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Abstract

For more than 100 years economists have tried to describe economics in analogy to physics,
more precisely to classical Newtonian mechanics. The development of the Neoclassical
General Equilibrium Theory has to be understood as the result of these efforts. But there are
many reasons why General Equilibrium Theory is inadequate: 1. No genuine dynamics. 2.
The assumption of the existence of utility functions and the possibility to aggregate them to
one “master” utility function. 3. The impossibility to describe situations as in “Prisoners
Dilemma”, where individual optimization does not lead to a collective optimum. This book
aims at overcoming these problems. It illustrates how not only equilibria of economic
systems, but also the general dynamics of these systems can be described in close analogy
to classical mechanics.

To this end, this book makes the case for an approach based on the concept of constrained
dynamics, analyzing the economy from the perspective of “economic forces” and
“economic power” based on the concept of physical forces and the reciprocal value of mass.
Realizing that accounting identities constitute constraints in the economy, the concept of
constrained dynamics, which is part of the standard models of classical mechanics, can be
applied to economics. Therefore, it is reasonable to denote such models as General
Constraint Dynamic Models (GCD-Models)

Such a framework allows understanding both Keynesian and neoclassical models as special
cases of GCD-Models in which the power relationships with respect to certain variables are
one-sided. As mixed power relationships occur more frequently in reality than purely one-
sided power constellations, GCD-models are better suited to describe the economy than
standard Keynesian or Neoclassic models.

A GCD-model can be understood as “Continuous Time”, “Stock Flow Consistent”,
“Microfounded”, where the behaviour of the agents is described with a general differential
equation for every agent. In the special case where the differential equations can be
described with utility functions, the behaviour of every agent can be understood as an
individual optimization strategy. He thus seeks to maximize his utility. However, while the
core assumption of neoclassical models is that due to the “invisible hand” such egoistic
individual behaviour leads to an optimal result for all agents, reality is often defined by
“Prisoners Dilemma” situations, in which individual optimization leads to the worst
outcome for all. One advantage of GCD-models over standard models is that they are able
to describe also such situations, where an individual optimization strategy does not lead to
an optimum result for all agents.

In conclusion, the big merit and effort of Newton was, to formalize the right terms (physical
force, inertial mass, change of velocity) and to set them into the right relation. Analogously
the appropriate terms of economics are economic force, economic power and change of
variables. GCD-Models allow formalizing them and setting them into the right relation to
each other.
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1. Introduction

For more than 100 years economists have tried to describe the economy in analogy to
physics, more precisely to classical mechanics. The neoclassical General Equilibrium
Theory has to be understood as the result of these efforts. But the orientation of economics
towards physics has been implemented only partially, especially the dynamics of
mechanical systems have been omitted completely. So, Field medalist Steve Smale stated
in 1998 (Smale 1991; 1997; 1998; Smale Institute 2003) as problem No. 8 of 18 major
problems of dynamics to extend the mathematical model of general equilibrium theory to
include the dynamics of price adjustments. This book therefore seeks to analyze the
dynamics of economic models in perfect analogy to Newtonian mechanics. It shows that
not only equilibria, but also the general dynamics of an economic system with all its
disequilibria for all variables (including price) can be described using the framework
provided by classical mechanics. We refer to the corresponding models as General
Constrained Dynamic models (GCD models). They seem to be a contribution to the solution
of Steve Smale's problem No. 8.

The formalization of the physical concepts of force and mass by Isaac Newton
revolutionized physics and was the basis for the entire following development of the
discipline. Similarly, this book aims at developing a formalization of the concepts of
economic force and economic power in order to establish a single consistent structure for
the description of economic systems. Within these analogies economic power corresponds
to the reciprocal value of mass.

The book is divided into 7 sections:

A. Basic Principles, chap.2 -5
B. Microeconomic models chap. 6
C. Macroeconomic models chap. 7—-19

D. Supply, demand and price shock models  chap. 20 — 23
E. GCD with intertemporal utility functions  chap. 24 — 27
F. Summary chap. 28

In Section A, we provide a historical review of attempts to find similarities between
economics and physics, and explain why and how GCD models make an essential new
genuine contribution to this effort.

Chapter 2 provides a short overview over the historic attempts to find similarities between
economics and physics.

In Chapter 3, we illustrate the main ideas of this approach. It describes the formal structure
of such "General Constrained Dynamic Models" (GCD models), which is based on the
concepts of economic force and economic power, where the concept of economic power is
inversely proportional to the concept of inertial mass in physics and closely related to the
concept of adjustment speed in economics. The basic idea of GCD models is that the
dynamics is determined by the resultant of those forces that market participants exert to
optimize their individual interests (individual utility optimization). GCD models are thus
an extension of neoclassical models described by the maximization of a single master utility
function (overall utility maximization). The term "constrained" refers to the fact that the
economy is often subject to constraints. The most important class of such constraints are
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accounting identities, which lead to economic constraint forces in perfect analogy to the
constraint forces in classical mechanics.

We explain the concept of GCD models using the microeconomic model of the Edgeworth
Box.

In chapter 4, we give the formal description of GCD models with individual utility functions
(individual utility optimization) and the relation to the neoclassical description of economics
with a master utility function (overall utility maximization). In this context, the question of
the aggregability of individual utility functions to a master utility function plays an essential
role.

