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Why Machines Will Not Replace Entrepreneurs. On the Inevitable Limita ons of 
Ar ficial Intelligence in Economic Life.  

By: Ludwig Van Den Hauwe, PhD 

Abstract 

This paper cri cally explores some supposed implica ons of the development of ar ficial 
intelligence (AI), par cularly also machine learning (ML), for how we conceive of the role of 
entrepreneurship in the economy. The ques on of the impact of AI and ML is examined by 
hypothesizing a decentralized market-based system and raising the ques on of whether 
entrepreneurs will someday likely be replaced by machines. The answer turns out to be 
highly skep cal. Not only does the materialist worldview behind the ambi ons of much AI 
research cast serious doubts upon the chances of success of any a empts to emulate 
entrepreneurship algorithmically with the help of computers, the very possibility of ar ficial 
general intelligence (AGI) can also be ruled out on purely scien fic grounds. The paper 
concludes that human entrepreneurs will remain the driving force of the market. 
 
The field of ar ficial (general) intelligence has made no progress because there is an unsolved 
philosophical problem at its heart: we do not understand how crea vity works.  
David Deutsch 

1. Introduction 

The recent hype cycle surrounding the development of ar ficial intelligence (AI), especially 

machine learning (ML), has led economists to reexamine some tradi onal lessons of 

economic policy, par cularly regarding the ques on whether AI and ML might circumvent 

the problems of central planning in view of the way in which socie es create and use 

knowledge. (Hayek 1945) It turns out that the lessons we know about what cons tutes good 

and bad economic policies are likely to remain largely unchanged. (Fernández-Villaverde 

2020) As this author reminds, “(t)he objec ons to central planning are not that solving the 

associated op miza on problem is extremely complex, which it is and increasingly so in an 

economy with a maddening explosion of products, or that we need to gather the data and 

process it sufficiently fast. If that were the case, ML could perhaps solve the problem, if not 

now, then in a few more itera ons of Moore’s law. The objec ons to central planning are that 

the informa on one needs to undertake it is dispersed and, in the absence of a market 

system, agents will never have the incen ves to reveal it or even to create new informa on 

through entrepreneurial and innova ve ac vity.” (12) 
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Along similar lines Boe ke et al. (2023) argue that, despite the prospect of what King and 

Pe y (2021) refer to as “technosocialism,” technological advances in computa on cannot 

replace the compe ve discovery process that takes place within the context of the market.  

To the extent technosocialism represents a restatement of the case for market socialism, 

which incorrectly framed the “solu on” to economic calcula on under socialism as one of 

compu ng data, rather than the discovery of context-specific knowledge that only emerges 

through the exchange of property rights, the arguments put forth by Austrian economists 

regarding the impossibility of economic calcula on under socialism remain just as relevant 

today. 

This paper explores the impact of AI and ML from a somewhat different angle: Hypothesizing 

a decentralized market economy, the focus is specifically on the impossibility of (strong or 

general) AI itself by raising and answering the simple ques on: Will machines ever be 

capable of fulfilling the entrepreneurial func on thus rendering human entrepreneurs 

obsolete? Before I present a general impossibility argument, which relies to some extent on 

cri cisms formulated from the perspec ve of scien fic frameworks and disciplines other 

than praxeology, some tenets of Austrian entrepreneurship theory are summarized, the 

dis nc on between narrow AI and AGI is clarified, some intui vely illumina ng examples of 

the limits of AI with respect to entrepreneurship are provided and a characteriza on of 

human-level intelligence is a empted. 

In this paper we will not take any definite stance on the mind-body problem, nor do we have 

any inten on to here solve the problem of whether materialism is or is not a defensible or 

adequate philosophical or scien fic worldview. But as will be elaborated further it is 

important to understand that, according to the present state of knowledge, even from a 

monist materialis c viewpoint according to which mental processes are physical processes 

the impossibility of AGI is an undeniable fact due to severe limita ons on our ability to model 

complex systems mathema cally. There is no need to invoke any mind-body discon nuity or 

to reject scien fic materialism to demonstrate the impossibility of ar ficial (general) 

intelligence. 
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2. The essen al nature of entrepreneurship  

 

Austrian economists can pride themselves with having a theory of entrepreneurship, or in 

any case an economic theory that includes entrepreneurship. An examina on of the 

literature reveals, however, that several concep ons of entrepreneurship have been 

developed within the broad field of Austrian economics not all of which are equally relevant 

from the perspec ve adopted here.   

Hayek (1945) notes how entrepreneurs adapt to events they neither have nor need to have 

knowledge about by responding to price changes. Similarly, Kirzner (1973) argues that 

entrepreneurship as alertness to opportunity contributes to equilibra ng the economy. In 

more recent theory development, Foss and Klein (2012) argue, alongside Knight (1921), that 

entrepreneurship is about exercising judgment by establishing business firms within which 

they can conduct controlled experiments. 

One could argue that from the perspec ve developed by these authors, much of modern 

Austrian theorizing on entrepreneurship somewhat misses the mark by (1) trea ng 

entrepreneurship as an important component in but not the driving force of the market 

process and (2) conceptualizing the entrepreneur as primarily a responsive agent. 

Although Hayek and Kirzner conceive of the entrepreneur as ac ng within a market process, 

they both subscribe to the view of entrepreneurship as responsive to given circumstances. 

They take the boundaries of the market process as given and a empt maximizing, or at any 

rate improving, adjustments of produc on for profit. Both explain entrepreneurship as a 

force that equilibrates and improves on the overall market, but neither concep on of 

entrepreneurship explains the driving force of the process. (Per L. Bylund 2022b) 

The more recently developed judgment-based approach (Foss & Klein 2012) is 

complementary to Hayek’s and Kirzner’s arguments by focusing on what affords the 

entrepreneur the decision-making power and ability to make adjustments and act on 

opportuni es. It focuses on the entrepreneur as an ac ve owner-decision-maker, a capital 

owner who bears the uncertainty of produc on. 
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In the present context entrepreneurship will to the contrary be conceptualized along lines 

developed on the one hand by Ludwig von Mises, who was very clear and explicit about the 

importance of entrepreneurship as the driving force of the market process, and on the other 

hand by Jesús Huerta de Soto, who has emphasized the essen ally crea ve nature and 

spiritual aspects of entrepreneurship.  

Jesús Huerta de Soto has dis nctly highlighted the essen ally crea ve nature and spiritual 

dimension of entrepreneurship. According to Prof. Huerta de Soto “(t)he exercise of 

entrepreneurship does not require any means. That is to say, entrepreneurship does not 

entail any costs and is therefore fundamentally crea ve. This crea ve aspect of 

entrepreneurship is embodied in its produc on of a type of profit which, in a sense, arises 

out of nothing, and which we shall therefore refer to as pure entrepreneurial profit. To derive 

entrepreneurial profit one needs no prior means, but only to exercise entrepreneurship 

well.” (Huerta de Soto 2008, 21) 

All human ac on thus has an essen ally crea ve component, and no basis exists for 

dis nguishing between entrepreneurial crea vity in the economic realm and crea vity in 

other human spheres (ar s c, social, and so on). The essence of crea vity is the same in all 

areas, and the concept and characteris cs of entrepreneurship, both of which we are 

analyzing, apply to all human ac on, regardless of the type. (Huerta de Soto 2010, 42) 

Moreover, “(t)he fact that entrepreneurship is dis nctly crea ve and that therefore pure 

entrepreneurial profits arise from nothing can lead us to the following theological digression: 

if we accept for the sake of argument that a Supreme Being exists, one who created all things 

from nothing, then when we suppose entrepreneurship to be an ex nihilo crea on of pure 

entrepreneurial profits, it seems clear that man resembles God precisely when man exercises 

pure entrepreneurship! This means that man, more than homo sapiens, is homo agens or 

homo empresario, and that more than when he thinks, he resembles God when he acts, that 

is, when he conceives and discovers new ends and means. We could even construct an en re 

theory of happiness, a theory which would suggest that man is happiest when he resembles 

his Creator. In other words, the cause of the greatest happiness in man would be to recognize 

and reach his objec ves (which implies ac on and the exercise of entrepreneurship).” (ibid. 

