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Abstract 
For more than 100 years economists have tried to describe economics in analogy to physics, 

more precisely to classical Newtonian mechanics. The development of the Neoclassical 

General Equilibrium Theory has to be understood as the result of these efforts. But there are 

many reasons why General Equilibrium Theory is inadequate: 1. No genuine dynamics. 2. 

The assumption of the existence of utility functions and the possibility to aggregate them to 

one “master” utility function. 3. The impossibility to describe situations as in “Prisoners 
Dilemma”, where individual optimization does not lead to a collective optimum. This book 
aims at overcoming these problems. It illustrates how not only equilibria of economic 

systems, but also the general dynamics of these systems can be described in close analogy 

to classical mechanics. 

To this end, this book makes the case for an approach based on the concept of constrained 

dynamics, analyzing the economy from the perspective of “economic forces” and 
“economic power” based on the concept of physical forces and the reciprocal value of mass. 
Realizing that accounting identities constitute constraints in the economy, the concept of 

constrained dynamics, which is part of the standard models of classical mechanics, can be 

applied to economics. Therefore, it is reasonable to denote such models as General 

Constraint Dynamic Models (GCD-Models) 

Such a framework allows understanding both Keynesian and neoclassical models as special 

cases of GCD-Models in which the power relationships with respect to certain variables are 

one-sided. As mixed power relationships occur more frequently in reality than purely one-

sided power constellations, GCD-models are better suited to describe the economy than 

standard Keynesian or Neoclassic models. 

A GCD-model can be understood as “Continuous Time”, “Stock Flow Consistent”, 
“Microfounded”, where the behaviour of the agents is described with a general differential 
equation for every agent. In the special case where the differential equations can be 

described with utility functions, the behaviour of every agent can be understood as an 

individual optimization strategy. He thus seeks to maximize his utility. However, while the 

core assumption of neoclassical models is that due to the “invisible hand” such egoistic 
individual behaviour leads to an optimal result for all agents, reality is often defined by 

“Prisoners Dilemma” situations, in which individual optimization leads to the worst 
outcome for all. One advantage of GCD-models over standard models is that they are able 

to describe also such situations, where an individual optimization strategy does not lead to 

an optimum result for all agents.  

In conclusion, the big merit and effort of Newton was, to formalize the right terms (physical 

force, inertial mass, change of velocity) and to set them into the right relation. Analogously 

the appropriate terms of economics are economic force, economic power and change of 

variables. GCD-Models allow formalizing them and setting them into the right relation to 

each other. 
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1. Introduction  
Formelabschnitt (nächster) 

For more than 100 years economists have tried to describe the economy in analogy to 

physics, more precisely to classical mechanics. The neoclassical General Equilibrium 

Theory has to be understood as the result of these efforts. But the orientation of economics 

towards physics has been implemented only partially, especially the dynamics of 

mechanical systems have been omitted completely. So, Field medalist Steve Smale stated 

in 1998 (Smale 1991; 1997; 1998; Smale Institute 2003) as problem No. 8 of 18 major 

problems of dynamics to extend the mathematical model of general equilibrium theory  to 

include the dynamics of price adjustments. This book therefore seeks to analyze the 

dynamics of economic models in perfect analogy to Newtonian mechanics. It shows that 

not only equilibria, but also the general dynamics of an economic system with all its 

disequilibria for all variables (including price) can be described using the framework 

provided by classical mechanics. We refer to the corresponding models as General 

Constrained Dynamic models (GCD models). They seem to be a contribution to the solution 

of Steve Smale's problem No. 8. 

The formalization of the physical concepts of force and mass by Isaac Newton 

revolutionized physics and was the basis for the entire following development of the 

discipline. Similarly, this book aims at developing a formalization of the concepts of 

economic force and economic power in order to establish a single consistent structure for 

the description of economic systems. Within these analogies economic power corresponds 

to the reciprocal value of mass. 

The book is divided into 7 sections: 

A. Basic Principles,      chap. 2 – 5 

B. Microeconomic models    chap. 6 

C. Macroeconomic models     chap. 7 – 19 

D. Supply, demand and price shock models chap. 20 – 23 

E. GCD with intertemporal utility functions chap. 24 – 27 

F. Summary      chap. 28 

 

In Section A, we provide a historical review of attempts to find similarities between 

economics and physics, and explain why and how GCD models make an essential new 

genuine contribution to this effort. 

Chapter 2 provides a short overview over the historic attempts to find similarities between 

economics and physics.  

In Chapter 3, we illustrate the main ideas of this approach. It describes the formal structure 

of such "General Constrained Dynamic Models" (GCD models), which is based on the 

concepts of economic force and economic power, where the concept of economic power is 

inversely proportional to the concept of inertial mass in physics and closely related to the 

concept of adjustment speed in economics. The basic idea of GCD models is that the 

dynamics is determined by the resultant of those forces that market participants exert to 

optimize their individual interests (individual utility optimization).  GCD models are thus 

an extension of neoclassical models described by the maximization of a single master utility 

function (overall utility maximization). The term "constrained" refers to the fact that the 

economy is often subject to constraints. The most important class of such constraints are 

https://www.wikiwand.com/en/General_equilibrium_theory
https://www.wikiwand.com/en/Price
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accounting identities, which lead to economic constraint forces in perfect analogy to the 

constraint forces in classical mechanics. 

We explain the concept of GCD models using the microeconomic model of the Edgeworth 

Box. 

In chapter 4, we give the formal description of GCD models with individual utility functions 

(individual utility optimization) and the relation to the neoclassical description of economics 

with a master utility function (overall utility maximization). In this context, the question of 

the aggregability of individual utility functions to a master utility function plays an essential 

role. 

In chapter 5, we show that GCD models provide the basis for a new and comprehensive 

understanding of economic models from a mathematical and theoretical perspective.  Thus, 

in a sense, they can be understood as a metatheory for economic models. This basic 

structure, in which (almost) all economic models can be embedded, can be formally 

described as a differential-algebraic system of equations. (Almost) all mathematical 

structures used for economic models can be seen as special cases of a GCD model. 

In Section B we describe the model of the well-known Edgeworth box, which describes the 

static general equilibrium in a pure microeconomic exchange economy with only two agents 

and two goods. A major problem of general equilibrium theory is the fact that no statements 

can be derived about the so-called tatonnement, i.e. the path of the bargaining process from 

the initial endowment to the final general equilibrium. We show how GCD models can be 

defined to model this dynamic bargaining process. This seems to be a contribution to the 

solution of problem 8 formulated by Steve Smale (Smale 1991; 1997; 1998; Smale Institute 

2003). 

In Section C, we develop step-by-step increasingly complex macroeconomic models. The 

target is to show how GCD models are built in principle. However, one cannot expect to be 

able to derive concrete practical economic insights from these models already. To do so, 

these models and their parameters must first be better adapted to real conditions and tested. 

This is one of the major tasks that will have to be completed in the future. Only then will it 

be possible to derive first qualitative and later quantitative economic statements from them. 

To facilitate the entry into the practical development of GCD models, the program 

"GCDconfigurator" was developed. This program is freely accessible via GitHub (Glötzl 

und Binter 2022) and can be downloaded under 

https://github.com/lbinter/gcd  

It allows in the 1st step to set up the GCD equation system in a convenient way just from 

the specification of the utility functions, constraints, power factors and initial conditions. In 

the 2nd step, the program enables the calculation of the solutions using MATHEMATICA. 

The results are calculated and plotted graphically as a time evolution of the variables, where 

the individual parameters can be varied in a convenient way. 

All Mathematica program codes used for calculations of the various GCD models can be 

downloaded under   

https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=0 

When developing concrete GCD models, it has proven useful to first describe these models 

using model graphs that represent the interaction of the different agents and the economic 

variables. The models start with the simplest model A1, which consists of the two agents 

(firm and household) and one good that serves as both a consumption good and an 

https://github.com/lbinter/gcd
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=0
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investment good. The models are extended step-by-step to include a bank, a central bank 

and the government. It is also demonstrated, for example, how the monetary policy of the 

central bank can be modeled in terms of money supply policy or interest rate policy or in 

terms of the Taylor rule. Finally, Model D2 is a comprehensive model that can still be solved 

easily with any PC. All the corresponding MATHEMATICA programs can be downloaded 

in order to be able to analyze and further develop them. 

As a final model, we show a simple example of a model that represents the conflicting 

behaviour of flow and stock variables, as is relevant to many environmental problems: e.g. 

on the one hand, the burning of fossil fuels (flow variable) fulfills important interests; on 

the other hand, this leads to the undesirable increase of carbon dioxide concentration in the 

air. 

When analyzing economic dynamics, economic shocks play a very important role. 

Therefore, we show in Section D. how economic shocks can be modeled with GCD models. 

In the economy, various reasons can lead to a shock, e.g. 

- sudden changes in raw material prices 

- sudden changes in consumer behaviour due to quarantine regulations 

- sudden production restrictions due to a disruption in the supply chain 

- etc. 

From an economic point of view, there are 2 fundamental issues related to shocks: 

(1) Forecasting: How will the economic variables change? 

(2) Evaluating countermeasures: What measures can be taken to overcome the shock as 

quickly as possible or with as little effort as possible? 

Since intertemporal utility functions are essential for certain economic models, in section 

E we extend the GCD method to intertemporal utility functions (IGCD models).  This 

allows us to consider GCD models as an alternative to DSGE models.  An essential result 

is, that DSGE models in principle are equivalent to IGCD models with only 1 agent. 

The target of this section is to show the principle of defining GCD models with 

intertemporal utility functions. The actual programming of such GCD models with 

intertemporal utility functions is much more complex and is therefore still a task for the 

future. 

Section F concludes with an overview over the conceptual and methodological advantages 

of GCD-models for the understanding of the economy and the dynamics of general 

economic systems.  
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A. Basic Principles 
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2. Historic attempts and literature 
review 

Formelabschnitt (nächster) 

2.1. Economics and Physics 

Since the beginnings of modern economics, the endeavor to construct the discipline along 

the principles of physics has been omnipresent. Already Adam Smith showed his fascination 

of Newton in ‘History of Astronomy’ (A. Smith 1795), a fascination that also reveals itself 

in the methodology of his economic theory as numerous studies show (for an overview over 

the literature see (Redman 1993)). For instance Smith’s theory of value, developed in ’The 
Wealth of Nations’ (A. Smith 1776), is to be regarded as the counterpart to the concept of 

energy in physics. In its essence the Smithian theory of value was adopted by all following 

classical economists. In this point of view value is conserved just like energy within the 

circular flow (Mirowski 1989).  

As a result of the impressive scientific advances in the field of physics and chemistry during 

the 18th and 19th century, the social sciences increasingly tried to imitate the methodology 

of the natural sciences. Due to the complex and interdependent structure of social 

phenomena these attempts were of limited success. Only in the field of economics the 

orientation towards the methodology of physics seemed promising by focusing exclusively 

on competitive markets, prices and quantities and limiting investigation to rational human 

behaviour (Rothschild 2002a). 

The decisive step in this development was brought by Léon Walras’ General Equilibrium 

Theory (Walras 1874),, and the simultaneously published contributions by Stanley Jevons 

and the introduction of the ‘calculus of pleasure and pain’. This work marked the end of the 
era of classical economics and was the birth of neoclassical economics. The assumption that 

the behaviour of all economic agents could be described by utility functions was at the core 

of this new school of thought. All economic questions involving psychological and social 

factors were deliberately ignored. Until today these central principles are the foundation of 

standard economics. The Arrow-Debreu General Equilibrium Model, is seen as the first 

complete model describing a general equilibrium based on the Walrasian theory (Arrow und 

Debreu 1954).  

The endeavor to identify further similarities between physics and economics, as well as the 

goal to still increase the orientation of the methodology of economics towards economics 

was continued by Paul Samuelson. It was his work which was decisive for mathematics to 

become the standard method in economics. Moreover, Samuelson identified several 

similarities between physics and economics, arguing that classical thermodynamics and 

neoclassical economics are related in their common search of a basis for the optimization 

of observed behaviour. In physics this is achieved by maximizing free energy, in economics 

by maximizing utility (James B. Cooper 2010); (J. B. Cooper und Russell 2011; James B. 

Cooper 2010). In a similar vein Smith und Foley (2008) attempt to adopt the model structure 

of thermodynamics as well as the principle of entropy in economics and show under which 

circumstances and conditions this is possible (E. Smith und Foley 2008). 
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In contrast to that, other authors such as Kümmel (2011)  have tried to investigate the 

consequences of the existence of the first and second law of thermodynamics within the 

economy, rather than trying to find suitable analogies for economics. 

To understand the historical developments and why neoclassical economics initially dealt 

only with equilibrium models, one must always keep the following in mind. The reason was 

not so much the assumption that real economic systems are in fact mostly in equilibrium, 

but the fact that without this radical simplification an economic theory was hardly possible. 

This is because dynamic descriptions of economic systems are so complex that, on the one 

hand, there is no possibility to find analytical solutions for them and, on the other hand, 

numerical solutions for differential or difference equation systems were only generally 

accessible towards the end of the 20th century. The formal foundations of GCD models, on 

the other hand, consist of differential-algebraic systems of equations. These are usually still 

much more difficult to solve than differential or difference equation systems. Programs for 

the numerical solution of algebraic differential equation systems have only become readily 

generally available in recent years.  Therefore, it is understandable that algebraic differential 

equations have hardly been used systematically for the description of economic systems so 

far. 

2.2. Economics and Power 

The goal to imitate physics led to the fact that questions of power were ignored for two 

distinct reasons. On the one hand there was the idea that while power relations might play 

a role in the short term, in the long run are irrelevant due to inevitable economic laws. This 

argument is most prominently made in ‘Macht oder ökonomisches Gesetz’ by Eugen von 
Böhm-Bawerk (1914). To some extent the idea can also be found in later discussions, for 

example in the Lucas-critique. On the other hand, as a result of the self-imposed restriction 

to follow a strictly mathematical methodology questions of power were left to the 

disciplines of psychology and the social sciences. 

Those economic theories which explicitly deal with questions of power, such as Marxian 

theory where class struggle and distribution put power relations center stage (Foley 1986) 

or parts of institutional economics, have been marginalized and are a small minority in 

modern economics. In contrast, neoclassical orthodoxy limits itself to monopoly power of 

companies and negotiating power of workers on the labor market in its understanding of 

power, as the AS-AD model which can be found in every standard economics textbook 

(Blanchard und Illing 2009). This view of power fully neglects the fact that in reality all 

agents have a more or less pronounced power to assert their interest, be it in the market 

process or by influencing the political and social framework. Finally, power can not only be 

a means to economic actions but an end in itself (Rothschild 2002a). 

2.3. Closure of economic models 

An important body of literature has dealt with the problem of closure of economic models. 

Closure is the task of making an under- or over-determined equation system, usually 

including macroeconomic accounting identities, solvable. Therefore, “[…] prescribing 
closures boils down to stating which variables are endogenous or exogenous[…]”(Taylor 

1991, 41), as some behavioural equations need to be omitted to yield a determined system. 

Already in 1956, Kaldor set out to investigate the model structures of different schools of 

economic thought and thereby implicitly also discussed diverse closures of Ricardian, 
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Marxist, Keynesian and Neoclassical models (Kaldor 1956). In a similar vein A. Sen (1963) 

further showed that in fact Neo-classical and Neo-keynesian models of distribution can be 

derived from the same equation system and differ in their essence the choice of which 

equations are dropped i.e. in the assumptions about causality. Marglin (1987) on the other 

hand approaches the problem from the other direction and argues that Neo-classical, Neo-

keynesian and Neo-marxist models have a common underdetermined core equational 

system which is closed using different behavioural rules. More recently, Barbosa-Filho 

(2004) investigated three alternative closures of Keynesian models with investment, net 

exports or autonomous consumption as driving force of aggregate demand. 

2.4. The invisible hand does not always lead to the optimum  

Adam Smith’s analysis of the economy and his theory that egoistic behaviour of all agents 
will lead to the optimal result in the end, often summarized under the metaphor of the 

‘invisible hand’, is a central thought in economics until today. This is the case even though 

many authors have shown that individual optimization does not necessarily lead to an 

overall optimum. For instance John Nash, the founder of game theory, showed that 

individually optimal behaviour can lead to stable equilibria which constitute the worst 

scenario for all players (Nash 1951). Throughout the second half of the 20th century there 

has been significant work, not least with experiments, trying to understand to what extent 

such prisoners dilemmas play a role in reality as (Giza 2013) illustrates. 

The method to describe problems of game theory with continuous time and differential 

equations can be used also for more general problems in game theory (Cvitanic und Zhang 

2014).  Because of the characterization with differential equations the continuous-time 

approach is usually easier to solve than the discrete time models (Sannikov 2007; Yuliy 

Sannikov 2012) 
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3. The basic principles and easy 
examples  

Formelabschnitt (nächster) 

3.1. From Newton to General Constraint Dynamics (GCD) in 
economics 

What was the great achievement of Newton? 

He brought the right terms into the right relationship. 

 

What were the right terms?  

The right terms were: time change of velocity v  , inertial mass M  , physical force 

f .  

 

What was the right relationship?  

Newton's law. 

 

For J  forces in dimension 3 Newton’s law reads as: 

1

1
' 1,2,3

J
j

i i
j

v f i
M =

= =          <3.1> 

That is, the change in velocity v   is equal to the reciprocal of the inertial mass M  times the 

sum of the forces 
jf  . The sum of the forces is called the resultant (of the forces). 

So, what do we need to do if we want to describe the economics? 

Put the right terms in the right relationship. 

 

What are the right terms?   

The right terms are: time change of economic variable x , economic power  , 

economic force f . 

 

What is the right relationship?  

General “ex-ante” Dynamics (GD). 

 

For J  economic forces and I  economic variables this law reads as: 

1

' 1,2,..., 1,2,...,
J

j j
i i i

j

x f i I j J
=

= = =      <3.2> 

That is, the temporal change of an economic variable ix   is equal to the sum of the J  forces 
j

if  each weighted with the power factor j
i . 

Constraints lead to additional forces acting on the "ex ante" dynamics. The dynamics under 

consideration of constraining forces is called "ex post" dynamics. The theory of classical 

mechanics under constraints was developed about 100 years after Newton by Joseph-Louis 
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Lagrange.  Constraints play a major role in economics, especially in the form of accounting 

identities. Therefore, the Lagrangian theory of classical mechanics, is the correct basis to 

develop a theory of the dynamics of economic processes analogous to classical mechanics. 

We call the corresponding economic models General Constrained Dynamic models (GCD 

models), see in particular chap. 3.3. 

Now about the interpretation and relationship between inertial mass M  and power factors 
j

i : 

A physical force f  does not directly lead to a change in velocity v  . The change in velocity 

is inversely proportional to the inertial mass M  . A large mass causes the velocity to change 

slowly, a small mass causes the velocity to change quickly. Each force "feels" the same 

inertial mass, i.e. the inertial mass is independent of the force acting on it. 

In the same way, an economic force does not directly lead to a change in the economic 

variable x . The change in economic variable x  is proportional to the power j
i  an actor 

has to change variable ix  when acting with force j
if   to change ix . A large power causes 

the velocity to change quickly, a small power causes the velocity to change slowly. That 

means that the power factors can be interpreted as the reciprocal of the mass. In contrast to 

physics, however, each force acts with a different power factor, i.e. the power factors depend 

on the respective economic force. Because the power factors influence the respective time 

change of the economic variables, they can also be interpreted in some sense as velocity 

adjustment factors. 

Some may argue that one cannot measure power factors and economic forces in economics 

in the same way that one measures mass and physical forces in physics. This is only partly 

correct. In principle, both quantities can only be measured by comparing the real change in 

velocity or economic variables over time with the respective physical or economic forces. 

In physics, this is easy because one can make the measurements in simple, reproducible 

experiments. In economics, this is more difficult but not impossible in principle for two 

reasons: 

1. In contrast to physics, where Newton's law <3.1> has proven to be a generally valid law, 

the formula <3.2> must first prove to be a useful law for describing economic systems.  

2. In economics, as a rule, no simple experiments can be carried out. But the power factors 

and also the economic forces, if one assumes the validity of <3.2>, can be determined in 

any case in principle just like the mass and physical forces from the comparison of reality 

with the respective best fit of the model <3.2> or <3.1>. 

We have no doubt that what Kurt Rothschild (2002a) says about the importance of power 

in economics is true: „In the end everything in economics is a question of power“. 
Therefore, in order to understand economics, it is absolutely necessary to formalize the 
concept of power.  

Of course, there is still much to be done in order to be able to determine economic forces 
and power factors quantitatively correctly. In any case, however, all GCD models show that 
qualitative changes in power factors and forces alone also contribute significantly to 
understanding the economics. 
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3.2. Utility functions in economics correspond to potential 
functions in physics. 

In physics, if a force f  depends only on the spatial coordinates s , i.e.  ( )f f s=   and can 
be represented as a gradient of a potential U  , this force is called a conservative force. In 
many cases, an economic force f   can also be represented as a gradient of a function called 
a utility function, denoted also by U . Such economic forces are called microfounded forces. 
Utility functions in economics are thus the analogous terms to potential (functions) in 
physics. 

If in physics all forces in <3.1> are conservative forces, i.e. 

( ) ( )
( ) ( ) . ( )

j
j j

j j
i

i

U s U s
f s gradU s resp f s

s s

 
= = ==

 
  

equation <3.1> can be written as 

1

1 ( )
' 1,2,..., 1,2,...,

jJ

i
j i

U s
v i I j J

M s=


= = =

      <3.3> 

In economics forces in <3.2> are typically microfounded, i.e. 

( ) ( )
( ) ( ) . ( )

j
j j

j j
i

i

U x U x
f x gradU x resp f x

x x

 
= = ==

 
 

In that case equation <3.2>  yields the basic GCD equation system of ex-ante dynamics 

for microfounded forces  

 

1

( )
' 1,2,...,

jJ
j

i i
j i

U x
x i I

x


=


= =

       <3.4> 

 

Note: in the general case the utility functions not only depend on x  but may also depend 

on the antiderivative X  and the derivative x . For more details see chapter 7.9. 

3.3. Constraint dynamics in classical physics and economics 

In many cases in physics and economics the solutions of the dynamic system are restricted 

by a set of constraint conditions kZ . Thus equations <3.1> resp. <3.2> has to be extended 

by equations 

0 1,2, ...,kZ k K= =        <3.5> 

The theory of constraint dynamics was developed by Lagrange and D'Alembert. 

Denote the space variables by  

1,2,3is i =   
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then 

'

' ' '

i i

i i

v s

v s

=

=
  

If in physics ( )Z Z s=  or in economics ( )Z Z X= , which means that Z  only depends on 

the antiderivatives, the constraint condition Z  is called holonomic. 

To explain the principle, we will first discuss only conservative forces with one holonomic 

constraint. (For non-holonomic constraints see chapter 7.9.) 

Thus, in physics the Newtonian equation <3.4> has to be extended to  

1

1 ( )
' 1,2,3 1,2,...,

0 ( )

jJ

i
j i

U s
v i j J

M x

Z s

=


= = =



=


    <3.6> 

But this system of equations consists of 4 equations for 3 variables and is therefore generally 

not solvable. Typically, 0 ( )Z s=  is an algebraic equation.  

A method to make an unsolvable equation system solvable is called closure method. 

According to Lagrange, to make this system of equations solvable, one must add an 

additional variable   , called the Lagrange multiplier, and an additional force 
Zf  , called 

the constraint force (We call this method Lagrange closure.) 

1

1 ( )
'

0 ( )

jJ
Z

i
j i

U s
v f

M x

Z s


=


= +



=


       <3.7> 

According to D’Alembert in classical mechanics it holds the following principle for the 
constraint force  

Z Z
f

s


=


             <3.8> 

This principle is called D'Alembert's principle. It cannot be derived from Newton's axioms, 

but is an additional axiom which has always proved to be fulfilled in nature like Newton's 

axioms. D'Alembert's principle yields 

1

1 ( ) ( )
'

0 ( )

jJ

i
j i

U s Z s
v

M x s

Z s


=

 
= +

 

=


       <3.9> 

Typically, 0 ( )Z s= is an algebraic equation. Therefore, the equation system is called a 

differential algebraic equation system (DAE). 

For the economic system <3.4> with constraint 0 ( )Z x=  we get in complete analogy to 

classical mechanics 

1

( ) ( )
'

0 ( )

jJ
j

i i
j i

U x Z x
x

x x

Z s

 
=

 
= +

 

=


        <3.10> 
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For K  constraints , 1,2,...,kZ k K=  <3.10> extends to the general GCD model equations 

for the ex post dynamics 

 

 1 1

( ) ( )
' 1,2,...,

0 ( ) 1,2,...,

j kJ K
j k

i i
j ki i

k

U x Z x
x I I

x x

Z x k K

 
= =

 
= + =

 

= =

 
               <3.11> 

 

Note: There are good reasons why D'Alembert's principle is probably fulfilled in economics 

as well (see more in chapter 7.8.2.1). 

In economics, a different closure method is sometimes used to make an overdetermined 

system of equations solvable (A. Sen 1963): one omits some of the equations (we call this 

method drop closure, see more details in chapter 18). This method is problematic, however, 

because a lot of information is lost by omitting an equation. 

As an illustrative example of constrained dynamics, we describe below the motion on an 

inclined plane. 

Denoting: 

1 2,s s  the spatial coordinates,  

1 2,v v  the velocity coordinates and   

1 2,v v  their derivatives with respect to time 

M       the inertial mass 

1 2,f f  the coordinates of the forces exerted on the mass M 

1 2 1 2( , ) 0Z s s s s= − =  the constraint describing the inclined plane 

 with 45° 

  the Lagrange-multiplier 

 

If 1f   denotes a horizontal force and 2f  a vertical force acting on a mass point with mass 

M  the movement of the mass point on the inclined plane is described by the following 

Newton-Lagrange equations:  

1 1 1

1

2 2 2

2

1 2 1 2

1 1

1 1

( , ) 0

Z
v f f

M s M

Z
v f f

M s M

Z s s s s

 

 

 = + = +


 = + = −


= − =

         <3.12> 

The respective first terms 1 2

1 1
undf f

M M
describe the coordinates of the “ex-ante” force 

while the respective second terms 
1 2

and
Z Z

x x
 
 
 

 describe the coordinates of the 

‘constraint force’. The sum of both terms is denoted as “ex-post” force, as it describes the 
factual resulting movement under the constraint. 
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The analogy between a constrained dynamics in physics and a constrained dynamics in 

economics can be illustrated by the following simple example from economics. For a 

subsistence economy, where everything produced by labor L   is also consumed, the 

accounting identity L C=  holds. If 1f   describes the interest to eat more (i.e. if on the given 

state ( , )C L   the force 1f  is applied) and 2f   describes the interest to work less (i.e. if on 

the state ( , )C L  additionally the force 2f  is applied) and both power factors are set equal to 

1/ M  , formally the same system of equations results as for the dynamics on the inclined 

plane. We discuss other formally identical models from economics in chap. 18.2. 