In chapter 5, we show that GCD models provide the basis for a new and comprehensive
understanding of economic models from a mathematical and theoretical perspective. Thus,
in a sense, they can be understood as a metatheory for economic models. This basic
structure, in which (almost) all economic models can be embedded, can be formally
described as a differential-algebraic system of equations. (Almost) all mathematical
structures used for economic models can be seen as special cases of a GCD model.

In Section B we describe the model of the well-known Edgeworth box, which describes the
static general equilibrium in a pure microeconomic exchange economy with only two agents
and two goods. A major problem of general equilibrium theory is the fact that no statements
can be derived about the so-called tatonnement, i.e. the path of the bargaining process from
the initial endowment to the final general equilibrium. We show how GCD models can be
defined to model this dynamic bargaining process. This seems to be a contribution to the
solution of problem 8 formulated by Steve Smale (Smale 1991; 1997; 1998; Smale Institute
2003).

In Section C, we develop step-by-step increasingly complex macroeconomic models. The
target is to show how GCD models are built in principle. However, one cannot expect to be
able to derive concrete practical economic insights from these models already. To do so,
these models and their parameters must first be better adapted to real conditions and tested.
This is one of the major tasks that will have to be completed in the future. Only then will it
be possible to derive first qualitative and later quantitative economic statements from them.

To facilitate the entry into the practical development of GCD models, the program
"GCDconfigurator" was developed. This program is freely accessible via GitHub (Glotzl
und Binter 2022) and can be downloaded under

https://github.com/lbinter/gcd

It allows in the 1st step to set up the GCD equation system in a convenient way just from
the specification of the utility functions, constraints, power factors and initial conditions. In
the 2nd step, the program enables the calculation of the solutions using MATHEMATICA.
The results are calculated and plotted graphically as a time evolution of the variables, where
the individual parameters can be varied in a convenient way.

All Mathematica program codes used for calculations of the various GCD models can be
downloaded under

https://www.dropbox.com/sh/npis47xjgkecggv/AAAMzCVhmhDYIThoB5SMfATFya?dl=0

When developing concrete GCD models, it has proven useful to first describe these models
using model graphs that represent the interaction of the different agents and the economic
variables. The models start with the simplest model A1, which consists of the two agents
(firm and household) and one good that serves as both a consumption good and an
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investment good. The models are extended step-by-step to include a bank, a central bank
and the government. It is also demonstrated, for example, how the monetary policy of the
central bank can be modeled in terms of money supply policy or interest rate policy or in
terms of the Taylor rule. Finally, Model D2 is a comprehensive model that can still be solved
easily with any PC. All the corresponding MATHEMATICA programs can be downloaded
in order to be able to analyze and further develop them.

As a final model, we show a simple example of a model that represents the conflicting
behaviour of flow and stock variables, as is relevant to many environmental problems: e.g.
on the one hand, the burning of fossil fuels (flow variable) fulfills important interests; on
the other hand, this leads to the undesirable increase of carbon dioxide concentration in the
air.

When analyzing economic dynamics, economic shocks play a very important role.
Therefore, we show in Section D. how economic shocks can be modeled with GCD models.
In the economy, various reasons can lead to a shock, e.g.

- sudden changes in raw material prices

- sudden changes in consumer behaviour due to quarantine regulations

- sudden production restrictions due to a disruption in the supply chain

- etc.

From an economic point of view, there are 2 fundamental issues related to shocks:

(1) Forecasting: How will the economic variables change?
(2) Evaluating countermeasures: What measures can be taken to overcome the shock as
quickly as possible or with as little effort as possible?

Since intertemporal utility functions are essential for certain economic models, in section
E we extend the GCD method to intertemporal utility functions (IGCD models). This
allows us to consider GCD models as an alternative to DSGE models. An essential result
1s, that DSGE models in principle are equivalent to IGCD models with only 1 agent.

The target of this section is to show the principle of defining GCD models with
intertemporal utility functions. The actual programming of such GCD models with
intertemporal utility functions is much more complex and is therefore still a task for the
future.

Section F concludes with an overview over the conceptual and methodological advantages
of GCD-models for the understanding of the economy and the dynamics of general
economic systems.



A. Basic Principles



2. Historic attempts and literature
review

2.1. Economics and Physics

Since the beginnings of modern economics, the endeavor to construct the discipline along
the principles of physics has been omnipresent. Already Adam Smith showed his fascination
of Newton in ‘History of Astronomy’ (A. Smith 1795), a fascination that also reveals itself
in the methodology of his economic theory as numerous studies show (for an overview over
the literature see (Redman 1993)). For instance Smith’s theory of value, developed in *The
Wealth of Nations’ (A. Smith 1776), is to be regarded as the counterpart to the concept of
energy in physics. In its essence the Smithian theory of value was adopted by all following
classical economists. In this point of view value is conserved just like energy within the
circular flow (Mirowski 1989).

As aresult of the impressive scientific advances in the field of physics and chemistry during
the 18th and 19th century, the social sciences increasingly tried to imitate the methodology
of the natural sciences. Due to the complex and interdependent structure of social
phenomena these attempts were of limited success. Only in the field of economics the
orientation towards the methodology of physics seemed promising by focusing exclusively
on competitive markets, prices and quantities and limiting investigation to rational human
behaviour (Rothschild 2002a).