42)  
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The phenomenon of entrepreneurship according to this view exhibits a spiritual non-material 

dimension. The non-material dimension of human entrepreneurship is also highlighted by 

Sautet (2022) who argues from within an Aristotelian framework that alertness, the central 

concept in Kirzner’s theory of the entrepreneurial func on, can be understood as a 

poten ality or propensity with a very specific meaning: it emanates from the human 

intellect, which, through its immateriality, is capable of introducing novelty in the 

subjec vely perceived world by the agent doing the ac ng. Austrian economics thus 

assumes, most of the me implicitly, an open-ended world and a human mind or intellect 

that, as in the hylomorphic tradi on of the human soul known to Aristotelian scholars, is 

itself open-ended, immaterial, and capable of sheer crea on.  

 

This is an important and significant conclusion that, given the undeniably materialist 

worldview underlying the field of AI research, already casts some serious doubts upon the 

chances of success of any a empts to emulate entrepreneurship algorithmically with the 

help of machines. But as will be noted further, the impossibility of emula ng entrepreneurial 

crea vity with the help of machines does not strictly depend or rely upon entrepreneurship 

being an immaterial rather than a material phenomenon. The argument depends upon 

entrepreneurial crea vity being a capability of the complex dynamical system which is the 

mind-body-environment con nuum and the impossibility of adequately modelling this 

system mathema cally. 

 

3. Narrow AI versus AGI 

Computers have transformed almost every aspect of life in modern technology-based 

socie es. They have transformed health care, law enforcement, scien fic research, 

commerce, in many cases in ways which have involved the use of purpose-built AI so ware.  

However, all successful uses of AI are examples of narrow AI. Examples include facial 

recogni on, disease predic on, advanced manufacturing, spam filters, marke ng content 

recommenda ons, approximate text transla on etc. 

In each case the so ware works by conver ng data sampled in a given area into vectors or 

matrices; the la er are then used to obtain a model to fulfill the task at hand. The benefits 

can be significant but there are also limits. AI can never deal with new types of data— 
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exhibi ng pa erns not present in its sample data—without some sort of retraining directly 

or indirectly involving inputs from human beings. AI does not have the natural intelligence 

even of an arthropod. 

Artificial general intelligence (AGI), in contrast to narrow AI, can be defined as an AI that has 

a level of intelligence that is either equivalent to or greater than that of human beings or is 

able to cope with problems that arise in the world that surrounds human beings with a 

degree of adequacy at least like that of human beings. In 1980, philosopher John Searle 

introduced a distinction between weak AI—the idea that machines could act as if they were 

intelligent—and strong AI—the assertion that machines that do so are consciously thinking 

(not just simulating thinking). Over time the definition of strong AI shifted to refer to what is 

also called “human-level AI” or “general AI”—programs that can solve an arbitrarily wide 

variety of tasks, including novel ones, and do so as well as a human. (Searle 1980) 

 

For general AI, the goal is to create a computable model of the behaviour of important 

aspects of the human mind-body continuum (or perhaps better: of the human mind-body-

environment continuum), thereby enabling an emulation of intelligent human behaviour. 

But the mind-body continuum is a complex system (it is indeed a complex system of complex 

systems, at many levels). Thus, if our ability to create mathematical models of complex 

systems is severely limited, then so also is our ability to create the computable models that 

would be needed to create general AI. 

 

The No Free Lunch (NFL) theorem, which was formulated and proven in the fields of search 

and optimisation, states that if the problem space in which an optimum is to be found must 

be modelled as a probability density function, then the computational cost of finding the 

optimum averaged over all problems in the space is the same for any solution method. 

(Wolpert et al. 1997) It follows that there cannot be any optimisation procedure that is 

globally superior to all others—a procedure can be superior only with regard to some 

specific problem class. 

The theorem applies in par cular to complex system emana ons yielding data which 

correspond to unique (non-repeatable) mul variate distribu ons at each step. Indeed, for 
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data of this sort, per the NFL theorem, it is not only that we cannot find a globally superior 

op misa on method. We cannot obtain an adequate (requirement-fulfilling) predic ve 

model of any sort. 

The theorem helps us to understand why general problem solvers cannot be found for many 

real-world problems and why such problems need to be restricted to cases in which special 

solvers can provide a solu on. These are exactly the cases where AI—more precisely: narrow 

AI—works. If intelligence is a problem-solving algorithm, then it can only be understood with 

respect to a specific problem. (also Chollet 2017) 

 

What some mes happens, however, is that such approxima ve special solu ons—which 

work only for a subset of cases within a given field—are associated with claims of general 

applicability. Solu ons of this sort will inevitably result in failures when they are applied to 

cases outside the restricted set. Recent cases of driver casual es in self-driving cars 

confronted with sensor input devia ng from the training distribu on are just one example of 

this phenomenon. 

 

It is thus not contested that narrow AI can support or even outsmart humans including 

entrepreneurs at specific tasks. The tremendous successes of ar ficial intelligence along 

certain narrow lanes, such as text transla on or image recogni on, are not denied. Obviously, 

the exercise of entrepreneurship requires a broad spectrum of (not only cogni ve) abili es 

and mimicking or emula ng it computa onally would certainly require AGI.  

 

4. A few intuitive examples of what entrepreneurs can do but machines 

cannot. 

Before a emp ng a theore cal characteriza on of what human intelligence is and what its 

emula on in the form of AGI would have to amount to, some easily comprehensible 

examples of things human entrepreneurs can do but computers cannot are here listed. They 

all illustrate the gulf that separates human intelligence from presently available machine 

intelligence: 
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Extreme generaliza on     

Deep learning achieves local generaliza on via interpola on on a learned approxima on of 

the data manifold. Interpola on can help to make sense of things that are very close to what 

one has seen before. But remarkably, humans deal with extreme novelty all the me, and 

they do just fine. They don’t need to be trained in advance in countless examples of every 

situa on they’ll ever have to encounter. Humans are capable of extreme generaliza on, 

which is enabled by cogni ve mechanisms other than interpola on: abstrac on, symbolic 

models of the world, reasoning, logic, common sense, innate priors about the world—what 

we generally call reason. (Chollet 2021, 130) 

Abduc ve reasoning. 

Larson (2021, 275), poin ng out that “no one has the slightest clue how to build an ar ficial 

general intelligence”, dis nguishes three different types of inference: deduc on, which is 

explored by classic symbolic AI; induc on, which he classifies as the province of modern 

stochas c AI; and a third type which, following the American pragma st philosopher Peirce, 

he calls abduc on. Peirce’s term is nowadays used in different contexts as another word for 

“hypothesis forma on” or also just plain “guessing”. It is abduc on, Larson argues, which is 

at the core of human intelligence, and thus engineering a counterpart of abduc on—a 

combina on of intui on and guessing—would be needed for human-level AI. His book 

provides a thorough and convincing account of why this is so. But a empts to engineer the 

types of abduc ve inference characteris c of human reasoning have in every case failed to 

reach even first base.1 

Making use of tacit knowledge 

One of the characteris cs of entrepreneurship highlighted by Prof. Huerta de Soto is that it 

involves tacit knowledge which cannot be ar culated. (ibid. 22-4) One possibility in the AI 

debate is indeed that we have general intelligence, but that we can’t actually write down 

what it is—program it, that is—because in important respects it’s a black box to 

ourselves.(Larson 2021) Michael Polanyi argued that ar cula ons necessarily leave out 
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“tacit” components of intelligence—aspects of thinking that can’t be precisely described by 

wri ng down symbols. Intelligence is only partly captured by the symbols we write down—

the uses of language that he called “ar cula ons.” Polanyi was an cipa ng many of the 

headaches AI systems have caused for AI designers, for reasons stemming from the 

incompleteness of ar cula ons.  

