how we conceive of the role of 
entrepreneurship in the economy. The quesƟon of the impact of AI and ML is examined by 
hypothesizing a decentralized market-based system and raising the quesƟon of whether 
entrepreneurs will someday likely be replaced by machines. The answer turns out to be 
highly skepƟcal. Not only does the materialist worldview behind the ambiƟons of much AI 
research cast serious doubts upon the chances of success of any aƩempts to emulate 
entrepreneurship algorithmically with the help of computers, the very possibility of arƟficial 
general intelligence (AGI) can also be ruled out on purely scienƟfic grounds. The paper 
concludes that human entrepreneurs will remain the driving force of the market. 
 
The field of arƟficial (general) intelligence has made no progress because there is an unsolved 
philosophical problem at its heart: we do not understand how creaƟvity works.  
David Deutsch 

1. Introduction 

The recent hype cycle surrounding the development of arƟficial intelligence (AI), especially 

machine learning (ML), has led economists to reexamine some tradiƟonal lessons of 

economic policy, parƟcularly regarding the quesƟon whether AI and ML might circumvent 

the problems of central planning in view of the way in which socieƟes create and use 

knowledge. (Hayek 1945) It turns out that the lessons we know about what consƟtutes good 

and bad economic policies are likely to remain largely unchanged. (Fernández-Villaverde 

2020) As this author reminds, “(t)he objecƟons to central planning are not that solving the 

associated opƟmizaƟon problem is extremely complex, which it is and increasingly so in an 

economy with a maddening explosion of products, or that we need to gather the data and 

process it sufficiently fast. If that were the case, ML could perhaps solve the problem, if not 

now, then in a few more iteraƟons of Moore’s law. The objecƟons to central planning are that 

the informaƟon one needs to undertake it is dispersed and, in the absence of a market 

system, agents will never have the incenƟves to reveal it or even to create new informaƟon 

through entrepreneurial and innovaƟve acƟvity.” (12) 
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Along similar lines BoeƩke et al. (2023) argue that, despite the prospect of what King and 

PeƩy (2021) refer to as “technosocialism,” technological advances in computaƟon cannot 

replace the compeƟƟve discovery process that takes place within the context of the market.  

To the extent technosocialism represents a restatement of the case for market socialism, 

which incorrectly framed the “soluƟon” to economic calculaƟon under socialism as one of 

compuƟng data, rather than the discovery of context-specific knowledge that only emerges 

through the exchange of property rights, the arguments put forth by Austrian economists 

regarding the impossibility of economic calculaƟon under socialism remain just as relevant 

today. 

This paper explores the impact of AI and ML from a somewhat different angle: Hypothesizing 

a decentralized market economy, the focus is specifically on the impossibility of (strong or 

general) AI itself by raising and answering the simple quesƟon: Will machines ever be 

capable of fulfilling the entrepreneurial funcƟon thus rendering human entrepreneurs 

obsolete? Before I present a general impossibility argument, which relies to some extent on 

criƟcisms formulated from the perspecƟve of scienƟfic frameworks and disciplines other 

than praxeology, some tenets of Austrian entrepreneurship theory are summarized, the 

disƟncƟon between narrow AI and AGI is clarified, some intuiƟvely illuminaƟng examples of 

the limits of AI with respect to entrepreneurship are provided and a characterizaƟon of 

human-level intelligence is aƩempted. 

In this paper we will not take any definite stance on the mind-body problem, nor do we have 

any intenƟon to here solve the problem of whether materialism is or is not a defensible or 

adequate philosophical or scienƟfic worldview. But as will be elaborated further it is 

important to understand that, according to the present state of knowledge, even from a 

monist materialisƟc viewpoint according to which mental processes are physical processes 

the impossibility of AGI is an undeniable fact due to severe limitaƟons on our ability to model 

complex systems mathemaƟcally. There is no need to invoke any mind-body disconƟnuity or 

to reject scienƟfic materialism to demonstrate the impossibility of arƟficial (general) 

intelligence. 
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2. The essenƟal nature of entrepreneurship  

 

Austrian economists can pride themselves with having a theory of entrepreneurship, or in 

any case an economic theory that includes entrepreneurship. An examinaƟon of the 

literature reveals, however, that several concepƟons of entrepreneurship have been 

developed within the broad field of Austrian economics not all of which are equally relevant 

from the perspecƟve adopted here.   

Hayek (1945) notes how entrepreneurs adapt to events they neither have nor need to have 

knowledge about by responding to price changes. Similarly, Kirzner (1973) argues that 

entrepreneurship as alertness to opportunity contributes to equilibraƟng the economy. In 

more recent theory development, Foss and Klein (2012) argue, alongside Knight (1921), that 

entrepreneurship is about exercising judgment by establishing business firms within which 

they can conduct controlled experiments. 

One could argue that from the perspecƟve developed by these authors, much of modern 

Austrian theorizing on entrepreneurship somewhat misses the mark by (1) treaƟng 

entrepreneurship as an important component in but not the driving force of the market 

process and (2) conceptualizing the entrepreneur as primarily a responsive agent. 

Although Hayek and Kirzner conceive of the entrepreneur as acƟng within a market process, 

they both subscribe to the view of entrepreneurship as responsive to given circumstances. 

They take the boundaries of the market process as given and aƩempt maximizing, or at any 

rate improving, adjustments of producƟon for profit. Both explain entrepreneurship as a 

force that equilibrates and improves on the overall market, but neither concepƟon of 

entrepreneurship explains the driving force of the process. (Per L. Bylund 2022b) 

The more recently developed judgment-based approach (Foss & Klein 2012) is 

complementary to Hayek’s and Kirzner’s arguments by focusing on what affords the 

entrepreneur the decision-making power and ability to make adjustments and act on 

opportuniƟes. It focuses on the entrepreneur as an acƟve owner-decision-maker, a capital 

owner who bears the uncertainty of producƟon. 
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In the present context entrepreneurship will to the contrary be conceptualized along lines 

developed on the one hand by Ludwig von Mises, who was very clear and explicit about the 

importance of entrepreneurship as the driving force of the market process, and on the other 

hand by Jesús Huerta de Soto, who has emphasized the essenƟally creaƟve nature and 

spiritual aspects of entrepreneurship.  

Jesús Huerta de Soto has disƟnctly highlighted the essenƟally creaƟve nature and spiritual 

dimension of entrepreneurship. According to Prof. Huerta de Soto “(t)he exercise of 

entrepreneurship does not require any means. That is to say, entrepreneurship does not 

entail any costs and is therefore fundamentally creaƟve. This creaƟve aspect of 

entrepreneurship is embodied in its producƟon of a type of profit which, in a sense, arises 

out of nothing, and which we shall therefore refer to as pure entrepreneurial profit. To derive 

entrepreneurial profit one needs no prior means, but only to exercise entrepreneurship 

well.” (Huerta de Soto 2008, 21) 

All human acƟon thus has an essenƟally creaƟve component, and no basis exists for 

disƟnguishing between entrepreneurial creaƟvity in the economic realm and creaƟvity in 

other human spheres (arƟsƟc, social, and so on). The essence of creaƟvity is the same in all 

areas, and the concept and characterisƟcs of entrepreneurship, both of which we are 

analyzing, apply to all human acƟon, regardless of the type. (Huerta de Soto 2010, 42) 

Moreover, “(t)he fact that entrepreneurship is disƟnctly creaƟve and that therefore pure 

entrepreneurial profits arise from nothing can lead us to the following theological digression: 

if we accept for the sake of argument that a Supreme Being exists, one who created all things 

from nothing, then when we suppose entrepreneurship to be an ex nihilo creaƟon of pure 

entrepreneurial profits, it seems clear that man resembles God precisely when man exercises 

pure entrepreneurship! This means that man, more than homo sapiens, is homo agens or 

homo empresario, and that more than when he thinks, he resembles God when he acts, that 

is, when he conceives and discovers new ends and means. We could even construct an enƟre 

theory of happiness, a theory which would suggest that man is happiest when he resembles 

his Creator. In other words, the cause of the greatest happiness in man would be to recognize 

and reach his objecƟves (which implies acƟon and the exercise of entrepreneurship).” (ibid. 