The decisive step in this development was brought by Léon Walras’ General Equilibrium
Theory (Walras 1874),, and the simultaneously published contributions by Stanley Jevons
and the introduction of the ‘calculus of pleasure and pain’. This work marked the end of the
era of classical economics and was the birth of neoclassical economics. The assumption that
the behaviour of all economic agents could be described by utility functions was at the core
of this new school of thought. All economic questions involving psychological and social
factors were deliberately ignored. Until today these central principles are the foundation of
standard economics. The Arrow-Debreu General Equilibrium Model, is seen as the first
complete model describing a general equilibrium based on the Walrasian theory (Arrow und
Debreu 1954).

The endeavor to identify further similarities between physics and economics, as well as the
goal to still increase the orientation of the methodology of economics towards economics
was continued by Paul Samuelson. It was his work which was decisive for mathematics to
become the standard method in economics. Moreover, Samuelson identified several
similarities between physics and economics, arguing that classical thermodynamics and
neoclassical economics are related in their common search of a basis for the optimization
of observed behaviour. In physics this is achieved by maximizing free energy, in economics
by maximizing utility (James B. Cooper 2010); (J. B. Cooper und Russell 2011; James B.
Cooper 2010). In a similar vein Smith und Foley (2008) attempt to adopt the model structure
of thermodynamics as well as the principle of entropy in economics and show under which
circumstances and conditions this is possible (E. Smith und Foley 2008).
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In contrast to that, other authors such as Kiimmel (2011) have tried to investigate the
consequences of the existence of the first and second law of thermodynamics within the
economy, rather than trying to find suitable analogies for economics.

To understand the historical developments and why neoclassical economics initially dealt
only with equilibrium models, one must always keep the following in mind. The reason was
not so much the assumption that real economic systems are in fact mostly in equilibrium,
but the fact that without this radical simplification an economic theory was hardly possible.
This is because dynamic descriptions of economic systems are so complex that, on the one
hand, there is no possibility to find analytical solutions for them and, on the other hand,
numerical solutions for differential or difference equation systems were only generally
accessible towards the end of the 20th century. The formal foundations of GCD models, on
the other hand, consist of differential-algebraic systems of equations. These are usually still
much more difficult to solve than differential or difference equation systems. Programs for
the numerical solution of algebraic differential equation systems have only become readily
generally available in recent years. Therefore, it is understandable that algebraic differential
equations have hardly been used systematically for the description of economic systems so
far.

2.2. Economics and Power

The goal to imitate physics led to the fact that questions of power were ignored for two
distinct reasons. On the one hand there was the idea that while power relations might play
arole in the short term, in the long run are irrelevant due to inevitable economic laws. This
argument is most prominently made in ‘Macht oder 6konomisches Gesetz’ by Eugen von
Bohm-Bawerk (1914). To some extent the idea can also be found in later discussions, for
example in the Lucas-critique. On the other hand, as a result of the self-imposed restriction
to follow a strictly mathematical methodology questions of power were left to the
disciplines of psychology and the social sciences.

Those economic theories which explicitly deal with questions of power, such as Marxian
theory where class struggle and distribution put power relations center stage (Foley 1986)
or parts of institutional economics, have been marginalized and are a small minority in
modern economics. In contrast, neoclassical orthodoxy limits itself to monopoly power of
companies and negotiating power of workers on the labor market in its understanding of
power, as the AS-AD model which can be found in every standard economics textbook
(Blanchard und Illing 2009). This view of power fully neglects the fact that in reality all
agents have a more or less pronounced power to assert their interest, be it in the market
process or by influencing the political and social framework. Finally, power can not only be
a means to economic actions but an end in itself (Rothschild 2002a).

2.3. Closure of economic models

An important body of literature has dealt with the problem of closure of economic models.
Closure is the task of making an under- or over-determined equation system, usually
including macroeconomic accounting identities, solvable. Therefore, “[...] prescribing
closures boils down to stating which variables are endogenous or exogenous|...]”(Taylor
1991, 41), as some behavioural equations need to be omitted to yield a determined system.
Already in 1956, Kaldor set out to investigate the model structures of different schools of
economic thought and thereby implicitly also discussed diverse closures of Ricardian,
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Marxist, Keynesian and Neoclassical models (Kaldor 1956). In a similar vein A. Sen (1963)
further showed that in fact Neo-classical and Neo-keynesian models of distribution can be
derived from the same equation system and differ in their essence the choice of which
equations are dropped i.e. in the assumptions about causality. Marglin (1987) on the other
hand approaches the problem from the other direction and argues that Neo-classical, Neo-
keynesian and Neo-marxist models have a common underdetermined core equational
system which is closed using different behavioural rules. More recently, Barbosa-Filho
(2004) investigated three alternative closures of Keynesian models with investment, net
exports or autonomous consumption as driving force of aggregate demand.

2.4. The invisible hand does not always lead to the optimum

Adam Smith’s analysis of the economy and his theory that egoistic behaviour of all agents
will lead to the optimal result in the end, often summarized under the metaphor of the
‘invisible hand’, is a central thought in economics until today. This is the case even though
many authors have shown that individual optimization does not necessarily lead to an
overall optimum. For instance John Nash, the founder of game theory, showed that
individually optimal behaviour can lead to stable equilibria which constitute the worst
scenario for all players (Nash 1951). Throughout the second half of the 20 century there
has been significant work, not least with experiments, trying to understand to what extent
such prisoners dilemmas play a role in reality as (Giza 2013) illustrates.