The interaction of force field, constraint, ex-ante dynamics, ex-post dynamics and steady 

state, can also be illustrated by the following graph. 

 

             

  

  

          
           

        

              

                            

  

simple examples for constraineddynamics

                     
                   

physics: inclined plane economics: subsistence economy

                          
                         
                            

            
                
                              

  

  

 

 

           

               

              

          

              

constraineddynamics in a vector field of forces
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4. Model Equations of General 
Constrained Dynamic Models (GCD 

models)  
Formelabschnitt (nächster) 

4.1. The general structure of GCD models 

For any number of agents (independent from the fact whether these agents are individual 

economic agents or a representative agent for a certain group or sector) the general concept 

of GCD models can be described verbally in the following way: 

• Starting from an economic state at time t  , which is described by I  variables ix

( 1,2,..., )i I= , every one of J  agents ( 1,2,..., )j J=   is interested in changing this state 

and has an economic  power 𝜇𝑖𝑗 to assert his interest. 

• Therefore, every agent j   employs an economic force 𝑓𝑖𝑗 to change the variable ix   in 

the direction which is beneficial for him. The effective force is directly proportional to 

the economic force 𝑓𝑖𝑗 he employed and his economic power 𝜇𝑖𝑗. The resultant of all 

forces and power factors determines the ‘ex-ante’ dynamics.  
• K  constraints kZ  ( 1,2,..., )k K= such as accounting identities evoke K  additional 

constraint forces for each variable ix . The ex-post dynamics is determined by .I J  

interest-led forces j
if   times the power factors 𝜇𝑖𝑗  plus .I K  constraint forces. The 

constraint forces are given analogously to classical mechanics as the K  Lagrange 

multipliers times the gradient of kZ  

The models can be formulated much more easily by using continuous time differential 

equations instead of difference equations. In general, however, an equivalent formulation in 

discrete time would always be possible, but using the strong theory of differential equations 

is much easier and more convenient. Moreover, this reveals the analogies with physics. 

Adding stochastic terms to the GCD models would not pose any problem. For reasons of 

simplicity this will not be done in the following.  

The general equation system of GCD models is  

 

 1 1

( )
' ( ) 1,2,...,

0 ( ) 1,2,...,

kJ K
j j k

i i i
j k i

k

Z x
x f x I I

x

Z x k K

 
= =


= + =



= =

 
     <4.1> 
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The use of accounting identities as constraints means that GCD models are always SFC 

(stock-flow consistent). Typically, economic forces can be modeled as gradient of utility 

functions (see next chapter 4.2). In this case GCD models are also microfounded because 

the behavioural equations arise from the microeconomic utility optimization of market 

participants. 

Remark 1: infinite power results in algebraic equations 

When for a certain and a certain  it holds that , then divide in <4.1> the 

equation 0i i=   

0 0 0

0
1 1

( )
' ( )

kJ K
j j k

i i i
j k i

Z x
x f x

x
 

= =


= +

           <4.2> 

by  and let . This yields the algebraic equation:  

0

0
0 ( )

j
if x=    

This means that also algebraic behavioural equations can be interpreted as GCD behavioural 

equations with infinite power factors.  

Remark 2: Additional behavioural equations are necessary for parameters in 

constraint conditions 

If an additional variable p  occur in the constraints that do not occur in the ex-ante 

equations, i.e. if the system of equations initially looks like this 

0 0 0

0
1 1

( )
' ( )

0 ( , )

kJ K
j j k

i i i
j k i

k

Z x
x f x

x

Z x p

 
= =


= +



=

 
 

then there is one more variable than equations. Therefore, to create a complete GCD model, 

an additional behavioral equation is necessary which is linearly independent of the other 

equations. If there are several additional variables, an additional behavioral equation is 

necessary for each variable. This behavioural equation can be a differential equation or an 

algebraic equation (see Remark 1) 

This leads e.g., to 

0 0 0

0
1 1

1 1

( )
' ( )

( , )
' ( , )

0 ( , )

kJ K
j j k

i i i
j k i

kJ K
j j k
p p

j k

k

Z x
x f x

x

Z x p
p f x p

p

Z x p

 

 

= =

= =


= +




= +



=

 

   

or 

0i 0j
0

0

j
i →

0

0

j
i 0

0

j
i →
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0 0 0

0
1 1

( )
' ( )

0 ( , )

0 ( , )

kJ K
j j k

i i i
j k i

p

k

Z x
x f x

x

f x p

Z x p

 
= =


= +



=

=

 
  

How to proceed with further additional variables 1 2( , ,...)p p  in the constraints is obvious. 

Remark 3: Interpretation of power factors as adjustment speed factors 

If for a given  and a given  ,  is true for all  then the differential equation is 

  

1 1

0 1 1

1
1

( )
' ( )

kK
j j k

i i i
k i

Z x
x f x

x
 

=


= +

   

In this particular case, the power factor  can be interpreted as the adjustment speed 

factor. This interpretation is however only partially adequate because a variable does not 

adjust on its own, it can only be adjusted by actions of an agent. Thus, the factors j
i  are 

therefore rather characteristics of the agents than of the variables and can however very well 

be interpreted as the power of agent  to change variable 
 
 when applying a force . 

Remark 4: Constraint conditions depend on time derivatives of variables 

If a constraint depends not only on 
1 2( , ,.... )Ix x x x=  but also on 

1 2( , ,.... )Ix x x x   = or higher 

derivatives 
1 2( , ,.... ), .....Ix x x x   =  

0 ( , , ,....)Z x x x =   

the constraint forces are always to be derived from the highest time derivative of the 

variables (Flannery 2011), i.e. 

( , ) ( , )
.

( , , ) ( , , )

i i

i i

Z x x Z x x
instead of resp

x x

Z x x x Z x x x
instead of

x x

  
 
    
 

         <4.3> 

Remark 5: non vertical constraint forces 

In most cases in economics, it is plausible to model the constraint forces analogously to 

d’Alembert’s law in physics as Lagrange multiplier times the gradient of the constraint 
according to <4.1>. But in economics d’Alembert’s law is not to hold as an Axiom like in 
physics. But in economics, d'Alembert's law does not apply as an axiom as it does in physics. 

Another type of constraint force that can occur, especially in the case of a constraint force 

describing a limited resource, is a constraint force that is central to the origin. We therefore 

refer to this as a "central constraining force" (more on this in chapter 7.8.2.2). 

1i 1j 1
0j

i = 1j j

1

1

j
i

j ix j
if
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4.2. GCD-models with individual utility functions 

For economic models the case in which the economic forces can be described as gradients 

of individual utility functions  of an agent is of special importance.  

( )
( ) ( ) . . ( ) 1,2,...,

j
j j j

i

i

U x
f x gradU x i e f x for i I

x


= = =


  

The path-independent economic force ( )jgradU x  associated to the utility function ( )jU x    

describes the “rational” preferences of agent . For these cases the basic system of GCD 

equations for ex-ante dynamics <3.2>  reads as 

1

( )
' 1,2,...,

jJ
j

i i
j i

U x
x I I

x


=


= =

         <4.4> 

and the general system of GCD equations for ex-post dynamics reads as 

 

 1 1

( ) ( )
' 1,2,...,

0 ( ) 1,2,...,

j kJ K
j k

i i
j ki i

k

U x Z x
x I I

x x

Z x k K

 
= =

 
= + =

 

= =

 
     <4.5> 

 

This system of equations can be interpreted in the following way: the more an agent’s 
individual utility will increase, the higher will be the ‘rational’ preference respectively the 
economic interest and thereby the economic force an agent will employ in order to change 

a variable. The factual change arises as a resultant of all these forces and the constraint 

forces. It is thus the resultant force of the agents’ individual optimization strategies. 

4.3. GCD models with a master utility function 

Adam Smith assumed that in a market economy the "invisible hand" leads to an optimal 

outcome for all market participants, or in other words: If each market participant tries to 

optimize his individual utility, this leads to the maximization of overall utility. To discuss 

this problem more formally, we define the following terms: 

• aggregability of utility functions,  

• master utility function and 

• overall utility function 

We call utility functions , 1,2,...,jU j J=  to be “aggregable” iff there exists a “master 
utility function” MU such that 

1

( ) ( )jJ
j

i
j i i

U x MU x

x x


=

 
=

           <4.6> 

In this case the basic GCD equation system of ex-ante dynamics for microfounded 

forces are 

jU j

j
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1

( ) ( )
' 1,2,...,

jJ
j

i i
j i i

U x MU x
x i I

x x


=

 
= = =

       <4.7> 

 

With respect to the master utility function MU  to major questions arise: 

1. Under what conditions exists such a master utility function  

2. Under what conditions does maximizing the master utility function also lead to 

maximizing the overall utility, if this is defined as the sum of the utilities of all agents? 

That means, the overall utility is an unweighted utilitarian (or Bentham) social welfare 

function. 

To get a deeper understanding of question 1. one has to go into more theoretical details. 

In physics the Helmholtz decomposition of forces in 3 dimensions is well known. In 
general under certain (mild) conditions all forces depending on variables 1 2{ , , ..., }Iy y y y=
not only in dimension 3 but in any dimension can always be decomposed into a gradient 

force ( )V y
g

y


=


 and a rotational force r  by means of the so-called Helmholtz 

decomposition for any dimension (Glötzl und Richters 2021b; 2021a). For our purposes in 
economics, it is not necessary to describe the rotational force r  in more detail. Helmholtz 
decomposition means that a utility function U  exists such that 

( )
( ) ( ) ( ) ( )

V y
f y g y r y r y

y


= + = +


        <4.8> 

If the rotational part r  of the force f   is equal to 0r = , f   is called rotation-free. Then 

V
f g

y


= =


  

Note: In this case f  is path-independent and the so-called integrability conditions are 
fulfilled. 

Applying this to the economic force f  (the resultant of the individual forces) 

1

( )jJ
j

i
j i

U x
f

x


=


=

            <4.9> 

one gets the fundamental answer to question 1.: 
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1

1 2

, 1,2,...,

( )
, 1,2,..., ,

( , ,..., )

0

1,2,..., , 1,2,...,

j

jJ
j

i i
j i

I

ji

j i

U j J are aggregable

U x
f i I is rotation free

x

f f f f is path independent

ff
rotation densities

x x

for all i I j J


=

= 


 = = 



 =


 − =

 

= =


    <4.10> 

 

For practical application, the following 3 sufficient conditions for aggregability of 

individual utility functions 
jU   are very valuable. 

For simplicity we formulate these conditions for two individual utility functions ,A BU U  

with two variables 1 2( , )x x  and individual power factors  
1 2 1 2, , ,A A B B    .: 

A master utility function  exists such that ,A BU U are aggregable, i.e. 

1 2 1 2 1 2
1 1

1 1 1

1 2 1 2 1 2
2 1

2 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

A B
A B

A B
A B

U x x U x x MU x x

x x x

U x x U x x MU x x

x x x

 

 

  
+ =

  

  
+ =

  

       <4.11> 

if one of the following 3 sufficient conditions is fulfilled: 

1. „ linear ”: 

1 2 0 1 1 2 2

1 2 0 1 1 2 2

1 2

0 1 1 1 1 1 0 2 2 2 2 2

( , ) ,

( , )

( , )

( ) ( )

A A A

B B B

A A B B A A B B

If U x x a p x p x

U x x b p x p x

MU x x

a p p x b p p x

is a master utility function

   

= + +

= + +

 =

= + + + + +

   

2. „independent “:  

1 2 1

1 2 2

1 2 1 1 2 2

( , ) ( )

( , ) ( )

( , ) ( ) ( )

A A

B B

A A B B

If U x x U x

U x x U x

MU x x U x U x

is a master utility function

 

=

=

 = +
  

Note: If 
1 2,A Bx x x x= =  (which means 1x  is a variable which describes a property of A  

and 2x  is a variable which describes a property of B  respectively 
AU  depends only on 

Ax

and 
BU  depends only on 

Bx ), the condition „independent“ can be called “self-related”. 
In many practical cases this property is assumed to hold for the individual utility functions. 

Therefore, in these cases a neoclassical approach is reasonable. But especially for prisoner 

dilemma situations utility functions are not self-related. 

3. „uniform power “: 

MU
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1 2 1 2

1 2 1 2 1 2

: :

( , ) ( , ) ( , )

A A A B B B

A A B B

If and

MU x x U x x U x x

is a master utility function

     

 

= = = =

 = +  

 

These 3 sufficient conditions can be easily proved by calculating <4.11>. 

Defining overall utility as : A BGU U U= +  it becomes clear from the above examples that 

in general GU MU   and that the maximization of the master utility function MU  does 

not necessarily lead to a maximization of the overall utility function GU . As an answer to 

the second question, it is immediately apparent from the above conditions that the following 

applies 

1. 1

2. )

)

j
i

j
i

If all MU GU

If all a MU GU

b MU maximal GU maximal



  

=  =

=  =


  

If the utility functions ,A BU U  are aggregable to a master utility function MU  and 

MU GU=  the basic GCD equation system for ex-ante dynamics is 

 

1 1

2 2

1 1 11

2

22 2

1 1

2 2

( )

( )

A B
A B
x x

A B
A B
x x

A B

A B

U U MU

x x xx

x MUU U

xx x

GU U U

x x

GU U U

x x

 

 

      
               = + = =                         

   + 
     = =     +
        

     <4.12> 

 

This equation system represents the fact that in the case of aggregable utility functions (with 

MU GU= ) the “individual optimization” strategy (in the sense of GCD models) is 

equivalent to an overall utility maximisation" strategy. 

Neoclassical General Equilibrium Theory (GE) is another form of an individual 

optimization strategy. We discuss the relation between the individual optimization strategy 

in the sense of GCD models, the overall maximization strategy and the individual 

optimization strategy in the sense of GE Theory in chapter 6. 
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5. GCD as a metatheory of economic 
model structures and economic 

theories  
Formelabschnitt (nächster) 

5.1. Basic principles 

Model building can basically serve three different targets:  

1. the process of insight including a qualitative forecast of the future or  

2. the quantitative forecast of the future or 

3. the control of the system to achieve an optimal behaviour in the future. 

 

The most important target in the education of economists is to understand economics. In the 

sense of 1. it is therefore essential to deal with the formation of economic models. 

In order to understand the fundamental differences of different model structures, the 

description of model structures in a unified framework is of great advantage (metatheory 

of economic model formation) 

In order to understand the fundamental differences of different economic theories, the 

description of the different economic theories in a unified framework is of great advantage 

(metatheory of economic theories) 

5.2. Metatheory of economic model building 

1. The economy is a dynamic system in which time-dependent flows "flow" from one node 

("agents", "aggregated agents", etc.) to another node and lead to temporal changes in the 

stocks ("balances") of the nodes. Therefore, every economic model is initially 

characterized by which flows one considers. This automatically determines which nodes 

and thus which stocks are considered. 

 

2. The dynamics of the flows and other variables (prices, other parameters, etc.) is 

determined by: 

2.1. behavioural equations for the variables, which can be formally  

represented in the following form: 

2.1.1. differential equations 

2.1.2. algebraic equations 

2.1.3. decisions (especially for ABM and game theoretic models) 

2.2. accounting identities, which are formally algebraic equations 

 

3. There are 2 types of behavioural equations 

3.1. determined by the influence of agents ("microfounded") 

3.2. general without reference to single agents ("not microfounded") 
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4. The influence of an agent on a variable (flows, stocks, prices, parameters, etc.) is 

described by 

4.1 his interest in changing this variable (the higher his interest, the 

 higher will be the "economic force" f   he will spend to change the variable 

according to his interest). 

4.2. his economic power µ to enforce his interest. 

 

5. The interest or economic force that an agent exerts is described as the sum of rational 

interests (forces) and irrational interests (forces): 

5.1 Rational interests or rational economic forces are described by  

gradients of utility functions. This means that the forces are path-independent. 

5.2 Irrational interests or irrational economic forces cannot be 

 described as gradients of utility functions, they are described by the rotational part 

of the Helmholtz decomposition of the force (see chapter 4.3). This means that the 

forces are path-dependent. 

 

We propose General Constrained Dynamic Models (GCD) as the basis for a novel and 

encompassing understanding of economic models from a mathematical and theoretical 

perspective. This basic structure, in which (almost) all economic models can be 

embedded, can be formally described as a differential-algebraic system of equations. 

Beside of game theoretical models and ABM models almost all mathematical structures 

used for economic models can be regarded as special cases of a GCD model. It has to be 

taken into account that GCD models can be extended in a natural way by a stochastic part 

or can be transformed into difference equation systems by discretization of time.  

A simplified overview of the most important mathematical structures for the description of 

economic models can be found in the following table. 

  

In principle, DSGE models can also be seen within this framework. Essentially, it is not an 

ordinary master utility function but an intertemporal utility function, i.e. the time integral of 

a discounted master utility function. This variational problem leads to the Euler equations, 

which are behavioural equations describing the dynamic behaviour of the economic system. 

In section E. chapters 24 - 27 we show that GCD models can be modeled not only with 

ordinary utility functions, but also with intertemporal utility functions such as those used in 

DSGE models. 

Unified loo at mathematical structure of economic models
because of simplicity without constrained conditions

            equilibrium GE

             shock to equilibrium dynamic GE

               ad ustment velocities  (sticky prices etc.) Neo- eynesian GE

                  power factors    , u                   GCD with utility           general economic force    GCD general force      not agent based general economic force  Post- eynesian
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5.3. Metatheorie ö onomischer Theorien 

The ideas of Amartya Sen in (A. Sen 1963) can be seen as the first meta-theory for economic 

theories. He shows that economic theories differ precisely in which variables are considered 

exogenous and which variables are considered endogenous (see also chap. 18.3) 

In the structure of GCD models, the difference between different economic theories arises 

precisely from the different assumptions about the power factors j
i  , i.e., from the different 

assumptions about the economic power of the different agents j   with which they can 

influence the different variables ix  . In particular, this is an extension of the metatheory of 

Sen. The assumption that one of the agents j   has complete power to determine the value 

of a variable ix means that the corresponding power factor is j
i =  . This just leads to the 

fact that this variable ix  is to be considered exogenous. If for a given i  the power factors 

j
i are j

i    for all j  , this means that the variable ix  is endogenous.  

If for a given i   the power factors 0j
i = for all j , then the corresponding variables ix are 

not influenced by agents but only by constraints, which means that they are influenced only 

by "pure" market forces. Formally, in these cases, the corresponding behavioural equations 

can be omitted. This is exactly in line with Sen's procedure to characterize the different 

economic theories. The omission of equations can be called drop closure (see chap. 2.3 and 

18). For more details see chap. 18.3 and (Glötzl 2015). 

Here, an advantage of GCD models becomes quite apparent. Implicit in many economic 

models is often an assumption of one-sided power relations as in detail is explained by 

Richters und Glötzl (2020) along the model SIM of (Godley und Lavoie 2012). In reality, 

however, power relations are usually not one-sided but mixed. With GCD models, reality 

can be better described, because they can be used to describe not only one-sided power 

relationships, but also mixed power relationships.  

5.4. Resumé 

Models are indispensable for a better understanding of economics.  

In order not to be confused by the variety of models, a clear distinction must first be made 

between model structure and the substantive assumptions with which a model structure is 

filled (i.e., economic theories).  

In order to understand the fundamental differences of various model structures, it is of great 

advantage to describe the model structures in a unified framework (metatheory of economic 

modelling) 

In order to understand the fundamental differences of various economic theories, the 

description of the various economic theories in a unified framework is of great advantage 

(Metatheory of Economic Theories) 

General Constrained Dynamic Models (GCD models) can be considered as the basis for 

both a metatheory of economic modelling and a metatheory of economic theories. GCD 

models are therefore the basis for being able to represent the most diverse views on 

economics in a unified framework in the sense of a pluralistic economics. 
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The economic mainstream, on the other hand, is characterized, among other things, by the 

fatal "maximization assumption" that forms the basis of general equilibrium theory. This 

maximization assumption is fatal because it leads to a very simplified model structure that 

cannot be filled with substantially different economic content, such as different power 

relations. Moreover, it tempts economists to analyse economic systems almost always from 

the point of view that they are in equilibrium. However, this is usually not the case for real 

systems.  
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B. Microeconomic models 
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6. Microeconomic example: 
Edgeworth-Box 

Formelabschnitt (nächster) 

6.1. General description 

An important and instructive example of a GCD model can be derived from the Edgeworth-

Box. An Edgeworth-Box is a graphic tool in microeconomics designed to describe the 

equilibrium in a pure exchange economy with only two agents A, B and two goods, good 1 

and good 2. 
1 2 1 2, , ,A A B Bx x x x  denote the amounts of goods 1, 2 of the agents A, B. The utility 

function 
AU  depends only on 

1 2( , )A Ax x  and 
BU  depends only on 

1 2( , )B Bx x , 

1 2

1 2

( , )

( , )

A A A

B B B

U x x

U x x
            <6.1> 

The allocation of goods 1, 2 of agents A, B before the exchange is called endowment and 

denoted by 
1 2 1 20, 0, 0, 0A A B Bx x x x . The agents reach a Pareto optimum by trading along an 

unknown unspecified process called tatonnement. All Pareto optima lie on a curve called 

the contract curve. In these Pareto optima, no agent's utility can be increased without 

simultaneously decreasing that of another agent. In the standard general equilibrium (GE) 

model an auctioneer is assumed to set the prices such that there is no excess supply and no 

excess demand. This special Pareto-optimum is called general equilibrium.  

General Equilibrium Theory makes no assertions about the tatonnement, i.e. the way how 

the general equilibrium is reached. The nature of an GCD model lies exactly in describing 

the dynamics of the tatonnement. Obviously, in the general case, it is not possible to predict 

the tatonnement on which the agents negotiate, whether they reach a stationary point or 

whether they reach a mutually beneficial outcome (Pareto optimum) or the maximum of an 

overall utility. However, it is reasonable to model the typical negotiation path of two agents 

in terms of a GCD model as follows: 

The negotiation strategy of both agents is based on optimizing their individual utility 

function under constraints. Each agent will therefore employ an economic force in the 

direction which corresponds to the highest increase of his utility function. The more his gain 

in utility, the higher will be the force he employs. The direction and magnitude can be 

described by the gradient of the utility function, which is perpendicular to the lines of 

constant utility. The extent to which an agent can achieve his goal does not only depend on 

the force he and the other agent employed, but also on their respective economic power. 

The ex-ante change in the allocation of goods will therefore be directed towards the resulting 

force of the economic forces employed by the agents, weighted by their respective power 

factors. To get the ex-post change one has to add the constraint forces, which arise from the 

so-called budget constraints and the constraints which guarantees that excess demand and 

excess supply are zero. Since budget constraints depend on the prices of goods, a complete 

model requires behavioral equations for prices that correspond to the bargaining process or 

the behavior of an auctioneer. 
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6.2. Aggregability, maximum of overall utility, contract curve 

Note that 
AU  depends only on 

1 2( , )A Ax x  and 
BU  depends only on 

1 2( , )B Bx x . Thus, the 

utilities are “independent” resp. “self-related” (see chapter 4.3). If  

1 2

1 2

:

:

A A

B B

A A A

x x

B B B

x x

  

  

= =

= =
            <6.2> 

then the utility functions ,A BU U are aggregable to the master utility function 

1 2 1 2 1 2 1 2( , , , ) ( , ) ( , )A A B B A A A A B B B BMU MU x x x x U x x U x x = = +   

because 

1

1

2

2

1 2 1 2

1 1 1

1 2 1 2

1 2 2

1 2 1 2

2 1 1

1 2 1 2

2 2 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

A

B

A

B

A A A A A A
A A

A A Ax

B B B A A A
B A

B A Ax

A A A B B B
A B

A B Bx

B B B B B B
B B

B B Bx

U x x U x x MU

x x x

U x x U x x MU

x x x

U x x U x x MU

x x x

U x x U x x MU

x x x

 

 

 

 

  
= =

  

  
= =

  

  
= =

  

  
= =

  

  

If 1A B = =  the master utility MU   equals the overall utility  

 imple microeconomicexample: Edgeworth Box
2 Agents with 2 utility functions are trading 2 goods

  

                

               

               

                 

          
             

                    
                                             
                       

                

               

               

          

          

  
          
             

                                  
                    

                

  

  

  ,  total amount of good 1,2
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A BGU U U= + .  

Typically, the utility functions are assumed to be of the Cobb-Douglas-type 

( ) ( )( )

( ) ( )( )

1

1 2 1 2

1

1 2 1 2

( , ) 0 1

( , ) 0 1

A A

B B

A A A A A A

B B B B B B

U x x x x

U x x x x

 

 





−

−

=  

=  
      <6.3> 

In this case GU  is convex and has a unique maximum 
1 2 1 2( )A A B Bmax ,max ,max ,max   in the 

region 
1 2 1 20, 0, 0, 0A A B Bx x x x      

The following graphics show the isolines of  

0.4, 0.6,A A B B A BU with U with GU U U = = = +  ,  

the red point is indicating the unique maximum of GU .  