42)  
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The phenomenon of entrepreneurship according to this view exhibits a spiritual non-material 

dimension. The non-material dimension of human entrepreneurship is also highlighted by 

Sautet (2022) who argues from within an Aristotelian framework that alertness, the central 

concept in Kirzner’s theory of the entrepreneurial funcƟon, can be understood as a 

potenƟality or propensity with a very specific meaning: it emanates from the human 

intellect, which, through its immateriality, is capable of introducing novelty in the 

subjecƟvely perceived world by the agent doing the acƟng. Austrian economics thus 

assumes, most of the Ɵme implicitly, an open-ended world and a human mind or intellect 

that, as in the hylomorphic tradiƟon of the human soul known to Aristotelian scholars, is 

itself open-ended, immaterial, and capable of sheer creaƟon.  

 

This is an important and significant conclusion that, given the undeniably materialist 

worldview underlying the field of AI research, already casts some serious doubts upon the 

chances of success of any aƩempts to emulate entrepreneurship algorithmically with the 

help of machines. But as will be noted further, the impossibility of emulaƟng entrepreneurial 

creaƟvity with the help of machines does not strictly depend or rely upon entrepreneurship 

being an immaterial rather than a material phenomenon. The argument depends upon 

entrepreneurial creaƟvity being a capability of the complex dynamical system which is the 

mind-body-environment conƟnuum and the impossibility of adequately modelling this 

system mathemaƟcally. 

 

3. Narrow AI versus AGI 

Computers have transformed almost every aspect of life in modern technology-based 

socieƟes. They have transformed health care, law enforcement, scienƟfic research, 

commerce, in many cases in ways which have involved the use of purpose-built AI soŌware.  

However, all successful uses of AI are examples of narrow AI. Examples include facial 

recogniƟon, disease predicƟon, advanced manufacturing, spam filters, markeƟng content 

recommendaƟons, approximate text translaƟon etc. 

In each case the soŌware works by converƟng data sampled in a given area into vectors or 

matrices; the laƩer are then used to obtain a model to fulfill the task at hand. The benefits 

can be significant but there are also limits. AI can never deal with new types of data— 
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exhibiƟng paƩerns not present in its sample data—without some sort of retraining directly 

or indirectly involving inputs from human beings. AI does not have the natural intelligence 

even of an arthropod. 

Artificial general intelligence (AGI), in contrast to narrow AI, can be defined as an AI that has 

a level of intelligence that is either equivalent to or greater than that of human beings or is 

able to cope with problems that arise in the world that surrounds human beings with a 

degree of adequacy at least like that of human beings. In 1980, philosopher John Searle 

introduced a distinction between weak AI—the idea that machines could act as if they were 

intelligent—and strong AI—the assertion that machines that do so are consciously thinking 

(not just simulating thinking). Over time the definition of strong AI shifted to refer to what is 

also called “human-level AI” or “general AI”—programs that can solve an arbitrarily wide 

variety of tasks, including novel ones, and do so as well as a human. (Searle 1980) 

 

For general AI, the goal is to create a computable model of the behaviour of important 

aspects of the human mind-body continuum (or perhaps better: of the human mind-body-

environment continuum), thereby enabling an emulation of intelligent human behaviour. 

But the mind-body continuum is a complex system (it is indeed a complex system of complex 

systems, at many levels). Thus, if our ability to create mathematical models of complex 

systems is severely limited, then so also is our ability to create the computable models that 

would be needed to create general AI. 

 

The No Free Lunch (NFL) theorem, which was formulated and proven in the fields of search 

and optimisation, states that if the problem space in which an optimum is to be found must 

be modelled as a probability density function, then the computational cost of finding the 

optimum averaged over all problems in the space is the same for any solution method. 

(Wolpert et al. 1997) It follows that there cannot be any optimisation procedure that is 

globally superior to all others—a procedure can be superior only with regard to some 

specific problem class. 

The theorem applies in parƟcular to complex system emanaƟons yielding data which 

correspond to unique (non-repeatable) mulƟvariate distribuƟons at each step. Indeed, for 
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data of this sort, per the NFL theorem, it is not only that we cannot find a globally superior 

opƟmisaƟon method. We cannot obtain an adequate (requirement-fulfilling) predicƟve 

model of any sort. 

The theorem helps us to understand why general problem solvers cannot be found for many 

real-world problems and why such problems need to be restricted to cases in which special 

solvers can provide a soluƟon. These are exactly the cases where AI—more precisely: narrow 

AI—works. If intelligence is a problem-solving algorithm, then it can only be understood with 

respect to a specific problem. (also Chollet 2017) 

 

What someƟmes happens, however, is that such approximaƟve special soluƟons—which 

work only for a subset of cases within a given field—are associated with claims of general 

applicability. SoluƟons of this sort will inevitably result in failures when they are applied to 

cases outside the restricted set. Recent cases of driver casualƟes in self-driving cars 

confronted with sensor input deviaƟng from the training distribuƟon are just one example of 

this phenomenon. 

 

It is thus not contested that narrow AI can support or even outsmart humans including 

entrepreneurs at specific tasks. The tremendous successes of arƟficial intelligence along 

certain narrow lanes, such as text translaƟon or image recogniƟon, are not denied. Obviously, 

the exercise of entrepreneurship requires a broad spectrum of (not only cogniƟve) abiliƟes 

and mimicking or emulaƟng it computaƟonally would certainly require AGI.  

 

4. A few intuitive examples of what entrepreneurs can do but machines 

cannot. 

Before aƩempƟng a theoreƟcal characterizaƟon of what human intelligence is and what its 

emulaƟon in the form of AGI would have to amount to, some easily comprehensible 

examples of things human entrepreneurs can do but computers cannot are here listed. They 

all illustrate the gulf that separates human intelligence from presently available machine 

intelligence: 
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Extreme generalizaƟon     

Deep learning achieves local generalizaƟon via interpolaƟon on a learned approximaƟon of 

the data manifold. InterpolaƟon can help to make sense of things that are very close to what 

one has seen before. But remarkably, humans deal with extreme novelty all the Ɵme, and 

they do just fine. They don’t need to be trained in advance in countless examples of every 

situaƟon they’ll ever have to encounter. Humans are capable of extreme generalizaƟon, 

which is enabled by cogniƟve mechanisms other than interpolaƟon: abstracƟon, symbolic 

models of the world, reasoning, logic, common sense, innate priors about the world—what 

we generally call reason. (Chollet 2021, 130) 

AbducƟve reasoning. 

Larson (2021, 275), poinƟng out that “no one has the slightest clue how to build an arƟficial 

general intelligence”, disƟnguishes three different types of inference: deducƟon, which is 

explored by classic symbolic AI; inducƟon, which he classifies as the province of modern 

stochasƟc AI; and a third type which, following the American pragmaƟst philosopher Peirce, 

he calls abducƟon. Peirce’s term is nowadays used in different contexts as another word for 

“hypothesis formaƟon” or also just plain “guessing”. It is abducƟon, Larson argues, which is 

at the core of human intelligence, and thus engineering a counterpart of abducƟon—a 

combinaƟon of intuiƟon and guessing—would be needed for human-level AI. His book 

provides a thorough and convincing account of why this is so. But aƩempts to engineer the 

types of abducƟve inference characterisƟc of human reasoning have in every case failed to 

reach even first base.1 

Making use of tacit knowledge 

One of the characterisƟcs of entrepreneurship highlighted by Prof. Huerta de Soto is that it 

involves tacit knowledge which cannot be arƟculated. (ibid. 22-4) One possibility in the AI 

debate is indeed that we have general intelligence, but that we can’t actually write down 

what it is—program it, that is—because in important respects it’s a black box to 

ourselves.(Larson 2021) Michael Polanyi argued that arƟculaƟons necessarily leave out 
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“tacit” components of intelligence—aspects of thinking that can’t be precisely described by 

wriƟng down symbols. Intelligence is only partly captured by the symbols we write down—

the uses of language that he called “arƟculaƟons.” Polanyi was anƟcipaƟng many of the 

headaches AI systems have caused for AI designers, for reasons stemming from the 

incompleteness of arƟculaƟons.  

Causal understanding 

Judea Pearl, while not excluding the possibility of creaƟng an AGI, emphasizes that the 

currently fashionable stochasƟcs-based “opaque learning machines” (Pearl 2020) lack an 

important feature of human-level intelligence in that they cannot answer quesƟons related 

to causality and thus they cannot develop understanding about how things work.  