Causal understanding 

Judea Pearl, while not excluding the possibility of crea ng an AGI, emphasizes that the 

currently fashionable stochas cs-based “opaque learning machines” (Pearl 2020) lack an 

important feature of human-level intelligence in that they cannot answer ques ons related 

to causality and thus they cannot develop understanding about how things work.  

Learning and self-improvement 

Understanding the concept of learning is essen al for understanding what drives the market 

process. (Harper 1996) Could computers learn in this sense? AI systems do not learn in the 

sense that animals and humans do. To use the term “learning” when speaking of the 

mechanics of stochas c AI is inappropriate because the op miza on algorithms used to train 

neural networks do not learn in anything like the sense in which vertebrates learn. 

(Lapuschkin et al. 2019) Deep neural networks (dNNs) are merely “more sophis cated 

sta s cal techniques for fi ng func ons” and have nothing to do with real learning. 

(Darwiche 2018)  

More precisely so-called deep neural networks (dNNs) are stochas c regression or 

classifica on models. Stochas c models are obtained by applying op misa on algorithms to 

the training tuples. The op misa on algorithms work under constraints with the goal of 

minimising the loss of the model, which means the devia on of the model from the reality of 

the observed outcomes. While the ability of highly sophis cated op misa on algorithms to 

autocompute dNN models across huge distribu ons is impressive, such stochas c models 

(and determinis c models as well) are always models of logic systems, because (a) they are 

executable on a Turing-machine, which is a logic system and, (b) Turing machines can only 

execute instruc ons that are logical in nature. Thus these models will not develop 

inten ons—the equa ons are just func onals or operators rela ng an input vector to a 

certain output—in other words, they are nothing but a general form of regression models. 
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Furthermore, the nature of AI models as logic systems explains what Larson (2021, 155) calls 

“model satura on”, which is the phenomenon whereby stochas c models o en reach a 

certain quality level but then cannot get any be er despite the addi on of new training data. 

The reason for this is the absolute limit, which is caused by the modelling of a complex 

system with a logical system. The logic system can never a ain the performance of the 

complex system, which creates a quality hiatus that cannot be closed. (Landgrebe & Smith 

2023, 147-9) 

Exercising will and autonomy 

Without will and the inten ons and acts that flow therefrom, there is no possibility that a 

machine could become an autonomous agent. And if it is not autonomous, it cannot pursue 

any goals.  It is the person who is the source of human will. (Scheler 1973) Persons are 

differen ated from animals, not only by their cogni ve capabili es, but also by their ability 

to act based on their will. To create an ar ficial will, we need a complex of disposi ons like 

the ones possessed by humans which can be realized in inten ons, delibera ons, and 

resolu ons which all emanate from a complex system and none of which could be modelled 

mathema cally. Hence there will be no AI will and no emula on of the will of any sort. 

Moral judgment 

It is impossible to teach machines moral judgement: “People need to understand that 

current AI—and the AI that we can foresee in the reasonable future—does not, and will not, 

have a moral sense or moral understanding of what is right and what is wrong” (Yoshua 

Bengio in Ford 2018, Chapter 2).  

5. The nature of intelligence –  

The difference between human intelligence and machine intelligence has scarcely gone 

unno ced.  An o en cited example is chess. As Kasparov reminds us “(i)n what ar ficial 

intelligence and robo cs experts call Moravec’s paradox, in chess, as in so many things, what 

machines are good at is where humans are weak, and vice versa. In 1988, the robo cist Hans 

Moravec wrote, “It is compara vely easy to make computers exhibit adult level performance 

on intelligence tests or playing checkers, and difficult or impossible to give them the skills of 

a one-year-old when it comes to percep on and mobility.” (8) “As Moravec’s paradox 
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dictates, computers are very good at chess calcula on, which is the part humans have the 

most trouble with. Computers are poor at recognizing pa erns and making analogical 

evalua ons, a human strength.” (50) 2 

It would seem that when projec ng an “intelligence explosion” AGI theorists employ an 

erroneous defini on of intelligence and profoundly misunderstand both the nature of 

intelligence and the behavior of recursively self-augmen ng systems. Human intelligence 

depends on innate disposi ons, on interac on with the environment (sensorimotor 

affordances), and on socializa on; it can be exemplified only by a human being who is part of 

society. Complex real-world systems cannot be modelled using the Markov assump on. 

(Landgrebe & Smith 2023, 16, henceforth L&S 2023; Chollet 2017)  

What, then, is human intelligence and what should machine intelligence look like if it is to 

emulate human intelligence? 

On a general level and for clarity’s sake we can dis nguish between two aspects of 

intelligence, which following L&S we can call “primal” and “objec fying” intelligence, 

respec vely. Humans, of course, have only one type of intelligence, which is a fusion of both. 

The idea of what we are here calling “primal intelligence” was introduced by the philosopher 

Max Scheler as what he called “prac cal intelligence”. “Primal intelligence” is found in higher 

animals such as mammals and birds, and it may be present in other species also.  

Primal intelligence is realised in non-human organisms always in an ac on through which the 

organism aims to fulfil a biological need such as drinking, ea ng, or life preserva on through 

flight or fight. Animals (by which we mean here non-human animals) always live to fulfil 

immediate goals; they cannot create complex long-term plans. They live in the present 

situa on and cannot abstract away from what holds only of their survival or, in higher 

species, the survival of their offspring. Animal percep on is structurally restricted. Animals 

are blind to s muli that are not related to the fulfilment of their immediate biological needs, 

which means that their worldview is highly restricted. Sensual clues that do not belong to 

the environment to which they have been adapted by evolu on are ignored in something 

like the way that we humans, in normal circumstances, ignore ultraviolet light or 

radioac vity. (L&S 42) What sets humans apart is objec fying intelligence. If beavers or bower 

birds are removed from their habitat, they cannot survive unaided. Humans, by contrast, 
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have an intelligence that comprises, in addi on to the spectrum of capabili es of primal 

intelligence, also the ability to conceive, and then deliberately plan and build artefacts that 

will enable them to survive even where there is no life at all—in polar barrens in the high 

arc c, for example, or in submarines, or in outer space. 

Our gene c disposi on for objec fying intelligence arose in tandem with the degenera on of 

our biological adapta on to the natural world. (Scheler 1961; Gehlen 1988) As homo sapiens 

lost the specialisa on to natural environments which higher non-human mammals s ll enjoy, 

our species acquired—slowly, over millions of years of evolu on—the general purpose 

adapta on which we are calling objec fying intelligence, and this capability has in modern 

mes enabled humans to create their own environments summing up to the en re 

contemporary technosphere. 

Where non-human vertebrates and all lower organisms relate to their environment in a pre-

determined set of ways, objec fying intelligence allows homo sapiens to disengage himself 

from his environment in a way that allows him to see himself, other human beings, and the 

elements of this environment (both biological and non-biological) as objects, each with its 

own trajectory and its own array of proper es and causal powers. 