   

Let 1 2,M M  denote the total amount of good 1,2 then for the overall utility GU  written in 

amounts of good 1 results 

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 1 2 2

1 1

1 2 1 1 2 2

( , ) ( , ) ( , )

A A B B

A A A A A B A A

A A A A

GU x x U x x U M x M x

x x M x M x
   − −

= + − − =

= + − −
  

and for the maximum of GU  holds: 
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( )( ) ( )( )

( )( ) ( )( )

( )

1 2

1

1 2 1 2

1 1

1 1

1 2

1 1

1 1 2 2

1 2

2

1 2 1 2

2 2

( )
0

( ) ( )

( )
0

( ) ( )

1

A A

B B

A A

A

A A A B A A

A A

A A A

B A A

A A

A

A A A B A A

A A

A

GU max ,max

max

U max ,max U max ,max

max max

max max

M max M max

GU max ,max

max

U max ,max U max ,max

max max

ma

 

 







− −

− −


= =



 
= + =

 

= −

− − −


= =



 
= + =

 

= − ( )( ) ( )( )

( )( )( ) ( )( )
1 2

1 1 2 21

A A

B B

A A

B A A

x max

M max M max

 

 


−

−

−

− − − −           <6.4> 

The Pareto optima and thus the contract curve is defined by the fact that the gradient of the 

utility function of A is directed opposite to the gradient of the utility function of B, i.e.  

1 1

2 2

0

A B

A A

A B

A A

U U

x x
for some

U U

x x

 

    
       = − 
    
          

             <6.5>  

 This results in 

( )( ) ( )( )

( )( ) ( )( )

( )( )( ) ( )( )

( )( )( ) ( )( )

1 1

1 1

1 2

1 1

1 1 2 2

2 2

1 2

1 1 2 2

0

0

1

1

A A

B B

A A

B B

A B

A A

A A A

B A A

A B

A A

A A A

B A A

U U

x x

max max

M max M max

U U

x x

max max

M max M max

 

 

 

 





 





 

− −

− −

−

−

 
= + =
 

= −

− − −

 
= + =
 

= − −

− − − −

   <6.6> 

Obviously with 1 =  the maximum of GU  lies on the contract curve and is identical 

with the maximum on the contract curve. 
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6.3. ( tatic) GE model 

Denote 
1 2 1 20, 0, 0, 0A A B Bx x x x  the endowment (the amounts of goods 1, 2 of the agents A, B 

before exchange), 

1 2 1 2, , ,A A B Bx x x x  the amounts of goods 1, 2 of the agents A, B 

1 2 1 2( , ) and ( , )A A A B B BU x x U x x  the utility functions of A, B 

1 2( , )p p p=  prices of good 1 and good 2. 

 

There are 2 equivalent formal descriptions of the GE model: 

• the standard description: individual optimization of both agents under budget 

constraint + no excess demand  

• the alternative description: individual optimization of one agent under budget 

constraint + Pareto-optimum + no excess demand  

6.3.1. Standard description 

For any given price p  Agent A maximizes his utility 
AU   under the “budget constraint”  

1 2 1 2 1 1 2 2 1 1 2 20 ( , , , ) ( 0 0)A A A A A A AZ x x p p p x p x p x p x= = + − +     <6.7> 

For any given price p  Agent B maximizes his utility 
BU   under the “budget constraint”  

1 2 1 2 1 1 2 2 1 1 2 20 ( , , , ) ( 0 0)B B B B B B BZ x x p p p x p x p x p x= = + − +     <6.8> 

 

This yields the first order conditions 

1

1

2

2

1

1

2

2

1 2 1 2 1 1 2 2 1 1 2 2

1 2 1 2 1 1 2 2 1 1 2 2

1: 0

2 : 0

3 : 0

4 : 0

: 0 ( , , , ) ( 0 0)

: 0 ( , , , ) ( 0 0)

A
A

A

A
A

A

B
B

B

B
A

A

A A A A A A A A

B B B B B B B B

U
B p

x

U
B p

x

U
B p

x

U
B p

x

Z Z x x p p p x p x p x p x

Z Z x x p p p x p x p x p x










= −



= −



= −



= −


= = + − +

= = + − +

   <6.9> 

 

Since the total amount of good 1 and the total amount of good 2 do not change as a result 

of the exchange, the following constraints must be met: 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

: 0 ( , ) ( 0 0)

: 0 ( , ) ( 0 0)

A B A B A B

A B A B A B

Z z x x x x x x

Z z x x x x x x

= = + − +

= = + − +
     <6.10> 

1 2,z z  describe the excess demand ( 0iz   ) resp. excess supply ( 0iz  ) of good 1,2. The 

conditions 1 2,Z Z therefore describe the assumption that in equilibrium the excess demand 

resp. excess supply for both goods are zero. 
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Since the conditions 
1 2, , ,A BZ Z Z Z  are linearly dependent one of these conditions can be 

omitted. Therefore only the relative price  2

1

p

p
 is determined by the equations of the model. 

Usually one assume that good 1 is a numeraire, which means 
1 1p = . 

 

With 
A BGU U U= +  the equation system <6.9> + <6.10> yields the equation system for 

the general equilibrium 
1 2 1 2, , ,A A B Bg g g g   

1 1

1 1

2 2

2 2

1 1

1 1

2 2

2 2

1 2 1

,

1: 0

2 : 0

3 : 0

4 : 0

: 0 ( , , ,

A B

A
A A

A A

A
A A

A A

B
B B

B B

B
B B

A A

A A A A

maximization of GU under budget constraints Z Z

U GU
B p p

g g

U GU
B p p

g g

U GU
B p p

g g

U GU
B p p

g g

budget constraints

Z Z g g p p

 

 

 

 

 
= − = −
 

 
= − = −
 

 
= − = −
 

 
= − = −
 

= 2 1 1 2 2 1 1 2 2

1 2 1 2 1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

) ( 0 0)

: 0 ( , , , ) ( 0 0)

: 0 ( , ) ( 0 0)

: 0 ( , ) ( 0 0)

A A A A

B B B B B B B B

A B A B A B

A B A B A B

p g p g p g p g

Z Z g g p p p g p g p g p g

excess supply conditions

Z z g g g g g g

Z z g g g g g g

= + − +

= = + − +

= = + − +

= = + − +

   <6.11> 

 

The equation system <6.11> for the general equilibrium consists of 8 equations for 8 

variables 
1 2 1 2 1 2( , , , , , , , )A A B B A Bx x x x p p   . If the utility functions fulfill the SMD-conditions 

(Sonnenschein, Mantel, Debreux conditions) there exists a unique solution. Since the 

conditions 
1 2, , ,A BZ Z Z Z  are linearly dependent one get a solution for  

2
1 2 1 2

1

( , , , , , , )A A B B A Bp
x x x x

p
   

 

Assuming good 1 to be a numeraire, i.e 
1 1p = , the solution for the Cobb-Douglas-type 

utility functions <6.3> is given by 

 

https://www.dropbox.com/s/09xshhos19uz7lr/L%C3%B6sungen%20GE%20Version

%203.nb?dl=0 

 p →  ,   p → g1a0+g1b0−g1a0αa−g1b0αbg2a0αa+g2b0αb ,  
 g a → αa(−g1b0g2a0 −1+αb +g1a0 g2a0+g2b0αb )g2a0αa+g2b0αb ,  g a →  −1+αa (−g1b0g2a0 −1+αb +g1a0 g2a0+g2b0αb )g1a0 −1+αa +g1b0 −1+αb ,     <6.12>

    

https://www.dropbox.com/s/09xshhos19uz7lr/L%C3%B6sungen%20GE%20Version%203.nb?dl=0
https://www.dropbox.com/s/09xshhos19uz7lr/L%C3%B6sungen%20GE%20Version%203.nb?dl=0
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g b → (g1b0 g2b0+g2a0αa +g1a0 g2b0−g2b0αa )αbg2a0αa+g2b0αb ,  g b →  g1b0 g2b0+g2a0αa +g1a0 g2b0−g2b0αa   −1+αb g1a0 −1+αa +g1b0 −1+αb   

 

6.3.2. Alternative description 

Conditions B3, B4 can be substituted by the condition that the general equilibrium must lie 

on the contract curve. If the utilities ,A BU U  are given in coordinates of good 1, the contract 

curve is defined by the condition that the gradient of 
AU  is opposite to the gradient of 

BU : 

 

1 2

1

1 1 1 2 2 2

1

1 2

2

1 1 1 2 2 2

2

: 0

( , )
1 0

( 0 0 , 0 0 )

( , )
2 0

( 0 0 , 0 0 )

A A A

A

B A B A A B A

A

A A A

A

B A B A A B A

A

contract curve condition it exists such that

U g g
C

g

U g g g g g g

g

U g g
C

g

U g g g g g g

g










= +



 + − + −
+




= +



 + − + −
+



    <6.13> 

6.4. (Dynamic) GCD models 

6.4.1. Basic equations 

If one uses the same utility functions as in the GE model, one obtains, according to <3.4>, 

as GCD ex ante equation system  

1

1

2

2

1 2
1

1

1 2
1

1

1 2
2

2

1 2
2

2

( , )
1:

( , )
1:

( , )
1:

( , )
1:

A

B

A

B

A A A
A A

Ax

B B B
B B

Bx

A A A
A A

Ax

B B B
B B

Bx

U x x
B x

x

U x x
B x

x

U x x
B x

x

U x x
B x

x









 =


 =


 =


 =


        <6.14> 

For the GE model the budget conditions are formulated for the stock variables 
1 2 1 2, , ,A A B Bx x x x  

: 
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1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2

1 1 2 2 1 1 2 2

: 0 ( , , , )

( 0 0)

: 0 ( , , , )

( 0 0)

A A A A

A A A A

B B B B

B B B B

Z Z x x p p

p x p x p x p x

Z Z x x p p

p x p x p x p x

= =

= + − +

= =

= + − +

      <6.15> 

Since in the GCD model the prices changes over time, one must formulate the budget 

conditions for a differentially small exchange. This leads to the budget condition for the 

flow variables 
1 2 1 2', ', ', 'A A B Bx x x x  

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

*: 0 * ( ', ', , ) ' '

* : 0 * ( ', ', , ) ' '

A A A A A A

B B B B B B

Z Z x x p p p x p x

Z Z x x p p p x p x

= = +

= = +
     <6.16> 

The conditions for the excess supply can be formulated equivalently for the stock variables  

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

: 0 ( , ) ( 0 0)

: 0 ( , ) ( 0 0)

A B A B A B

A B A B A B

Z z x x x x x x

Z z x x x x x x

= = + − +

= = + − +
       <6.17>  

or for the flow variables 

1 1 1 1 1 1

1 1

2 2

2 2 2 2 2 2

1 1

2 2

*: 0 * ( ', ') ' '

(0) 0

(0) 0

*: 0 * ( ', ') ' '

(0) 0

(0) 0

A B A B

A A

A A

A B A B

B B

B B

Z z x x x x

x x

x x

Z z x x x x

x x

x x

= = +

=

=

= = +

=

=

 

Note that the budget constraints <6.17> depend on 1 2,p p . Therefore, according to remark 

2 in chapter 4.1, 2 further behavioral equations are required to obtain a complete model. 

Any 2 behavioural equations for 1 2,p p can be used. This results in the following GCD ex-

post equations: 
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1

2

1

2

1 2
1 1 1

1

1 2
2 2 2

2

1 2
1 1 1

1

1 2
2 2 2

2

1

( , )
1:

( , )
2 :

( , )
3 :

( , )
4 :

5 :

6 :

A

A

B

B

A A A
A A A

Ax

A A A
A A A

Ax

B B B
B B B

Bx

B B B
B B B

Bx

U x x
B x p

x

U x x
B x p

x

U x x
B x p

x

U x x
B x p

x

B behavioural equation for p

B behavioural equation fo

  

  

  

  

 = + +


 = + +


 = + +


 = + + +


2

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

*: 0 * ( ', ', , ) ' '

* : 0 * ( ', ', , ) ' '

: 0 ( , ) ( 0 0)

: 0 ( , ) ( 0 0)

A A A A A A

B B B B B B

A B A B A B

A B A B A B

r p

Z Z x x p p p x p x

Z Z x x p p p x p x

Z z x x x x x x

Z z x x x x x x

= = +

= = +

= = + − +

= = + − +      <6.18> 

We now discuss some possible behavioural equations B5, B6.  

6.4.2. Model 1  
The auctioneer P knows the general equilibrium price 

1 2,p p  and tries to change the actual 

price 
1 2,p p   with a force which is proportional to the difference of the actual price and the 

equilibrium price. This is equivalent that he acts with a force which is proportional to the 

gradient of the utility function 

 
2 2

1 2 1 1 2 2

1 1
( , ) ( ) ( )

2 2

PU p p p p p p= − − − −        <6.19> 

and a power 
1 2
,P P

p p   to influence the price. 

To simplify we assume good 1 to be a numeraire, i.e. assuming 
1 1 1p p= = From <6.12> 

results 

( ) ( ) 1

2

1

2 2

1 0 1 0

0 0

A A b B

A A b B

x x
p

x x

 

 

− + −

+
=   

This yields the behavioural equations for 
1 2,p p  : 

( ) ( )
2 2

2

2

1

2

1

1

2

2

2

2

2

5 : 1

6 : ( )

1
( )

0 1 0

0 0

A A b B

P
P P
p p

P
p A A b B

B

p

x x

x x

p

U
B p p p

p
 

 

 

− + −

=

 = = − =


= −
+
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6.4.3. Model 2 

Again, we assume the good 1 to be a numeraire, i.e. 
1 1p = . 

The auctioneer tries to change the actual price 
1 2,p p   with a force that reduces the excess 

supply. The model is described in detail in (Glötzl, Glötzl, und Richters 2019). It results in 

2

2

1

2 22

2 2 1

22

2 2 1

5 1

1
6 '

1 ( )

1

1 ( )

A A
P A
p A A

B B
P B
p B B

B p

U U
B p p

p x x

U U
p

p x x

 

 

=

    
= − +   +     

    
+ −   +     

 

6.4.4. Model 3  
In reality, price negotiations usually follow the following pattern: If A sells a product to B 

then A proposes a selling price 
2

Ap  that is advantageous for him and B also proposes a 

purchase price 
2

Bp  that is advantageous for him. Depending on the negotiating power 

(negotiating skill) 
2

A
p  and 

2

B
p  of A and B, respectively, a weighted average value for the 

price 
2p  is agreed 

2 2

2 2 2 2

2 2 2

A B
p pA B

A B A B
p p p p

p p p
 

   
= +

+ +
  

If 
2

A

A

U

x




 is high A will offer a high selling price 
2

Ap and if 
2

B

B

U

x




 is low B will offer a low 

purchasing price 
2

Bp , For the sake of simplicity, we can therefore assume that 

2
2 1 2

2 1

1

2
2 1 2

2 1

1

1

1

A

A A A
A A A A A

AA A

A

B

B B B
B B B B B

BB B

B

U

U U x
p p p

Ux x

x

U

U U x
p p p

Ux x

x

 

 


  

= = =  =
 



  

= = =  =
 


 

This results in model 3a 
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2 2

2 2 2 2

2 2

2 2 2 2

1

2 2 2

2 2

1 1

5 1

6

A B
p pA B

A B A B
p p p p

A B

A BA B
p p

A BA B A B
p p p p

A B

B p

B p p p

U U

x x

U U

x x

 
   

 
   

=

= + =
+ +

 
 

= +
 + +
 

  

However, it is also possible that this price does not arise immediately, but that the price 

negotiation process causes the current price to move in the direction of this desired price. 

This results in model 3b and can be modelled by the behavioural equation 

2 2

2 2 2 2

2 2
2 2

1 1

6 '

A B

A BA B
p p

A BA B A B
p p p p

A B

U U

x x
B p p

U U

x x

 


   

  
   = + −

  + +
   

  

Here   is a parameter such that 
1


 expresses the rigidity of prices. →  results in 

6 6B B→   

6.5. Numerical calculations 

https://www.dropbox.com/s/5ja8lrbkwb9iqb0/Edgeworth%20%20Buch%20model%

201%2B2%2B3%20Version%203.nb?dl=0 

Note: 

In model 1 and 2 P  is a measure for the power of the auctioneer. For 0P = model 1 and 

model 2 are equivalent 

In model 3b   is a measure such that 
1


 expresses the rigidity of prices  

Model 3a corresponds to model 3b with →  

 

The following graph shows the tatonnement of model 1,2,3a,3b for  

1 1

2 2

0

0

30 5

10 20

1

1.5 1

0.3 0.6

P

A B

A B

A B

A B

power factors

endowment x x

x x

start price p

power factors

Cobb Douglas parameter

 

 

 

= =

= =

= =

=

= =

− = =

 

https://www.dropbox.com/s/5ja8lrbkwb9iqb0/Edgeworth%20%20Buch%20model%201%2B2%2B3%20Version%203.nb?dl=0
https://www.dropbox.com/s/5ja8lrbkwb9iqb0/Edgeworth%20%20Buch%20model%201%2B2%2B3%20Version%203.nb?dl=0
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The x-axis is 
1

Ax  , the y-axis is 
1

Bx . 

The contract curve is black dashed. 

Isolines of 
AU  are blue, isolines of 

BU  are green, Isolines of the overall utility 
A BGU U U= + are brown 

 

The green point is the endowment and thereby the starting point of the tatonnement. 

The red point is the general equilibrium point. 

The black point is the maximum of the overall utility 
A BGU U U= +   

 

 

 

The higher the power 
P   of the auctioneer, the more likely Model 1 and Model 2 

converge to general equlibrium. Model 1 converges faster than model 2. The 

tatonnements of model 1 and model 2 are shown for 1P =   in the following graph: 

 

 

The higher   the more likely the tatonnement of model 3b converge to tatonnement 

of model 3a. This shown in the next graph with 0.05 =     ( 1P = remains unchanged) 
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For high P  (e.g. 5P = ) tatonnement of model 1 and model 2 converge to the general 

equilibrium point. For high   (e.g. 2 =  ) the tatonnement of model 3a und model 3b are 

identical, but neither converge to the general equilibrium point nor to the maximum of GU. 

 

 

If one changes the parameters (endowment, power factors, initial price and Cobb-Douglas 

parameters), the behaviour of the models differs to a greater or lesser extent in each case. 

The best summary is that model 1 typically converges best to the general equilibrium. 
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C. Macroeconomic models 
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7. The principle set up of GCD models  
Formelabschnitt (nächster) 

7.1. The model graph 

It has proved to be extremely helpful to present each model in the form of a model graph. 

This provides an immediate overview of the agents, stock variables and flow variables. 

Using model A2 we also show how the constraints can be systematically determined from 

the model graph (see chapter 8.2.). Another possibility for the systematic representation of 

a model results from specifying the corresponding transaction matrices. This method is 

often used to describe SFC models (stock flow consistent models). Constraints can also be 

derived from this in a systematic way (see Chap. 8.3). However, we prefer the description 

of a model with model graphs, as long as the models are not so complex that the graphs 

become unclear. 

In detail a GCD model consists of the following elements: 

7.2. Agents 

In principle, any number of any agents is possible, e.g: 

- One or more households 

- One or more firms 

- One or more banks 

- A central bank 

- One State 

- Any other agents 

7.3. Goods 

Agents exchange goods (flows) and/or store them (stocks) or create or destroy them. In 

GCD models it is useful to consider not only money but also all other goods that are usually 

exchanged for money at a certain price. 

In principle any number of any goods is possible, e.g: 

- Money 

- Goods 

- Services 

- Labour 

- debt notes (promissory notes) 

(receivables = positive stock of debt notes, liabilities = negative stock of debt notes). 

The immediate price of a debt note is usually 1 (e.g.: for lending 100 € you get 100 
debt notes). However, debt notes usually trigger corresponding interest payments.  

- Energy 

- Raw materials 
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- etc. 

7.4. Variables 

All stocks, all flows and all creation and destruction processes are represented by time-

dependent variables. 

It is important to distinguish between 2 types of variables: Differentially defined variables 

and algebraically defined variables. 

We first assume that only differentially defined variables occur. This means that the 

behavioural equations of all variables that appear in the utility functions are given by the 

differential equations of the general GCD model equations in the form <3.11>. We therefore 

refer to these variables as differentially defined variables. However, in the models variables 

are also possible for which the behavioural equations are not given by a differential equation 

but by an algebraic equation, e.g. by assuming a certain production function 

(1 )( )Y t L K  −=   

or a specific rule for determining the amount of household income tax 

( ) 0.3HT t wL=   

In chapter 7.11 the algebraically defined variables are explained in more detail. 

7.5. Constraint conditions 

For every agent and every good, the following conservation equation, which is called a 

constraint, must necessarily apply: 

 

Incoming goods - outgoing goods + production of goods – 

- destruction of goods - change in stock of goods = 0 

 

E.g. for a company that produces a number ( )Y t   of machines, designate  

( )C t  the part of the machines which are sold, 

( )S t  the stock in the warehouse,  

( )K t   the number of machines used for production, i.e. the real capital stock and  

( )I t  the investment, i.e the part of production used for its own further production, the 

following constraint holds 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0Y t C t S t I t Y t C t S t K t  − − − = − − − =   

We avoid the formulation of this constraint by valuation at market prices   

( ) ( ) ( ) ( ) 0pY t pC t pS t pI t− − − =  

p
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because only the term ( )pC t  corresponds to a real flow, namely the flow of money when 

machines are sold, whereas the other terms correspond to a flow of values. However, since 

valuations can change very easily, the conservation equation for values generally applies 

only to a very limited extent and must be applied with great caution.  

In addition to the above-mentioned constraints, which are derived from the conservation 

equations for each good for each agent, there are also other constraints imposed by model 

assumptions, such as the assumption that all consumer goods are consumed immediately 

and not stored. 

Model graphs in the form of flow charts and/or transaction matrices for all goods are very 

helpful in establishing the constraints. We show model graphs in the form of flow charts for 

each model. We explain the use of the corresponding transaction matrices with an example 

in chapter 8.3. 

Note: The conservation equations for GCD models are closely related to the conservation 

equations of physics and chemistry, e.g: 

1st law of thermodynamics (conservation of energy) 

1st law of chemistry (conservation of mass) 

 

Since debts (liabilities) and accounts (receivables) always arise simultaneously and in the 

same amount, it applies that in a closed system the sum of debts (liabilities) must always be 

the same as the sum of accounts (receivables). This analogy to the conservation laws of 

physics makes it reasonable to call this fundamental relationship for a monetary economy 

"1st law of economics" (Glötzl 1999; 2009) 

7.6. Utility functions for each agent 

The behaviour of an agent is described by its utility function. These utility functions are not 

subject to any restrictions and can basically depend on all variables (stocks and flows) and 

any parameters.  

In equilibrium models, as for example also in DSGE models, the utility functions must 

always be required to be able to be aggregated, because otherwise a description via a 

maximisation is basically not possible. (For the definition of aggregability see Chapter 4.3). 

GCD models are not subject to this restriction. 

7.7. Power factors for each agent for each variable 

An agent's interest in changing variables does not per se lead to actual change, because the 

agent must also have the power or opportunity to actually implement its desire for change. 

This is described by the so-called power factor 

 A
x , which can assume values between 0   and  . A high-power factor leads to a rapid 

temporal adjustment of the variables. The power factors in some sense can therefore also be 

interpreted as speed adjustment factors.  
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7.8. GCD model equations for the simple case (utility functions 
and constraints depend only on 1 2( , )x x ) 

7.8.1. Ex-ante equations of motion 

We explain the principle for 2 agents ,A B  and 2 variables  1 2,x x .  

The utility functions of ,A B  are  
1 2 1 2( , ), ( , )A BU x x U x x . The interest of A  is to change 1 2,x x  

so that the increase of his utility function is maximal. This is given, if the change of 1 2,x x  

is done in the direction of the gradient of 
1 2( , )AU x x    , i.e.  

11

2

1

A

B

U

xx
proportional

x U

x

 
     

         

  

The interest of  A   in a change of the variables does not lead alone to an actual change, 

because the household must have also the power and/or possibility of actually implementing 

its change desire. For example, a household cannot or can only partially enforce its 

additional consumption desire, e.g., to go to the cinema or go on vacation, because it is 

possibly quarantined or the borders are closed. This limitation of the possibility to enforce 

his consumption change requests is described by a (possibly time-dependent and 

endogenously determined) "power factor" H
C . In general, the change request for each of the 

variables is described by "power factors"
1 2 1 2
, , ,A A B B

x x x x    . Considering the power factors, the 

following applies to the change of 1 2,x x  (due to the interest of A   and the power of A  to 

enforce this interest) 

1

2

11

2

2

A
A
x

A
A
x

U

xx
proportional

x U

x





 
     

         

 

Just as A   has an interest, to change 1 2,x x
 
, also B   has an interest to change these two 

variables. The actual change is therefore the result of the two individual efforts to change, 

weighted with the power factors. We therefore refer to this behaviour as "individual utility 

optimisation". 

1 1

2 2

1 11

2

2 2

A B
A B
x x

A B
A B
x x

U U

x xx

x U U

x x

 

 

    
          = +                   

        <7.1> 

In case there is a "master utility function" MU  such that 

1 2( , )AU x x
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1 1

2 2

1 1 1

22 2

A B
A B
x x

A B
A B
x x

U U MU

x x x

MUU U

xx x

 

 

      
            + =      
               

       <7.2> 

the two utility functions can be aggregated. Then  

11

2

2

MU

xx

x MU

x

 
     =    
  

          <7.3> 

Equation <7.3> describes the temporal change of the variable along the gradient of MU  . 

If MU  is concav, 1 2( , )x x
 
 converges to the maximum value of MU   , i.e. 

max max max max

1 2 1 2 1 2( ( ), ( )) ( , ) ( , )
t
lim x t x t x x with MU x x maximal
→

= =   

Define the overall utility function 
A BGU U U= + .(see also chapter 4.3). If the overall utility 

function equals the master utility function, i.e. GU MU=  , we therefore refer to  

1 1

2 2

1 11

2

2 2

1 1 1

2 2 2

( )

( )

A B
A B
x x

A B
A B
x x

A B

A B

U U

x xx

x U U

x x

MU GU U U

x x x

MU GU U U

x x x

 

 

    
          = + =                   

    +   
          = = =        +
             

      <7.4> 

as "overall utility maximisation". 

These equations of motion <7.1> resp. <7.4> describe the dynamics of  under the 

condition that there are no constraints that restrict the dynamics. It is therefore referred to 

as the ex-ante equation of motion. 