Learning and self-improvement 

Understanding the concept of learning is essenƟal for understanding what drives the market 

process. (Harper 1996) Could computers learn in this sense? AI systems do not learn in the 

sense that animals and humans do. To use the term “learning” when speaking of the 

mechanics of stochasƟc AI is inappropriate because the opƟmizaƟon algorithms used to train 

neural networks do not learn in anything like the sense in which vertebrates learn. 

(Lapuschkin et al. 2019) Deep neural networks (dNNs) are merely “more sophisƟcated 

staƟsƟcal techniques for fiƫng funcƟons” and have nothing to do with real learning. 

(Darwiche 2018)  

More precisely so-called deep neural networks (dNNs) are stochasƟc regression or 

classificaƟon models. StochasƟc models are obtained by applying opƟmisaƟon algorithms to 

the training tuples. The opƟmisaƟon algorithms work under constraints with the goal of 

minimising the loss of the model, which means the deviaƟon of the model from the reality of 

the observed outcomes. While the ability of highly sophisƟcated opƟmisaƟon algorithms to 

autocompute dNN models across huge distribuƟons is impressive, such stochasƟc models 

(and determinisƟc models as well) are always models of logic systems, because (a) they are 

executable on a Turing-machine, which is a logic system and, (b) Turing machines can only 

execute instrucƟons that are logical in nature. Thus these models will not develop 

intenƟons—the equaƟons are just funcƟonals or operators relaƟng an input vector to a 

certain output—in other words, they are nothing but a general form of regression models. 
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Furthermore, the nature of AI models as logic systems explains what Larson (2021, 155) calls 

“model saturaƟon”, which is the phenomenon whereby stochasƟc models oŌen reach a 

certain quality level but then cannot get any beƩer despite the addiƟon of new training data. 

The reason for this is the absolute limit, which is caused by the modelling of a complex 

system with a logical system. The logic system can never aƩain the performance of the 

complex system, which creates a quality hiatus that cannot be closed. (Landgrebe & Smith 

2023, 147-9) 

Exercising will and autonomy 

Without will and the intenƟons and acts that flow therefrom, there is no possibility that a 

machine could become an autonomous agent. And if it is not autonomous, it cannot pursue 

any goals.  It is the person who is the source of human will. (Scheler 1973) Persons are 

differenƟated from animals, not only by their cogniƟve capabiliƟes, but also by their ability 

to act based on their will. To create an arƟficial will, we need a complex of disposiƟons like 

the ones possessed by humans which can be realized in intenƟons, deliberaƟons, and 

resoluƟons which all emanate from a complex system and none of which could be modelled 

mathemaƟcally. Hence there will be no AI will and no emulaƟon of the will of any sort. 

Moral judgment 

It is impossible to teach machines moral judgement: “People need to understand that 

current AI—and the AI that we can foresee in the reasonable future—does not, and will not, 

have a moral sense or moral understanding of what is right and what is wrong” (Yoshua 

Bengio in Ford 2018, Chapter 2).  

5. The nature of intelligence –  

The difference between human intelligence and machine intelligence has scarcely gone 

unnoƟced.  An oŌen cited example is chess. As Kasparov reminds us “(i)n what arƟficial 

intelligence and roboƟcs experts call Moravec’s paradox, in chess, as in so many things, what 

machines are good at is where humans are weak, and vice versa. In 1988, the roboƟcist Hans 

Moravec wrote, “It is comparaƟvely easy to make computers exhibit adult level performance 

on intelligence tests or playing checkers, and difficult or impossible to give them the skills of 

a one-year-old when it comes to percepƟon and mobility.” (8) “As Moravec’s paradox 



12 
 

dictates, computers are very good at chess calculaƟon, which is the part humans have the 

most trouble with. Computers are poor at recognizing paƩerns and making analogical 

evaluaƟons, a human strength.” (50) 2 

It would seem that when projecƟng an “intelligence explosion” AGI theorists employ an 

erroneous definiƟon of intelligence and profoundly misunderstand both the nature of 

intelligence and the behavior of recursively self-augmenƟng systems. Human intelligence 

depends on innate disposiƟons, on interacƟon with the environment (sensorimotor 

affordances), and on socializaƟon; it can be exemplified only by a human being who is part of 

society. Complex real-world systems cannot be modelled using the Markov assumpƟon. 

(Landgrebe & Smith 2023, 16, henceforth L&S 2023; Chollet 2017)  

What, then, is human intelligence and what should machine intelligence look like if it is to 

emulate human intelligence? 

On a general level and for clarity’s sake we can disƟnguish between two aspects of 

intelligence, which following L&S we can call “primal” and “objecƟfying” intelligence, 

respecƟvely. Humans, of course, have only one type of intelligence, which is a fusion of both. 

The idea of what we are here calling “primal intelligence” was introduced by the philosopher 

Max Scheler as what he called “pracƟcal intelligence”. “Primal intelligence” is found in higher 

animals such as mammals and birds, and it may be present in other species also.  

Primal intelligence is realised in non-human organisms always in an acƟon through which the 

organism aims to fulfil a biological need such as drinking, eaƟng, or life preservaƟon through 

flight or fight. Animals (by which we mean here non-human animals) always live to fulfil 

immediate goals; they cannot create complex long-term plans. They live in the present 

situaƟon and cannot abstract away from what holds only of their survival or, in higher 

species, the survival of their offspring. Animal percepƟon is structurally restricted. Animals 

are blind to sƟmuli that are not related to the fulfilment of their immediate biological needs, 

which means that their worldview is highly restricted. Sensual clues that do not belong to 

the environment to which they have been adapted by evoluƟon are ignored in something 

like the way that we humans, in normal circumstances, ignore ultraviolet light or 

radioacƟvity. (L&S 42) What sets humans apart is objecƟfying intelligence. If beavers or bower 

birds are removed from their habitat, they cannot survive unaided. Humans, by contrast, 
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have an intelligence that comprises, in addiƟon to the spectrum of capabiliƟes of primal 

intelligence, also the ability to conceive, and then deliberately plan and build artefacts that 

will enable them to survive even where there is no life at all—in polar barrens in the high 

arcƟc, for example, or in submarines, or in outer space. 

Our geneƟc disposiƟon for objecƟfying intelligence arose in tandem with the degeneraƟon of 

our biological adaptaƟon to the natural world. (Scheler 1961; Gehlen 1988) As homo sapiens 

lost the specialisaƟon to natural environments which higher non-human mammals sƟll enjoy, 

our species acquired—slowly, over millions of years of evoluƟon—the general purpose 

adaptaƟon which we are calling objecƟfying intelligence, and this capability has in modern 

Ɵmes enabled humans to create their own environments summing up to the enƟre 

contemporary technosphere. 

Where non-human vertebrates and all lower organisms relate to their environment in a pre-

determined set of ways, objecƟfying intelligence allows homo sapiens to disengage himself 

from his environment in a way that allows him to see himself, other human beings, and the 

elements of this environment (both biological and non-biological) as objects, each with its 

own trajectory and its own array of properƟes and causal powers. 

We can characterise the capability of objecƟfying intelligence as involving (L&S 46-7): 

- the ability to objecƟfy both the person’s environment and her own self; each person can 

serve as target not only of her own but also of the others’ conscious acts; and each 

person is aware that they can themselves become the target of the conscious acts of 

others; 

- the ability to focus on and to track objects through Ɵme in a way that enables both 

short- and longterm planning (potenƟally extending across mulƟple generaƟons), 

including the seƫng aside of resources for the future; investment in the creaƟon of 

enduring physical artefacts (churches, factories, roads, theatres) and insƟtuƟons 

(governments, legal and financial systems, religions); 

- the ability to make sense of the world in terms of causality and teleology; to understand 

object persistence for different categories of object; to associate specific categories of 

processes, disposiƟons, capabiliƟes, and funcƟons with specific categories of objects; 
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and to differenƟally and consciously value objects (including other persons) in light of 

their different contribuƟons to the realisaƟon of one’s goals; 

- the power of language, including the ability to think of and to categorise objects under 

universals and to exploit such linguisƟcally mediated categorisaƟons to enable more 

complex acƟviƟes, including acƟviƟes involving shared agency; 

- a heightened degree of independence (relaƟve to what is the case for lower animals) 

from immediate organic necessiƟes, which manifests itself in having and realising 

intenƟons of new sorts, including intenƟons belonging to cultural worlds; 

- self-distancing, which means the ability to stand outside natural life also in the sense 

that we are able to reflect upon ourselves as taking the point of view of an observer in 

relaƟon to other objects in the world; 

- distance from the world: this means that humans have a wide range of choices as to 

which parts of reality they will direct their aƩenƟon and interests, where animals are 

restricted to modes of interacƟon with the world that are opƟmised to the 

environmental niche into which they have evolved; 

- the ability to modify our directedness towards targets by cancelling the belief-moment. 