The method to describe problems of game theory with continuous time and differential
equations can be used also for more general problems in game theory (Cvitanic und Zhang
2014). Because of the characterization with differential equations the continuous-time
approach is usually easier to solve than the discrete time models (Sannikov 2007; Yuliy
Sannikov 2012)
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3. The basic principles and easy
examples

3.1. From Newton to General Constraint Dynamics (GCD) in
economics

What was the great achievement of Newton?
He brought the right terms into the right relationship.

What were the right terms?
The right terms were: time change of velocity V' , inertial mass M , physical force

f.

What was the right relationship?
Newton's law.

For J forces in dimension 3 Newton’s law reads as:
1 i .
v'=—> f’ i=123 <3.1>
M /:]
That is, the change in velocity v is equal to the reciprocal of the inertial mass M times the

sum of the forces 7/ . The sum of the forces is called the resultant (of the forces).

So, what do we need to do if we want to describe the economics?
Put the right terms in the right relationship.

What are the right terms?
The right terms are: time change of economic variable x, economic power

economic force f .

What is the right relationship?
General “ex-ante” Dynamics (GD).

For J economic forces and / economic variables this law reads as:

J
x'= 2t i=12000 =12, 3.2
j=1

That is, the temporal change of an economic variable x, is equal to the sum of the J forces
f; each weighted with the power factor g .
Constraints lead to additional forces acting on the "ex ante" dynamics. The dynamics under

consideration of constraining forces is called "ex post" dynamics. The theory of classical
mechanics under constraints was developed about 100 years after Newton by Joseph-Louis
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Lagrange. Constraints play a major role in economics, especially in the form of accounting
identities. Therefore, the Lagrangian theory of classical mechanics, is the correct basis to
develop a theory of the dynamics of economic processes analogous to classical mechanics.
We call the corresponding economic models General Constrained Dynamic models (GCD
models), see in particular chap. 3.3.

Now about the interpretation and relationship between inertial mass M and power factors
j

7

A physical force f does not directly lead to a change in velocity v . The change in velocity

is inversely proportional to the inertial mass M . A large mass causes the velocity to change
slowly, a small mass causes the velocity to change quickly. Each force "feels" the same
inertial mass, i.e. the inertial mass is independent of the force acting on it.

In the same way, an economic force does not directly lead to a change in the economic
variable x . The change in economic variable x is proportional to the power z’ an actor

has to change variable x, when acting with force f,’ to change x,. A large power causes

the velocity to change quickly, a small power causes the velocity to change slowly. That
means that the power factors can be interpreted as the reciprocal of the mass. In contrast to
physics, however, each force acts with a different power factor, i.e. the power factors depend
on the respective economic force. Because the power factors influence the respective time
change of the economic variables, they can also be interpreted in some sense as velocity
adjustment factors.

Some may argue that one cannot measure power factors and economic forces in economics
in the same way that one measures mass and physical forces in physics. This is only partly
correct. In principle, both quantities can only be measured by comparing the real change in
velocity or economic variables over time with the respective physical or economic forces.
In physics, this is easy because one can make the measurements in simple, reproducible
experiments. In economics, this is more difficult but not impossible in principle for two
reasons:

1. In contrast to physics, where Newton's law <3.1> has proven to be a generally valid law,
the formula <3.2> must first prove to be a useful law for describing economic systems.

2. In economics, as a rule, no simple experiments can be carried out. But the power factors
and also the economic forces, if one assumes the validity of <3.2>, can be determined in
any case in principle just like the mass and physical forces from the comparison of reality
with the respective best fit of the model <3.2> or <3.1>.

We have no doubt that what Kurt Rothschild (2002a) says about the importance of power
in economics is true: ,,In the end everything in economics is a question of power".
Therefore, in order to understand economics, it is absolutely necessary to formalize the
concept of power.

Of course, there is still much to be done in order to be able to determine economic forces
and power factors quantitatively correctly. In any case, however, all GCD models show that
qualitative changes in power factors and forces alone also contribute significantly to
understanding the economics.
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3.2. Utility functions in economics correspond to potential
functions in physics.

In physics, if a force f depends only on the spatial coordinates s, i.e. f = f(s) andcan

be represented as a gradient of a potential U , this force is called a conservative force. In
many cases, an economic force f can also be represented as a gradient of a function called
a utility function, denoted also by U . Such economic forces are called microfounded forces.
Utility functions in economics are thus the analogous terms to potential (functions) in
physics.

If in physics all forces in <3.1> are conservative forces, i.c.

. A j A j
1 (s)=gradU’(s) = oU(s) resp. f(s)= @
Si
equation <3.1> can be written as
J j
= LU s =12 <3.3>
M 0Ss,

j=1

In economics forces in <3.2> are typically microfounded, i.e.

oU’ (x) N oU’ (x)
o resp. f/(x)== ™

1

f(x)=gradU’ (x) =

In that case equation <3.2> yields the basic GCD equation system of ex-ante dynamics
for microfounded forces

J
x'=> ~ i=12,..,1 <3.4>

Note: in the general case the utility functions not only depend on x but may also depend
on the antiderivative X and the derivative x’. For more details see chapter 7.9.