We can characterise the capability of objec fying intelligence as involving (L&S 46-7): 

- the ability to objec fy both the person’s environment and her own self; each person can 

serve as target not only of her own but also of the others’ conscious acts; and each 

person is aware that they can themselves become the target of the conscious acts of 

others; 

- the ability to focus on and to track objects through me in a way that enables both 

short- and longterm planning (poten ally extending across mul ple genera ons), 

including the se ng aside of resources for the future; investment in the crea on of 

enduring physical artefacts (churches, factories, roads, theatres) and ins tu ons 

(governments, legal and financial systems, religions); 

- the ability to make sense of the world in terms of causality and teleology; to understand 

object persistence for different categories of object; to associate specific categories of 

processes, disposi ons, capabili es, and func ons with specific categories of objects; 
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and to differen ally and consciously value objects (including other persons) in light of 

their different contribu ons to the realisa on of one’s goals; 

- the power of language, including the ability to think of and to categorise objects under 

universals and to exploit such linguis cally mediated categorisa ons to enable more 

complex ac vi es, including ac vi es involving shared agency; 

- a heightened degree of independence (rela ve to what is the case for lower animals) 

from immediate organic necessi es, which manifests itself in having and realising 

inten ons of new sorts, including inten ons belonging to cultural worlds; 

- self-distancing, which means the ability to stand outside natural life also in the sense 

that we are able to reflect upon ourselves as taking the point of view of an observer in 

rela on to other objects in the world; 

- distance from the world: this means that humans have a wide range of choices as to 

which parts of reality they will direct their a en on and interests, where animals are 

restricted to modes of interac on with the world that are op mised to the 

environmental niche into which they have evolved; 

- the ability to modify our directedness towards targets by cancelling the belief-moment. 

It is this which allows all forms of imagina ve directedness towards objects, in the 

literary and visual arts as well as in planning for the future and in all forms of specula on 

and hypothe cal reasoning. The ability to direct one’s thinking to en rely new kinds of 

objects is a characteris c feature of human crea vity. 

 

In view of the foregoing how, then, could we obtain a defini on of AI that is useful and 

applicable in real user se ngs?  

If we are talking of AGI, then we would certainly want a machine with -- not merely primal 

but also and foremost -- objec fying intelligence. (L&S 60 ff.) For example, a robot with the 

ability to engage in conversa ons with humans in which it would be perceived as a useful 

interlocutor because it has, for example, the ability to understand an ambiguous order (such 

as: ‘Give me the bo le’, where there are mul ple bo les standing on the shelf ), 

disambiguate the order by asking clarificatory ques ons, and execute the order by moving 

over to the shelf and reaching out with its robot arm. Objec fying intelligence is required for 

this purpose because execu on of the order presupposes an objec fica on of reality 
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analogous to that performed by humans. Thus the requirement for useful AI is: (not merely 

primal but) objec fying intelligence—including self-objec fica on—which would in any case 

be required for all purposes in which the ar ficial agent is required to move freely among 

and interact with humans. For the agent would need to move and behave in a way that is 

compa ble with the ways humans move and behave in rela on to each other in real 

environments and thus in a way that would make the agent, too, a part of what we can think 

of as the human world. 

An extensive review and discussion of representa ve defini ons of the term “intelligence” 

provided by the leading proponents of AI, and specifically of AGI, star ng with what is in the 

AGI community the most influen al and s ll the most widely accepted defini on, which was 

put forward by Legg and Hu er in a paper en tled “Universal Intelligence: A Defini on of 

Machine Intelligence” published in 2007, falls outside the scope of this paper.  

It would appear, however, that without excep on these defini ons, when measured against 

the previously specified requirement, throw no light at all on human intelligence in either of 

its two aspects of primal and objec fying, and therefore do not yield machines that can fulfill 

this requirement; neither will they yield machines that will have the capacity to go 

significantly beyond tradi onal “narrow” AI. (L&S Chapter 3) 3 

S ll the account of human intelligence can be used to throw light in the reverse direc on on 

what AI research itself has really achieved and will be able to con nue to achieve in the 

future, using primal and human intelligence as a benchmark. 

 

6. The general argument: the missing mathema cs of complex systems and 

the impossibility of AGI 

 

Whether it was John Searle’s Chinese Room argument (Searle, 1980) or Roger Penrose’s 

argument of the non-computable nature of a mathema cian’s insight – an argument that 

was based on Gödel’s Incompleteness theorem (Penrose, 1989), we have always had skep cs 

that ques oned the possibility of realizing strong Ar ficial Intelligence, or what has become 

known as Ar ficial General Intelligence (AGI). (Van Den Hauwe 2020) Many of the possible 
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objec ons to AI were foreseen by Alan Turing, the first person to define AI, before they were 

subsequently raised by others. (Turing 1950)  

  

But the strongest and most convincing argument elaborated up ll present that AGI is simply 

impossible has been put forward recently by Jobst Landgrebe and Barry Smith in their 2023 

book Why Machines Will Never Rule the World – Ar ficial Intelligence without Fear (L&S 

2023). The central ques on of this book is the possibility of the emula on of the most 

complex single-organism complex system on earth, namely the human mind-body 

con nuum. 

 

In the authors’ view the human mind is an integral part of the human body or rather of what 

they call the human mind-body con nuum. There is no separa on of mind and body; there is 

only one whole. Their posi on can be called a “no layers” approach in that it embraces a 

materialis c monist view according to which mental processes are physical processes. 

Contrary to a computer, that is a machine that creates a numerical output based on some 

numerical input using a mathema cal model (Turing 1937), the human brain and the human 

mind-body con nuum are not machines of any kind. (L& S Chapters 7 & 8) 

They convincingly defend the thesis that it is impossible to obtain synop c and adequate 

mathema cal models of complex systems, which means: models that would allow us to 

engineer AI systems that can fulfill the requirements such systems must sa sfy if they are to 

emulate human-level intelligence. 4 

The overall argument is quite simple and consists of two steps:  

(a) Anything we engineer (a computer or any other machine) must ul mately be a system 

that can be modelled mathema cally. That is, any engine we engineer is in the end a logical 

system that can be formally modelled and described by the mathema cs available to us. 

Ar ficial intelligence, no ma er what problems it is applied to, would have to reach its 

solu ons by execu ng a set of mathema cal func ons that are each computable in the 

Church-Turing sense. Any AI algorithm must be Church-Turing computable and only 

algorithms that can be formulated as a sequence of elementary recursive func ons are 

computable. (Enderton 2010) This requirement places a restric on on the sorts of programs 

that can be executed by a computer: they must be based on some mathema cal model 
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whose outputs are Turing-computable from their inputs.  

 

Any mathema cal model that runs on a Turing machine can only model comprehensively and 

adequately what we call logic systems. This is because to be computable it must be 

isomorphic to an algorithm which can be expressed using the basic recursive Church 

func ons. Each model consis ng of a combina on of these func ons is always a model of a 

logic system, even if the la er is used to approximate a complex system. Only logic systems, 

that is, systems that can be successfully modelled using proposi ons of mathema cs linked 

together by logical rela ons, allow models that can predict their behavior almost exactly. 

Computable models are models of logic systems; they all belong to the (extended) 

Newtonian paradigm of mathema cal modelling of reality.  

 

Stochas c models of complex systems are obtained using deriva ves of loss func ons, which 

are used to find local minima of mul variate func onals. The result is a very long, 

differen able equa on. Due to the mathema cal proper es of every dNN, this equa on 

obeys relaxed Newtonian requirements. This means that it does not require the interac ons 

between its variables to be always the same, and it also does not require that these 

interac ons have to be homogeneous over the en re neural net. However, the importance of 

any given interac on must decrease over space or me in a regular fashion; in other words, 

every neural network must s ll have a weak Markov property over space or me. And neural 

networks s ll require most of the proper es of Newtonian models in order to be 

computable.  

 

Simplifying logic systems sa sfy the following four condi ons (L&S 122-3):  

 

(1) The system behaviour can be explained by reference only to one of the four fundamental 

interac ons of gravity, electromagne c force, and the weak and strong nuclear force. 

(2) The system behaviour of interest is dominated by a single homogeneous and isotropic 

force in such a way that the effects of the other interac ons are so small, in the context of 

the modelled aspect, that they can be neglected. If there is more than one relevant force in a 

system, for example gravity and electromagne c force, their effects can be modelled 



18 
 

separately, given that each force dominates rela ve to its effects on corresponding separate 

aspects of the system’s behaviour. The interac on with other forces can be neglected. 