It is this which allows all forms of imaginaƟve directedness towards objects, in the 

literary and visual arts as well as in planning for the future and in all forms of speculaƟon 

and hypotheƟcal reasoning. The ability to direct one’s thinking to enƟrely new kinds of 

objects is a characterisƟc feature of human creaƟvity. 

 

In view of the foregoing how, then, could we obtain a definiƟon of AI that is useful and 

applicable in real user seƫngs?  

If we are talking of AGI, then we would certainly want a machine with -- not merely primal 

but also and foremost -- objecƟfying intelligence. (L&S 60 ff.) For example, a robot with the 

ability to engage in conversaƟons with humans in which it would be perceived as a useful 

interlocutor because it has, for example, the ability to understand an ambiguous order (such 

as: ‘Give me the boƩle’, where there are mulƟple boƩles standing on the shelf ), 

disambiguate the order by asking clarificatory quesƟons, and execute the order by moving 

over to the shelf and reaching out with its robot arm. ObjecƟfying intelligence is required for 

this purpose because execuƟon of the order presupposes an objecƟficaƟon of reality 
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analogous to that performed by humans. Thus the requirement for useful AI is: (not merely 

primal but) objecƟfying intelligence—including self-objecƟficaƟon—which would in any case 

be required for all purposes in which the arƟficial agent is required to move freely among 

and interact with humans. For the agent would need to move and behave in a way that is 

compaƟble with the ways humans move and behave in relaƟon to each other in real 

environments and thus in a way that would make the agent, too, a part of what we can think 

of as the human world. 

An extensive review and discussion of representaƟve definiƟons of the term “intelligence” 

provided by the leading proponents of AI, and specifically of AGI, starƟng with what is in the 

AGI community the most influenƟal and sƟll the most widely accepted definiƟon, which was 

put forward by Legg and HuƩer in a paper enƟtled “Universal Intelligence: A DefiniƟon of 

Machine Intelligence” published in 2007, falls outside the scope of this paper.  

It would appear, however, that without excepƟon these definiƟons, when measured against 

the previously specified requirement, throw no light at all on human intelligence in either of 

its two aspects of primal and objecƟfying, and therefore do not yield machines that can fulfill 

this requirement; neither will they yield machines that will have the capacity to go 

significantly beyond tradiƟonal “narrow” AI. (L&S Chapter 3) 3 

SƟll the account of human intelligence can be used to throw light in the reverse direcƟon on 

what AI research itself has really achieved and will be able to conƟnue to achieve in the 

future, using primal and human intelligence as a benchmark. 

 

6. The general argument: the missing mathemaƟcs of complex systems and 

the impossibility of AGI 

 

Whether it was John Searle’s Chinese Room argument (Searle, 1980) or Roger Penrose’s 

argument of the non-computable nature of a mathemaƟcian’s insight – an argument that 

was based on Gödel’s Incompleteness theorem (Penrose, 1989), we have always had skepƟcs 

that quesƟoned the possibility of realizing strong ArƟficial Intelligence, or what has become 

known as ArƟficial General Intelligence (AGI). (Van Den Hauwe 2020) Many of the possible 
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objecƟons to AI were foreseen by Alan Turing, the first person to define AI, before they were 

subsequently raised by others. (Turing 1950)  

  

But the strongest and most convincing argument elaborated up Ɵll present that AGI is simply 

impossible has been put forward recently by Jobst Landgrebe and Barry Smith in their 2023 

book Why Machines Will Never Rule the World – ArƟficial Intelligence without Fear (L&S 

2023). The central quesƟon of this book is the possibility of the emulaƟon of the most 

complex single-organism complex system on earth, namely the human mind-body 

conƟnuum. 

 

In the authors’ view the human mind is an integral part of the human body or rather of what 

they call the human mind-body conƟnuum. There is no separaƟon of mind and body; there is 

only one whole. Their posiƟon can be called a “no layers” approach in that it embraces a 

materialisƟc monist view according to which mental processes are physical processes. 

Contrary to a computer, that is a machine that creates a numerical output based on some 

numerical input using a mathemaƟcal model (Turing 1937), the human brain and the human 

mind-body conƟnuum are not machines of any kind. (L& S Chapters 7 & 8) 

They convincingly defend the thesis that it is impossible to obtain synopƟc and adequate 

mathemaƟcal models of complex systems, which means: models that would allow us to 

engineer AI systems that can fulfill the requirements such systems must saƟsfy if they are to 

emulate human-level intelligence. 4 

The overall argument is quite simple and consists of two steps:  

(a) Anything we engineer (a computer or any other machine) must ulƟmately be a system 

that can be modelled mathemaƟcally. That is, any engine we engineer is in the end a logical 

system that can be formally modelled and described by the mathemaƟcs available to us. 

ArƟficial intelligence, no maƩer what problems it is applied to, would have to reach its 

soluƟons by execuƟng a set of mathemaƟcal funcƟons that are each computable in the 

Church-Turing sense. Any AI algorithm must be Church-Turing computable and only 

algorithms that can be formulated as a sequence of elementary recursive funcƟons are 

computable. (Enderton 2010) This requirement places a restricƟon on the sorts of programs 

that can be executed by a computer: they must be based on some mathemaƟcal model 
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whose outputs are Turing-computable from their inputs.  

 

Any mathemaƟcal model that runs on a Turing machine can only model comprehensively and 

adequately what we call logic systems. This is because to be computable it must be 

isomorphic to an algorithm which can be expressed using the basic recursive Church 

funcƟons. Each model consisƟng of a combinaƟon of these funcƟons is always a model of a 

logic system, even if the laƩer is used to approximate a complex system. Only logic systems, 

that is, systems that can be successfully modelled using proposiƟons of mathemaƟcs linked 

together by logical relaƟons, allow models that can predict their behavior almost exactly. 

Computable models are models of logic systems; they all belong to the (extended) 

Newtonian paradigm of mathemaƟcal modelling of reality.  

 

StochasƟc models of complex systems are obtained using derivaƟves of loss funcƟons, which 

are used to find local minima of mulƟvariate funcƟonals. The result is a very long, 

differenƟable equaƟon. Due to the mathemaƟcal properƟes of every dNN, this equaƟon 

obeys relaxed Newtonian requirements. This means that it does not require the interacƟons 

between its variables to be always the same, and it also does not require that these 

interacƟons have to be homogeneous over the enƟre neural net. However, the importance of 

any given interacƟon must decrease over space or Ɵme in a regular fashion; in other words, 

every neural network must sƟll have a weak Markov property over space or Ɵme. And neural 

networks sƟll require most of the properƟes of Newtonian models in order to be 

computable.  

 

Simplifying logic systems saƟsfy the following four condiƟons (L&S 122-3):  

 

(1) The system behaviour can be explained by reference only to one of the four fundamental 

interacƟons of gravity, electromagneƟc force, and the weak and strong nuclear force. 

(2) The system behaviour of interest is dominated by a single homogeneous and isotropic 

force in such a way that the effects of the other interacƟons are so small, in the context of 

the modelled aspect, that they can be neglected. If there is more than one relevant force in a 

system, for example gravity and electromagneƟc force, their effects can be modelled 
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separately, given that each force dominates relaƟve to its effects on corresponding separate 

aspects of the system’s behaviour. The interacƟon with other forces can be neglected. 

(Thurner et al. 2018) 

(3) In each system there are groups consisƟng of elements of the same type. The elements of 

each such group interact with each other in an idenƟcal manner, and they also interact with 

the elements of other such groups again in an idenƟcal manner (which may be different for 

different groups). All interacƟon paƩerns are in this sense homogeneous. For example, in the 

solar system, the sun and the planets can be seen as a group of elements (of type: lump of 

maƩer) which interact via gravitaƟon. But the sun is a star and the earth, Mars, as well as the 

other satellites of the sun are planets, and the sun (seen as a star) also interacts with these 

satellites through its electromagneƟc radiaƟon. 