7.8.2. Ex-post equations of motion 

7.8.2.1. Vertical constraint forces 

If a constraint  

1 2( , ) 0Z x x =    

has to be fulfilled, an additional constraint force
Zf  has to be added to the ex-ante force  

1

' 1,2,...,
J

j j Z
i i i

j

x f f i I
=

= + =       <7.5> 

1 2( , )x x
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to ensure the constraint Z  to be fulfilled at all times. In physics, this constraint force 
Zf is 

perpendicular to the constraint at all times due to the so-called d'Alembert principle, i.e. 

1 2

11 1 2

1 2

1 22 1 2

2

( , )

( , )
( , )

( , )( , )

Z
Z

Z

Z x x

xf x x
f x x

Z x xf x x

x



 
    = =    
  

       <7.6> 

We therefore refer to this type of constraint forces as "vertical constraint forces". The 

time-dependent factor ( )t =  is called Lagrange multiplier, as in the case of optimisation 

under constraints. 

Vertical constraint forces can also be characterised by the following equivalent principles. 

This is because the theorem (Glötzl 2018) holds that the following principles are equivalent: 

Theorem: 

(1) d'Alembert's principle (constraint forces do no work) 

(2) vertical constraint forces (constraint forces are perpendicular to the manifold of 

constraint conditions) 

(3) Gaussian principle of least constraint (those constraint forces iZf  occur for which 

iZf minimal→ ) 

(4) unnamed principle  

If x   is a solution of  

( ) ( )

0 ( )

Zx f x f x

Z x

 = +
=

 

then 
Zf  satisfies the unnamed principle

,
:

d x x f

dt x

 
 =


  

Note: If one of the equivalent principles is satisfied, then the constraint force has no effect 

on  but only on the direction of  . Note, however, that the inverse does not hold. 

It is therefore plausible in many cases to model constraint forces in economics in an 

analogous way to physics in terms of d'Alembert's principle respectively as vertical 

constraint forces. 

From <7.1> and <7.6> results the "equation of motion considering the constraint condition", 

called ex-post equation of motion: 

 

x x
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x x
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x x

Z x x
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Z x x

x

Z x x

 

 



    
          = + +                   

 
  +
 
  

=

     <7.7> 

 

If ,A BU U  can be aggregated to a master utility function MU  , the equation of motion is as 

follows 

 

1 2 1 2

1 11

2 1 2 1 2

2 2

1 2

( , ) ( , )

( , ) ( , )

0 ( , )

MU x x Z x x

x xx

x MU x x Z x x

x x

Z x x



    
          = +       
       

=

      <7.8> 

 

and if the master utility function MU   is concave, 1 2( , )x x  converge to a local maximum 

value of MU  under the constraint Z   , i.e. 

max, max,

1 2 1 2

max, max,

1 2

( ( ), ( )) ( , )

( , )

Z Z

t

Z Z

lim x t x t x x

with MU x x maximal under constraint Z

→
=

=
  

and it holds that the dynamics at max, max,

1 2( , )Z Zx x is stationary, i.e. 

max, max, max, max,

1 2 1 2

1 11

max, max, max, max,
2 1 2 1 2

2 2

( , ) ( , )

0
( , ) ( , )

Z Z Z Z

Z Z Z Z

MU x x Z x x

x xx

x MU x x Z x x

x x



    
          = + =                   

 <7.9> 

or equivalently  

max, max, max, max,

1 2 1 2

1 1

max, max, max, max,

1 2 1 2

2 2

( , ) ( , )

( , ) ( , )

Z Z Z Z

Z Z Z Z

MU x x Z x x

x x

MU x x Z x x

x x



    
       = −    
          

     <7.10> 

 



51 

 

 

In general, for 

J  agents with the designations  j     1,2,...,j J=  

   

I  Variables with the designations ix     1,2,...,i I=  

1 2( , ,..., )Ix x x x=    

K  Constraints with the designations kZ     1,2,...,k K=  

      

the I  general GCD model equations for vertical constraint forces are obtained 

analogously 

 

0 1

1,2,...
i

j kJ K
j k

i x
j ki i

U Z
x i I

x x
 

= =

  = + =
          <7.11> 

 

If there is a "master utility function" MU  such that 

0

1,2,...,
i

jJ
j

x
j i i

U MU
i I

x x


=

 
= =

         <7.12> 

the utility functions , 1,2,...,jU j J=  are called aggregable.  

If 
1

J
j

j

MU U
=

=  , the master utility function is called the overall utility function. If the master 

utility function MU   is convex,  x  converges to the maximum value of  MU  under the 

constraint conditions , 1,2,...,kZ k K=  . 

7.8.2.2. Other constraint forces 

Another type of constraint force that can occur, especially in the case of a constraint force 

describing a limited resource, is a constraint force that is centrally directed to the origin. We 

therefore refer to this as a "central constraint force". 

11 1 2

1 2

22 1 2

( )( ( ), ( ))
( ( ), ( )) ( )

( )( ( ), ( ))

Z
Z

Z

x tf x t x t
f x t x t t

x tf x t x t


   
= =   

         <7.13> 

A model for this are constraint forces such as occur in theoretical biology in the derivation 

of the so-called replicator equation (Glötzl 2023a). In biology, this model assumption of a 

central constraint force is equivalent to the assumption that in the struggle for limited 

resources, equally high death rates are triggered for all species. 

Let us illustrate this with an example. A typical dynamic in biology is the initially 

independent exponential growth of 2 species A   and B   with birth rates ,A Bb b  . 
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" "

" "

A A A A

B B B B

n b n b growth rate

n b n b growth rate

 =

 =
         <7.14> 

A constraint typical for biology is, for example, the assumption of limited resources. This 

can be given, for example, by a limitation of the food supply or also by a limitation of the 

habitat. This results in the sum of the number of absolute frequencies of the different species 

remaining constant. This is formally described by the constraint condition 

1 2( , ,...) 0i
i

Z n n n constant= − =   

Assuming that the constraint condition triggers equally high death rates in both species, the 

differential algebraic equation system is obtained 

( , ) 0

A A A A

B B B B

A B A B

n b n n

n b n n

Z n n n n n n constant




 = −
 = −

= + − =
      <7.15> 

Assuming that A   is twice as successful ("powerful") in the struggle for resources, the death 

rate for A  would be half as high and thus the system of equations would be 

1

2

( , ) 0

A A A A

B B B B

A B A B

n b n n

n b n n

Z n n n n n n constant





 = −

 = −

= + − =

 

When applied to economic constraints, this can be interpreted as follows. Agents can have 

different powers to oppose constraints. For example, if raw materials are limited in total, it 

may be easier for some countries to obtain the necessary raw materials than for others. 

In the most general case, different types of constraint forces can occur. Essential for the 

modeling is only that the constraint forces used must be linearly independent and multiplied 

by the respective Lagrange multiplier.   

Note: In the case where not all constraint forces are vertical, x   typically does not converge 

to the maximum value of MU   under the constraints  , 1,2,...,kZ k K= , even if the master 

utility function is convex. 

As a rule, it is sufficient to use purely vertical constraint forces. In the following, we will 

therefore always restrict ourselves to vertical constraint forces. 

7.9. GCD model equations for the general case (utility functions 
and constraints also depend on antiderivatives and/or 

derivatives of 𝒙𝟏, 𝒙𝟐) 
7.9.1. Constraints depend on antiderivatives and/or derivatives 

So far, we have assumed that the constraints depend only on x . However, the constraints 

can also depend on the antiderivatives 1 2( , ,..., )IX X X X= . This means, iX  is antiderivative 
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of ix , iff i iX x = . The constraints can depend in principle, however, also on the time 

derivatives 1 2( , ,..., )Ix x x x   = . In physics it is valid (Flannery 2011), that the constraint force 

always results from derivative with respect to the highest time derivative of x  , i.e. 

If (..., ,...)iZ X  then Z
i

i

Z
f

X


=


 and 

0 1

(..., ,...)
1,2,...

i

j kJ K
j k i

i x
j ki i

U Z X
x i I

x X
 

= =

  = + =
       <7.16> 

 

If 
,(..., , ...)i iZ X x  then Z

i

i

Z
f

x


=


 and 

0 1

(..., , ,...)
1,2,...

i

j kJ K
j k i i

i x
j ki i

U Z X x
x i I

x x
 

= =

  = + =
       <7.17> 

 

If (..., , , ,...)i i iZ X x x  then Z
i

i

Z
f

x


=


 and 

0 1

(..., , , ,...)
1,2,...

i

j kJ K
j k i i i

i x
j ki i

U Z X x x
x i I

x x
 

= =

  = + =
       <7.18> 

 

We assume that this approach is also plausible in economics in the case of vertical 

constraints. 

7.9.2. Utility functions depend on antiderivatives and/or derivatives 

So far, we have assumed that utility functions only depend on x . But also, the utility 

functions can additionally depend on antiderivatives and derivatives of x . In these cases, 

both the antiderivatives 1 2( , ,..., )IX X X X=  and the derivatives  1 2( , ,..., )Ix x x x   =  are to be 

considered as additional variables in their own right, i.e. 

1 2 1 2 2

1 2 2 1 2 2 3

( , ,..., ) ( , ,..., )

( , ,..., ) ( , ,..., )

I I I I

I I I I

X X X X x x x

x x x x x x x
+ +

+ +

= =
      = =

 

In that case, the following additional constraints must be used 

2

0 1,2,...,

0 1,2,...,

I i i

i I i

x x i I

x x i I
+

+

 − = =
 − = =
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7.10. Mar et forces 

The behaviour of ix
 
is given by the general GCD model equation (for vertical constraint 

forces) for ix
 
 <7.11> 

 
0 1

1,2,...
i

j kJ K
j k

i x
j ki i

U Z
x i I

x x
 

= =

  = + =
        <7.19> 

The right-hand side of <7.19> 

0 1
i

j kJ K
j k

x
j ki i

U Z

x x
 

= =

 
+

    

thus describes the market forces that lead to a change in ix
 
 and is composed of 2 parts. 

The market forces that agents exert on ix
 
 

0
i

jJ
j

x
j i

U

x


=


  

and the market forces that the constraints kZ exert on ix . These are just the constraint forces 

( ) 1,2,...,
k

k
Z k

i

Z
f x k K

x



= =


  

If for a particular i  it holds that 
( )

0
j

i

U x

x


=


 , i.e. that the utility functions do not depend on 

1

j
x , or that the power factors 

1
0j

x =  , the general GCD model equation (for vertical 

constraint forces) reduces for ix
 
 , to 

1

1,2,...
kK

k
i

k i

Z
x i I

x


=

 = =
  

In this case, the behaviour of  ix
 
is determined exclusively by the constraint forces. 

Therefore, the constraint forces can also be called "pure" market forces,   

7.11. Algebraically defined variables 

So far we have assumed that the behavioural equations for all variables are given by 

differential equations in the form <7.11> to <7.18>. We therefore call these variables 

differentially determined variables. In the models, however, also variables are possible, with 

which the behavioural equations are not determined by a differential equation, but by an 

algebraic equation, e.g. by the assumption of a certain production function  

(1 )( )Y t L K  −=   

 or a specific rule for determining the amount of household income tax. 



55 

 

 

( ) 0.3HT t wL=   

We call these variables algebraically defined variables. These algebraic behavioural 

equations can often be seen as limit values of differential equations with infinitely large 

power factors. For example, the behaviour of the government in collecting income tax could 

be described by the following behaviour. It aims to collect 30% of the wage income of the 

household as a tax. If the tax paid is less than this, e.g. through tax evasion, the government 

will try to increase the collection of the tax. This behaviour can be modeled in the following 

way, for example: 

Let 
21

( ) (0.3 )
2

G H HU T T= − −  be the utility function of the Government G  and Z  any 

constraint, then results the behavioural equation 

' (0.3 )H H

G
H H H H

H H HT T

U Z Z
T wL T

T T T
   

  
= + = − +

  
  

If the government has infinite power to prevent tax evasion, this results in 

' (0.3 )

'
(0.3 )

0 (0.3 )

0.3

H

H H

H

H H H

HT

H
H

H H H

T T

H

T

H

H

Z
T w L T

T

T Z
w L T

T

for results

w L T

T w L

 


 




= − + 




 = − +


→ 

= − 

=

 

The algebraic behavioural equation 0.3HT wL=  can thus be interpreted as a differential 

behavioural equation with infinite power of the government. 

In case of occurrence of algebraically defined variables, when forming partial derivatives 

of utility functions and constraints with respect to the differentially defined variables, it 

must be taken into account that the algebraic variables occurring in utility functions and 

constraints may also depend on differentially defined variables. It is best to insert the 

algebraically defined variables into the utility functions and constraints before the 

differential equations are formed. 

7.12. Numerical solutions 

In most cases, the differential algebraic systems of equations cannot be solved analytically, 

but only numerically.  

7.12.1. Initial values 

In ordinary differential equation systems of the 1st order, the initial values for all variables 

are freely selectable. In contrast to ordinary differential equation systems, not all initial 

values of the variables are freely selectable in differential algebraic equation systems. The 

reason for this is that the initial values must satisfy the differential equations and also the 

constraints.  
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If there are no time derivatives in the constraints and there are K  linearly independent 

constraints, only I K−  initial values can be chosen freely. The other initial values result 

from the solution of the system of equations of the constraints. However, if the constraints 

are nonlinear an analytical solution is often not possible. In many practical applications, 

however, the situation is much more complex, especially if time derivatives of variables 

also occur in the constraints. 

In the usual numerical programs for solving differential-algebraic equations, an algorithm 

is therefore built in, which calculates from a sufficiently large number of initial values, other 

possible initial values, which approximately fulfill the system of equations up to a certain 

tolerance. One therefore needs an understanding of the model and a certain amount of 

experience to determine suitable initial values. 

7.12.2. Parameter selection 

The parameters of a GCD model cannot be chosen arbitrarily either. For the system of 

equations, a solution does not have to exist for every combination of parameters or be stable 

over a longer period of time. Therefore, one also needs an understanding of the model and 

a certain experience for the selection of the values for the individual parameters. 

7.12.3. Numerical solution methods 

We make use of two solution methods within the framework of MATHEMTICA, namely 

NDSolve and Modelica. Since differential algebraic systems of equations have a much 

higher overall complexity than ordinary differential systems of equations, many different 

methods of numerical procedures are available in NDSolve. 

By default, it is usually sufficient to use: 

 Method→Automatic 

Sometimes you need:  

 Method→{"EquationSimplification"->"Residual"} 

Sometimes one needs: 

 Method→{IndexReduction→ Automatic } 

Sometimes one needs: 

 Method→{IndexReduction→{True, ConstraintMethod→Pro ection}} 

May be in special cases also other methods must be used 

 

For the stability of the solutions, one has to distinguish 2 cases: 

- The model itself may become unstable after a certain time because, for example, certain 

variables become 0. 

- The model is basically stable, but the numerical errors can lead to instabilities after a 

longer runtime. 
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8. Examples of possible utility functions 
Formelabschnitt (nächster) 

8.1. Household 

For example, a household may have the following targets: 

• Consumption target: he would like to consume. His desire to consume more is greater 

the less he is currently consuming or can consume, and his desire to consume even more 

is smaller the more he is already consuming. 

• Labour target: he would like to work, but not too much and not too little. 

• Money management target (cash management target): he always wants to have liquid 

funds, not too little, so that he can buy everything he wants to buy at the moment and 

not too much, because he does not get any interest for it and it would be more 

advantageous to lend the money to the bank against interest on savings. Therefore, the 

higher the interest on savings, the lower his money-holding target. 

• Receivables holding target (savings target): he would like to hold assets in the form 

of receivables from the bank, the more the higher the savings interest. 

The stated targets of the household can be expressed, for example, by the following utility 

function: 

( ) ( )2
2

ˆ

:

0

ˆ ˆ( , , , ) ( )

ˆ

,

1

H H H H H H H H H

H

H

H

H

H

H

H

H

money holding (liquid assets)

claims on bank (savings)

targeted labour

M targeted money holding

possibly depe

Variable C con

U

sumption

L labour

M

A

Parameter :

L

C L M A C L L M M A


 

= − − − − +

 

nding on the interest rate

 

8.2. Firm 

A firm can have the following targets, for example: 

• Profit target: The greater the profit, the greater the utility. 

• Warehousing target: Warehousing causes costs and should therefore be as low as 

possible; on the other hand, it must not be too low, otherwise fluctuations in demand 

cannot be compensated. 



58 

 

 

• Investment target: The interest in investing depends (also!) on the level of interest 

rates on loans. If lending rates are 0 (or even negative due to possible investment 

incentives), as much is invested as is organisationally feasible. If lending rates rise, 

correspondingly less is invested. 

The stated targets of the firm can be expressed, for example, in the following utility function. 

( )( )ˆ 2F F 2
DU = profit - (S - S) - invmax 1- (r + r ) - inv  

whereby the following „algebraically“defined variables are used 

 

:

a 1-a

F F
D

a 1-a F
D

Y := L K

profit = pY - wL - (r + r )(-D ) - DP

= p L K - wL - (r + r )(-D ) - DP

invmax : = inv K





=
 

 

The following gives the dependence of the utility function on the “differentially” defined 
variables: 

( )( )

( )( )

,

ˆ

ˆ

F F

2F 2
leit D

a 1-a F
leit D

2
2

leit D

U (p,L,K,w,D ,DP,S inv)

= profit (S S) invmax 1 (r + r ) inv =

= p L K wL (r + r )( D ) DP

(S S) inv K 1 (r + r ) inv







=

− − − − −

− − − − −

− − − − −

 

whereby the following „differentially“defined variables are used 

price

loans payable

depreciation

inventories

Net investment

F

p

L labour

K capital

w wages

D

DP

S

inv

 

 

whereby the following “algebraially” defined variables are used: 
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and whereby the following “parameters” are used: 

central bank prime rate

ending rate premium on central bank base rate

stock-keeping target

factor for the interest rate depe

technology 

ˆ

maximal net investment factor

leit

D

Cobb Douglas parameter

factor

r

r

S

inv






−

ndency of the investments

 

 

Note: Note that the constraint 0 'K inv= −  must apply to the variables K and inv  in the 

sense of chapter 7.9.2. 

8.3. Ban  

For example, a bank may have the following target: 

Profit target: The greater the profit, the greater the utility. 

The stated target of the bank can be expressed, for example, in the following utility function. 

B BU profit=  

„Algebraically“ defined variable 

( ).( ) ( ).( )

( )

B F G
leit D leit D

ZB H
leit leit A

profit r r D r r D

r A r r A

= + + − + + − −

− − +
 

insert in BU  

( , , , ) ( ).( ) ( ).( )

( )

B F G ZB H F G
leit D leit D

ZB H
leit leit A

U D D A A r r D r r D

r A r r A

= + + − + + + − −

− − +
 

„Differentially“ defined variables: 

loans receivab

)

loans payable of firm

loans payable of government

of centle

loans receivabl

ral bank

of hou ssehold (e Savings depo its

F

G

ZB

H

D

D

A

A

 

„Parameters“ are: 
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central bank prime rate

lending rate premium on central bank interest rates

Savings interest surcharge on central bank interest rates

leit

D

A

r

r

r

 

8.4. Central ban  

The FED (Federal Reserve) has 3 targets: 

• Inflation target: Inflation should be as close as possible to 2%. 

• Full employment target: i.e., there should be neither unemployment nor 

overemployment due to overheating of the economy. 

• Target for the long-term interest rate: moderate long-term interest rate. For the sake 

of simplicity, we will not consider this target any further in the following. 

The first two targets can be modelled within the framework of the GCD models in the 

following two ways: by means of corresponding utility functions or by prescribing the 

setting of the prime interest rate by means of the so-called Taylor rule. 

8.4.1. Utility function of a central bank 

The full employment target can be expressed analogously to the utility function of the 

household by the term   

( )2

L̂ L− −  

in the utility function of the central bank. In contrast to the household, however, the central 

bank has no direct influence on employment, but only an indirect influence through its 

interest rate policy or its money supply policy.  This means 

leit

ZB

ZB H
L L

ZB
r leit

ZB ZB

N

m = 0 in contrast to m ¹ 0

m > 0 Influence on the central bank base rate r

m > 0 Influence on money creation N

 

A central bank can try to achieve the target of inflation in 2 different ways. Through interest 

rate policy (we characterise this by 1 = ) or through money creation policy (we 

characterise this by 0 = ). This behaviour of the central bank can be described by the 

following term in the utility function 
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It should be noted that the central bank has no direct influence on the price p , but can again 

only influence p  and ps  indirectly via the central bank base rate and money creation. This 

means 

0
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The utility function 

( ) ( )2ˆˆ(1 ) ( )BZB Z ps
r N p L L

p

with constraint 0 = ps - p'

because of chapter 3.9.2

U  − + − − −= −

 

leads (in addition to the other terms from the utility functions of other agents and the 

constraints) in the general GCD - model equations <3.11> to 
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The term ˆ( )ZB
r

ps
p

p
  −−  means: If the central bank pursues an interest rate policy (

1 . 0bzw =   ), it exerts a force on the interest rate r  such that r  grows (i.e. ' 0r  ), if 

the actual inflation is greater than the targeted inflation 
ps

p
. The same is true in reverse. 

The term 1 ˆ( )( )ZB

ZB

N

ps
p

p
  −+ −  means: If the central bank pursues an interest rate policy (

0 . 1bzw =   ), it exerts a force on the interest rate r  such that r  grows (i.e. ' 0r  ), if 

the actual inflation is smaller than the targeted inflation 
ps

p
. The same is true in reverse. 

 

8.4.2. Taylor rule 

The Taylor rule is a monetary policy rule for setting the central bank base rate by a central 

bank. It reads: 

 

1 2

  real   i

p

equilibrium interest rate

inflation gap growth ra

nflatio +

te

n 

 ga

base rate

 
= +

+ +
    <8.1> 

 

Thereby, the weighting factors 1 2,    are derived from the actual behaviour of the central 

bank.  If both gaps are equal to 0, the Taylor rule is equivalent to Fisher's rule 

equilibrium  e  rea iinter st l   nflatrate ionbase rate = +     <8.2> 

We make the following simplifying assumptions: 

Assumption 1: The economy is in equilibrium; therefore, it is reasonable to assume that the 

real equilibrium interest rate is equal to the real growth rate 

 
'Y

Y
. 

Assumption 2: Full employment of the economy prevails exactly when the actual labour 

L  is equal to the targeted labour L̂ , i.e. 

(1 )ˆ ˆ

ˆ '

Production at full employment Y K L

Y
at full employment

Y
growth rate

  −=

=
 

If p̂  denotes the targeted inflation rate, this results in 

ˆ' ' ˆ ˆ1 2leit

Y' p p Y' Y'
= + + ( - p)+ ( - )

Y p p Y
r

Y
         <8.3> 
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Interpretation: The interest rate is higher if the inflation rate 
'p

p
 is higher than the target 

inflation rate p̂  and/or the growth rate 
Y'

Y
 is higher than the (target) growth rate at full 

employment.  

If one inserts and simplifies one obtains 

' ' ˆ (1 ) (1 )i 1 2le tr
L

p p K' L'
+ ( - p)

p p K
   = + − + +      <8.4> 

In terms of the GCD methodology, the Taylor rule sets the value of the policy rate as an 

algebraically defined variable. If the central bank acts only according to the Taylor rule, it 

does not act in the sense of optimising a utility function, but according to empirical values 

that have proven themselves in the past. In this case, one can therefore set the utility function 

of the central bank equal to 0. 

8.4.3. Modified Taylor rule: Consideration of the interest rate 
premium on the key interest rate 

The Fischer rule does not actually refer to the central bank's base interest rate, but to the 

lending rate. This consists of the base interest rate plus a premium. In economic equilibrium, 

this results in 

= base rate + premium 

= growth rate + inflation 

Loan interest rate =
      <8.5> 

Under these assumptions, this results in the modified Taylor rule 

 

1 2

base rate =

 growth rate + inflation+premium

inflation gap growth gap 
= −

+ +
      <8.6> 
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8.5. Government 

The government pursues the following targets, for example. 

• Government expenditure target: Government expenditure serves to fulfil 

government tasks and is often also referred to as government consumption. For 

simplicity's sake, we assume that the government behaves like a household. Its desire 

to consume even more is smaller the more it consumes anyway. 

• Government debt target: e.g., target government debt in the sense of the Maastricht 

criteria (60% of GDP). 

• Employment target: The government has the target of full employment, as does the 

Fed in the USA. 

• Tax ratio target: for the sake of simplicity, we will not discuss this further below. 

• Growth target: for the sake of simplicity, we will not discuss this further below.  

The stated targets of the government can be expressed, for example, in the following utility 

function. 

2 2ˆ ˆ( ) ( ) ( )GG G G GU C D Y D L L= − − − −  

Where the „algebraically“defined variable Y is used 

a 1-aY := L K  

Insert and you get the dependence of the “differentially” defined variables, i.e. the variaables 
defined by equation <3.7>  

2 2ˆ ˆ( , , , ) ( ) ( ) ( )GG G G G G a 1-a GU C L K D C D L K D L L = − − − −  

ˆ 0.6

ˆ

G

G

w

r

ith parameters

Cobb Douglas parameter

for governmental consumption

D Maastricht f t

targ t

ac o

e ed labou

r

L

 −

= −
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9. What insights can be gained from 
the modeling of GCD macro models  

Formelabschnitt (nächster) 

9.1. Practical insights: Causes and pattern of business cycles, 
analysis of measures to achieve economic policy targets 

The simplest macroeconomic model imaginable consists of 2 agents: 1 company that 

produces 1 good and 1 household that works for the company and buys or consumes this 

good. 

Even this simplest macroeconomic model shows that under certain assumptions about the 

power relations between household and firm and assumptions about the other parameters of 

the model, business cycles occur. This means that the individual variables show an 

approximately cyclical behaviour and the phase shifts between the individual variables 

remain approximately the same. 

In chapter 11 we present and analyse this simple model and present some basic results. 

As an example for measures to achieve economic policy targets in model B1, B2 and C1, 

C2 we analyse in a simple way the different effects for possible central bank policies:  

monetary supply policy, interest policy or behaviour in the sense of the Taylor rule. 