3.3. Constraint dynamics in classical physics and economics

In many cases in physics and economics the solutions of the dynamic system are restricted

by a set of constraint conditions Z*. Thus equations <3.1> resp. <3.2> has to be extended
by equations

0=2" k=12,..K <3.5>
The theory of constraint dynamics was developed by Lagrange and D'Alembert.
Denote the space variables by

s, i=123
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then

Vv, =3;

1

Vi‘:S-”

1

If in physics Z = Z(s) or in economics Z = Z(X), which means that Z only depends on
the antiderivatives, the constraint condition Z is called holonomic.

To explain the principle, we will first discuss only conservative forces with one holonomic
constraint. (For non-holonomic constraints see chapter 7.9.)

Thus, in physics the Newtonian equation <3.4> has to be extended to

J J
=—L§:aU’“) i=1,23  j=12,..J
M=

0=2(s)

<3.6>

But this system of equations consists of 4 equations for 3 variables and is therefore generally
not solvable. Typically, 0 =Z(s) is an algebraic equation.

A method to make an unsolvable equation system solvable is called closure method.
According to Lagrange, to make this system of equations solvable, one must add an

additional variable A , called the Lagrange multiplier, and an additional force f“ , called
the constraint force (We call this method Lagrange closure.)

1 L oU/(s) 5
= +A
k M; ox, 4 <3.7>
0=12(s)

According to D’Alembert in classical mechanics it holds the following principle for the
constraint force
0z

F=— <3.8>
/ os

This principle is called D'Alembert's principle. It cannot be derived from Newton's axioms,
but is an additional axiom which has always proved to be fulfilled in nature like Newton's
axioms. D'Alembert's principle yields

. LEJ: oU’ (s) ) 0Z(s)
M Oox, Os <3.9>

0=Z2(s)

J=1

Typically, 0=Z(s)is an algebraic equation. Therefore, the equation system is called a
differential algebraic equation system (DAE).

For the economic system <3.4> with constraint 0 =Z(x) we get in complete analogy to
classical mechanics

fé aLﬂ(x) ,02()
ox <3.10>

J=1 i

0=ZG)
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For K constraints Z*, k =1,2,..., K <3.10> extends to the general GCD model equations
for the ex post dynamics

J J
_ Z ;OU(X) | N 14 02 (1) oZ'x) 1,21
Ox, k=1 ox, <3.11>

1 1

Z*(x) k=12,...K

Note: There are good reasons why D'Alembert's principle is probably fulfilled in economics
as well (see more in chapter 7.8.2.1).

In economics, a different closure method is sometimes used to make an overdetermined
system of equations solvable (A. Sen 1963): one omits some of the equations (we call this
method drop closure, see more details in chapter 18). This method is problematic, however,
because a lot of information is lost by omitting an equation.

As an illustrative example of constrained dynamics, we describe below the motion on an
inclined plane.

Denoting:

s,,8, the spatial coordinates,

v,,v, the velocity coordinates and

vl',v; their derivatives with respect to time

M the inertial mass

Ji»f, the coordinates of the forces exerted on the mass M
Z(s,,8,)=5,—S5, =0 the constraint describing the inclined plane

with 45°
A the Lagrange-multiplier

If f, denotes a horizontal force and f, a vertical force acting on a mass point with mass

M the movement of the mass point on the inclined plane is described by the following
Newton-Lagrange equations:

/ 1 oz 1
V1=Hf1+/16_:ﬁf1+ﬂ
1
—if 221, <3.12>
2 ds, M™’ '

Z(s,,8,)=s5—5,=0
. 1 1 . . 13 2
The respective first terms v /, und v f, describe the coordinates of the “ex-ante” force

. . oz oz : .
while the respective second terms A— and /Ia— describe the coordinates of the
X X;

‘constraint force’. The sum of both terms is denoted as “ex-post” force, as it describes the
factual resulting movement under the constraint.
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simple examples for constrained dynamics

physics: inclined plane economics: subsistence economy
s2 L
Z=51-s2=0 Z=C-L=0
i ex post f ex post
------- » f1 =====\¢== more consumption
1 1
v \
2 fexante less labour fexante
sl C
s1 spacial coordinate (stock) L labour (flow)
s2 spatial coordinate (stock) C consumption (flow)
Z=s1-s2=0( inclined plane) Z=C-L=0( accounting identity)

fexpost =fexante+ [
=fexante+.gradZ

The analogy between a constrained dynamics in physics and a constrained dynamics in
economics can be illustrated by the following simple example from economics. For a
subsistence economy, where everything produced by labor L is also consumed, the
accounting identity L = C holds. If f, describes the interest to eat more (i.e. if on the given

state (C,L) the force f, is applied) and f, describes the interest to work less (i.e. if on

the state (C,L) additionally the force f, is applied) and both power factors are set equal to
1/ M , formally the same system of equations results as for the dynamics on the inclined
plane. We discuss other formally identical models from economics in chap. 18.2.