 (4) The boundary condiƟons of the system can be assumed to be fixed without invalidaƟng 

the model, so that the system can be considered context-free, and thus the context in which 

the system is embedded can be abstracted away without detriment to the predicƟve power 

of the model. 

 

(b) The mind, however, is not a logical system but a dynamic complex system that no known 

mathemaƟcs can model or describe. The nature of complex systems prevents their synopƟc 

and adequate modelling.  

 

Excursus: history of the concept of complex systems 

One of the first to argue that for all animate systems we are unable to create predicƟve 

models was Henri Bergson in 1907. In part under Bergson’s influence, the mathemaƟcs of 

complex systems was pioneered by Ilya Prigogine in his work on what he called “dissipaƟve 

structures”, specifically in his IntroducƟon to Thermodynamics of Irreversible Processes 

(Prigogine 1955). Prigogine idenƟfied many mathemaƟcal properƟes of complex systems, for 

example relaƟng to the ways in which such systems exhibit processes which involve a 

constant passage away from equilibrium. 

 

Let’s try to explain. The complexity of modeling mental processes is not simply a funcƟon of 
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their complex temporal or stochasƟc behavior; rather, it is because these processes are 

dynamic, adapƟve, conƟnuously evolving, and consƟtute systems whose behavior affects and 

is affected by the environment they funcƟon in. This is the source of limitaƟons of modern-

day machine learning techniques: While one can “train” a deep network on a set of input-

output pairs, beyond any narrow domain no set of training data can adequately predict the 

future environment since the state of that environment itself is a funcƟon of the very system 

that we are training. Such cyclical cause-and-effect behavior of complex systems cannot be 

modelled by any known mathemaƟcs.  

More precisely complex systems are marked by the following seven properƟes (L&S Chapter 

7; also Thurner et al. 2018): 

Property 1: Change and evoluƟonary character—sudden conƟnuous and potenƟally non-

differenƟable or non-conƟnuous changes of element types and element (type) combinaƟons, 

which include changing behaviors on the part of all instances of a type. Contrary to the types 

of relaƟons among the elements of logic systems that do not change over Ɵme, so that the 

types of behaviours manifested by these elements are given and fixed, a complex system has 

a creaƟve character, which means that it can at any Ɵme create new elements and new 

paƩerns of interacƟon.  

 

Each mathemaƟcal model requires a vector space -- oŌen a coordinate space over an 

algebraic space F -- but with the changing variables and interacƟons that we find in complex 

systems, there is no coordinate space over which models can be defined. Since each and 

every model is defined for a specific vector space, it becomes invalid if the reality targeted by 

the model differs from the vector space for which the model was originally defined. The 

more it differs, the stronger the deviaƟon and the less accurate the model becomes. This is 

one of the main reasons why we cannot model complex systems mathemaƟcally. 

All this is related to the evoluƟonary character of complex systems. EvoluƟonary systems are 

adapƟve and robust at the same Ɵme, a phenomenon that is very hard to model because 

robustness requires lack of divergence from a fixed set of states while adaptaƟon requires 

the exploraƟon of new phase spaces. EvoluƟonary systems are also such as to manifest path-

dependence in their development and thus show a strong and long-lasƟng memory (in the 

sense that the relaƟon of their present to their past cannot be captured using Markov 
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models). Such systems are therefore both non-ergodic (they cannot be modelled by 

averaging over space and Ɵme without losing informaƟon) and non-Markovian (their 

behaviour depends not just on one or two immediately preceding steps). The lack of 

ergodicity is one of the chief obstacles to using stochasƟc AI for complex systems and 

another main reason why we cannot model complex systems mathemaƟcally.  

In probability theory, mulƟvariate distribuƟons can be thought of as resulƟng from stochasƟc 

processes, such as the Gaussian process, which is ergodic and creates a conƟnuum of 

mulƟvariate normal distribuƟons. Each ergodic process creates a series of data which can be 

modelled as samples from a stable mulƟvariate distribuƟon which can be represented 

explicitly in mathemaƟcal form. 

Suppose that we have a complex system and we wish to use observaƟons of its behaviour to 

obtain a representaƟve sample of the sort that we can use to train an AI applicaƟon. For this 

to be possible, the sample data would have to correspond to a mulƟvariate distribuƟon that 

is representaƟve of the system’s behaviour, which can oŌen be assumed for logic systems as 

well as for certain arƟficial systems such as Go and chess, where the observable behaviour is 

constrained by strict rules. However, there are many, many cases for which no such 

distribuƟon exists. This may be, for example, because the evoluƟonary nature of the system 

will imply that the coordinates of the vector system which models its phase space are 

conƟnually changing. Second, it may be because, even in the absence of such change, the 

observaƟons modelled by the distribuƟon emanate from a non-ergodic system, so that the 

distribuƟon of data points in the vector space cannot be modelled adequately with either a 

parametric or a non-parametric distribuƟon. This is because it is impossible to draw 

adequate samples from a distribuƟon of this sort, because there is no representaƟve 

subspace from which the needed training samples could be drawn. Under these condiƟons, 

there is no process that can yield a representaƟve sample. 

Ergodic distribuƟons are rare, and the distribuƟons we encounter in real-world data are in 

most cases non-parametric. This means that we cannot use parameters to build an equaƟon 

to represent them mathemaƟcally, as contrasted with what is the case for distribuƟons 

resulƟng, for example, from a Gaussian process. In cases where the data do not come from a 

distribuƟon of this sort, but rather from a non-ergodic process or from a distribuƟon 

generated by a complex system the stochasƟc model obtained by using such data will fail 
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when faced with new observaƟons. This is because the laƩer emanate from a distribuƟon 

that will diverge from the training distribuƟon in a proporƟon of cases in a way that will at 

best ensure a poor performance and at worst make the model useless. Due to the nature of 

complex systems, this divergence may be unnoƟceable immediately aŌer training, but it will 

typically increase over Ɵme.  

Property 2: Element-dependent interacƟons—which lead to irregularity and non-

repeatability. Irregularity means that the system does not behave in a way that can be 

formalized using equaƟons. Non-repeatability signifies a behavior that cannot be reproduced 

experimentally.  When bodies are related to each other in the sorts of logic systems 

described in classical physics, for example through the force of gravitaƟon, their interacƟon is 

homogeneous and not specifically related to the bodies involved—it depends only on the 

mass of the bodies and on the distance between them. In contrast to this, the elements of 

complex systems have relaƟons specific to their nature, the interacƟon types are dependent 

on the types of the elements they relate. 

Importantly, in a logic system, whether natural or arƟficial, an element can change its state 

but not its type. For example, the gravitaƟonal force a planet exerts on other bodies depends 

solely on its mass, no maƩer which state of maƩer it is in. However, in the sorts of complex 

systems we find in biology elements can dynamically change their funcƟon, and when such 

changes occur this interacts with their state. What this means is that when the funcƟon of an 

element, for example a membrane protein of a myocyte, changes due to phosphorylaƟon, 

then this brings about changes in the set of its measurable non-invariant property values. It 

can acquire new states due to the funcƟonal change. The former are dynamically dependent 

on the laƩer. There is no way to model this sort of change mathemaƟcally for many elements 

and states at the same Ɵme, which is why models of complex systems can model, at best, 

only certain narrow aspects of a system’s behaviour. 

Property 3: Force overlay—several forces acƟng at the same Ɵme and thereby potenƟally 

interacƟng. This property is oŌen correlated with anisotropy (which means that the effect 

resulƟng from force overlay does not propagate with the same magnitude in all direcƟons).  

All system behaviour, including the behaviour of complex systems, is the result of the four 

basic physical interacƟons (electromagneƟc, gravitaƟonal, strong, and weak). But these 

forces interact with each other and are overlaid upon each other in such a complicated way 
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in complex systems that it is impossible to model how the observed behaviour of such 

systems is generated. 

Property 4: Non-ergodic phase spaces—which cannot be predicted from the system 

elements and lead to Ɵme-irreversibility. A Ɵme-irreversible process is a process which 

cannot be described by equaƟons which are invariant or symmetrical under a change in the 

sign of Ɵme.  