The most important tasks that need to be done in the future to be able to use GCD models 

for practical problems in economics are: 

a) Adjustment of parameters to describe real circumstances and comparison of model results 

with real business cycle trends. 

b) Extend GCD models to multiple households, firms, and goods, and in particular to 

commodity and financial markets. For a first approach see (Richters 2021) 

c) In the long run, develop a more complex, real-world model to enable better economic 

forecasting and test measures to achieve economic policy targets. 

d) Elaborate GCD models with economic shocks in detail.  

e) Elaborate GCD models with intertemporal utility functions in detail. 

9.2. Theoretical insight: Different macroeconomic theories 
differ in their assumptions of different power factors 

A. Sen has shown in (A. K. Sen 1963) that  

- the basic neoclassical model of macroeconomics 

- the macroeconomic model of Kaldor 

- the macroeconomic model of Johansen 

- and the Keynesian model 
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differ only in their assumptions about which variables are exogenous and which variables 

are endogenous. 

In the methodology of the GCD models it holds: 

 

The variable x  is exogenously determined  There is an agent A with    

The variable x  is endogenously determined  For all agents    

 

This means that the economic models described by Sen always assume one-sided power 

relations. Since in the GCD models the power factors can assume all values between   and 

, i.e. that also not one-sided power relations are possible, all hybrid forms of economic 

theories can also be modeled within the framework of GCD models. This means that a 

continuous transition from one economic theory to another economic theory can be 

represented by the continuous transition of the various power factors from   or. 

. Since one-sided power relations hardly ever occur in reality, reality can therefore 

be better described with GCD models. In chapter 18 we describe in detail examples of 

corresponding theories and the corresponding models.  

We show, for example, that even the theoretical assumptions about the causal relationship 

between "saving" and "investing", which differ from a neoclassical and a Keynesian 

perspective, can be understood as assumptions about one-sided power relations from the 

perspective of GCD models: 

 

In Chapter 18.2 we describe the corresponding models and their interpretation as GCD 

models in detail. 

  

 A
x = 

 0iA
x =

0



0→
0→
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10. The open-source programme 
"GCDconfigurator” 

 Formelabschnitt (nächster) 

In order to facilitate the concrete application to any complex GCD models (with non-

intertemporal utility functions), we have written the open-source program 

"GCDconfigurator", with which any GCD model can be programmed very comfortably and 

solved numerically with the help of MATHEMATICA. 

Essentially, it is sufficient to enter the following: 

- The algebraically defined variables 

- The utility functions for each agent 

- The constraints 

 

The output is the time evolution of all variables depending on the freely variable size of the 

power factors, the other parameters and the initial conditions. 

The programme requires the installation of JAVA and MATHEMATICA. It can be 

downloaded from GitHub with the corresponding instructions (Glötzl und Binter 2022) 

under 

https://github.com/lbinter/gcd  

It allows in the 1st step to set up the GCD equation system in a convenient way just from 

the specification of the utility functions, constraints and initial conditions. In the 2nd step, 

the program enables the calculation of the solutions using MATHEMATICA. The results 

are calculated and plotted graphically as a time evolution of the variables, where the 

individual parameters can be varied in a convenient way. 

All MATHEMATICA program codes used for calculations of the various GCD models can 

be downloaded under   

https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=0 

  

https://github.com/lbinter/gcd
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=0
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11. Model A1, (1 household, 1 firm, 1 
good, without interest) 

Formelabschnitt (nächster) 

11.1. Overview of the setup 

 

 

 

 

With the aid of the GCDconfigurator programme, the differential-algebraic equation system 

of the A1 model is calculated from this: 

Model A1: 1 household, 1 firm, 1 good

  

            

 

 

 

 

 

 

            

     
     
    

 

Model A1: basic equations
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11.2. Description of the A1 model in detail 

The one good serves as both a consumption good and an investment good. We assume that 

vertical constraint forces occur. 

Since the target is first to show the principle, we choose the production function and the 

utility functions as simple as possible.  

We choose a simple Cobb-Douglas production function as the production function, and the 

goods excreted per year (depreciation) are proportional to the capital stock. This results in 

the 2 necessary algebraically defined variables. They are necessary because they occur in 

the utility functions or constraints. 

 

1( , ) 0, 0 1

( ) 0 1

Y L K L K

DP K dp K dp

   −=   

=  
     <11.1> 

In addition, one can be interested, for example, in net investment, for which one defines as 

a further algebraically defined variable 

( ) 'inv K K=            <11.2> 

Households want to consume with decreasing marginal utility. Consumption of consumer 

goods C  leads to a utility for households in the amount of C   with 0 1   . They strive 

for a desired working time L̂ . Deviations from the desired working time L̂  lead to a 

 

Model A1: diff.-alg. equationsystem
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reduction of utility by 
2ˆ( )L L−  . In addition, households aim to keep cash in the amount of 

ˆ HM . Deviations from the desired cash position ˆ HM  lead to a reduction in utility by 
2( )ˆ H HM M− . This leads to the utility function for the household 

2 2ˆ ˆ( ) ( ) 0 1H H HU C L L M M = − − − −        <11.3> 

For the company, in the simplest case, the utility initially consists of the goods produced, 

which are valued at the selling price, i.e. pY . The produced goods are used for: 

 C  Sales = Consumption 

 S  change in inventory 

 K   changes in productive capital stock 

In principle, it would be possible to weight the utility of these uses differently. For the sake 

of simplicity, we will refrain from doing so. Therefore, this utility is reduced by the cost of 

labor and the cost of storage, which we evaluate through the deviations from the planned 

inventory. For simplicity, we assume that holding money in cash has no influence on the 

utility. This leads to the utility function for the firm 

2

1 2

ˆ( , ) ( )

ˆ( )

FU pY L K w L S S

p L K w L S S  −

= − − − =

= − − −
        <11.4> 

From the model graph, it can be seen that the following constraints must be satisfied: 

 

1

2

3

0 '

0 '

0 ( , ) ' ' 1

H

F

Z wL pC M for money of household H

Z pC wL M for money of firm F

Z Y L K C K S for good of firm F

= = − −

= = − −

= = − − −
   <11.5> 

According to the methodology of GCD models, the interest or desire of households to 

change consumption is the greater the more the utility changes when consumption changes, 

i.e., the interest is proportional to 

HU

C




. However, the interest in changing consumption 

does not in itself lead to an actual change in consumption, because the household must also 

have the power or opportunity to actually implement its desire to change consumption. For 

example, a household cannot or can only partially enforce its additional consumption wish, 

e.g., to go to the cinema or on holiday, because it is in quarantine or the borders are closed. 

This restriction of the possibility to enforce his or her consumption change wishes is 

described by a (possibly time-dependent) "power factor"
H
C . Analogously, the firm could 

have an interest 

FU

C




 and power 
F
C  to influence consumption. In the specific case 

0
FU

C


=


. This results in the following behavioural equation for the ex-ante planned 

change in consumption 

1'
H F

H F H
C C C

U U
C C

C C
    − 

= + =
           <11.6> 
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The same considerations apply to labour L as to consumption.  Even the household's wish 

to increase or reduce working time does not in itself lead to an actual change in working 

time, because the household must also have the power or possibility to actually implement 

its wish to change. For example, a household might not be able to enforce its wish to increase 

working time, or only partially, because it is on short-time working or unemployed, or it 

might not be able to enforce its wish to reduce working time because it is contractually 

obliged to work overtime. This restriction of the possibility to enforce his wishes for a 

change in working time is also described by a (possibly time-dependent) power factor, 

which we denote with 
H
L . The same applies to the firm's ability to influence working time.  

Therefore, the behavioural equation for the ex-ante planned change in working time is as 

follows 

 

1 1ˆ' 2 ( ) ( )
H F

H F H F
L L L L

U U
L L L p L K w

L L
      − − 

= + = − + −
   

The ex-ante behavioural equations for the other variables result analogously. 

However, the plans of the 2 agents household and firm to change consumption C, labour L  

and the other variables cannot be enforced independently of each other, because the 

constraints 

1

2

3

0 '

0 '

0 ( , ) ' ' 1

H

F

Z w L pC M for money of household H

Z pC w L M for money of firm F

Z Y L K C K S DP for good of firm F

= = − −

= = − −

= = − − − −
  

 <11.7> 

lead to constraint forces, which we assume are vertical constraint forces. The constraint 

force for the change in consumption therefore results in 

1 2 3

1 2 3 1 2 3

Z Z Z
p p

C C C
     
  

+ + = − + −
    

The behavioural equation for the actual ex-post change in consumption is therefore 

1 2 3

1 2 3

1

1 2 3

'
H

H
C

H
C

U Z Z Z
C

C C C C

C p p

   

    −

   
= + + + =

   
= − + −

      <11.8> 

Analogously, the actual ex-post change in labour is as follows 

1 2 3
1 2 3

1 1

1 1

1 2 3

'

ˆ2 ( ) ( )

H F
H F
L L

H F
L L

U U Z Z Z
L

L L L L L

L L p L K w

w w L K

 

 

    

  

   

− −

− −

    
= + + + + =

    
= − + − +

+ − +

 

This also applies analogously to the company's investments. In the case of the company, 

too, the actual implementation of ex-ante planned investment increases can be prevented by 

real restrictions, e.g. by interruptions in supply chains. In the same way, a desired reduction 

in investment may not be possible to the desired extent because the project is a large-scale 
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project of many years' duration. These restrictions can in turn be described by a (possibly 

time-dependent) power factor 
B
K . This results in the following behavioural equation for 

the actual ex-post change in capital  

 

1 2
1 2 3

3

3'

(1 )

'

F
F
K

F
K

U Z Z
K

Z

K K K

p L K

K
 

   

   −

  
= + + +

  



= −

=

−
      <11.9> 

Note that we have to use 3

'

Z

K




instead of 3Z

K




 because the constraint forces are always 

derived from the highest time derivative of the variables (see chapter 7.9.1 and (Flannery 

2011)). 

The equations of behaviour for , , , ,H FM M S p w  are derived analogously. In sum, this 

results in the model equations 

 

1 2 3
1 2 3

1

1 2 3

1 2 3
1 2 3

1 1

1 2 3

1
1

'

'

ˆ( )

'

H F
H F
C C

H
C

H F
H F
L L

H
L

H F
H F
K K

d

U U Z Z Z
C

C C C C C

C p p

U U

i

Z Z Z
L

L L L L L

L L w w L K

U U Z

ifferentiell behav oura a

K

l equ tion

KK

s



 

    

    

    

    

  

−

− −

    
= + + + + =

    
= − + −

    
= + + + + =

    
= − + − +

  
= + +

 

( )

2
2 3

3

2 3
1 2 3

1
1

2

1 2
1
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1

2
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'

'

'

ˆ2

'

'
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H H

H
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H
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F F F FM M

F

F

F
S

H
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H
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M
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S

Z

K

Z

M

S

Z

M
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 
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    



    


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−


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 
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   
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   

=

   
= + + + + =

   
= −

  


=







− −






= + + +

 


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3

3

1 2 3
1 2

1

3

3
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1 2 3
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1

'
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F
p

H F
H F
w w

F
w

S S

K L c c
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S
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p
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Z

L

S

w
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

 

    

  

    

 





−

+ =


=

    
= + + + + =

    

=

    
= + + + + =

   




−

− −

− +

−= +

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Or written in a clearer way 

( )
( )

( )

( )

1

1 2 3

3

1 1 1 1

1

2

2 3

1

2

3

1

1

1
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ˆ

ˆ
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   
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 
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  
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 
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− − + − − +

−

−

−= − + −

= − +

=

=

= −

=

=

=

− + − +

− −

− −

+

+−

− −

−

− 2L

  

11.3. Calculation results of model A1 

Depending on the choice of parameters, the system converges to a stationary state (see 

figure 1) or the system describes the occurrence of business cycles (see figure 2). A change 

in the parameters usually only changes the frequency and amplitude of the business cycle 

fluctuations. This means that the qualitative sequence of business cycles over a wide range 

of parameters is independent of the specific choice of parameters. For example, it can be 

seen that the minima or maxima of the variables typically occur in the following order (see 

figure 2): 

 

 Minima Maxima 

1 Profit Price 

2 Price Profit 

3 Investment Employment 

4 Employment Investment 

5 BIP BIP 

6 Capital Money stock of the company 

7 Money stock of the company Storage goods 

8 Storage goods Capital 

9 Consumption Consumption 

10 Wages Wages 

11 Money stock of the household Money stock of the household 
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Existing business cycle theories each assume certain cause-and-effect relationships between 

different variables. In contrast, in GCD models, business cycle fluctuations can only be 

explained by assumptions 

- on the behaviour or utility functions of agents 

- and about the balance of power between the agents.  

In this context, the following remark seems important: In economics, there is usually a 

very complex interplay of the various variables. This complex interaction can be modeled 

well by systems of differential equations. However, the complex behaviour of differential 

equation systems cannot usually be described by simple cause-effect relationships. Simple 

cause-effect relationships are therefore generally not suitable for correctly reflecting 

economic interactions. 

 

Figure 1: model A1  

https://www.dropbox.com/s/4yeu7j077yiis65/Modell%20A1%20Version%2012.ndsol

ve.nb?dl=0 

 

Figure 2: model A1, business cycle analysis 

https://www.dropbox.com/s/evx09cjv18d2k7a/Modell%20A1%20Version%207%2C

%20Konjunkturanalyse%20V6.ndsolve.nb?dl=0 

 

 

 

 

 

Figure 1: model A1 

 

https://www.dropbox.com/s/4yeu7j077yiis65/Modell%20A1%20Version%2012.ndsolve.nb?dl=0
https://www.dropbox.com/s/4yeu7j077yiis65/Modell%20A1%20Version%2012.ndsolve.nb?dl=0
https://www.dropbox.com/s/evx09cjv18d2k7a/Modell%20A1%20Version%207%2C%20Konjunkturanalyse%20V6.ndsolve.nb?dl=0
https://www.dropbox.com/s/evx09cjv18d2k7a/Modell%20A1%20Version%207%2C%20Konjunkturanalyse%20V6.ndsolve.nb?dl=0
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Figure 2: model A1, business cycle analysis 
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12. Model A2: 1 household, 1 firm, 1 
good, with accounts/debts and interest 

Formelabschnitt (nächster) 

12.1. Overview of the setup 

 

 

 

Assuming vertical constraints, the differential-algebraic equation system of model A2 is 

calculated from this with the help of the GCDconfigurator. 

 

Model A2: 1 household, 1 firm, 1 good, with
accounts/debts and interest

  

            

 

 

 

 

 

 

            

 

Model A2: basic equations
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12.2.  ystematic derivation of constraints from the model graph 

Using the A2 model, we show how to systematically derive the relevant constraints. 

Arrows represent flows. In model A2 there are 3 different flows. 

• The flow of the good (violet) 

• The flw of money (red) 

• The flow of debt notes when money is given as credit (light brown) 

• The flow of labour (green) 

Each flow leads to a decrease in the corresponding balance sheet item (stock) in the balance 

sheet of the agent from which the flow originates and to an increase in the corresponding 

balance sheet item (stock) in the balance sheet of the agent to which the flow goes. 

In addition, there are source terms, such as production by the company, or sinks, such as 

actual consumption of consumer goods by the household. This sink for consumer goods at 

home is not shown in the graph for the sake of clarity and because it leads to a trivial 

constraint under the assumption that everything is consumed immediately. 

Thus, for each agent and each flow there is a constraint in the form  

 

inflow - outflow  - stock change = 0         <12.1> 

 

 

Model A2: diff.-alg. equationsystemfor verticalconstraints
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e.g., this results in a constraint 2Z for the flow of money at the firm 

 
0 '

2
FZ Ap Hw L MrC N− + −= = −

 

When considering the direction of flow and the sign of variables on the liabilities side of 

the balance sheet (passive), one must respect the convention we use, namely that entries 

on the liabilities side of the balance sheet have a negative sign. This results, for example, in 

a constraint on the flow of debt notes in the company 

0 'F FZ N D= = − −  

For interpretation: if the bank gives the company a loan of 10N =  €, this means that 

• 10N = +  money (red arrow) flows from the bank to the firm 

•  10N N= = + debt notes flow from the firm to the bank (light brown arrow) if a debt 

note is issued for every euro 

• that the debt increases and thus, due to the sign convention, the debt account on the 

liabilities side is reduced by 10, i.e.  ' 10FD = −  

This results in 

• debt note inflow to the firm = 0 

• outflow of debt notes to the bank  10N =   

• outflow of debt notes to the balance sheet  ' 10FD = −  

0 ' 0 10 ( 10) 0

 

  

       

      

F

promissory note inflow

outflow of promissory notes to the bank

outflow of pr

Z

omissory notes to the balance shee

F

N D

t

= −
− −
− =

= − − = − − − =

 

If  C  denotes the inflow of consumption goods to the household and C  denotes actual 

consumption and hence the destruction of consumption goods, then, assuming immediate 

consumption, the following applies: 

 C C= . 

Under the given assumption this is nothing else but the algebraically given behavioural 

equation for actual consumption C . The constraint for the flow of consumption to the 

household 0 C C= −  is therefore equivalent to the algebraic definition equation of C . Since 

C   does not occur in the utility functions, this constraint is superfluous. 

Analogously, the following constraints therefore arise: 
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1

2

3

0 '

0 ( ) '

0 ( , ) ' '

1

0 '

0 '

H H H

F H F

H H H

F H F

Z w L pC rA N M

for money of household H

Z pC w L r D N M

for money of firm F

Z Y L K C S DP K

for good of firm F

Z N A

for receivables / liabilities of household H

Z N D

= = − + − −

= = − − − + −

= = − − − −

= = −

= = − −
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12.3.  ystematic derivation of constraints from the transaction 
matrices 

The constraints can also be derived from the transaction matrices used to describe SFC 

models. It should be noted that this always results in linearly dependent constraints that can 

be omitted. 

The relevant constraints are marked in red. 

 

Transaction matrices of model A2 

money constraint→ Z1 Z2 Zmoney balance 

 agent→ H F  

 stock→ MH MF  

flow↓ 

wage +L̃  +w. L −L̃  −w. L 0 

consumption −C̃  −p. C +C̃  +p. C 0 

credit −Ñ  − . N +Ñ  + . N 0 

interest 
+Z̃ +r. AH 

−Z̃  −r. AH 0 

sum ∑  MH′ ∑  MF′ ∑∑ MH′ + MF′ 
  

 Z1  0  wL − pC − N + rAH − MH′   

 Z2  0  −wL + pC + N − rAH − MF′ 
 Zmoney balance  0  MH′ + MF′ linearly dependent on Z1 and Z2 

 

 

debt 

note 
constraint→ Z3 Z4 Zdebt note balance 

 agent→ H F  

 stock→ AH DF  

flow↓ credit +𝑁 −𝑁 0 
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sum 
∑ AH′ ∑ DF′ ∑∑  0 

 Z3  0  N − AH′ 
 Z4  0  N − DF′

 Zdebt note balance  0  AH′ + DF′ linearly dependent on Z3 and Z4 

In the case of the good, we consider the following stocks: 

K  "Capital” 

S  "Storage goods"    

CS  "Consumption stock" (all goods consumed by the household) 

 Z5  0  C −C − CS‘
 trivial

  Z6  0  Y −S′ −DP −C − K’ 
  Z7  0  S′ −S′   trivial 

Zgood balance  0  −CS‘ − K‘ − S‘ + Y − DP − C       linearly dependent 

No non-trivial constraint arises for the labour L. Therefore, only the constraints coloured 

red remain. These are the same as those that resulted from the model graph in chapter 12.2. 

  

good constraint→ Z5 Z6 𝑍7 Zgood balance 

 agent→ H F F  

 stock→ CS K S  

flow↓ 

production  +Y  +Y 

storage goods  −S′ +S′ 0 

depreciation  −DP  −DP 

Consumption 

goods 
+C −C  0 

use of  C −C   −C 

sum 

∑− CS‘ 0 

∑− K‘ 0 

∑− S‘ 0 

∑∑ − CS′− K′ − S′  0 
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12.4. Calculation results of model A2 

https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsol

ve.nb?dl=0 

 

 

 

https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsolve.nb?dl=0
https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsolve.nb?dl=0
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13. Model B1, (1 household, 1 firm, 1 
good, 1 ban ing system), Interest rate 

policy versus monetary policy 

Formelabschnitt (nächster) 

13.1. Overview of the setup 

The target of models B1 and B2 is to model the money creation process by the central bank 

in a simplified way.  

In model B1, the central bank is seen as an endogenous money creator and the bank is seen 

as an endogenous credit creator. The central bank's target is to keep inflation 
p

p


 at the target 

inflation ˆ 0.02p =  i.e. 2% by means of  interest rate policy ( 1 = ) and monetary-supply 

policy( 0 = ). 

In this model B1, the central bank's interest rate policy is still modeled in a very simplified 

way. We assume that the policy rate is constant 0 (banks do not pay interest to the central 

bank) and that the central bank can, however, influence the interest rate directly. That the 

policy rate is constant 0 is possible and does not cause the bank to borrow arbitrarily from 

the central bank, since the bank is assumed to have a constant 0 utility function. This means 

that the bank has no particular interest in lending to firms or receiving savings deposits from 

households. Thus, the bank lends endogenously and accepts savings deposits endogenously. 

In model B2, we will model the behaviour of the central bank according to the Taylor rule. 

All these simplifying restrictions regarding money creation, we will still keep in models C1, 

C2. This is because in models C1, C2, we are concerned with modeling the government.   

It is only in the much more comprehensive model D2 that we will largely abandon the 

restrictions on the modeling of money creation and the modeling of the government.  
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Pay attention when establishing the constraints: 

(1) Claims A have a positive sign, liabilities D have a negative sign 

(2) Banks' equity capital is 0. They do not make profits. 

 

Model B1: 1 household, 1 firm, 1 good, 1 ban . 1 centralban 

  

            

 

   

 
 

 

            

   

                         

   

              

  

Model B1 : basic equations
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Model B1 : diff. -alg. equation system
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13.2. Calculation results of model B1 

https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%20Version%207.ndso

lve.nb?dl=0 

 

 

 

  

https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%20Version%207.ndsolve.nb?dl=0
https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%20Version%207.ndsolve.nb?dl=0
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Comparison of  

pure money supply policy 0 =   
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mixed money supply-interest rate policy 0.5 =   
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pure interest rate policy 1 =   
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14. Model B2, (1 household, 1 firm, 1 
good, 1 ban , 1 central ban ) Taylor 

rule 
Formelabschnitt (nächster) 

14.1.  et up 

Model B2 differs from model B1 only in the assumption that the central bank acts according 

to the Taylor rule. 

In terms of the GCD methodology, the Taylor rule sets the value of the policy rate as an 

algebraically defined variable (see chapter 8.4.2).  

If p̂  denotes the target inflation rate, this results in  

ˆ' ' ˆ ˆ1 2

Y' p p Y' Y'
r = + + ( - p)+ ( - )

Y p p Y Y
 

 

(For simplicity we write r  instead of leitr  ). 

If you insert and simplify you get 

' ' ˆ (1 ) (1 )1 2

p p K' L'
r + ( - p)

p p K L
   = + − + +       <14.1> 

If the central bank acts only according to the Taylor rule, it does not act in the sense of 

optimizing a utility function, but according to empirical values that have proven their worth 

in the past. In this case, therefore, the utility function of the central bank can be set equal to 

0. 
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Model B2 : basic equations for standard Taylor rule

  

Model B2 : diff.-alg. equation system standard Taylor rule
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93 

 

 

14.2. Calculation results of model B2 

 

https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.nds

olve.nb?dl=0 

 

 

 

https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.ndsolve.nb?dl=0
https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.ndsolve.nb?dl=0
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15. Model C1, (1 household, 1 firm, 1 
good, 1 ban ing system, 1 government) 

interest rate policy versus money 
supply policy 

Formelabschnitt (nächster) 

15.1.  et up 

The target of model C1 is to extend model B1 by the government G as an agent in a simple 

form. 

The government has a utility function analogous to that of the household. It collects an 

income tax from the household, which either flows to its money stock GM  or is used for 

government consumption 
GC .  

 

 

Model C1: 1 household, 1 firm, 1 good, 1ban ingsystem, 1 Government, PART 1
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Model C1: 1 household, 1 firm, 1 good, 1ban ingsystem, 1 Government, PART 2

  

Model C1 : basic equations
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Model C1: diff. -alg. equation system
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15.2. Calculation results of model C1 

https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.n

dsolve.nb?dl=0 

 

 

 

 

  

https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.ndsolve.nb?dl=0
https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.ndsolve.nb?dl=0
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16. Model C2, (1 household, 1 firm, 1 
good, 1 ban ing system, 1 

government)), standard Taylor rule 

Formelabschnitt (nächster) 

16.1.  et up 

Model C2 corresponds to the extension of model B2 by the agent government in the sense 

of model C1 and corresponds to model C1 with the change that the central bank acts in the 

sense of the standard Taylor rule. 

 

 

 

Model C2: 1 household, 1 firm, 1 good, 1ban ingsystem, 1 Government, PART 1

  

            

 

   

 
 

 

            

   

                         

   

              

  

   

 

 

            

Model C2: 1 household, 1 firm, 1 good, 1ban ingsystem, 1 Government, PART 2
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Model C2 : basic equations

  

Model C2: diff.-alg. equation system
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16.2. Calculation results of model C2 

https://www.dropbox.com/s/tuytrcb4rh1r0vh/Modell%20C2%20Version%201%20

%28Taylor-Regel%29.ndsolve.nb?dl=0 

 

 

https://www.dropbox.com/s/tuytrcb4rh1r0vh/Modell%20C2%20Version%201%20%28Taylor-Regel%29.ndsolve.nb?dl=0
https://www.dropbox.com/s/tuytrcb4rh1r0vh/Modell%20C2%20Version%201%20%28Taylor-Regel%29.ndsolve.nb?dl=0
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17. Model D2, comprehensive model 
Formelabschnitt (nächster) 

17.1.  etup 

We extend the C2 model in the following aspects: 

- The interest rate is formulated in more detail: in central bank policy rate, premium for 

lending rates, premium for savings rates  , ,leit D Ar r r   

- The central bank distributes the profit to the government, the bank distributes the profit to 

the household, the firm distributes a part of the profit to the household 

- Taxes are composed of income and property taxes for household and firm. 

- The government aims to achieve a debt level of 60% of GDP in line with the Maastricht 

criterion.  