(Thurner et al. 2018) 

(3) In each system there are groups consis ng of elements of the same type. The elements of 

each such group interact with each other in an iden cal manner, and they also interact with 

the elements of other such groups again in an iden cal manner (which may be different for 

different groups). All interac on pa erns are in this sense homogeneous. For example, in the 

solar system, the sun and the planets can be seen as a group of elements (of type: lump of 

ma er) which interact via gravita on. But the sun is a star and the earth, Mars, as well as the 

other satellites of the sun are planets, and the sun (seen as a star) also interacts with these 

satellites through its electromagne c radia on. 

 (4) The boundary condi ons of the system can be assumed to be fixed without invalida ng 

the model, so that the system can be considered context-free, and thus the context in which 

the system is embedded can be abstracted away without detriment to the predic ve power 

of the model. 

 

(b) The mind, however, is not a logical system but a dynamic complex system that no known 

mathema cs can model or describe. The nature of complex systems prevents their synop c 

and adequate modelling.  

 

Excursus: history of the concept of complex systems 

One of the first to argue that for all animate systems we are unable to create predic ve 

models was Henri Bergson in 1907. In part under Bergson’s influence, the mathema cs of 

complex systems was pioneered by Ilya Prigogine in his work on what he called “dissipa ve 

structures”, specifically in his Introduc on to Thermodynamics of Irreversible Processes 

(Prigogine 1955). Prigogine iden fied many mathema cal proper es of complex systems, for 

example rela ng to the ways in which such systems exhibit processes which involve a 

constant passage away from equilibrium. 

 

Let’s try to explain. The complexity of modeling mental processes is not simply a func on of 
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their complex temporal or stochas c behavior; rather, it is because these processes are 

dynamic, adap ve, con nuously evolving, and cons tute systems whose behavior affects and 

is affected by the environment they func on in. This is the source of limita ons of modern-

day machine learning techniques: While one can “train” a deep network on a set of input-

output pairs, beyond any narrow domain no set of training data can adequately predict the 

future environment since the state of that environment itself is a func on of the very system 

that we are training. Such cyclical cause-and-effect behavior of complex systems cannot be 

modelled by any known mathema cs.  

More precisely complex systems are marked by the following seven proper es (L&S Chapter 

7; also Thurner et al. 2018): 

Property 1: Change and evolu onary character—sudden con nuous and poten ally non-

differen able or non-con nuous changes of element types and element (type) combina ons, 

which include changing behaviors on the part of all instances of a type. Contrary to the types 

of rela ons among the elements of logic systems that do not change over me, so that the 

types of behaviours manifested by these elements are given and fixed, a complex system has 

a crea ve character, which means that it can at any me create new elements and new 

pa erns of interac on.  

 

Each mathema cal model requires a vector space -- o en a coordinate space over an 

algebraic space F -- but with the changing variables and interac ons that we find in complex 

systems, there is no coordinate space over which models can be defined. Since each and 

every model is defined for a specific vector space, it becomes invalid if the reality targeted by 

the model differs from the vector space for which the model was originally defined. The 

more it differs, the stronger the devia on and the less accurate the model becomes. This is 

one of the main reasons why we cannot model complex systems mathema cally. 

All this is related to the evolu onary character of complex systems. Evolu onary systems are 

adap ve and robust at the same me, a phenomenon that is very hard to model because 

robustness requires lack of divergence from a fixed set of states while adapta on requires 

the explora on of new phase spaces. Evolu onary systems are also such as to manifest path-

dependence in their development and thus show a strong and long-las ng memory (in the 

sense that the rela on of their present to their past cannot be captured using Markov 
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models). Such systems are therefore both non-ergodic (they cannot be modelled by 

averaging over space and me without losing informa on) and non-Markovian (their 

behaviour depends not just on one or two immediately preceding steps). The lack of 

ergodicity is one of the chief obstacles to using stochas c AI for complex systems and 

another main reason why we cannot model complex systems mathema cally.  

In probability theory, mul variate distribu ons can be thought of as resul ng from stochas c 

processes, such as the Gaussian process, which is ergodic and creates a con nuum of 

mul variate normal distribu ons. Each ergodic process creates a series of data which can be 

modelled as samples from a stable mul variate distribu on which can be represented 

explicitly in mathema cal form. 

Suppose that we have a complex system and we wish to use observa ons of its behaviour to 

obtain a representa ve sample of the sort that we can use to train an AI applica on. For this 

to be possible, the sample data would have to correspond to a mul variate distribu on that 

is representa ve of the system’s behaviour, which can o en be assumed for logic systems as 

well as for certain ar ficial systems such as Go and chess, where the observable behaviour is 

constrained by strict rules. However, there are many, many cases for which no such 

distribu on exists. This may be, for example, because the evolu onary nature of the system 

will imply that the coordinates of the vector system which models its phase space are 

con nually changing. Second, it may be because, even in the absence of such change, the 

observa ons modelled by the distribu on emanate from a non-ergodic system, so that the 

distribu on of data points in the vector space cannot be modelled adequately with either a 

parametric or a non-parametric distribu on. This is because it is impossible to draw 

adequate samples from a distribu on of this sort, because there is no representa ve 

subspace from which the needed training samples could be drawn. Under these condi ons, 

there is no process that can yield a representa ve sample. 

Ergodic distribu ons are rare, and the distribu ons we encounter in real-world data are in 

most cases non-parametric. This means that we cannot use parameters to build an equa on 

to represent them mathema cally, as contrasted with what is the case for distribu ons 

resul ng, for example, from a Gaussian process. In cases where the data do not come from a 

distribu on of this sort, but rather from a non-ergodic process or from a distribu on 

generated by a complex system the stochas c model obtained by using such data will fail 
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when faced with new observa ons. This is because the la er emanate from a distribu on 

that will diverge from the training distribu on in a propor on of cases in a way that will at 

best ensure a poor performance and at worst make the model useless. Due to the nature of 

complex systems, this divergence may be unno ceable immediately a er training, but it will 

typically increase over me.  

Property 2: Element-dependent interac ons—which lead to irregularity and non-

repeatability. Irregularity means that the system does not behave in a way that can be 

formalized using equa ons. Non-repeatability signifies a behavior that cannot be reproduced 

experimentally.  When bodies are related to each other in the sorts of logic systems 

described in classical physics, for example through the force of gravita on, their interac on is 

homogeneous and not specifically related to the bodies involved—it depends only on the 

mass of the bodies and on the distance between them. In contrast to this, the elements of 

complex systems have rela ons specific to their nature, the interac on types are dependent 

on the types of the elements they relate. 

Importantly, in a logic system, whether natural or ar ficial, an element can change its state 

but not its type. For example, the gravita onal force a planet exerts on other bodies depends 

solely on its mass, no ma er which state of ma er it is in. However, in the sorts of complex 

systems we find in biology elements can dynamically change their func on, and when such 

changes occur this interacts with their state. What this means is that when the func on of an 

element, for example a membrane protein of a myocyte, changes due to phosphoryla on, 

then this brings about changes in the set of its measurable non-invariant property values. It 

can acquire new states due to the func onal change. The former are dynamically dependent 

on the la er. There is no way to model this sort of change mathema cally for many elements 

and states at the same me, which is why models of complex systems can model, at best, 

only certain narrow aspects of a system’s behaviour. 

Property 3: Force overlay—several forces ac ng at the same me and thereby poten ally 

interac ng. This property is o en correlated with anisotropy (which means that the effect 

resul ng from force overlay does not propagate with the same magnitude in all direc ons).  

All system behaviour, including the behaviour of complex systems, is the result of the four 

basic physical interac ons (electromagne c, gravita onal, strong, and weak). But these 

forces interact with each other and are overlaid upon each other in such a complicated way 
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in complex systems that it is impossible to model how the observed behaviour of such 

systems is generated. 