Complex systems have a rich phase space, which is to say that the set of all elements and 

their states that would be needed to describe the enƟre workings of the system is very large. 

Some directly observable macrostates such as temperature, pressure, or density are 

explainable exhausƟvely from microstates at lower granular levels (for example, from states 

of molecules in Brownian moƟon). The former, in other words, can be predicted from the 

laƩer. In complex systems, however, we observe macrostates that emerge in a fashion that 

cannot be predicted or derived from knowledge about the microstates which compose them. 

For example, we cannot adequately model regional or global average temperatures (a 

macrostate) from the microstates of the earth’s climate system in the case where adequacy 

would mean that the model could predict the temperature Ɵme series with good accuracy 

over decades. 

Yet more obstacles to modelling are created where we are dealing with non-ergodic 

processes, which produce events in which we cannot idenƟfy any law-like paƩern that can be 

modeled mathemaƟcally. The reason for this is that non-ergodic processes do not yield 

distribuƟons from which representaƟve samples can be drawn. 

An addiƟonal obstacle turns on the fact that the traces of non-ergodic processes—in other 

words the data series which such processes generate—provide no adequate target spaces for 

stochasƟc sampling. The samples drawn from such complex traces are never representaƟve 

of the process behaviour due to the non-ergodic character of the process. There is here no 

distribuƟon to sample from. This systemaƟcally prevents stochasƟc modelling of such 

processes. 

 

Property 5: Drivenness—either involving some external energy force or resulƟng from some 

sort of inner drive; drivenness implies the lack of an equilibrium state to which the system 
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would constantly be converging. This lack of equilibrium is caused by an energy gradient and 

results in energy dissipaƟon. Complex systems are oŌen driven in the technical sense that is 

defined in physics (more precisely in staƟsƟcal mechanics). Driven systems undergo a flow of 

energy, which prevents them from converging or moving to an equilibrium; the energy flow 

pushes them ever onward from one state to the next. The mathemaƟcal difficulƟes in dealing 

with out-of-equilibrium or non-equilibrium systems are tremendous and beyond analyƟcal 

reach. 

Property 6: Context-dependence—non-fixable boundary condiƟons and embeddedness in 

one or more wider environments. In complex systems, the boundary condiƟons at the 

interface between system and environment are constantly changing. This is why a complex 

system cannot be modelled by assuming that its boundary condiƟons (formed by the 

elements at the boundary) are fixed: doing this would create an invalid model. In other 

words, one cannot abstract from this environment without fundamentally mismodelling the 

behaviour of the systems it contains. When dealing with logic systems, in contrast, one can 

abstract from the context; the boundary condiƟons of the system can be assumed to be 

fixed, and the system itself is in this sense context-free. Because complex systems are 

context-dependent; their boundary condiƟons massively determine how they work. 

The context-dependence property of complex systems has the consequence that the system 

will use a different phase space following different principles depending on the context in 

which it is situated. Yet neural networks always rely on the assumpƟon that all the input-

output-relaƟonships they model via their training samples are context free. The distribuƟon 

from which they are drawn has no further context. Crucially, this means that they cannot 

cope with the non-ergodic system events which are characterisƟc of complex systems as the 

networks are trained using large sets of events over which they merely average. No maƩer 

how large the model parameterisaƟon becomes, this training process cannot yield models of 

complex systems which are both synopƟcal and adequate. In other words, when data are 

sampled from a complex system, they are never representaƟve of the system, for the 

system’s behaviour never has a mulƟvariate distribuƟon from which one could draw 

representaƟve samples. Context-dependence is another main reason why we cannot model 

complex systems mathemaƟcally. 
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Property 7: Chaos—inability to predict system behavior due to inability to obtain exact 

measurements of starƟng condiƟons. ChaoƟc behaviour results from the dependence of a 

system on its starƟng condiƟons and is referred to as determinisƟc chaos in physics. It arises 

not only in complex systems, but also in simple systems, for which it was first described. In 

such systems, we know exactly which laws govern a physical process and can model it with a 

number of variables that is sufficiently small to allow us, in principle, to obtain a predicƟve 

model. However we fail to do so because we are unable to measure the starƟng condiƟons 

with sufficient exactness. No maƩer which type of system we are dealing with, chaos cannot 

be predicƟvely modelled—the divergence from the real outcome may someƟmes be low 

over very short observaƟon intervals, but it increases exponenƟally over Ɵme. While there 

are non-chaoƟc simple (Newtonian) systems, complex systems are in every case chaoƟc. 

Clearly, very many of the systems we encounter in nature, including the global climate and 

plate tectonic systems, and almost all the systems we encounter in the realm of living 

organisms, are complex. This means that they cannot be modelled in a way that would yield 

the sorts of mathemaƟcal predicƟons that can be reliably used in technological applicaƟons.  

Most processes in nature, even many seemingly simple inanimate processes, cannot be 

modelled mathemaƟcally. We cannot write down or automaƟcally generate equaƟons which 

describe, explain, or predict such processes accurately. 

The class of problems in relaƟon to which mathemaƟcal modelling has been singularly 

successful in generaƟng exact or almost exact predicƟons belongs to the domain of physics 

where we can usefully employ “extended Newtonian mathemaƟcs”, comprising the enƟrety 

of those mathemaƟcal resources that have the sort of predicƟve power first unleashed by 

the invenƟon by Newton and Leibniz of the differenƟal calculus. But the structure of 

extended Newtonian mathemaƟcs and the limitaƟons of its models that have been brought 

to light through the development of chaos theory and the theory of complex systems have 

far-reaching implicaƟons as concerns the possibility of our creaƟng models with the ability to 

predict the behaviors of complex chaoƟc systems such as the human brain. The laƩer would 

require a major revoluƟon in mathemaƟcs of a type which has been ruled out as impossible 

by leaders in the field, and no traces of which are even on the horizon. If we are restricted to 

using extended Newtonian mathemaƟcs, and so long as we are constrained to use those 

algorithms of extended Newtonian mathemaƟcs which can be executed on universal Turing 
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machines, it is not conceivable that we will be able to mathemaƟcally model, and thereby to 

engineer, a system with the complexity required to emulate human intelligence. In other 

words, there is no way to model the behavior of a complex system with the accuracy 

necessary to support sound technical applicaƟons and aƩempts to apply extended 

Newtonian mathemaƟcs to complex systems lead to failures in most seƫngs, and this applies 

not least to the human central nervous system.  

Summarizing, both the argument that the mind or some faculƟes of the mind are complex 

systems that are dynamic, adapƟve, conƟnuously evolving, and are systems whose behavior 

affects and is affected by the environment they funcƟon in, and the argument that the 

behavior of such systems is beyond any known mathemaƟcs are very compelling and 

certainly also refute any claim that an AGI is conceivable that could mathemaƟcally or 

algorithmically emulate (or go beyond) human entrepreneurial creaƟvity.  

 

SchemaƟcally the argument can be summarized as follows: (1) In order to emulate 

entrepreneurial creaƟvity with the help of AI we would have to simulate these creaƟve 

processes computaƟonally; (2) Entrepreneurial creaƟvity is a capability of the complex 

dynamical system which is the human mind-body-environment conƟnuum; (3) Therefore an 

emulaƟon of entrepreneurial creaƟvity with the help of machines would require to simulate 

computaƟonally the workings of complex dynamical systems; (4)  SimulaƟng a complex 

dynamical system computaƟonally requires adequate mathemaƟcal models of such systems. 

(5) Adequate mathemaƟcal models of complex dynamical systems are impossible. (6) 

Therefore, it is impossible to emulate entrepreneurial creaƟvity with the help of machines. 