- The central bank acts according to the modified Taylor rule 

- The target level of the firm's investment and the target level of the household's money 

stock are interest rate dependent. 

- The targeted level of the government's money stock is not interest rate dependent  

 

 

Model D2, PART 1
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Model D2, PART 2

  

Model D2 : basic equations
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17.2. Calculation results of model D2 

https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2%20Version%2011.ndsol

ve.nb?dl=0 

 

 

  

  

https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2%20Version%2011.ndsolve.nb?dl=0
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18. Different economic theories differ 
only by different assumptions about 

the power of agents 
Formelabschnitt (nächster) 

18.1. Basic idea 

The basic idea of GCD models can also be formulated in the following way: With GCD 

models, the supposedly insurmountable opposition of different economic models can be 

eliminated in the sense that they can be understood as versions of a single model that differ 

from each other only by different one-sided power relations or adjustment speeds. On the 

other hand, GCD models offer the possibility of better representing reality, because mixed 

power relations usually correspond better to reality than one-sided power relations.  

This is illustrated by the following 2 examples. 

18.2.  avings → Investment (Neoclassics) or Investment → 
 avings ( eynes) 

18.2.1. Problem description 

The two economic schools of neoclassical economics and Keynesianism differ 

diametrically in their assumptions about the variables "saving" and "investing". 

In the Keynesian sense, investing is an exogenous variable, saving is an endogenous 

variable and the cause-effect relationship applies 

Investing Saving  

In the neoclassical sense, the opposite is true: investing is an endogenous variable, saving 

is an exogenous variable and the cause-effect relationship applies.  

Saving Investing  

From the perspective of the GCD models, these seemingly insurmountable opposites can be 

overcome and resolved in the following sense. The statement that saving and investing must 

always be the same corresponds to an accounting identity that results from the definition of 

saving and investing. The two economic schools differ only in the different assumptions 

about the power of savers and investors.  

The Keynesian cause-effect relationship results from the assumption that the power of 

investors is   and the power of savers is 0. The neoclassical cause-effect  relationship 

results from the opposite assumption that the power of investors is 0 and the power of savers 

is  . 
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In reality, however, these one-sided power relations do not usually occur, but rather mixed 

power relations. Therefore, reality can be better described with GCD models than with 

Keynesian or neoclassical models. 

 

 

The model equations for the Keynesian model are 

 

ˆI I

S I

=
=   

The model equations for the neoclassical model are 

  

ˆS S

I S

=
=  

Furthermore, with the assumed master utility function 

2 21 1 ˆˆ( ) ( )
2 2

MU I I S S= − + −
 

the general equilibrium model can be formulated as maximising MU under the constraint 

( , ) 0Z I S I S= − =  in the following way: 

ˆ0 ( )

ˆ0 ( )

0

MU Z
I I

I I
MU Z

S S
S S

I S

 

 

 
= + = − +

 
 

= + = − −
 

= −  

All these 3 models can be understood as special cases of the following GCD model: 
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2

2

1 ˆ ˆ( ) , ,
2

1 ˆ ˆ( ) , ,
2

0

ˆ( ) ' ( )

ˆ( ) ' ( )

( ) 0

F

H

F
I

H
S

U I I F firm I investment I targeted investment

U S S H household S savings S targeted savings

I S

a I I I

b S S S

c I S

utility functions

constraints

basic GCD - equations

 

 

= −

= −

= −

= − +

= − −

= −

 

 

From this GCD model we get the Keynesian model with the assumptions 

0 ( 0 )

F
I

H H
S Soder



 

= 

=     

because it follows from equation (a) 

 

'ˆ ˆ' ( ) ( )

ˆ0 ( ) 0

ˆ

F
I F F

I I

F
I

I
I

I

I I I I

w g

I

e en I I


 

 



= − +  = − +

 = − +

 =

 =  

and from equation (c) 

S I=  

Equation (b) is not needed. It would also be possible 0 H
S   . 

Similarly, the neoclassical model results with the assumptions  

  

0 ( 0 )F F
I I

H
S

oder 



=   

=   

and the general equilibrium model with the assumptions 

 

0

0

1

1

F
I

H
S

I Annahme des stationären Gleichgewichts

S Annahme des stationären Gleichgewichts





 =
 =

=

=
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18.2.2. Formally analogous problems 

Completely analogous to the accounting identity I S= , in a closed economy the accounting 

identity applies that the sum of the accounts A (receivables) is always equal to the sum of 

the debts D (liabilities), i.e. A D=  or with the convention used in this paper for the negative 

sign of liabilities A D= − . The development of these quantities over time depends on the 

one hand on the interests of the sum of creditors and the sum of debtors, and on the other 

hand on their power to enforce these interests2 (Glötzl 1999; 2015).  

The two models (investing/saving and liabilities/receivables) are not only formally 

mathematically completely equivalent to each other, but they are also formally completely 

equivalent to the movement on an inclined straight line inclined at 45 degrees, which is 

described by the constraint  1 2x x= (see chapter 3.3 and (Glötzl 2015)). 

 

2 (Glötzl 1999; 2009; 2023b) describes the "fundamental paradox of the monetary economy". It states that in an economy 

where credit is measured in monetary units, the power of the sum of creditors to increase their acounts is always greater 

than the power of the sum of debtors to reduce their debts. In other words, it describes the "powerlessness" of debtors 

relative to the "power of creditors””. These power relations are ultimately the cause of debt traps and the constant growth 
of accounts and debts. 

                  ฀                

GCD   mixed power  eynesian,Neoclassic   one sided power
Constraint GE   stationary
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18.2.3. Calculations  
The GCD equation system is given by: 

 

We assume that investors want to invest 4 units and savers want to save 2 units, i.e. 

4

2

idach

sdach

=
=  

At the time 0t =  neither investing nor saving occurs, i.e. 

[0] [0] 0inv spar= =  

The following numerical calculations show the different behaviour for the different 

assumptions about the power factors.  

 

https://www.dropbox.com/s/mq6s03sbunlmzob/Keynes%20Version%206.ndsolve.nb

?dl=0 

 

( 10), 0Finv approximated by Finv HsparKeynes   =  = =   

https://www.dropbox.com/s/mq6s03sbunlmzob/Keynes%20Version%206.ndsolve.nb?dl=0
https://www.dropbox.com/s/mq6s03sbunlmzob/Keynes%20Version%206.ndsolve.nb?dl=0
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Investing (= saving) converge against the firm's targeted investments. 

 

3 3Fie nvqual po Hspawe rr  = =  

 

 

Investing(=saving) converges to a mixture of the investment targeted by the firm and the 

saving targeted by the household. The speed of convergence, depends on the level of the 

power factors, because the power factors can always be interpreted as speed-adjustment 

factors (see also chapter 7.7). 

 

0

( 10)

N

p

eoclas Finv Hspar

a prox b

sics

imated y Hspar

 


= = 
=
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Investing (=saving) converge against the saving targeted by the household. 

 

18.2.4. On the relationship of "drop closure", "Lagrange closure", 
GCD and general equilibrium GE 

We explain the relationship first with the simple example above and then in the following 

chapter 18.3 with the models of A. Sen (A. K. Sen 1963). More detailed information can be 

found in (Glötzl 2015). 

Based on the utility functions for F and H 

2

2

1 ˆ( ) , ,
2

ˆ

1 ˆ( ) , ,
2

ˆ

F

H

U I I F Firma I Investieren

I angestrebtes Investieren

U S S H Haushalt S Sparen

S angestrebtes Sparen

= − −

= − −

 

the ex-ante behavioural equations (i.e., the behavioural equations without considering the 

constraint 0 I S= − ) are as follows 

ˆ( ) ' ( ) ^ 2

ˆ( ) ' ( ) ^ 2

F
I

H
S

a I I I

b S S S





= −

= −
          <18.1> 

This system of equations has 2 variables ( ,S I ) and 2 equations. It is therefore solvable 

with appropriate initial conditions. 

However, these ex-ante solutions do not describe the reality, because they usually do not 

fulfill the constraint  0 I S= − which has to be fulfilled. 

If the constraint is added to the ex-ante system of equations, the following is obtained 

1 ˆ( ) ' ( )
2

1 ˆ( ) ' ( )
2

( )

F
I

H
S

a I I I

b S S S

c I S





= −

= −

=

         <18.2> 

This system of equations consists of 3 equations for 2 variables and is therefore 

usually not solvable. A method with which this system of equations is changed in such 

a way that it becomes solvable is called a closure method. 

18.2.4.1. Drop closure 

In the simplest case, one omits so many equations until the system of equations becomes 

solvable. This basic procedure is used by A. Sen in (A. K. Sen 1963)). 

If in the case of equation system <18.2> equation (a) is omitted, the result is 
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1 ˆ( ) ' ( )
2

( )

H
Sb S S S

c I S

= −

=
         <18.3> 

which corresponds exactly to the neoclassical approach and, in equilibrium         ( ' 0S = ) 

ˆ( )

( )

b S S

c I S

=
=  

results. 

If we omit (b), we get 

1 ˆ( ) ' ( )
2

( )

F
Ia I I I

c I S

= −

=
         <18.4> 

which is exactly in line with the Keynesian approach and in equilibrium ( ' 0I = ) 

ˆ( )

( )

a I I

c I S

=
=

 

results. 

18.2.4.2. Lagrange Closure, GCD, general equilibrium 

In the case of Lagrange Closure, the opposite approach is taken: equations are not omitted, 

but new additional variables are introduced until the system of equations becomes solvable. 

In the concrete case, one adds the Lagrange multiplier   as a new additional variable to the 

variables and the constraint forces to the behaviour equations in the sense of the GCD 

methodology. This results in the GCD equation system, which is usually solvable. 

1 1ˆ ˆ( ) ' ( ) ( )
2 2

1 1ˆ ˆ( ) ' ( ) ( )
2 2

( ) 0

F F
I I

H H
S S

Z
a I I I I I

I
Z

b S S S S S
S

c Z I S

   

   


= − + = − +




= − + = − −


= = −

     <18.5> 

We show that in the Keynesian case, because of 0H
S =  this system of equations <18.5> 

transforms to the system of equations 

1 ˆ( ) ' ( )
2

( ) 0

F
Ia I I I

c Z I S

 = − +

= = −
         <18.6> 

This means that 0H
S =  leads to (b) becoming linearly dependent on (a) and (c) and can 

therefore be omitted in the sense of drop closure. This is discussed in more detail in (Glötzl 

2015). 

In the case of the general equilibrium ' 0I = , because of F
I =   it follows that   
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ˆ( )

( )

a I I

c I S

=
=

 

Proof: 

Because of 0H
S =  and because of (c), it follows from <18.5> 

1 ˆ( ) ' ( )
2

( 1) '

( ) 0

( ) 0

F
Ia I I I

b S

c Z I S

d Z I S

 



== − +

== −
= = −
  = = −

 

If we apply (d) in (b1), we get 

1 ˆ( ) ' ( )
2

( 2) '

( ) 0

( ) 0

F
Ia I I I

b I

c Z I S

d Z I S

 



= − +

= −
= = −
  = = −

 

From (a) and (b2) we get 

1 1 ˆ( )
2 2

F
I I I = − −   

Inserting into (a) and (b1) results in 

1 1 ˆ( ) ' ( )
2 2

1 1 ˆ( ) ' ( )
2 2

( ) 0

( ) 0

F
I

F
I

a I I I

b S I I

c Z I S

d Z I S





= −

= −

= = −
  = = −  

Thus, equation (b) is linearly dependent on (a) and (d) and can therefore be omitted. 

In the case of the general equilibrium ( ' 0I = ), this results in the following equations 

because of F
I =    

 

ˆ( )

( )

a I I

c I S

=
=

 

by bringing F
I  to the left side at first. 

Summary: The Keynesian model results from the GCD model both by drop-closure, by 

omitting equation (b), and by setting the power factor 0H
S = . The power factor F

I  need 

only be 0F
I  , it can also be F

I =  . The magnitude of F
I  only determines the speed of 

convergence.  For the neoclassical model, everything applies correspondingly. 
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18.3. A.  en: different economic theories differ in their 
assumptions about the endogeneity or exogeneity of different 

variables. 

18.3.1. Problem description 

In 1963, Amartya Sen showed that neoclassical and Keynesian models can often be derived 

from the same system of equations and essentially differ only in which behavioural 

equations are dropped (A. K. Sen 1963). This also corresponds to a decision on the direction 

of causality within the model. 

Similarly to the previous chapter, all models examined by Sen can be understood as special 

cases of a single GCD model and dropping certain equations is equivalent to assuming 

different one-sided power relations. Again, it is true that in reality, these one-sided power 

relations do not usually occur, but rather mixed power relations. Therefore, reality can be 

better described with GCD models than with the models cited by Sen. 

The original system of equations of Sen is 

1 2

(1)

L

a

P L

P

a 1-Y(L,K)= L K we assume a Cobb Douglas

production function

Y
(2) w = w wages, L labour

L
(3) Y = P + w L P profit

(4) I = Savings share of  

employment income

Savings share of

(5) I = i i Y we assume this

standard in

S L + S P S

S profit

 −




+

vestment function

   <18.7> 

 

For clarity, we also introduce the variable S  for saving and the constraints 0 I S= −  and 

'I K= . Implicitly, Sen assumes that L   is exogenously given by ˆL L= . This yields the 

system of equations (14.8) which is equivalent to (14.7). We write it in our methodology as 

follows  
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1 2

(1)

ˆ(6)

0

(7) 0

(8) 0 '

L

a 1-a

P

Y(L,K)= L K

Y
(2) w =

L

(4) S =

(5)

a s

I = i i Y

lgebraically defined variable

behav l

L L

(

P

3)

iou s

= Y

S

r

S

L

P w L

I

I

a equation

c r

+ S

onst aints

K






+

=

− −
= −
= −

    <18.8> 

 

This system of equations consists of 8 equations for the 7 variables 

, , , , , ,Y L K w S P I   

and is therefore generally not solvable. Sen shows that by dropping different equations (drop 

closure) different solvable economic models result: 

 

( )
( )

( )
( )

 5   the neoclassical model

 2   the Kaldor model 

Neo - Keynesianisches Modell)

 4   the Johansen model

 6   the Keynesian model

 of the G

omitting results in

omitting results in

(

omitting results in

omitting results in

eneral Theory

       <18.9> 

 

We show below that the system of equations <18.8>  and the various models <18.9> arise 

from a single GCD model through a specific choice of power factors in each case. 
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The variables , ,H F HN D A  are only listed for the sake of completeness. They are omitted in 

the following (as by Sen ), because due to the assumption 1sparp = immediately 

H H
sparspar p N N= =  is valid. 

 

 

 

 

The GCD model SEN results from the following basic equations: 

 tandard model  EN

  

                                                                 

  

                               

  

 

       

    

   

                        

                          

 tandard model  EN, neoclassic,  aldor,  ohansen,  eynes, GCD
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The GCD equations are then 

 

 

 

Dividing the differential equations for , , ,w S I L  by , , ,F H F H
w S I L     in each case and setting 

F
w

H
S

F
I

H
L









= 

= 

= 

= 
 

  

GCD-Modell  EN: Grundgleichungen
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we get the 4 behavioural equations of the standard model SEN 

1 2

ˆ(6)

L P

Y
(2) w =

L

(4) S =

(5) I = i i Y

L L

S L + S P




+

=  

In addition one has the differential behavioural equations for K  and P . 

 

If one sets individual power factors equal to 0, this leads in an analogous way, as it was 

shown in chapter 18.2.4.1, to the fact that the corresponding differential equation becomes 

linearly dependent on the others and can therefore be omitted. More details can also be 

found in (Glötzl 2015). 

18.3.2. Calculation results 

https://www.dropbox.com/s/p0280ndhlb946lg/Modell%20SEN%20Version%2011.nd

solve.nb?dl=0 

In order to solve the differential-algebraic GCD equation system with NDSolve one has to 

use the method  

Method→{IndexReduction→Automatic} 

 =   is always approximated by 6 = . 

 

Neoclassical model ,, , 0I
F H
w S L

F H  ==  =  =    

 

 

Kaldor model 
0, , ,H F H

S I
F
w L   =  = = = 

 

 

 

 

 

https://www.dropbox.com/s/p0280ndhlb946lg/Modell%20SEN%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/p0280ndhlb946lg/Modell%20SEN%20Version%2011.ndsolve.nb?dl=0
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Johansen model ,, ,0 I
H

w S
F F H

L   = ==  =   

 

 

 

Keynes model 0, , ,F H F
w S

H
LI   =  =  ==   

 

 

  GCD-Modell with mixed parameters 1, 1, 1, 1F H F H
w S I L   = = = =  

 

18.3.3. On the relationship between GCD models, General 
Constrained Equilibrium models (GCE model) and DSGE models. 
A general equilibrium model can only start from 1 master utility function to be maximized 

(note: multiple utility functions cannot be maximized at the same time, they have to be 

combined to 1 master utility function, e.g. by weighting).  A possible master utility function 

for a general constrained equilibrium (GCE) model would be: 

( ) 2 2

1 2

2
2

ˆ

(
1 1 1

2
)

2
( )

1ˆ ( )
2 2

H F

L PL L S L S P S

U U U

Y
i i Y I w

L

= +


= − +− − − − −


− −+
 

With the algebraically defined variable 

 
1( , )Y L K L K  −=  

this results in 
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( )2

1 2 1 1 2

1 2

2ˆ 1 1ˆ ( )
2 2

1

( , , , , , )

( )
2 2

(
1

)

L PU L P S K I w

i L

L S

i L

L

K

P S

w

S

I

L

K    − − −

=

−

−

−

− −

−

−

+ −

+ −
 

The constraints remain the same: 

1

2

3

0

0

0 '

Z = Y P w L

Z I S

Z I K

= − −

= = −

= = −
 

A maximum under constraints can only exist if the "first order" conditions are fulfilled, i.e. 

 

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3 1 2 3

ˆ
0

ˆ
0

ˆ
0

H F

H F

H F

U Z Z Z U U Z Z Z

L L L L L L L L L

U Z Z Z U U Z Z Z

P P P P P P P P P

U Z Z Z U U Z Z Z

S S S S S S S S

     

     

     

        
= + + + = + + + +
        
        

= + + + = + + + +
        
        

= + + + = + + + +
        

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2
1 2 3 1 2 3

ˆ
0

ˆ
0

ˆ
0

H F

H F

H F

S

U Z Z Z U U Z Z Z

K K K K K K K

U Z Z Z U U Z Z Z

I I I I I I I I I

U Z Z Z U U Z Z

w w w w w w

K

w

K

w

     

     

     

        
= + + + = + + + +
      
        

= + + + = + + + +
        
        

= + + + = + + + +
    












3

1

2

3

0

0

0 '

Z

w
Z = Y P w L

Z I S

Z I K


= − −

= = −

= = −    <18.10> 

 

This system of equations <18.10> is obviously identical to the GCD system of equations in 

steady state, i.e. for 

0L P S K I w     = = = = = =  

Note: This does not apply in general, but only if the utility functions can be aggregated to 

a master utility function (see chapter 4.3, chapter 7.6 and chapter 7.8.2).  

In contrast to GCE models, in DSGE models in particular (apart from the stochastic terms) 

not a master utility function is maximized under constraints, but rather the master utility 

function discounted by the discount rate   is maximized 

0

ˆ ˆ( ) ( )

t
tU t e U t dt max under constraints


−= →  

For holonomic constraints this problem can be solved by the variational problem with the 

Lagrange function 
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0

ˆ ˆ( ) ( ) max

t
jZ t

j

i

Z
U t e U t dt

x


 −  
= + →  


 

This leads to the corresponding Euler equations that describe the dynamics of the DSGE 

model. 

Note: Without going into more detail here, we would like to point out the following: If the 

constraints are neither holonomic nor integrable nor linear, the two problems 

0

0

ˆ ˆ(1) ( ) ( ) max under constraints

ˆ ˆ(2) ( ) ( ) max

t
t

t
jZ t

j

i

U t e U t dt

Z
U t e U t dt

x





 

−

−

= →

 
= + →  




 

are different and lead to different Euler equations and thus different dynamics. The 

dynamics to (1) is called "vakonomic mechanics". For more details see (Glötzl 2018). 
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19. Obesity or 
consumption/environment model 

Formelabschnitt (nächster) 

In section 7.9.2 we referred to the special case where a utility function depends on variables 

 1 2, , ...., Ix x x x=  as well as on their antiderivatives 1 2( , ,..., )IX X X X=  and/or the 

derivatives 1 2( , ,..., )Ix x x x   =   of these variables. In these cases, both the antiderivatives 

1 2( , ,..., )IX X X X=  and the derivatives 1 2( , ,..., )Ix x x x   =  are to be regarded as additional 

variables of their own and appropriate constraints are to be added describing the relations 

between antiderivatives, functions and derivatives of the function. 

We will describe this situation using a simple example with only one variable x , where the 

utility function depends on a flow variable x  as well as on some stock variable X .  

A good illustrative example is that we all like to eat but do not want to be fat. Here, x  

describes the flow variable eat and X  the stock variable, which describes the body weight. 

 

2 2 2ˆ ˆˆ( , ) ( ) ( ) ( )

0 '

U x X x x X X oder U x X X

X x X

utility function

constraint





= − − − − = − −

= − +

  

 

The utility function describes the decreasing marginal benefit of eating and the increasing 

marginal cost of body weight. The constraint describes that eating increases weight and 

decreases it at the rate  due to natural weight loss. If the parameter 0 = , then the 

constraint just describes the direct stock-flow relationship 'X x=  between  X  and x . 

 This results in the following GCD equation system 
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https://www.dropbox.com/s/7cj6lflrc9qybgg/Modell%20Fresssack%20Version%202.

ndsolve.nb?dl=0 

 

The result of the calculation is, for example: 

(In the plot stands xx for the stock variable X ) 

 

 

We give this simple example mainly because this contradictory behaviour of flow variable 

and stock variable is also relevant in many environmental problems. For example, the 

following other interpretations are also possible: 

 

 Flow variable  x  Stock variable X  

Land consumption Building Built-up area 

Waste Production Total waste 

Plastic packaging Consumption 
Plastic waste in the 

sea 

https://www.dropbox.com/s/7cj6lflrc9qybgg/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
https://www.dropbox.com/s/7cj6lflrc9qybgg/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
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Carbon dioxide Fossil  

fuel combustion 

Carbon dioxide 

concentration in the 

air 

 

Furthermore, this simple model serves as an example for a model in which the stock and 

flow variables occur simultaneously in the utility function. As already explained in chapter 

7.9, in this case a separate variable must be introduced for the stock variable and the flow 

variable. The relationship between the two is described by a constraint X x X = −  . If the 

parameter 0 = , then the constraint just describes the direct stock-flow relationship 

'X x=  between  X  and x . 
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D.  upply, demand and price shoc  
models 
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20. Modeling of supply, demand and 
price shoc s 

Formelabschnitt (nächster) 

20.1. 2 different types of shoc s 

Basically, a shock can lead to 2 fundamentally different types of shocks: 

(1) Variable shock 

All model parameters remain unchanged, but at the time of the shock st  one or more model 

variables { , , , , , , , }H FV C L K M M S p w  abruptly change by the factor Vf  from V  to Vf V   

( ) ( )s V sV t f V t→
 

Interpretation: The basic behaviour of all agents remains the same, but an external event 

suddenly changes the value of a variable (e.g. the price of energy). The system restarts, as 

it were, with this new value as the starting value. 

(2) Model shock 

All variables remain unchanged, but one or more model parameters or power factors 

{ , , , , , , , , , , }H

H H F F H F F F
C L L K S pM w            are no longer constant but change over time, 

i.e. ( )t → . For the sake of simplicity, we describe the temporal behaviour of such a 

parameter ( )t  by multiplication with a sawtooth curve: 

  ( ) ( )t t  =  

where the sawtooth curve is defined by 

 

1

( )
1

1

s

s

s

s s

j
s i

t time of the shock

f shock factor

d duration of  the linearly decreasing shock effects

for t t

f for t t
t

linear from f to for t t t d

for t d t




 ==    +
 +   

20.2. Examples of demand shoc s 

For example, a demand shock N can have three different causes: 
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(1) Variable shock: A demand shock can be triggered by the fact that at the time of the 

demand shock  Nt  consumption C  is reduced by a factor N
Cf  from C  to N

Cf C : 

 
N

CC f C→
 

At the same time, the constraint 3Z  must always be fulfilled, even during the shock. 

This is always guaranteed by the numerical solution method for differential-algebraic 

equations of Mathematica NDSolve. In addition, of course, one can make any other 

assumptions, such as that production Y  and investment K   remain the same and that 

everything that is consumed less (1 ) ( )C
N Nf C t−  is stored, i.e. 

  
( ) ( ) (1 ) ( )N

A A C AS t S t g C t → + −
 

 The dynamic system then continues to develop with these new initial  values. 

 

(2) Model shock: The model parameter   describes the consumption preference of the 

household. A demand shock can be triggered by the changes of   over time 

according to a sawtooth curve: 

 

  ( ) ( )t t   → =  

  

(3) Model shock: The power factor H
C  describes the power of the household to 

actually enforce its consumption interests (e.g. due to quarantine measures). A 

demand shock can be triggered by a change of H
C  in time according to a sawtooth 

curve: 

  
( ) ( )H H H

C C Ct t   → =
 

20.3. Examples of supply shoc s 

For example, a supply shock A at the time can have the following causes: 

(1) Model and variable shock: A supply shock could be triggered by the fact that the 

production function 

  
1( , )Y L K L K  −=  

changes over time according to a sawtooth curve with a shock factor 
Af . This 

initially corresponds to a model shock, because this is described by the fact that the 

parameter   changes according to a sawtooth curve with a shock factor 
Af : 

  ( ) ( )t t   → =  
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At the same time, production Y suddenly changes by the shock factor 
Af  at the time 

of the shock At : 

  
( ) ( )A

A AY t f Y t→
  

Because of the constraint    

  3 0 ( , ) ' 'Z Y L K C K S= = − − −
 

at the time At , therefore, , ,C K S   must also change so that the constraint is fulfilled. 