Property 4: Non-ergodic phase spaces—which cannot be predicted from the system 

elements and lead to me-irreversibility. A me-irreversible process is a process which 

cannot be described by equa ons which are invariant or symmetrical under a change in the 

sign of me.  

Complex systems have a rich phase space, which is to say that the set of all elements and 

their states that would be needed to describe the en re workings of the system is very large. 

Some directly observable macrostates such as temperature, pressure, or density are 

explainable exhaus vely from microstates at lower granular levels (for example, from states 

of molecules in Brownian mo on). The former, in other words, can be predicted from the 

la er. In complex systems, however, we observe macrostates that emerge in a fashion that 

cannot be predicted or derived from knowledge about the microstates which compose them. 

For example, we cannot adequately model regional or global average temperatures (a 

macrostate) from the microstates of the earth’s climate system in the case where adequacy 

would mean that the model could predict the temperature me series with good accuracy 

over decades. 

Yet more obstacles to modelling are created where we are dealing with non-ergodic 

processes, which produce events in which we cannot iden fy any law-like pa ern that can be 

modeled mathema cally. The reason for this is that non-ergodic processes do not yield 

distribu ons from which representa ve samples can be drawn. 

An addi onal obstacle turns on the fact that the traces of non-ergodic processes—in other 

words the data series which such processes generate—provide no adequate target spaces for 

stochas c sampling. The samples drawn from such complex traces are never representa ve 

of the process behaviour due to the non-ergodic character of the process. There is here no 

distribu on to sample from. This systema cally prevents stochas c modelling of such 

processes. 

 

Property 5: Drivenness—either involving some external energy force or resul ng from some 

sort of inner drive; drivenness implies the lack of an equilibrium state to which the system 
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would constantly be converging. This lack of equilibrium is caused by an energy gradient and 

results in energy dissipa on. Complex systems are o en driven in the technical sense that is 

defined in physics (more precisely in sta s cal mechanics). Driven systems undergo a flow of 

energy, which prevents them from converging or moving to an equilibrium; the energy flow 

pushes them ever onward from one state to the next. The mathema cal difficul es in dealing 

with out-of-equilibrium or non-equilibrium systems are tremendous and beyond analy cal 

reach. 

Property 6: Context-dependence—non-fixable boundary condi ons and embeddedness in 

one or more wider environments. In complex systems, the boundary condi ons at the 

interface between system and environment are constantly changing. This is why a complex 

system cannot be modelled by assuming that its boundary condi ons (formed by the 

elements at the boundary) are fixed: doing this would create an invalid model. In other 

words, one cannot abstract from this environment without fundamentally mismodelling the 

behaviour of the systems it contains. When dealing with logic systems, in contrast, one can 

abstract from the context; the boundary condi ons of the system can be assumed to be 

fixed, and the system itself is in this sense context-free. Because complex systems are 

context-dependent; their boundary condi ons massively determine how they work. 

The context-dependence property of complex systems has the consequence that the system 

will use a different phase space following different principles depending on the context in 

which it is situated. Yet neural networks always rely on the assump on that all the input-

output-rela onships they model via their training samples are context free. The distribu on 

from which they are drawn has no further context. Crucially, this means that they cannot 

cope with the non-ergodic system events which are characteris c of complex systems as the 

networks are trained using large sets of events over which they merely average. No ma er 

how large the model parameterisa on becomes, this training process cannot yield models of 

complex systems which are both synop cal and adequate. In other words, when data are 

sampled from a complex system, they are never representa ve of the system, for the 

system’s behaviour never has a mul variate distribu on from which one could draw 

representa ve samples. Context-dependence is another main reason why we cannot model 

complex systems mathema cally. 
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Property 7: Chaos—inability to predict system behavior due to inability to obtain exact 

measurements of star ng condi ons. Chao c behaviour results from the dependence of a 

system on its star ng condi ons and is referred to as determinis c chaos in physics. It arises 

not only in complex systems, but also in simple systems, for which it was first described. In 

such systems, we know exactly which laws govern a physical process and can model it with a 

number of variables that is sufficiently small to allow us, in principle, to obtain a predic ve 

model. However we fail to do so because we are unable to measure the star ng condi ons 

with sufficient exactness. No ma er which type of system we are dealing with, chaos cannot 

be predic vely modelled—the divergence from the real outcome may some mes be low 

over very short observa on intervals, but it increases exponen ally over me. While there 

are non-chao c simple (Newtonian) systems, complex systems are in every case chao c. 

Clearly, very many of the systems we encounter in nature, including the global climate and 

plate tectonic systems, and almost all the systems we encounter in the realm of living 

organisms, are complex. This means that they cannot be modelled in a way that would yield 

the sorts of mathema cal predic ons that can be reliably used in technological applica ons.  

Most processes in nature, even many seemingly simple inanimate processes, cannot be 

modelled mathema cally. We cannot write down or automa cally generate equa ons which 

describe, explain, or predict such processes accurately. 

The class of problems in rela on to which mathema cal modelling has been singularly 

successful in genera ng exact or almost exact predic ons belongs to the domain of physics 

where we can usefully employ “extended Newtonian mathema cs”, comprising the en rety 

of those mathema cal resources that have the sort of predic ve power first unleashed by 

the inven on by Newton and Leibniz of the differen al calculus. But the structure of 

extended Newtonian mathema cs and the limita ons of its models that have been brought 

to light through the development of chaos theory and the theory of complex systems have 

far-reaching implica ons as concerns the possibility of our crea ng models with the ability to 

predict the behaviors of complex chao c systems such as the human brain. The la er would 

require a major revolu on in mathema cs of a type which has been ruled out as impossible 

by leaders in the field, and no traces of which are even on the horizon. If we are restricted to 

using extended Newtonian mathema cs, and so long as we are constrained to use those 

algorithms of extended Newtonian mathema cs which can be executed on universal Turing 
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machines, it is not conceivable that we will be able to mathema cally model, and thereby to 

engineer, a system with the complexity required to emulate human intelligence. In other 

words, there is no way to model the behavior of a complex system with the accuracy 

necessary to support sound technical applica ons and a empts to apply extended 

Newtonian mathema cs to complex systems lead to failures in most se ngs, and this applies 

not least to the human central nervous system.  

Summarizing, both the argument that the mind or some facul es of the mind are complex 

systems that are dynamic, adap ve, con nuously evolving, and are systems whose behavior 

affects and is affected by the environment they func on in, and the argument that the 

behavior of such systems is beyond any known mathema cs are very compelling and 

certainly also refute any claim that an AGI is conceivable that could mathema cally or 

algorithmically emulate (or go beyond) human entrepreneurial crea vity.  

 

Schema cally the argument can be summarized as follows: (1) In order to emulate 

entrepreneurial crea vity with the help of AI we would have to simulate these crea ve 

processes computa onally; (2) Entrepreneurial crea vity is a capability of the complex 

dynamical system which is the human mind-body-environment con nuum; (3) Therefore an 

emula on of entrepreneurial crea vity with the help of machines would require to simulate 

computa onally the workings of complex dynamical systems; (4)  Simula ng a complex 

dynamical system computa onally requires adequate mathema cal models of such systems. 

(5) Adequate mathema cal models of complex dynamical systems are impossible. (6) 

Therefore, it is impossible to emulate entrepreneurial crea vity with the help of machines. 