This criƟque was clearly anƟcipated by Jesús Huerta de Soto when he wrote: 

“ (…) mathemaƟcians have yet to (and may never) take up the challenge of conceiving and 

developing a whole new “mathemaƟcs” which permits the analysis of human creaƟve 

capacity with all of its implicaƟons.” (Huerta de Soto 2008, 108) 

 

Some of today’s AI proponents believe that the currently fashionable AI paradigm of “deep 

neural networks”—connecƟonist as opposed to symbolic AI—can mimic the way the brain 

funcƟons; L&S show that, again for mathemaƟcal reasons, this is not so, not only for deep 

neural networks but for any other type of AI soŌware that might be invented in the future. 5 
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The argument against the possibility of AGI is in more than one respect analogous to and can 

elucidate the argument of Mises and Hayek against the possibility socialism as L&S also 

recognize. (L&S 157-8) Both the human brain and the economic system are complex systems 

that are not amenable to effecƟve and saƟsfactory mathemaƟcal modelling. 6 

 

As L & S recognize economics yields mostly descripƟve and interpretaƟve models, involving 

no mathemaƟcal causality and yielding no exact predicƟons. Macroeconomics for instance 

provides no causal explanaƟons, but rather (at best) very helpful causal interpretaƟons. No 

economic model can predict exactly any single economic quanƟty for any selected Ɵme or 

Ɵme interval in the future, whether this be the price of a good or the excess capacity of a 

producƟon method. Nor can the causaƟon of economic phenomena be modelled causally in 

such a way as to yield a scienƟfic explanaƟon—again, because of the complexity of the 

system.  

 

Let’s summarize. There are hard boundaries to the modelling of complex systems, so that 

causal explanaƟons and exact predicƟons—even of single traits of these systems—are in 

almost all cases mathemaƟcally impossible. This is so because for such systems we are 

unable to formulate equaƟons that yield the needed predicƟons. For an AGI designed to 

subsƟtute for humans in the performance of complex tasks in natural environments, inexact 

predicƟons are insufficient: the AGI will not pass even minimal safety checks. The problem 

here is that, if we measure the behaviour of complex systems by assigning numbers to the 

observable events which these systems (co-)generate, we obtain data to which no predicƟve 

model can be made to fit, no maƩer which procedure we use. An example is the system 

formed by two human beings when they engage in a dialogue.  

However, many parƟal aspects and properƟes of complex systems can be modelled 

descripƟvely or approximaƟvely. Economics -- in its “mainstream” variant – is only one of a 

number of disciplines in the life sciences (biology, biochemistry, medicine, pharmacology, 

and so forth) and also in the humaniƟes and certain other social science disciplines 

(psychology, anthropology, ethnology…) all dealing with complex systems that widely use 

mathemaƟcal models for descripƟve, interpretaƟve, and approximaƟvely and parƟally 
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predicƟve modelling. But the nature of complex systems sets Ɵght boundaries on what such 

descripƟve modelling can achieve. It is important to understand that synopƟc and adequate 

models of complex systems are not possible.  

 

MathemaƟcians who have become aware of the inadequacy of Newtonian mathemaƟcs for 

the modelling of complex systems have tried to develop more sophisƟcated (non-naïve) 

approaches, using mathemaƟcal frameworks which can cope with the properƟes of complex 

systems and yet remain computable. The study of these approaches falls outside the scope 

of this paper. Non-naïve approaches to complex system modelling are oŌen mathemaƟcally 

interesƟng and contribute to our descripƟve and interpretaƟve understanding of aspects of 

the phenomena under study. However, they do not give a procedure to obtain exact causal 

or predicƟve mathemaƟcal models of complex systems, in most cases not even for single 

traits of such systems. Such a procedure can be found only for simple (logic) systems that are 

man-made and arƟficially driven. PredicƟve mathemaƟcal models for the behaviour of any 

complex system have thus far not been provided on any approach. 

 

Excursus: the uniqueness of the methodology of the Austrian School of economics 

 

As I have pointed out elsewhere (Van Den Hauwe 2009, 213-4) and want to repeat here, the 

economists of the Austrian School of economics, in parƟcular Ludwig von Mises and his 

followers, have developed a unique theoreƟcal method, the method of praxeology, that can 

be interpreted as a method and device to cope with the complexity of economic phenomena. 

This method is both exact and non-mathemaƟcal, both predicƟve and non-quanƟtaƟve.  An 

elaboraƟon of this theme falls outside the scope of this paper, however, which is devoted to 

the relaƟonship between entrepreneurship and arƟficial intelligence.   

 

7. ImplicaƟons 
 

The “general impossibility” is exemplified by some more specific impossibiliƟes that equally 

render AGI impossible. Prominent among these are:  

 

(1) Machines will not master human language. (L & S Chapters 4, 5 & 10)  
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Language is a prerequisite to any AGI but since linguisƟc communicaƟon – comprising open 

interacƟve dialogues -- is itself a complex system that no mathemaƟcs can model, again no 

AGI is possible. In a real dialogue the interpretaƟon of some uƩerance must be a funcƟon of 

previous uƩerances and the overall context that has been built so far. But since responses 

cannot be predicted in any meaningful way, the overall context is not well defined, and so 

the enƟre interacƟon cannot be mathemaƟcally modelled.    

The most striking capability which disƟnguishes human beings from other animals is our 

ability to speak, and more specifically to conduct conversaƟons. Language is the most 

important observable expression of our objecƟfying intelligence. Animals have no language, 

and they have no non-verbal abstract symbols such as badges or insignia, no ability to 

manipulate numbers, and no objecƟfying intelligence. 

L & S lay out the role that language plays for humans and describes language complexity to 

let us appreciate the challenge that lies in the aƩempt to mathemaƟcally model language in 

a way that would be required to create an AI. (L & S Chapters 4 & 5) Humans produce 

meaningful language and assign meaning to the language produced by others in a dynamic 

process. L & S summarize the current view of language producƟon and interpretaƟon on the 

part of philosophers of language and of linguists. (L & S Chapter 5) The result is then used as 

basis for understanding their argument in later chapters to the effect that it is impossible to 

model mathemaƟcally either of these capabiliƟes of the human mind in a way that is 

adequate in the sense that it is able to generate the sorts of predicƟons needed to support 

machine emulaƟon of human language use.7 

 

As L & S conclude: 

 

“When a conversaƟon occurs between human beings, mulƟple complex systems, each with 

its own evolving sets of intenƟons and realizing its own sets of capabiliƟes, are interacƟng 

with each other. InteracƟons of this sort are analogous to those which occur when other 

sorts of complex systems interact—for instance when the earth’s Ɵdal system interacts with 

the ecological systems of coastal wetlands. We can describe and explain some of what occurs 

in the course of such interacƟons; but we cannot build mathemaƟcal models that will enable 

us to predict what will occur. The two sorts of systems simply interact. That is what they do. 
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And so, too, in the case of many sorts of interacƟons, both linguisƟc and non-linguisƟc, 

involving humans: humans do not consciously or unconsciously compute these interacƟons 

(because the human mind-body conƟnuum is not any sort of computer). Rather, they simply 

interact in a way that involves, at the level of ulƟmate physics, a constantly self-adjusƟng 

sequence of interacƟons between the different sets of fundamental forces deriving from the 

different human beings involved.” (89) 

 

(2) Machines will not master social interacƟon. (L & S Chapters 6 & 11)  

 

We will never be able to engineer machines with the social and ethical capabiliƟes of human 

beings. In preparaƟon for drawing this conclusion we need to understand what these 

capabiliƟes are. To this end L & S engage in an accelerated grand tour through sociology and 

social ontology, focusing on three sets of issues, relaƟng to (a) social behaviour in 

communiƟes, socieƟes, and insƟtuƟons, (b) perspecƟve-taking and intersubjecƟvity, and (3) 

social norms, including legal and moral norms. In chapter 11 L & S then address the 

implicaƟons of this for the possibility of emulaƟng ethics in the machine. 

As Adam Smith was perhaps the first to recognize, in all social interacƟons—from shaking 

hands in order to seal a deal, to assisƟng in someone’s suicide, to the public dialogue 

between magistrate and thief that precedes the thief’s being condemned to the stocks—a 

successful outcome requires that all parƟes have been able to use their social capabiliƟes to 

understand the situaƟon they are in and the norms thereby entailed. It requires also that 

they each use these same capabiliƟes to understand the intenƟons of the other parƟes, and 

the power gradients that obtain between them (Smith 1790, I.i.1.3). Value consciousness and 

the ability to integrate social norms, intersubjecƟvity, and power relaƟonships consciously 

into a coherent, deliberate form of behaviour is a capability exclusive to humans. Animals can 

recognize very simple value differenƟals (for example between pleasure and pain) and 

perform elementary integraƟons of social norms and social rank; but they do not have the 

capability to apprehend values of higher order or to perform the conscious integraƟon of 

values, feelings, and intenƟons that humans are capable of. (L & S 106) 

Since we can emulate neither human intelligence nor human language in the machine 

because we lack the mathemaƟcal models that would be needed to do so, it follows that we 
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cannot emulate human social capabiliƟes either, since these require both intelligence and 

mastery of language. There can be no machine intersubjecƟvity, no machine social norms, no 

law-abiding behavior or emulaƟon of morality by machines. (L & S Chapter 11) 

 

 

                                                                                                                                                                                    

8. Conclusion: machines will not replace entrepreneurs 
 

Human and machine intelligence are radically different. The myth of AI insists that the 

differences are only temporary, in the sense that, step-by-step, more powerful AI systems will 

erase them. Yet the success achieved by focusing on narrow AI applicaƟons gets us not one 

step closer to general intelligence. No algorithm exists for general intelligence. And we have 

good reason to be skepƟcal that such an algorithm will emerge through further efforts on 

deep learning systems or any other approach popular today. 