This leads to sudden changes in at least one of the variables or in all of them. This 

is always guaranteed by NDSolve. For example, one can also make additional more 

precise assumptions about the behaviour of the other variables, e.g. one could 

assume that at the time At  also , ,C K S   

change by the shock factor 
Af , i.e. 

( ) ( )

( ) ( )

( ) ( )

A
A A

A
A A

A
A A

C t f C t

K t f K t

S t f S t







→

 →

 →

  

and that the dynamic system can then adapt to these new starting conditions and the 

time-varying parameter  

  
( ) ( )At t  =

  

(2) Model shock: The model parameter  describes the labour intensity of production. 

A supply shock can be triggered by the changes of   over time according to a 

sawtooth curve 

  ( ) ( )t t   → =  

(3) Model shock: The power factor F
K  describes the power of the firm to actually 

enforce its investment interests (e.g. because of administrative regulations). A 

supply shock can be triggered by the fact that the power factor F
K  changes over 

time according to a sawtooth curve: 

  
( ) ( )F F F

K K Kt t   → =
  

20.4. Price shoc  

For example, a price shock P can be modeled by changing the price p  at the time Pt by the 

factor 
P

pf  

 
( ) ( )P

P p Pp t f p t→
 

This corresponds to a variable shock. 
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20.5. Policy shoc s 

In addition, a wide variety of fiscal and monetary policy measures that apply from certain 

time points can of course also be interpreted as economic policy shocks and modelled in the 

same way, e.g: 

• government measures: 

o Tax reform 

o Increase or decrease in public debt 

o etc. 

• Changes in central bank policy: 

o From money supply control to interest rate control 

o Change in the inflation target 

o Purchase programmes  

o etc. 
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21. Topics to be discussed 

Formelabschnitt (nächster) 

In the economy, a shock can occur for a number of reasons, e.g. 

• sudden changes in raw material prices 

• sudden changes in consumer behaviour due to quarantine regulations 

• sudden production restrictions due to a disruption in the supply chain 

• etc. 

 

From an economic point of view, there are 2 fundamental topics related to shocks: 

(1) Forecasting: How will the economic variables change? 

(2) Evaluating countermeasures: What measures can be taken to overcome the shock as 

quickly as possible or with as little effort as possible? 

Possible measures are, for example: 

• Various forms of financial assistance from the government to firms 

• Various forms of financial benefits to consumers 

• Different ways of financing additional government expenditure  

• short-time working models 

• Central bank monetary policy measures 

• Organisational measures, e.g. relieving companies of administrative regulations, 

extending opening hours in the retail sector, etc. Such organisational measures are 

expressed in the models by changes in power factors or other parameters. 

The target of section C. is to show that GCD models are basically suitable for answering 

these 2 questions and that this can be done very easily and conveniently with the help of the 

open-source program GCDconfigurator. The additions necessary to incorporate shocks into 

a model programmed with GCDconfigurator are very easy to program.  

In order to apply GCD models to real economic situations, they would of course have to be 

extended accordingly and adapted to the real conditions. 

Using model A1 as an example, we show how special supply, demand and price shocks can 

be modeled and what effects they have on the further course of the economy. 

Using model B1, we show how central bank measures have different effects on a price shock 

depending on whether the central bank pursues a monetary policy or an interest rate policy.   

In order to make the effects clearly visible, the model calculations are carried out for very 

strong shocks of a magnitude that is unlikely to occur in reality.  
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22. Calculations with model A1 on 
various shoc s 

Formelabschnitt (nächster) 

We model the following shocks 

 

 

https://www.dropbox.com/s/dn6uxjb0l34qzwo/Modell%20A1schock%20Version%20

24.nb?dl=0 

 

With no shocks 

https://www.dropbox.com/s/dn6uxjb0l34qzwo/Modell%20A1schock%20Version%2024.nb?dl=0
https://www.dropbox.com/s/dn6uxjb0l34qzwo/Modell%20A1schock%20Version%2024.nb?dl=0
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With multiple shocks 
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Price shock at  20, 2t p p= →   
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Demand shock due to variable shock (consumption shock)  

at 15 0.5t C C= →   
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Demand shock due to model shock (shock to power of households)  

Demand shock 0.5H H
C C →  at 10t = , thereafter, the power of the households increases 

again linearly to H
C  within the time period 5dn =   
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Supply shock due to model shock (shock to power of the firm)  

Supply shock 0.5F F
K K → at 10t = , thereafter the power of the firm increases again 

linearly to F
K  within the time period 5da =   

 

 

Supply shock due to model shock (technology jump)  

Supply shock 1.5 → at 10t =  i.e. a technological jump occurs, the resulting increase in 

productivity is maintained permanently 
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23. Calculations with model B1 for 
central ban  polices in case of inflation 

and deflation shoc   
Formelabschnitt (nächster) 

23.1. Inflation and deflation shoc  as variable shoc  for the 
price  

The simplest way to model an inflation respectively deflation shock is to model it as a 

variable shock for the price as shown in chapter 22. 

For example, we use:  

inflation shock: 1.5p p→   

deflation shock: 0.5p p→   

at time 20t =  , because by this time the system has already settled in. 

 

https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Ver

sion%203.ndsolve.nb?dl=0  

 

Certainly, one could also interpret these calculations in economic terms. But without prior 

adjustment of the models to real conditions, a real interpretation is not really serious. 

Therefore, we will not comment further on the calculated graphs. 

As emphasized several times, the target of this book is to present the methodology of the 

GCD models in principle and to give an idea of what can be done with them and in what 

form. For application to concrete economic questions, the GCD models still need to be 

adapted to real conditions. This is one of the tasks that still has to be done in the future. 

 

 

Model B1 without shock as in chapter 13. 

https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Version%203.ndsolve.nb?dl=0
https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Version%203.ndsolve.nb?dl=0
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Inflation shock 1.5p p→ , pure money supply policy of central bank 0 =   

 

 

 

Inflation shock 1.5p p→ , pure interest policy of central bank 1 =   
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deflation shock 0.5p p→ , pure money supply policy of central bank 0 =   

 

 

 

deflation shock 0.5p p→ , pure interest policy of central bank 1 =   
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23.2. Inflation and deflation shoc  as model shoc  

Another possibility to model an inflation or deflation shock would be: 

Introduce an agent A   who has some power 
A
ps  to influence the price change ps p= . 

(Consider e.g. OPEC as agent, which has the intention and the power to influence the 

trend in oil prices). If A   intends to increase the price p  at time 0t  for 1 year this leads to 

an inflation or deflation shock which can be modeled in the following way: 

 
 

2

0 0

0 0

( )

( ) 0 0, 1

( ) 1 , 1

A

A
ps

A
ps

U ps ps

t for t t and t t

t for t t t





= − −

=   +

=  +

  

We give this as an example, but do not calculate this model in detail.  

Obviously there are a lot of other possibilities to model price respectively inflation or 

deflation shocks. 
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E. GCD with intertemporal utility 
functions (IGCD models) 
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24. IGCD: Intertemporal General 
Constrained Dynamics 

Formelabschnitt (nächster) 

For sake of simplicity most is described for 2 agents ,A B   and 1 constraint Z  . 

24.1. Comparison of the basic ideas 

24.1.1. GE (for non-intertemporal utility functions) 
The economic system jumps from endowment at t = 0 along an unspecified tatonnement 

curve to equilibrium value as symbolically is shown in the following graphic. (see more in 

chapter 6). 

 

 

 

24.1.2. GCD (for non-intertemporal utility functions) 
The basic idea of the GCD method for non-intertemporal utility functions is that each 

agent tries to change the variables in the direction in which the change in its individual 

utility function is maximum at any given time. In other words, every agent tries to change 

the variables in the direction of the gradient of its individual utility function: 

1 2 1 2

1 1

1 2 1 2

2 2

( , ) ( , )

.
( , ) ( , )

A B

A B

U x x U x x

x x
resp

U x x U x x

x x

    
       
    
          

 

          

GE

                   

    

          

          

contract curve

equilibrium value

Endowment at t 0

The economic system  umps from endowment at t 0 along an unspecified tatonnement curve to equilibrium value
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His desire for change is limited by his power to enforce his interest. This is expressed by 

the power factors 
1 1 2 2

( , , , )A B A B
x x x x    . 

1

A
x  describes the power of the agent A  to influence 

the variable 1x and 
1

1 2

1

( , )A
A
x

U x x

x





 describes the effective force exerted by the agent on the 

change of the variable. This results in the effective forces  

 
1 1

2 2

1 2 1 2

1 1

1 2 1 2

2 2

( , ) ( , )

.
( , ) ( , )

A B
A B
x x

A B
A B
x x

U x x U x x

x x
resp

U x x U x x

x x

 

 

    
       
    
          

 

Since normally the desires and the power of different agents are different, the system 

develops ex-ante according to the resultant of the two effective forces: 

1 1

2 2

1 2 1 2

1 11

2 1 2 1 2

2 2

( , ) ( , )

( , ) ( , )

A B
A B
x x

A B
A B
x x

U x x U x x

x xx

x U x x U x x

x x

 

 

    
          = +                     

Considering the constraint Z  , we obtain the GCD equation system for the ex-post 

dynamics: 

1 1

2 2

1 2 1 2 1 2

1 1 11

2 1 21 2 1 2

22 2

1 2

( , ) ( , ) ( , )

( , )( , ) ( , )

0 ( , )

A B
A B
x x

A B
A B
x x

U x x U x x Z x x

x x xx

x Z x xU x x U x x

xx x

Z x x

 


 

      
               = + +                         

=

 

The dynamics of a GCD model symbolically is shown in the following graphic. 

 

GCD with          ,                  

  t 

    

   t 
          

          
 t time t 
  e erts a force in the direction 
the gradient of the uti ity of  

  e erts a force in the direction 
of the gradient of the uti ity of  .

 he tempora  change of the 
varia  e    t  is equa  to the 
resu tant of the forces of   and  



150 

 

 

24.1.3. GE for intertemporal utility functions 

GE models are characterised by the fact that an objective function is maximised at the time. 

In GE models, in contrast to GCD models, it must therefore always be assumed that the 

individual utility functions can be aggregated to a master utility function MU  , which then 

serves as an objective function, because maximisation is only ever possible for one objective 

function and not for several at the same time. In the case of non-intertemporal GE models, 

such as the Ramsey model or DSGE models, this objective function is the time integral over 

a master utility function MU  discounted at a discount rate r , which is maximised. The 

model equations therefore result from the requirement  

1 2

0

( ( ), ( ))int rU e MU x x d max   


−= →    

or, in the case of a constraint arising from the requirement 

( )1 2 1 2

0

( ( ), ( )) ( ) ( ( ), ( ))int rU e MU x x Z x x d max       


−= − →  

These variation problems lead to the Euler-Lagrange equation system for ex-ante 

respectively ex-post dynamics. This is a differential equation system which the solutions for 

the intertemporal GE model must fulfill in any case. The Euler-Lagrange equation system 

thus describes the dynamics of an intertemporal GE model in the same way as the GCD 

equation system <7.7> does for a GCD model. 

The dynamics of the Ramsey model symbolically is shown in the following graphic. 

 

24.1.4. IGCD: GCD with intertemporal utility functions 

The basic idea of the GCD method for intertemporal utility functions is that each agent 

solves its own variational problem at any given time t  . In other words, each agent looks 

for the solution that maximises its individual intertemporal utility function at the time t  : 

Ramsey

     
    

      
                

           

                             
                                  
   
              0 
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( )

1 2

0

( )

1 2

0

( ( ), ( ))

( ( ), ( ))

Aint t r t A Aint t A int t

A int t r t B B int t B int t

U e U x t x t d max

respectively

U e U x t x t d max





  

  


− +


− +

= + + →

= + + →





  

Thus  

int int

1 2

int int

1 2

( ( ), ( ))

( ( ), ( ))

A t A t

B t B t

x t x t

x t x t

 

 

+ +

+ +
  

denotes the solutions of the independent variational problems for A  and  B  at time t  , 

which depends on the future time   . 

In non-intertemporal GCD models the agents try to change the variables in the direction of 

the gradient of its utility functions,  

1 2 1 2

1 1

1 2 1 2

2 2

( , ) ( , )

.
( , ) ( , )

A B

A B

U x x U x x

x x
resp

U x x U x x

x x

    
       
    
          

 

which, taking their individual economic powers 
1 2 1 2
, , ,A A B B

x x x x     into account, leads to 

 

1 1

2 2

1 2 1 2

1 11

2 1 2 1 2

2 2

( , ) ( , )

( , ) ( , )

A B
A B
x x

A B
A B
x x

U x x U x x

x xx

x U x x U x x

x x

 

 

    
          = +                     

In intertemporal IGCD models the agents try to change the variables in the direction they 

assume to be optimal for their intertemporal utility, that is just the time derivative of their 

individual solutions 

int int

1 1

0 0

int int

2 2

0 0

( ) ( )

.
( ) ( )

A t B t

A t B t

d x t d x t

d d
resp

d x t d x t

d d

 

 

 
 

 
 

= =

= =

   + +
   
   
   + +   
   
   

 

Assuming that their power to enforce their interests in such a way is proportional to their 

relative individual powers 

1 2 1 2

1 1 2 2 1 1 2 2

, , ,
A A B B

A B A B A B A B

   
       + + + +

  

leads to the ex-ante IGCD equation (for intertemporal utility functions) 
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int int

1 1 1 1

1 1 1 10 01

int int
2 2 2 2 2

2 2 2 20 0

( ) ( )

( )

( ) ( ) ( )

A A t B B t

A B A B

A A t B B t

A B A B

d x t d x t

d dx t

x t d x t d x t

d d

 

 

   
     

   
     

= =

= =

   + +
   

+ +     
= +      + +     
   + +   

   <24.1> 

 

For sake of simplicity, we denote in the following also the solutions of the variational 

problems with constraint Z  by 

int , int ,

1 2

int , int ,

1 2

( ( ), ( ))

( ( ), ( ))

A t Z A t Z

B t Z B t Z

x t x t

x t x t

 

 

+ +

+ +
 

then the ex-post IGCD equation (for intertemporal utility functions) reads formally the 

same as <24.1> 

 

int int

1 1 1 1

1 1 1 10 01

int int
2 2 2 2 2

2 2 2 20 0

( ) ( )

( )

( ) ( ) ( )

A A t B B t

A B A B

A A t B B t

A B A B

d x t d x t

d dx t

x t d x t d x t

d d

 

 

   
     

   
     

= =

= =

   + +
   

+ +     
= +      + +     
   + +   

   <24.2> 

 

The dynamics of an IGCD model symbolically is shown in the following graphic. 

 

24.2.  Definition of IGCD in detail: 

For the sake of clarity and simplicity, we rewrite the GCD-system of equations for two 

agents ,A B  with the non-intertemporal utility functions ,A BU U , the 2 variables 
1 2,x x  and 

the constraint Z . 

IGCD

  t 

    

  t   
        ,     t   

        ,     t   

        ,     t                        

        ,     t                           t 
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1 1

12

1

1 1 1

2

2 2 2

1 1 2 20 ( , , , )

x

A B
A B
x x

A B
A B
x x

U U Z
x

x x x

U U Z
x

x x x

Z x x x x

  

  

   = + +
  

   = + +
  
 =

  

Designate maxT the end time and for each [0, ]maxt T  designate int ( , ) int ( , )
,max maxA t T B t TU U the 

intertemporal utility functions of the two agents ,A B  for optimization in the period from t  

to maxT  with discount rates ,A Br r  and describe 
1 2( ), ( )x t x t + +  the time evolution of 

1 2,x x  as a function of  [ , ]maxt T  . The intertemporal utility functions are given by 

( )

( )

int ( , )

1 2

( )

1 2 1 2

0

int ( , )

1 2

( )

1 2 1 2

0

( , )

( ( ), ( )) ( ( ), ( ))

( , )

( ( ), ( )) ( ( ), ( ))

max

max
A

max

max
B

A t T

T

r t A

B t T

T

r t B

U x x

e U x t x t Z x t x t d

U x x

e U x t x t Z x t x t d





     

     

− +

− +

=

= + + − + +

=

= + + − + +





   

At each point in time t , both agents independently try to maximise their intertemporal 

utilities under the constraint Z. The initial conditions must correspond to the values of the 

variables at the current time. The final condition is chosen by each agent individually 

according to his individual interest. 

int ( , ) int ( , )

1 1 1

int ( , ) int ( , )

2 2 2

int ( , ) int ( , )

1 1 1

int ( , ) int ( , )

2 2 2

( ) ( ) ( ) 1

( ) ( ) ( ) 2

( ) ( ) ( ) 1

( ) ( ) ( ) 2

max max

max max

max max

max max

A t T A t T
max max

A t T A t T
max max

B t T B t T
max max

B t T B t T
max

x t x t x T x AT

x t x t x T x AT

x t x t x T x BT

x t x t x T x B

= =

= =

= =

= = maxT

  

This gives for each fixed point in time t   and for each agent for the period of time from t   

until maxT  the intertemporal optimal solutions which are designated by  

int ( , ) int ( , )

1 2( ), ( )max maxA t T A t Tx t x t + +   

respectively  

int ( , ) int ( , )

1 2( ), ( )max maxB t T B t Tx t x t + + . 

This solutions result from the Euler equations3 of the two variation problems with 

constraints and with the corresponding initial and final conditions and thus for each fixed  

t  and  maxT  are functions of [ , ]maxt T  :  

 

3 Be careful: to use “EulerEquations” in Mathematica correctly, one has to define ( ) : ( )tx x t = +  and use ( )tx 
instead of ( )x t +  
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 

int ( , )( )

1

int ( , ) int ( , ) int ( , )

2 1 2

int ( , ) int ( , )
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1 1

EulerEquations[ ( ( ),

( )) ( ( ), ( )),
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( )) ( ( ), ( )),
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max max

B
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A t T
max max

A t T A t T
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B t T B t T B t T

B t
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   

− +

=

= =
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+ + + +

 ) int ( , )

2

int ( , ) int ( , )

1 1 1

int ( , ) int ( , )

2 2 2

( ), ( ) , ]

( ) ( ) ( ) 1

( ) ( ) ( ) 2
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T B t T

B t T B t T
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B t T B t T
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t x t
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x t x t x T x BT

x t x t x T x BT

  + +

= =

= =   

Typically, the constraint does not depend on 2 ( )x t , i.e. 

1 1 20 ( ( ), ( ), ( ))Z x t x t x t=
 

and the variable 2 ( )x t  can be expressed as a function of 1( )x t  and inserted into the utility 

function. This is what we will always assume in the following, because this simplifies the 

problem considerably. This is explained using the Ramsey model as an example (see 

chapters 25.1, 25.2). It leads to the fact that the Lagrange multiplier ( )t drops out and the 

variational problem with constraint is simplified to a variational problem without constraint 

and the utility function only depends on 1( )x t ,. The variational problem to be solved is then 

int ( , )( )

1

int ( , )

1

int ( , ) int ( , )

1 1 1

int ( , )( )

1

1

EulerEquations [ ( ( )),

{ ( )}, ]
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EulerEquations [ ( ( )),

{

A
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max

max max

B
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max max

B t Tr t B

B

e U x t

x t
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e U x t

x







 
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+

+

= =

+
int ( , )

int ( , ) int ( , )

1 1 1

( )}, ]

( ) ( ) ( ) 1

max

max max

t T

B t T B t T
max max

t

with initial and end values

x t x t x T x BT

 +

= =

 

 

The end values can be selected freely. 

Assuming the trajectory of 1x  until t  is 1( )x s  with s t . 

In order to follow its optimal path for the future, agent A  must try to set the temporal change 

at time t   equal to the temporal change of its intertemporal maximised trajectory, i.e. 

int ( , )

1

1

0

( )
( )

maxA t Td x t
x t

d





=

+ =   
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But also, the agent B must try to set the temporal change 
1( )x t  equal to the temporal change 

of his intertemporal maximized course, i.e. 

int ( , )

1

1

0

( )
( )

maxB t Td x t
x t

d





=

+ =  

But these two wishes cannot both be fulfilled at the same time. The actual temporal change 

of 1( )x t  at the time t  therefore results in retrospect on the one hand as a mixture of the 

wishes of A  and B  (weighted with their relative power relations) and on the other hand 

from the fact that the constraint at the time must also be fulfilled. This results in  

 

int ( , )

1 1

1

1 1 0

int ( , )

1 1 1 2

1 1 10

( )
( )

( ) ( ( ), ( ))
( )

( )

max

max

A t TA

A B

B t TB

A B

d x t
x t

d

d x t Z x t x t
t

d x t





 
  

 


  

=

=

+ = +
+

+ 
+ +

+ 

  

 

Since we have assumed the simplifying case and expressed 2 ( )x t through 1( )x t , the 

constraint is always fulfilled and the last term falls away. This results in 

int ( , ) int ( , )

1 1 1 1

1

1 1 1 10 0

( ) ( )
( )

max maxA t T B t TA B

A B A B

d x t d x t
x t

d d
 

   
     

= =

+ + = +
+ +

 

This equation describes the temporal behaviour of 1x  as function of t  . The initial condition 

1(0)x  results from the model assumptions for the time 0t =  .  

Thus, taking into account the final values 1 , 1max maxx AT x BT  assumed by the agents for their 

variational problem and the initial value 1(0) 10x x= , the following IGCD (intertemporal 

GCD) equation system results:   
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1

1

int( , ) int ( , )

1 1 1

1

1 1 1 10

1

int ( ,

0

1

)

1

( ) ( )
( )

(0) 10

Eul

( )

( )

( )

m a

ma

ax m x

x

A t T B t TA B

A B A

A t T

B

d x t d x t
x t

d d

behavioural equation for x t

initial value for x t

Euler equat o

x x

ions for x f r A with initial and final values

 

   
     



= =

+ + = +
+ +

=

 int ( , ) int ( , )( )

1 1

int ( , ) int ( ,

1

in

1

t

)

1

( , )

1

e

1

( )

rEquations ( ( )), ( ) ,

( ) ( ) ( )

EulerEquations

A
max max

max

ma

ma

x

x

H t T H t Tr t A

A t T A t T
max max

r

B t T

e U x t x t

x t x t x T x AT

iEuler equations for x for B w th initial

e

and final values





  − +

−

 + + 
= =

 int ( , ) int ( , )( )

1 1

int ( , ) int ( , )

1 1 1

( ( )), ( ) ,

( ) ( ) ( ) 1

B
max max

max max

B t T B t Tt B

B t T B t T
max max

U x t x t

x t x t x T x BT

   + + + 
= =

   <24.3> 

 

With n  variables and m  constraints, the number of variables is reduced to k n m= −  

variables 1 2, ,..., kx x x  respectively , 1,2,...,ix i k=  . This results in the IGCD (intertemporal 

GCD) equation system for 2 agents and k   variables 

 

 

 

 

 

0

1

i

i

nt ( , )

nt ( , ) int ( , )

0

1,2,...,

(

( )

( )

(

) ( )
( )

(

)

0) 0

max m

ax

ax

m

A t T B t TA B
i i i i

A

i A B A B
i i i i

i

i

t T
i

behavioural equations for x t

initial values for x t

Euler equations for x for A with initi

for all i k

d x t d x t
x t

d d

x xi

 

   
   



 
= =

=

+ + = +
+ +

=

 n

int (

int ( , ) int( )

1

int i t

1

int ( , ) int ( , )

EulerEquations [ ( ( ),..., ( )),

( ( ),..., ( )) , ]

( ) ( ) ( )

A
max max

max max

max max

A t T A Tr t A
k

A T A T
k

A t T A t T
i i

B

i x

i

ma max

al and final va

e U x t x t

x t x t

x t x t x T xiAT

lues

Euler equations for x

  

  

− + + +

+ +

= =

 
int ( , ) int( )

1

int int

1

int ( , ) int ( , )

, )

EulerEquations [ ( ( ),..., ( )),

( ( ),..., ( )) , ]

( ) ( ) ( )

( )
B

max max

max max

max max

max

B t T B Tr t B
k

B T B T
k

B t T B t T
i i i max max

t T for B with initial and f

x

inal

e U x x

x

x t x B

value

x

s

t T xi T

  

 





− +

= =
  <24.4> 
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Note 

(a) Up to now we have set fixed end values for the end time maxT for intertemporal 

optimisation. For other end conditions (e.g. "free" or "greater than") these conditions can be 

replaced by the corresponding so-called transversality conditions. 

(b) The intertemporal optimisation for infinite time intervals can be approximated by large 

maxT  . 