The interaction of force field, constraint, ex-ante dynamics, ex-post dynamics and steady
state, can also be illustrated by the following graph.

constrained dynamics in a vector field of forces \

— field of force

== ex antedynamics 08}

->ex post dynamics e
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4. Model Equations of General
Constrained Dynamic Models (GCD
models)

4.1. The general structure of GCD models

For any number of agents (independent from the fact whether these agents are individual
economic agents or a representative agent for a certain group or sector) the general concept
of GCD models can be described verbally in the following way:

e Starting from an economic state at time ¢ , which is described by / variables x,
(i=12,..,1),everyone of J agents (j=1,2,...,J) isinterested in changing this state
and has an economic power ,uij to assert his interest.

e Therefore, every agent j employs an economic force fl.j to change the variable x, in
the direction which is beneficial for him. The effective force is directly proportional to

the economic force fij he employed and his economic power /,t{ . The resultant of all
forces and power factors determines the ‘ex-ante’ dynamics.
e K constraints Z* (k=1,2,...,K)such as accounting identities evoke K additional

constraint forces for each variable x,. The ex-post dynamics is determined by /.J

interest-led forces f;/ times the power factors ,uij plus /.K constraint forces. The

constraint forces are given analogously to classical mechanics as the K Lagrange
multipliers times the gradient of Z*

The models can be formulated much more easily by using continuous time differential
equations instead of difference equations. In general, however, an equivalent formulation in
discrete time would always be possible, but using the strong theory of differential equations
1s much easier and more convenient. Moreover, this reveals the analogies with physics.
Adding stochastic terms to the GCD models would not pose any problem. For reasons of
simplicity this will not be done in the following.

The general equation system of GCD models is

J K k
xi'=2uifﬁf<x)+21k@ [=12...1
j=1 k=1

i

<4.1>

0=27"(x) k=12,.,K
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The use of accounting identities as constraints means that GCD models are always SFC
(stock-flow consistent). Typically, economic forces can be modeled as gradient of utility
functions (see next chapter 4.2). In this case GCD models are also microfounded because
the behavioural equations arise from the microeconomic utility optimization of market
participants.

Remark 1: infinite power results in algebraic equations

When for a certain i,and a certain j, it holds that ,ul.f’ — oo, then divide in <4.1> the

equation i =1,

07" (x)
ox,

ly

J K
x =2l fI )+ A <4.2>
j=1 k=1

by yl.’()"’ and let ,ul.fob — oo . This yields the algebraic equation:

0=/"x)

This means that also algebraic behavioural equations can be interpreted as GCD behavioural
equations with infinite power factors.

Remark 2: Additional behavioural equations are necessary for parameters in
constraint conditions

If an additional variable p occur in the constraints that do not occur in the ex-ante
equations, i.e. if the system of equations initially looks like this

J K k
X, ':Zﬂlif;;(x)_FZlkw
= P ox,

O=Zk(x,p)

then there is one more variable than equations. Therefore, to create a complete GCD model,
an additional behavioral equation is necessary which is linearly independent of the other
equations. If there are several additional variables, an additional behavioral equation is
necessary for each variable. This behavioural equation can be a differential equation or an
algebraic equation (see Remark 1)

This leads e.g., to

J K k
=Sl e W
0 = 0 1o — axlb
J ) ) K azk X,
pr =Yl f e pye Yt LR
=1 =1 op
0=2"(x, p)

or
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ox,

b

J K k
A WIAEI W

0=7,(x,p)
O:Zk(x,p)

How to proceed with further additional variables (p,, p,,...) in the constraints is obvious.

Remark 3: Interpretation of power factors as adjustment speed factors

If for a given i, and a given j, , ,ul{ =0 is true for all j # j, then the differential equation is

07" (x)
Ox,

b

K
x, "= lui]j‘ filj‘ (x)+ Zﬂk
k=1

In this particular case, the power factor ,Lz,:l"‘ can be interpreted as the adjustment speed

factor. This interpretation is however only partially adequate because a variable does not
adjust on its own, it can only be adjusted by actions of an agent. Thus, the factors g are

therefore rather characteristics of the agents than of the variables and can however very well
be interpreted as the power of agent j to change variable x, when applying a force f;’.

Remark 4: Constraint conditions depend on time derivatives of variables

If a constraint depends not only on x = (x,,x,,....x;) but also on x’'=(x,x),....x,) or higher

derivatives x" = (x/,x5,....x7), .....

0=2Z(x,x",x",....)

the constraint forces are always to be derived from the highest time derivative of the
variables (Flannery 2011), i.e.
Z(x,x' Z(x,x'
0Z(x,x) instead of wres

!

Oox; X,
6Z roon aZ roon <4'3>
ox, ox,

1 l

Remark 5: non vertical constraint forces

In most cases in economics, it is plausible to model the constraint forces analogously to
d’Alembert’s law in physics as Lagrange multiplier times the gradient of the constraint
according to <4.1>. But in economics d’Alembert’s law is not to hold as an Axiom like in
physics. But in economics, d'Alembert's law does not apply as an axiom as it does in physics.
Another type of constraint force that can occur, especially in the case of a constraint force
describing a limited resource, is a constraint force that is central to the origin. We therefore
refer to this as a "central constraining force" (more on this in chapter 7.8.2.2).
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4.2. GCD-models with individual utility functions

For economic models the case in which the economic forces can be described as gradients
of individual utility functions U’ of an agent ; is of special importance.

ou’ (X)

f/(x)=gradU’(x) ie. fl(x)= fori=12,..,1

i

The path-independent economic force grad U’(x) associated to the utility function U’ (x)
describes the “rational” preferences of agent ;. For these cases the basic system of GCD
equations for ex-ante dynamics <3.2> reads as

i an(x)

Jj=1

1=12,..,1 <4.4>

and the general system of GCD equations for ex-post dynamics reads as

i aU’(x) /1,( 0Z"* (x) B
= Ox. h <4.5>

1

0=2"x) k=1,2,.,K

l

This system of equations can be interpreted in the following way: the more an agent’s
individual utility will increase, the higher will be the ‘rational’ preference respectively the
economic interest and thereby the economic force an agent will employ in order to change
a variable. The factual change arises as a resultant of all these forces and the constraint
forces. It is thus the resultant force of the agents’ individual optimization strategies.