This cri que was clearly an cipated by Jesús Huerta de Soto when he wrote: 

“ (…) mathema cians have yet to (and may never) take up the challenge of conceiving and 

developing a whole new “mathema cs” which permits the analysis of human crea ve 

capacity with all of its implica ons.” (Huerta de Soto 2008, 108) 

 

Some of today’s AI proponents believe that the currently fashionable AI paradigm of “deep 

neural networks”—connec onist as opposed to symbolic AI—can mimic the way the brain 

func ons; L&S show that, again for mathema cal reasons, this is not so, not only for deep 

neural networks but for any other type of AI so ware that might be invented in the future. 5 



26 
 

 

The argument against the possibility of AGI is in more than one respect analogous to and can 

elucidate the argument of Mises and Hayek against the possibility socialism as L&S also 

recognize. (L&S 157-8) Both the human brain and the economic system are complex systems 

that are not amenable to effec ve and sa sfactory mathema cal modelling. 6 

 

As L & S recognize economics yields mostly descrip ve and interpreta ve models, involving 

no mathema cal causality and yielding no exact predic ons. Macroeconomics for instance 

provides no causal explana ons, but rather (at best) very helpful causal interpreta ons. No 

economic model can predict exactly any single economic quan ty for any selected me or 

me interval in the future, whether this be the price of a good or the excess capacity of a 

produc on method. Nor can the causa on of economic phenomena be modelled causally in 

such a way as to yield a scien fic explana on—again, because of the complexity of the 

system.  

 

Let’s summarize. There are hard boundaries to the modelling of complex systems, so that 

causal explana ons and exact predic ons—even of single traits of these systems—are in 

almost all cases mathema cally impossible. This is so because for such systems we are 

unable to formulate equa ons that yield the needed predic ons. For an AGI designed to 

subs tute for humans in the performance of complex tasks in natural environments, inexact 

predic ons are insufficient: the AGI will not pass even minimal safety checks. The problem 

here is that, if we measure the behaviour of complex systems by assigning numbers to the 

observable events which these systems (co-)generate, we obtain data to which no predic ve 

model can be made to fit, no ma er which procedure we use. An example is the system 

formed by two human beings when they engage in a dialogue.  

However, many par al aspects and proper es of complex systems can be modelled 

descrip vely or approxima vely. Economics -- in its “mainstream” variant – is only one of a 

number of disciplines in the life sciences (biology, biochemistry, medicine, pharmacology, 

and so forth) and also in the humani es and certain other social science disciplines 

(psychology, anthropology, ethnology…) all dealing with complex systems that widely use 

mathema cal models for descrip ve, interpreta ve, and approxima vely and par ally 
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predic ve modelling. But the nature of complex systems sets ght boundaries on what such 

descrip ve modelling can achieve. It is important to understand that synop c and adequate 

models of complex systems are not possible.  

 

Mathema cians who have become aware of the inadequacy of Newtonian mathema cs for 

the modelling of complex systems have tried to develop more sophis cated (non-naïve) 

approaches, using mathema cal frameworks which can cope with the proper es of complex 

systems and yet remain computable. The study of these approaches falls outside the scope 

of this paper. Non-naïve approaches to complex system modelling are o en mathema cally 

interes ng and contribute to our descrip ve and interpreta ve understanding of aspects of 

the phenomena under study. However, they do not give a procedure to obtain exact causal 

or predic ve mathema cal models of complex systems, in most cases not even for single 

traits of such systems. Such a procedure can be found only for simple (logic) systems that are 

man-made and ar ficially driven. Predic ve mathema cal models for the behaviour of any 

complex system have thus far not been provided on any approach. 

 

Excursus: the uniqueness of the methodology of the Austrian School of economics 

 

As I have pointed out elsewhere (Van Den Hauwe 2009, 213-4) and want to repeat here, the 

economists of the Austrian School of economics, in par cular Ludwig von Mises and his 

followers, have developed a unique theore cal method, the method of praxeology, that can 

be interpreted as a method and device to cope with the complexity of economic phenomena. 

This method is both exact and non-mathema cal, both predic ve and non-quan ta ve.  An 

elabora on of this theme falls outside the scope of this paper, however, which is devoted to 

the rela onship between entrepreneurship and ar ficial intelligence.   

 

7. Implica ons 
 

The “general impossibility” is exemplified by some more specific impossibili es that equally 

render AGI impossible. Prominent among these are:  

 

(1) Machines will not master human language. (L & S Chapters 4, 5 & 10)  
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Language is a prerequisite to any AGI but since linguis c communica on – comprising open 

interac ve dialogues -- is itself a complex system that no mathema cs can model, again no 

AGI is possible. In a real dialogue the interpreta on of some u erance must be a func on of 

previous u erances and the overall context that has been built so far. But since responses 

cannot be predicted in any meaningful way, the overall context is not well defined, and so 

the en re interac on cannot be mathema cally modelled.    

The most striking capability which dis nguishes human beings from other animals is our 

ability to speak, and more specifically to conduct conversa ons. Language is the most 

important observable expression of our objec fying intelligence. Animals have no language, 

and they have no non-verbal abstract symbols such as badges or insignia, no ability to 

manipulate numbers, and no objec fying intelligence. 

L & S lay out the role that language plays for humans and describes language complexity to 

let us appreciate the challenge that lies in the a empt to mathema cally model language in 

a way that would be required to create an AI. (L & S Chapters 4 & 5) Humans produce 

meaningful language and assign meaning to the language produced by others in a dynamic 

process. L & S summarize the current view of language produc on and interpreta on on the 

part of philosophers of language and of linguists. (L & S Chapter 5) The result is then used as 

basis for understanding their argument in later chapters to the effect that it is impossible to 

model mathema cally either of these capabili es of the human mind in a way that is 

adequate in the sense that it is able to generate the sorts of predic ons needed to support 

machine emula on of human language use.7 

 

As L & S conclude: 

 

“When a conversa on occurs between human beings, mul ple complex systems, each with 

its own evolving sets of inten ons and realizing its own sets of capabili es, are interac ng 

with each other. Interac ons of this sort are analogous to those which occur when other 

sorts of complex systems interact—for instance when the earth’s dal system interacts with 

the ecological systems of coastal wetlands. We can describe and explain some of what occurs 

in the course of such interac ons; but we cannot build mathema cal models that will enable 

us to predict what will occur. The two sorts of systems simply interact. That is what they do. 
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And so, too, in the case of many sorts of interac ons, both linguis c and non-linguis c, 

involving humans: humans do not consciously or unconsciously compute these interac ons 

(because the human mind-body con nuum is not any sort of computer). Rather, they simply 

interact in a way that involves, at the level of ul mate physics, a constantly self-adjus ng 

sequence of interac ons between the different sets of fundamental forces deriving from the 

different human beings involved.” (89) 

 

(2) Machines will not master social interac on. (L & S Chapters 6 & 11)  

 

We will never be able to engineer machines with the social and ethical capabili es of human 

beings. In prepara on for drawing this conclusion we need to understand what these 

capabili es are. To this end L & S engage in an accelerated grand tour through sociology and 

social ontology, focusing on three sets of issues, rela ng to (a) social behaviour in 

communi es, socie es, and ins tu ons, (b) perspec ve-taking and intersubjec vity, and (3) 

social norms, including legal and moral norms. In chapter 11 L & S then address the 

implica ons of this for the possibility of emula ng ethics in the machine. 