24.3. Numerical solution 

The differential equation systems <24.3> and <24.4>  cannot be solved directly with 

NDSolve from Mathematica. For the numerical solution the interval 0, maxT    must be 

divided into N intervals with the points in time 0 1 20, , ,..., N maxt t t t T= = . Proceed step by step 

as follows: 

(1) Solve the Euler equations for the interval  0, maxT    with initial and final values 

0 0

0 0

int ( , ) int ( , )

0

int ( , ) int ( , )

0

( ) 0 ( )

( ) 0 ( )

max max

max max

A t T A t T
i i max max

B t T B t T
i i max max

x t xi x T xiAT

x t xi x T xiBT

= =

= =
 

(2) Calculate 
0( )ix t   

0

0

int ( , )

0

0

0

int ( , )

0

0

( )
( )

( )

max

max

A t TA
i i

i A B
i i

B t TB
i i

A B
i i

d x t
x t

d

d x t

d





 
  

 
  

=

=

+ = +
+

+
+

+

 

(3) Calculate 1( )ix t   

either as a linear approximation: 

1 0 0 1 0( ) ( ) ( )( )i i ix t x t x t t t= + −   

or as an exponential approximation: 

0 1 0( ) ( )

1 0( ) ( ) ix t t t
i ix t x t e  −=  

(4) Solve the Euler equations for the interval 1, maxt T    with initial or final values  

1 1

1 1

int ( , ) int ( , )

1 1

int ( , ) int ( , )

1 1

( ) ( ) ( )

( ) ( ) ( )

max max

max max

A t T A t T
i i i max max

B t T B t T
i i i max max

x t x t x T xiAT

x t x t x T xiBT

= =

= =
 

(5) Calculate 
1( )ix t   
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1

1

int ( , )

1

1

0

int ( , )

1

0

( )
( )

( )

max

max

A t TA
i i

i A B
i i

B t TB
i i

A B
i i

d x t
x t

d

d x t

d





 
  

 
  

=

=

+ = +
+

+
+

+

 

(6) Calculate 2( )ix t   

either as a linear approximation:  

2 1 1 2 1( ) ( ) ( )( )i i ix t x t x t t t= + −   

 

or as an exponential approximation: 

1 2 1( ) ( )

2 1( ) ( ) ix t t t
i ix t x t e  −=  

(7) Solve the Euler equations for the interval 2 , maxt T    with initial or final values  

2 2

2 2

int ( , ) int ( , )

2 2

int ( , ) int ( , )

2 2

( ) ( ) ( )

( ) ( ) ( )

max max

max max

A t T A t T
i i i max max

B t T B t T
i i i max max

x t x t x T xiAT

x t x t x T xiBT

= =

= =
 

(8) Etc. 
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24.4. The relationship between the dynamics of GCD models 
(with non-intertemporal utility functions) and the dynamics of 

GE models with intertemporal utility functions 

24.4.1. Basic principles 

In simplified terms, non-intertemporal GCD models behave at 0t =  the same as 

intertemporal GE models, in which the future is increasingly devalued by shortening the 

optimisation period. It should be noted that intertemporal GE models require that the utility 

functions can be aggregated. Therefore, the relationship between these two models can only 

be established for utility functions that can be aggregated. For simplicity, we describe 

everything for 2 agents ,A B , 2 goods 1 2( , )x x  and 1 constraint  

1 2( , ) 0Z x x =  

2 utility functions ,A BU U  are called aggregable if there is a utility function MU so that (see 

chapter 4.3) 

 

1 1

2 2

1 1 1

2 2 2

H B
H B
x x

H B
H B
x x

U U MU

x x x

U U MU

x x x

 

 

  
+ =

  

  
+ =

  

  

The non-intertemporal GCD model is described ex-ante (i.e. without considering the 

constraints) by 

1

1

2

2

MU
x

x

MU
x

x

 =


 =


 

and ex-post (i.e. taking into account the constraints) described by 

1

1 1

2

2 2

1 20 ( , )

MU Z
x

x x

MU Z
x

x x

Z x x





  = +
 

  = +
 

=

 

The GE non-intertemporal model is described ex-ante (i.e. without considering the 

constraints) by: 

1 2

0

( ( ), ( ))
maxT

MU x t x t dt max→   

and ex-post (i.e. with consideration of the constraint) described by 
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( )1 2 1 2

0

( ( ), ( )) ( ) ( ( ), ( ))
maxT

MU x t x t t Z x t x t dt max+ →  

A necessary condition that must be fulfilled by 1 2,x x  such that the integrals become 

maximum are the Euler-Lagrange equations. 

24.4.2. A non-intertemporal GCD model behaves at time t   0 in 
the same way as an intertemporal GE model with a very short 
optimisation interval  
 

Looking at the ex-ante behaviour of a GE model with a non-intertemporal utility function, 

it follows 

1 2

0

( ( ), ( ))
maxT

rte MU x t x t dt max− →  

Assume that maxT  and r  are very small. If one carries out a series expansion of re −   and 

MU   with respect to t   at    point  0t =  one obtains the following 

( )

1 2

0

2

2

1 2 2

00 0

1 2

00

( ( ), ( ))

1
1 .... ( (0), (0)) . . ....

2

( (0), (0)) . ....

max

max

max

T

rt

T

t t

T

t

max

e MU x t x t dt

d MU d MU
rt MU x x t t dt

dt dt

d MU
MU x x t dt

dt

because of the assumption r is small and for small T t is smal

−

= =

=

=

 
= − + + + +   

 

 
 + + 

 






l

 

1 1

2 2

1 2 1

1 2

010 ( ) (0)

1 2 2

020 ( ) (0)

2

1 2 1 2
0 0

1 2

( ( ), ( )) ( )
( (0), (0)) .

( )

( ( ), ( )) ( )
. ....

( )

( (0), (0))
2

max

max

T

max

tx t x

T

tx t x

max
max

t t

MU x t x t d x t
T MU x x t dt

x t dt

MU x t x t d x t
t dt

x t dt

MU MU T
T MU x x x x for s

x x

==

==

= =


= + +




+ +



    + +    





maxmall T

 

The first term is constant, the second term becomes maximal exactly when the vector 

1 2

( , )
MU MU

x x

 
 

 and the vector 
1 2( , )x x    at the time 0t =   point in the same direction, i.e. 

there is a   such that  



161 

 

 

 
1 11

2 0

2 20 0

t

t t

MU MU

x xx

MU MUx
x x






=

= =

    
           = =
               

 

This means that it applies to small r  and small maxT : 

A GE model with an intertemporal utility function  

maxint (0, )

1 2

0

( ( ), ( ))
maxT

T rtU e MU x t x t dt−=   

behaves at the time 0t =  ex-ante (i.e. without considering the constraint) similar to a non-

intertemporal GCD model with the utility function MU . 
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25. The principles of IGCD are first 
presented using the Ramsey model as 

an example 

Formelabschnitt (nächster) 

25.1. The Ramsey model 

The standard Ramsey model consists of 1 agent (household) that attempts to maximize the 

intertemporal utility of consumption C  over the period from 0 max0t to T=  . The utility 

function  
AU    is 

( ( )) ( ) 0 1AU C t C t  =     

The constraint Z is given by 

(1 )( ( ), ( ), ( )) ( ) ( ) ( ) 0Z C t K t K t K t K t C t− = − − =   

The intertemporal utility function of the household  
intAU  is given by 

max max

maxint(0, )

0 0

( ) ( ( )) ( )

T T

A T r A rU C e U C d e C d     − −= =    

Calculate ( )C t   from the constraint and insert in 
AU  . This results in the variation problem 

max

maxint(0, ) (1 )

0

max max

( ) ( ( )) ( )) max

(0) 0 ( )

T

A T rU K e K K d

with K k K T kT

    − − = − →

= =

  

The solution is obtained by solving the Euler equation with initial and final values: 

(1 )

max max

EulerEquations ( ( ) ( )) ,{ ( )},

(0) 0 ( )

re K K K

with K k K T kT

     − −  − 
= =

  

which result in the differential equation system to be solved 

(1 )

2

max max

0 ( 1 ) ( ) ( ) ( 1 )( 2 ) ( ) ( )

( ) ( ( ) ( 1 ) ( ))

(0) 0

( )

K r K K K

K r K K

K k

K T kT

 



      

   

+ = − + + + − + − + +

 + − + − +
=
=

   <25.1> 
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25.2. The Ramsey model (modeled with Lagrange function with 
constraint)  

To model the standard Ramsey model, you can also use the Lagrange function with 

constraint and proceed as follows: 

As before the standard Ramsey model consists of 1 agent (household) that attempts to 

maximize the intertemporal utility of consumption C    over the period from 0 0t = to maxT  

. The utility function AU   is 

( ( )) ( ) 0 1AU C t C t  =     

The constraint Z is given by 

(1 )( ( ), ( ), ( )) ( ) ( ) ( ) 0Z C t K t K t K t K t C t− = − − =   

The intertemporal utility function of the household  
intAU  is given by 

max max

maxint(0, )

0 0

( ) ( ( )) ( )

T T

A T r A rU C e U C d e C d     − −= =    

Instead of using the constraint, we use the Lagrange function with constraint. This results 

in the variation problem 

( )
max

(1 )

0

max max

( ) ( )( ( ) ( ) ( )) max

(0) 0 ( )

T

re C K K C d

with K k K T kT

        − − + − − →

= =

   

This results in the Euler equation with initial and final values: 

 

( )(1 )

max max

EulerEquations [ ( ) ( )( ( ) ( ) ( )) ,

{ ( ), ( ), ( )}, ]

(0) 0

( )

re C K K C

C K

K k

K T kT

       

    

− − + − −

=
=

  

 

which result in the following differential equation system  

( 1 )

(1 )

max max

( ) ( ) 0

( 1 ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

(0) 0

( )

re C

K

C K K

K K

K T KT

 





   

     

  

− − +

−

−

− =

− − + + =

− + − =
=
=

  

The differentiation of the first and third equations and the addition of these equations to the 

equation system results in the differential equation system 



164 

 

 

( 1 )

( 1 ) ( 2 )

(1 )

max max

(1) ( ) ( ) 0

(2) ( ) ( 1 ) ( ) ( ) ( ) 0

(3) ( 1 ) ( ) ( ) ( ) 0

(4) ( ) ( ) ( ) 0

(5) ( ) (1 ) ( ) ( ) ( ) 0

(6) (0) 0

(7) ( )

r

r r

e C

e rC e C C

K

C K K

C K K K

K K

K T KT

 

   







   

      

     

  

    

− − +

− − + − − +

−

−

−

− =

 − + − + − =

− − + + =

− + − =

  − + − − =
=
=

   <25.2> 

The solution of this (complicated) differential-algebraic equation is much more complicated 

than the solution of the equation system <25.1> in chapter 25.1. 

To show that both systems of equations are equivalent, the following steps are taken: 

Calculate ( )    from (3) and leave out (3) 

Insert ( )   into (2) 

Calculate  ( )    from (1) and leave out (1)  

Insert ( )    into (2) 

Calculate ( )C    from (4) and leave out (4) 

Insert ( )C   into (2) 

Calculate ( )C    from (5) and leave out (5)  

Insert ( )C   into (2) 

Simplify under the condition 0 ( ) ( ) ( ) 0r and K K K   −    

 

This again results in <25.1> 

(1 )

2

max max

0 ( 1 ) ( ) ( ) ( 1 )( 2 ) ( ) ( )

( ) ( ( ) ( 1 ) ( ))

(0) 0

( )

K r K K K

K r K K

K k

K T kT

 



      

   

+ = − + + + − + − + +

 + − + − +
=
=

 

 

The conclusion from all this: It is much more convenient to use the constraint to calculate 

( )C    and to eliminate ( )    and to use the Lagrange function without constraint than the 

Lagrange function with constraint.  
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25.3. The GCD Ramsey model (with non-intertemporal utility 
function)  

The utility function AU   can be used not only to construct the (intertemporal) standard 

Ramsey model (see Chapter 25.1), but also to construct a (non-intertemporal) standard GCD 

model, which we call the GCD Ramsey model. This makes it possible to show the different 

dynamic behaviour of these two models (see chapter 25.5) 

The utility function AU   and the constraints are the same as in the standard Ramsey model  

(1 )

( ( )) ( ) 0 1

( ( ), ( ), ( )) ( ) ( ) ( ) 0

AU C t C t

Z C t K t K t K t K t C t






−

=  

 = − − =
  

So we have 2 variables ( ), ( )C t K t   and 1 constraint. The corresponding differential-

algebraic GCD equation system consists of  2 differential equations (the behavioural 

equations for the 2 variables) and 1 algebraic equation (the constraint). For the sake of 

simplicity, we set all power factors to 1. The ex-ante behavioural equations describe that 

the household tries to change the consumption ( )C t   along the partial derivation of  

( ( ). ( ))AU C t K t   with respect to ( )C t   and tries to change the capital ( )K t  along the partial 

derivation of ( ( ). ( ))AU C t K t  with respect to ( )K t . The ex-post equation for the behavioural 

equation for ( )C t  is obtained by adding the constraint forces given by ( )t   multiplied by 

the partial derivative from Z  with respect to ( )C t . In the same way, the ex-post behavioural 

equation is obtained for ( )K t  by adding the constraint force given by ( )t  multiplied by 

the partial derivative from Z  with respect to ( )K t . Together with the constraint, the 

differential algebraic GCD equation system to be solved is obtained:   

( 1)

(1 )

( ( ), ( )) ( ( ), ( ), ( ))
( ) ( ) ( ) ( )

( ) ( )

( ( ), ( )) ( ( ), ( ), ( ))
( ) ( ) 0 ( )

( ) ( )

0 ( ( ), ( ), ( )) ( ) ( ) ( )

A

A

U C t K t Z C t K t K t
C t t C t t

C t C t

U C t K t Z C t K t K t
K t t t

K t K t

Z C t K t K t K t K t C t





  

 

−

−

  = + = −
 

  = + = −
 

 = = − −

  

This results in 

( 1)

(1 )

( ) ( ) ( )

( ) ( )

0 ( ) ( ) ( )

C t C t t

K t t

K t K t C t





 


−

−

 = −
 = −

= − −

  

25.4. The IGCD Ramsey model (with intertemporal utility 
function)  

The utility function 
AU , the intertemporal utility function 

intAU  and the constraints are the 

same as in the standard Ramsey model  
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max max

max

(1 )

int(0, )

0 0

( ( )) ( ) 0 1

( ( ), ( ), ( )) ( ) ( ) ( ) 0

( ) ( ( )) ( )

A

T T

A T r A r

U C t C t

Z C t K t K t K t K t C t

U C e U C t d e C t d





  



 

−

− −

=  

 = − − =

= = 

  

We calculate ( )C    from the constraint and insert it into 
AU . This results in the 

intertemporal utility function maxint(0, )A TU   

max

maxint(0, ) (1 )

0

max max

( ) ( ( )) ( )) max

(0) 0 ( )

T

A T rU K e K t K t d

with K k K T kT

   − − = − →

= =

  

Since we only have 1 agent A   and 1 variable 1x K= ,  <24.3>  reduces to 

 

 

( )
 

1

1

int ( , )

int ( , ) int ( , )(1 )

int ( , )

int ( , )

int ( , )

( )
(1) ( )

(2) (0) 0

(3) EulerEquations [ ( ) '( ) ,

( ) , ]

( ) ( )

( )

max

max max

max

max

max

A t T

t

A t T A t Tr

A t T

A t T

A t T
max max

d K
K t

d

k k

e K t K t

K

with initial and final value

K t K t

K T KT



 




 

 

=

− −

 =

=

+ − +

=

=

 

From the uniqueness theorem for differential equations, it follows that the standard 

Ramsey model and the IGCD-Ramsey model have the same solutions if they have the 

same initial values:  

• Designate  
max,(0, )( ) ( )R R TK t K t=   the solution of the classic Ramsey model and  ( )GK t

the solution of the IGCD-Ramsey model with the initial condition (0) (0) 0R GK K K= =   

and the final condition max max max( ) ( )R GK T K T KT= =    

• Let max[0, ]at T  and designate
max,( , ) ( )

aR t TK t  the solution of the classical Ramsey model 

with the initial condition
max,( , ) ( ) ( )

aR t T a R aK t K t=   and the final condition 

max,( , ) max max( )
aR t TK T KT=   

• then the following applies: 

 

max,( , )) ( ) ( )
aR a R t T aa K t K t + = +  for all max[0, ]aT t  −  

Because a variational problem for a part of the whole interval gives the same solution 

as the variational problem for the whole interval, if the initial and final values 

correspond to the solution values of the variational problem for the whole interval. 
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max

max max max

,( , )

,( , ) ,( , ) ,( , )

) ( ) ( ) )

( )

(3)

( ) (1)

a

a a a

R a R t T a

G t T a R t T G t T

G a

b K t K t because of a

K t because K K

because of

K t because of

 = =

= = =

=

 

 

) ( ) ( ) ( )R G

a

c K t K t because of b and because

t can be chosen arbitrary

 =
   

 

) (0) (0)R Gd K K because of preconditions=  

 

) ), )R Ge K K because of c d and

the uniqueness theorem

of differential equations

=

 

 

Of course, this only applies to this special case, where there is only 1 agent. Of course, this 

does not apply if there are several agents. 

25.5. Numerical calculations and comparison of Ramsey model 
and GCD Ramsey model  

The Ramsey model is equivalent to a IGCD Ramsey model, because there is only 1 agent 

involved (see chapter 25.4). We therefore only compare the Ramsey model with the GCD 

Ramsey model.  

https://www.dropbox.com/s/2sn0hh7tdry7wdp/Vergleich%20Ramsey%20klassisch%

2C%20GCD%20klassisch%2C%20GCD%20intertemp%20Version%2010.nb?dl=0 

 

Results of the calculations for “large” discount rate 0.5r =  and max 1 1.5T t= =   you can find 

in the next graphic. It shows the difference in the dynamics of the standard (intertemporal) 

Ramsey model and the non-intertemporal GCD-Ramsey model.  

 

A calculation for the “small” discount rate 0.25r =    and small max 1 0.25T t= =  gives the 

expected result shown in 24.4.2.: If discount rate and optimisation interval are small, the 

two models (standard (intertemporal) Ramsey and non-intertemporal GCD-Ramsey) are 

similar.  

 

https://www.dropbox.com/s/2sn0hh7tdry7wdp/Vergleich%20Ramsey%20klassisch%2C%20GCD%20klassisch%2C%20GCD%20intertemp%20Version%2010.nb?dl=0
https://www.dropbox.com/s/2sn0hh7tdry7wdp/Vergleich%20Ramsey%20klassisch%2C%20GCD%20klassisch%2C%20GCD%20intertemp%20Version%2010.nb?dl=0
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26. Comparison of IGCD models with 
D GE models 

Formelabschnitt (nächster) 

DSGE models require utility functions that can be aggregated to a master utility function. 

In the case of GCD and IGCD models, the utility functions do not need to be able to be 

aggregated. 

Due to the use of a master utility function, DSGE models consist of only 1 variational 

problem and the economic system is in principle controlled by only 1 agent. The simplest 

DSGE model is the Ramsey model. In chapter 24.4 we showed for the Ramsey model that 

it is equivalent to the corresponding IGCD Ramsey model. As a main result, we therefore 

propose (that it should be possible to show) that (non-stochastic, expectation-free) DSGE 

models are in principle equivalent to (non-stochastic, expectation-free) IGCD models with 

only 1 agent. 

But although this is not currently done, GCD and IGCD models can in principle be extended 

by stochasticity and expectations in the same way as DSGE models. Thus, DSGE models 

should in principle be equivalent to IGCD models with only 1 agent. 

DSGE models are essentially equilibrium models. The dynamics in DSGE models arise 

from the maximisation of an intertemporal master utility function leading to the Euler-

Lagrange equations. The dynamics after a shock is caused by the swing back to the 

equilibrium state. However, non-intertemporal GCD and (intertemporal) IGCD models are 

"true" dynamic models that can be formulated independently of any equilibrium states.  

Both can also be used to model economic shocks (Glötzl 2022). 

In summarising, IGCD models can therefore be seen as a generalisation or alternative to 

DSGE models. 
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27. Model 𝑨𝟏𝒊𝒏𝒕: IGCD model 
corresponding to model A1 

Formelabschnitt (nächster) 

We develop the IGCD model from the non-intertemporal GCD model A1. For this purpose, 

we develop the intertemporal utility functions from the utility functions for the A1 model 

and specify the system of differential equations for the corresponding IGCD model in 

accordance with the definition in Chapter 24.2. 

27.1. Intertemporal utility functions 

The algebraically defined equations, utility functions and the constraints of model A1 are 

unchanged: 

1

2 2

2 1 2

1

1

( , ) 0, 0 1

ˆ ˆ( ) ( ) 0 1

ˆ ˆ( , ) ( ) ( )

0 '

0 '

0 ( , ) ' '

H H H

B

H H

B B

Y L K L K

U C L L M M

U pY L

a

K w L S S

lgebraically defined variabl

p L K w L S S

Z w L p

es

utility functio

L

n

const

M

rai

C

nt

C M

Z p w L

Z Y L K C

s

K S K

 



 



  







−

−

=   

= − − − −  

= − − − = − − −

= = − −

= = − −

= = − − − = ' 'C K S− − − −

 

 

We simplify in the following steps 

• Calculate 'HwL pC M= +  from the constraint HZ and put in 
BU and in BZ  

• Calculate 
1 ' 'C L K K S  −= − − from the constraint 1Z and put in 

HU and 
BU  and 

simplify.  

This results in 

 

1 2 2

2

ˆ ˆ( ' ') ( ) ( )

ˆ' ' ' ( )

0 ' '

H H H

B H

B H B

U L K K S L L M M

U K S M S S

Z M M

   −= − − − − − −

= + + − −

= = +
  

 

The utility functions depend on the 4 variables 

, , , HL K S M  
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or their derivatives. The system is completely determined by these variables, because the 

variable BM is completely determined by the variable HM  by ' 'B HM M= − due to the 

constraint BZ . 

This gives the intertemporal utility functions 

( )

( )

int (( , )

( ) 1 2 2

int ( , )

( ) 2

ˆ ˆ( ( ) ( ) '( ) '( )) ( ( ) ) ( ( ) )

ˆ'( ) '( ) '( ) ( ( ) )

max

max
H

max

max
B

H t T

T

r t H H

t

B t T

T

r t H

t

U

e L t K t K t S t L t L M t M d

U

e K t S t M t S t S d

   



       

    

− + −

− +

=

= + + − + − + − + − − + −

=

= + + + + + − + −




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27.2. Intertemporal GCD-equations 

The (intertemporal) IGCD equations are obtained according to 

Fehler! Verweisquelle konnte nicht gefunden werden.:  
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27.3. Numerical calculations 

The numerical calculations can be performed as shown in chapter 24.3 
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F.  ummary 
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28.  ummary and conclusions 

28.1. Principle of GCD 

By using differential-algebraic equations in continuous time, the GCD approach extends 

existing analogies between classical mechanics and economics from constrained 

optimization to constrained dynamics. 

28.2. Problem 8 by  tephen  male 

Problem 8 of the 18 problems published by Smale in 1998 (Smale 1991; 1997; 1998; Smale 

Institute 2003) is: introducing dynamics (adjustment of prices) in economic equilibrium 

theory (Arrow-Debreu equilibrium model). The problem arose from Smale's own 

involvement with mathematical economics. 

GCD models describe the dynamics of economic systems away from equilibrium. They 

converge to the solutions of general equilibrium theory under certain conditions. They 

describe not only the dynamic adjustment of prices but also of all other economic variables 

and thus may represent a solution to S. Smale's problem 8. 

The method is based on the standard method in physics for modeling dynamics under 

constraints. 

28.3. GCD is a fundamentally new methodology for modeling 
economic systems and, in a certain sense, can be seen as a 

metatheory of economic modeling 

Simplified, there are so far 4 basic groups of methods for modeling economic systems: 

28.3.1.  Neoclassical general equilibrium theory (GE, DSGE) 
This is essentially based on the maximization of an (overall) utility function under 

constraints (overall utility maximization). The existence of an overall l utility function 

presupposes the aggregability of individual utility functions. 

28.3.2. Post-Keynesian Models 

These reject the use of individual utility functions and describe the aggregate variables via 

differential equations. 

A special case of these are the Stock-Flow-Consistent (SFC) models. 

28.3.3. Agent-Based Models (ABM) 
These describe the behaviour of mostly many agents based on individual interactions among 

them. 
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28.3.4. The relation of the basic principles of GCD models to these 
types of economic models 

• The dynamic evolution of the variables is determined in GCD models by the fact that 

each of the agents applies an individual force to these variables and the actual dynamics 

is determined by the resultant of these forces. These individual forces can be described 

(in most practical cases) as gradients of individual utility functions. The resulting 

dynamics can be called individual utility optimization as opposed to neoclassical 

overall utility maximization. A detailed discussion of the relationship between 

individual utility optimization and overall utility maximization can be found in (Glötzl 

2023a). 

• Note on post-Keynesian models: However, agents' forces do not necessarily arise as 

gradients of individual utility functions. Therefore, GCD models can also describe post-

Keynesian models that cannot be described by utility functions. In principle, the forces 

(on the right-hand side of the differential equations of post-Keynesian models) can 

always be decomposed into a gradient component (resulting from a utility function) and 

a rotation component. This is called a Helmholtz decomposition, which is not only 

possible in 3 dimensions, as it usually occurs in physics, but is possible in arbitrary 

dimensions (Glötzl und Richters 2021b; 2021a) 

• GCD models are always stock-flow consistent (SFC). But not only (economic) 

accounting identities, but also any other relations or conservation laws like the 1st law 

of chemistry (conservation of mass) or the 1st law of thermodynamics (conservation of 

energy) can be used as constraints. 

• GCD models are always agent-based respectively microfounded 

28.4. GCD models can be the bases for a new economic thin ing 
in terms of: economic power, economic force, economic 

constraint force 

Especially the concept of economic power is of fundamental importance for understanding 

economics (Rothschild 2002b). With GCD models, this concept can also be formally 

incorporated into economic models. In comparison with classical mechanics in physics, 

power factors correspond to the reciprocal of mass (Glötzl 2015). Conventional economic 

models usually describe one-sided power relations, which, however, rarely occur in reality. 

GCD models can also be used to better describe mixed power relations and thus reality.  

GCD models can be the basis for a new theoretical understanding of e.g.: 

• Economic growth 

• Business cycles and economic crises 

• Analogies between physics and economics 
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28.5. With the help of the GCD methodology, a formally clean 
definition of the terms ex-ante and ex-post is possible 

28.6. Non-equilibrium dynamics 

NCD models can be used to describe true disequilibrium dynamics. In particular, it is also 

possible to describe situations in which no equilibrium exists or situations in which the 

utility function is not concave. 

28.7. Genuine competitive models 

Apart from game-theoretic models, the other types of economic models mentioned cannot 

be used to describe genuine competition models, i.e. models in which the individual 

optimization strategy does not lead to an overall optimum. In reality, however, such 

situations, which are similar to the prisoner's dilemma, are very common. With GCD 

models, genuine competition models can be described very well. 

28.8. Applications 

GCD models and IGCD models can be used for many practical tasks such as economic 

forecasting, modeling the impacts of fiscal or monetary policy, modeling business cycle 

fluctuations and economic shocks. 

28.9. GCD models are a generalisation and alternative to D GE 
models 

GCD models in principle can also be formulated with intertemporal utility functions called 

IGCD models (Glötzl 2023a). IGCD models can be seen as a generalisation or alternative 

to DSGE models. 

28.10. What remains to be done in the future 

a) Adjustment of parameters to describe real circumstances and comparison of model results 

with real business cycle trends. 

b) Extend GCD models to multiple households, firms, and goods, and in particular to 

commodity and financial markets.   

c) In the long run, develop a more complex, real-world model to enable better economic 

forecasting and test measures to achieve economic policy targets. 

d) Elaborate GCD models with economic shocks in detail.  

e) Elaborate IGCD models (with intertemporal utility functions) in detail.   
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