4.3. GCD models with a master utility function

Adam Smith assumed that in a market economy the "invisible hand" leads to an optimal
outcome for all market participants, or in other words: If each market participant tries to
optimize his individual utility, this leads to the maximization of overall utility. To discuss
this problem more formally, we define the following terms:

e aggregability of utility functions,
e master utility function and
e overall utility function

We call utility functions U’, j=1,2,...,J to be “aggregable” iff there exists a “master
utility function” MU such that

S oU (x) _ aMU ()
" Ox ox

J=1 i i

<4.6>

In this case the basic GCD equation system of ex-ante dynamics for microfounded
forces are
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L oU/(x) oMU(x) ,
=S - i=1,2....1 <4.7>
' ZM Ox. ox

j=1 i i

With respect to the master utility function MU to major questions arise:

1. Under what conditions exists such a master utility function

2. Under what conditions does maximizing the master utility function also lead to
maximizing the overall utility, if this is defined as the sum of the utilities of all agents?
That means, the overall utility is an unweighted utilitarian (or Bentham) social welfare
function.

To get a deeper understanding of question 1. one has to go into more theoretical details.

In physics the Helmholtz decomposition of forces in 3 dimensions is well known. In
general under certain (mild) conditions all forces depending on variables y ={y,,,, ..., );}
not only in dimension 3 but in any dimension can always be decomposed into a gradient
V()
Oy
decomposition for any dimension (Glotzl und Richters 2021b; 2021a). For our purposes in
economics, it is not necessary to describe the rotational force 7 in more detail. Helmholtz
decomposition means that a utility function U exists such that

ov(y)
Oy

force g= and a rotational force r by means of the so-called Helmholtz

SO =g +r(y)=

+7r(y) <4.8>

If the rotational part » of the force f isequalto »=0, f is called rotation-free. Then

v

fzg—g

Note: In this case f is path-independent and the so-called integrability conditions are
fulfilled.

Applying this to the economic force f (the resultant of the individual forces)

-oU’ (x)
J
P 1’Ui 8)6‘

1

f= <4.9>

J
j=

one gets the fundamental answer to question 1.:
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U’, j=12,...J are aggregable <>

J 'an
S f = Z,ul.’ %, i=12,..,1, is rotation free <
J=1 X
S f=(f;, fos-s [;) is path independent <4.10>

of of;
& rotation densities Y _ L =
Ox; Ox,

foralli=12,.,1, j=12,..,J

0

For practical application, the following 3 sufficient conditions for aggregability of
individual utility functions U’ are very valuable.

For simplicity we formulate these conditions for two individual utility functions U, U”

with two variables (x,,x,) and individual power factors g, 1", i, 113 .-

A master utility function MU exists such that U”, U” are aggregable, i.e.

,UA aUA(xpxz) + ‘uB 8UB(xl,x2) _ MU (x,,x,)

l Ox, 1 ox, ox, 411>
L 0U" (x,,x,) 50U (x,,x,) _ OMU (x,,x,)
Hy —— T H =
ox, ox, ox,

if one of the following 3 sufficient conditions is fulfilled:

1. ,, linear ”:
A A A
If U'(x,x,)=a,+ p/x,+ p,x,,
UB(xlsxz) =b, + plel + pfxz
= MU(x,,x,) =
=ay + (' pl' + 1 p))x, + by + (15" py + 1 py)x,
is a master utility function

2. ,,independent “:

I U (x,x,) =U"(x)
U”(x,,x,)=U"(x,)
= MU (x,%,) = U (x) + p2U” (x,)
is a master utility function
Note: If x, =x”, x, = x” (which means x, is a variable which describes a property of 4
and x, is a variable which describes a property of B respectively U* depends only on x”

and U’ depends only on x”), the condition ,,independent can be called “self-related”.
In many practical cases this property is assumed to hold for the individual utility functions.
Therefore, in these cases a neoclassical approach is reasonable. But especially for prisoner
dilemma situations utility functions are not self-related.

3. ,,uniform power “:
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fu'=u'=w  and p’ =g =
= MU(x,,x,) = ' U"(x,,x,) + 1’U" (x,,x,)

is a master utility function

These 3 sufficient conditions can be easily proved by calculating <4.11>.