At the intuitive level the contrast between the materialistic worldview underlying most of AI 

research on the one hand and the immaterial aspects of entrepreneurship on the other, 

already casts serious doubts upon any claim to the effect that entrepreneurial creativity 

could be emulated algorithmically by a computer.  

 

Summarizing some tenets of Austrian entrepreneurship theory, in particular highlighting the 

immaterial and spiritual nature of the phenomenon and confronting these with the 

assumptions underlying AGI research has allowed us to perceive the incongruence of any 

attempt to explain entrepreneurship in materialistic (deterministic, reductionistic…) terms.  

However, even without assuming any mind-body disconƟnuity, that is, even if mental 

processes are themselves physical processes, the impossibility of AGI can be demonstrated 

relying on scienƟfic contribuƟons from a range of disciplines, and any claims regarding the 

prospects of emulaƟng entrepreneurship algorithmically and someday replacing 

entrepreneurs by machines or robots are clearly unfounded.  The core of the argument 

relates to the fact the emulaƟon of entrepreneurial creaƟvity with the help of machines 

would require the synopƟc and adequate mathemaƟcal modelling of the complex dynamical 

system which is the human-mind-environment conƟnuum which is impossible. If AGI is 
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defined as a form of machine intelligence that allows the construcƟon of a synopƟc and 

adequate model of human-level intelligence and creaƟvity, it is for the same reason 

impossible.   

Whatever the useful implicaƟons of the development of AI for the economy are and will be – 

see e.g. HBR 2019 -- and despite enormous advances in (narrow) AI, machines will not 

replace entrepreneurs and genuine human entrepreneurs will remain the driving force of the 

market economy. This conclusion warrants opƟmism regarding the prospects of future 

research into the nature of entrepreneurship along lines iniƟated by Austrian economists.  

 

Notes 

 

1 It is not quite correct that machines engage in inducƟve reasoning; they rather compute 

local minima for loss funcƟons, which can be seen as a very primiƟve emulaƟon of inducƟon 

from data because a funcƟonal is indeed obtained from observaƟons (individual data). 

However, machines do not perform the inducƟon themselves; they merely compute human-

designed opƟmizaƟon algorithms which emulate a narrow form of human inducƟon. 

2 IBM’s famous Deep Blue prevailed in chess over Gary Kasparov, and more recently, AI 

systems have prevailed in other games, e.g. Jeopardy! and Go, which is an illustraƟon of the 

fact that in certain focused areas machines can out-perform human minds. There are two 

fundamental types of computable system models: determinisƟc and stochasƟc. The former 

comprise, for example, models expressed using proposiƟonal, predicate or modal logic, and 

including what are called expert systems or rule systems. The chess-playing algorithm Deep 

Blue that beat Kasparov in 1996 was determinisƟc; it used an α-β-search algorithm 

(Heineman et al. 2008, chapter 7). 

3 The definiƟons of intelligence based on uƟlity funcƟons proposed by the AGI community  

idenƟfy the intelligence of a machine on the basis of the fact that the machine is endowed 

with an opƟmisaƟon framework for obtaining some extremum for a high-dimensional 

funcƟonal for which derivaƟves can be calculated. This formulaƟon is just an alternaƟve way 

of staƟng that, as on all connecƟvist approaches to AI, they obtain a model which is defined 

via a loss funcƟon, or in other words that they execute a recipe found using opƟmisaƟon. 
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This brings one advantage over AI based on symbolic logic (GOF-AI), namely that the 

connecƟonist AI algorithms can be generated automaƟcally, where GOF-AI requires 

algorithms that are designed explicitly. In this way, the new uƟlity-based AI yields an 

approach that can scale to apply in areas where we have to deal with very large bodies of 

data with a certain degree of variance. But it is an approach which works only where we can 

assemble training samples with a variance which is representaƟve of the variance in the 

target data. This is possible only along certain very narrow lanes. AlternaƟve definiƟons of 

intelligence are unlikely to yield anything that can fulfill the requirements described earlier. 

For no maƩer how we generate an alternaƟve AI, it will have to emulate what we call a ‘logic 

system’, which is a system such as a simple device engineered in such a way that its 

behaviour can be predicted using the equaƟons of physics and the rules of logic. 

4 To enable a classificaƟon of such models according to their uƟlity, L & S introduce the 

noƟons of synopƟc and adequate models. A synopƟc model is a model that can be used 

either 1. to engineer a system or system component of a specified sort (for example, a 

combusƟon engine or an arƟficial heart), or 2. to emulate the behaviour of a system or 

system component (for example, the behaviour of a Ɵger as emulated in a computer game, 

or the behaviour of a clerk in a travel agency using a chatbot). A model is adequate relaƟve 

to some set of specified requirements if it can be used to engineer an artefact, or to create 

an emulaƟon, that saƟsfies all the requirements of that set. (112)                                                  

5 Even a nervous system made of only a few hundred neurons is much more complex than 

an arƟficial dNN with billions of parameters, which is merely a (big) logic-system-modelling 

equaƟon. This is because each neuron contains millions of signal-integraƟng molecules and is 

connected to other neurons via synapses using a plenitude of neurotransmiƩers which elicit 

many different reacƟons based on the state of the post-synapƟc neuron. Furthermore, the 

neurons of higher organisms also depend on humoral factors (hormones and other signalling 

molecules in the blood). They are living cells, which are driven and thus never in equilibrium, 

but they produce and consume energy all the Ɵme. In short, unlike stochasƟc models (such 

as dNNs), which are logic systems and can thus be executed on computers (to approximate 

complex systems), nervous systems are complex systems in their own right. (L&S 168-9) 

6 In this respect the theory of complex systems comprises some lessons not only for AI 

enthusiasts, but also for economic methodologists. There are three types of models: 

descripƟve, explanatory, and predicƟve. (L & S 111-2) There are two types of explanaƟons: 1. 
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InterpretaƟve explanaƟon of effects of certain types, in which important causes of the effect 

types can be listed and the relaƟonship between cause and effect types can be qualitaƟvely 

described. 2. Full causal explanaƟon, in which the physically relevant types of causes and 

their effects can be enumerated, and their relaƟonships can be modelled quanƟtaƟvely and 

exactly using an equaƟon or a set of equaƟons. PredicƟon refers to those cases where we 

can model the behaviour of a system in such a way that we have an assurance that, given an 

input of the sort for which the model is designed, the model will yield an output (a 

predicƟon) that is in accordance with the behaviour of the modelled system. PredicƟve 

models can be exact or approximaƟve. In the laƩer case they are stochasƟc, where a simple 

example is a model of the outcome of throwing a dice. All stochasƟc AI models, such as 

classical staƟsƟcal learning models or deep neural networks, are of this approximaƟvely 

predicƟve type. It is exact models that enable strict scienƟfic knowledge, including both 

exact causal explanatory and exact predicƟve models. This is the sort of knowledge that we 

can obtain in physics, in chemistry, and in certain areas of biology.  

7 For mathemaƟcal models predict is not restricted in its meaning to the predicƟon of future 

events (as in weather forecasƟng). Rather, it is used more generally to denote the calculaƟon 

or computaƟon of model output from some model input. In arƟficial dialogue systems, the 

computaƟon of a machine uƩerance based on the uƩerance of a human being is also a 

predicƟon from the perspecƟve of mathemaƟcs; from a user perspecƟve, however, it is 

rather simply a succeeding uƩerance. 
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