As Adam Smith was perhaps the first to recognize, in all social interac ons—from shaking 

hands in order to seal a deal, to assis ng in someone’s suicide, to the public dialogue 

between magistrate and thief that precedes the thief’s being condemned to the stocks—a 

successful outcome requires that all par es have been able to use their social capabili es to 

understand the situa on they are in and the norms thereby entailed. It requires also that 

they each use these same capabili es to understand the inten ons of the other par es, and 

the power gradients that obtain between them (Smith 1790, I.i.1.3). Value consciousness and 

the ability to integrate social norms, intersubjec vity, and power rela onships consciously 

into a coherent, deliberate form of behaviour is a capability exclusive to humans. Animals can 

recognize very simple value differen als (for example between pleasure and pain) and 

perform elementary integra ons of social norms and social rank; but they do not have the 

capability to apprehend values of higher order or to perform the conscious integra on of 

values, feelings, and inten ons that humans are capable of. (L & S 106) 

Since we can emulate neither human intelligence nor human language in the machine 

because we lack the mathema cal models that would be needed to do so, it follows that we 
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cannot emulate human social capabili es either, since these require both intelligence and 

mastery of language. There can be no machine intersubjec vity, no machine social norms, no 

law-abiding behavior or emula on of morality by machines. (L & S Chapter 11) 

 

 

                                                                                                                                                                                    

8. Conclusion: machines will not replace entrepreneurs 
 

Human and machine intelligence are radically different. The myth of AI insists that the 

differences are only temporary, in the sense that, step-by-step, more powerful AI systems will 

erase them. Yet the success achieved by focusing on narrow AI applica ons gets us not one 

step closer to general intelligence. No algorithm exists for general intelligence. And we have 

good reason to be skep cal that such an algorithm will emerge through further efforts on 

deep learning systems or any other approach popular today. 

At the intuitive level the contrast between the materialistic worldview underlying most of AI 

research on the one hand and the immaterial aspects of entrepreneurship on the other, 

already casts serious doubts upon any claim to the effect that entrepreneurial creativity 

could be emulated algorithmically by a computer.  

 

Summarizing some tenets of Austrian entrepreneurship theory, in particular highlighting the 

immaterial and spiritual nature of the phenomenon and confronting these with the 

assumptions underlying AGI research has allowed us to perceive the incongruence of any 

attempt to explain entrepreneurship in materialistic (deterministic, reductionistic…) terms.  

However, even without assuming any mind-body discon nuity, that is, even if mental 

processes are themselves physical processes, the impossibility of AGI can be demonstrated 

relying on scien fic contribu ons from a range of disciplines, and any claims regarding the 

prospects of emula ng entrepreneurship algorithmically and someday replacing 

entrepreneurs by machines or robots are clearly unfounded.  The core of the argument 

relates to the fact the emula on of entrepreneurial crea vity with the help of machines 

would require the synop c and adequate mathema cal modelling of the complex dynamical 

system which is the human-mind-environment con nuum which is impossible. If AGI is 
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defined as a form of machine intelligence that allows the construc on of a synop c and 

adequate model of human-level intelligence and crea vity, it is for the same reason 

impossible.   

Whatever the useful implica ons of the development of AI for the economy are and will be – 

see e.g. HBR 2019 -- and despite enormous advances in (narrow) AI, machines will not 

replace entrepreneurs and genuine human entrepreneurs will remain the driving force of the 

market economy. This conclusion warrants op mism regarding the prospects of future 

research into the nature of entrepreneurship along lines ini ated by Austrian economists.  

 

Notes 

 

1 It is not quite correct that machines engage in induc ve reasoning; they rather compute 

local minima for loss func ons, which can be seen as a very primi ve emula on of induc on 

from data because a func onal is indeed obtained from observa ons (individual data). 

However, machines do not perform the induc on themselves; they merely compute human-

designed op miza on algorithms which emulate a narrow form of human induc on. 

2 IBM’s famous Deep Blue prevailed in chess over Gary Kasparov, and more recently, AI 

systems have prevailed in other games, e.g. Jeopardy! and Go, which is an illustra on of the 

fact that in certain focused areas machines can out-perform human minds. There are two 

fundamental types of computable system models: determinis c and stochas c. The former 

comprise, for example, models expressed using proposi onal, predicate or modal logic, and 

including what are called expert systems or rule systems. The chess-playing algorithm Deep 

Blue that beat Kasparov in 1996 was determinis c; it used an α-β-search algorithm 

(Heineman et al. 2008, chapter 7). 

3 The defini ons of intelligence based on u lity func ons proposed by the AGI community  

iden fy the intelligence of a machine on the basis of the fact that the machine is endowed 

with an op misa on framework for obtaining some extremum for a high-dimensional 

func onal for which deriva ves can be calculated. This formula on is just an alterna ve way 

of sta ng that, as on all connec vist approaches to AI, they obtain a model which is defined 

via a loss func on, or in other words that they execute a recipe found using op misa on. 
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This brings one advantage over AI based on symbolic logic (GOF-AI), namely that the 

connec onist AI algorithms can be generated automa cally, where GOF-AI requires 

algorithms that are designed explicitly. In this way, the new u lity-based AI yields an 

approach that can scale to apply in areas where we have to deal with very large bodies of 

data with a certain degree of variance. But it is an approach which works only where we can 

assemble training samples with a variance which is representa ve of the variance in the 

target data. This is possible only along certain very narrow lanes. Alterna ve defini ons of 

intelligence are unlikely to yield anything that can fulfill the requirements described earlier. 

For no ma er how we generate an alterna ve AI, it will have to emulate what we call a ‘logic 

system’, which is a system such as a simple device engineered in such a way that its 

behaviour can be predicted using the equa ons of physics and the rules of logic. 

4 To enable a classifica on of such models according to their u lity, L & S introduce the 

no ons of synop c and adequate models. A synop c model is a model that can be used 

either 1. to engineer a system or system component of a specified sort (for example, a 

combus on engine or an ar ficial heart), or 2. to emulate the behaviour of a system or 

system component (for example, the behaviour of a ger as emulated in a computer game, 

or the behaviour of a clerk in a travel agency using a chatbot). A model is adequate rela ve 

to some set of specified requirements if it can be used to engineer an artefact, or to create 

an emula on, that sa sfies all the requirements of that set. (112)                                                  

5 Even a nervous system made of only a few hundred neurons is much more complex than 

an ar ficial dNN with billions of parameters, which is merely a (big) logic-system-modelling 

equa on. This is because each neuron contains millions of signal-integra ng molecules and is 

connected to other neurons via synapses using a plenitude of neurotransmi ers which elicit 

many different reac ons based on the state of the post-synap c neuron. Furthermore, the 

neurons of higher organisms also depend on humoral factors (hormones and other signalling 

molecules in the blood). They are living cells, which are driven and thus never in equilibrium, 

but they produce and consume energy all the me. In short, unlike stochas c models (such 

as dNNs), which are logic systems and can thus be executed on computers (to approximate 

complex systems), nervous systems are complex systems in their own right. (L&S 168-9) 

6 In this respect the theory of complex systems comprises some lessons not only for AI 

enthusiasts, but also for economic methodologists. There are three types of models: 

descrip ve, explanatory, and predic ve. (L & S 111-2) There are two types of explana ons: 1. 
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Interpreta ve explana on of effects of certain types, in which important causes of the effect 

types can be listed and the rela onship between cause and effect types can be qualita vely 

described. 2. Full causal explana on, in which the physically relevant types of causes and 

their effects can be enumerated, and their rela onships can be modelled quan ta vely and 

exactly using an equa on or a set of equa ons. Predic on refers to those cases where we 

can model the behaviour of a system in such a way that we have an assurance that, given an 

input of the sort for which the model is designed, the model will yield an output (a 

predic on) that is in accordance with the behaviour of the modelled system. Predic ve 

models can be exact or approxima ve. In the la er case they are stochas c, where a simple 

example is a model of the outcome of throwing a dice. All stochas c AI models, such as 

classical sta s cal learning models or deep neural networks, are of this approxima vely 

predic ve type. It is exact models that enable strict scien fic knowledge, including both 

exact causal explanatory and exact predic ve models. This is the sort of knowledge that we 

can obtain in physics, in chemistry, and in certain areas of biology.  

7 For mathema cal models predict is not restricted in its meaning to the predic on of future 

events (as in weather forecas ng). Rather, it is used more generally to denote the calcula on 

or computa on of model output from some model input. In ar ficial dialogue systems, the 

computa on of a machine u erance based on the u erance of a human being is also a 

predic on from the perspec ve of mathema cs; from a user perspec ve, however, it is 

rather simply a succeeding u erance. 
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