Defining overall utility as GU :=U" +U” it becomes clear from the above examples that
in general GU # MU and that the maximization of the master utility function MU does
not necessarily lead to a maximization of the overall utility function GU . As an answer to
the second question, it is immediately apparent from the above conditions that the following
applies

1. If all @/ =1 = MU =GU

2. 0f all i/ = = a) MU = uGU

b) MU maximal < GU maximal

If the utility functions U”*,U”® are aggregable to a master utility function MU and
MU = GU the basic GCD equation system for ex-ante dynamics is

,ou’ 5 0U” oMU
[x;] M ox, e x|
X)) |, eu” LoUP | | eMU |
=y * ox, o,
<4.12>
oGU oUu*+U")
ox, ox,
1 OGU | | ot +U”)
ox, ox,

This equation system represents the fact that in the case of aggregable utility functions (with
MU =GU ) the “individual optimization” strategy (in the sense of GCD models) is
equivalent to an overall utility maximisation' strategy.

Neoclassical General Equilibrium Theory (GE) is another form of an individual
optimization strategy. We discuss the relation between the individual optimization strategy
in the sense of GCD models, the overall maximization strategy and the individual
optimization strategy in the sense of GE Theory in chapter 6.
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5. GCD as a metatheory of economic
model structures and economic
theories

5.1. Basic principles

Model building can basically serve three different targets:

1. the process of insight including a qualitative forecast of the future or
2. the quantitative forecast of the future or
3. the control of the system to achieve an optimal behaviour in the future.

The most important target in the education of economists is to understand economics. In the

sense of 1. it is therefore essential to deal with the formation of economic models.

In order to understand the fundamental differences of different model structures, the
description of model structures in a unified framework is of great advantage (metatheory

of economic model formation)

In order to understand the fundamental differences of different economic theories, the
description of the different economic theories in a unified framework is of great advantage

(metatheory of economic theories)

5.2. Metatheory of economic model building

1. The economy is a dynamic system in which time-dependent flows "flow" from one node

("agents", "aggregated agents", etc.) to another node and lead to temporal changes in the
stocks ("balances") of the nodes. Therefore, every economic model is initially
characterized by which flows one considers. This automatically determines which nodes

and thus which stocks are considered.

2. The dynamics of the flows and other variables (prices, other parameters, etc.) is

determined by:
2.1. behavioural equations for the variables, which can be formally
represented in the following form:
2.1.1. differential equations
2.1.2. algebraic equations
2.1.3. decisions (especially for ABM and game theoretic models)
2.2. accounting identities, which are formally algebraic equations

3. There are 2 types of behavioural equations
3.1. determined by the influence of agents (""'microfounded")
3.2. general without reference to single agents (''not microfounded'')
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4. The influence of an agent on a variable (flows, stocks, prices, parameters, etc.) is
described by
4.1 his interest in changing this variable (the higher his interest, the
higher will be the "economic force" f he will spend to change the variable

according to his interest).
4.2. his economic power L to enforce his interest.

5. The interest or economic force that an agent exerts is described as the sum of rational
interests (forces) and irrational interests (forces):

5.1 Rational interests or rational economic forces are described by
gradients of utility functions. This means that the forces are path-independent.
5.2 Irrational interests or irrational economic forces cannot be
described as gradients of utility functions, they are described by the rotational part
of the Helmholtz decomposition of the force (see chapter 4.3). This means that the
forces are path-dependent.

We propose General Constrained Dynamic Models (GCD) as the basis for a novel and
encompassing understanding of economic models from a mathematical and theoretical
perspective. This basic structure, in which (almost) all economic models can be
embedded, can be formally described as a differential-algebraic system of equations.
Beside of game theoretical models and ABM models almost all mathematical structures
used for economic models can be regarded as special cases of a GCD model. It has to be
taken into account that GCD models can be extended in a natural way by a stochastic part
or can be transformed into difference equation systems by discretization of time.

A simplified overview of the most important mathematical structures for the description of
economic models can be found in the following table.

Unified look at mathematical structure of economic models
because of simplicity without constrained conditions

0= 280 equilibrium GE
xl = % shock to equilibrium dynamic GE
' aMU(x) _ . . . . .
xX; = H; Tadjustment velocities u; (sticky prices etc.) Neo-Keynesian GE
" ja U (x) J— . j . o
xX; = Z]- i power factors y; , utility functions U GCD with utility
x; =2 u{: f/l: general economic force f’l: GCD general force
y;— =f; not agent based general economic forcef ; Post-Keynesian

In principle, DSGE models can also be seen within this framework. Essentially, it is not an
ordinary master utility function but an intertemporal utility function, i.e. the time integral of
a discounted master utility function. This variational problem leads to the Euler equations,
which are behavioural equations describing the dynamic behaviour of the economic system.

In section E. chapters 24 - 27 we show that GCD models can be modeled not only with
ordinary utility functions, but also with intertemporal utility functions such as those used in
DSGE models.
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5.3. Metatheorie okonomischer Theorien

The ideas of Amartya Sen in (A. Sen 1963) can be seen as the first meta-theory for economic
theories. He shows that economic theories differ precisely in which variables are considered
exogenous and which variables are considered endogenous (see also chap. 18.3)

In the structure of GCD models, the difference between different economic theories arises
precisely from the different assumptions about the power factors z , i.e., from the different

assumptions about the economic power of the different agents j; with which they can
influence the different variables x, . In particular, this is an extension of the metatheory of
Sen. The assumption that one of the agents ; has complete power to determine the value
of a variable x, means that the corresponding power factor is g/ = oo. This just leads to the
fact that this variable x, is to be considered exogenous. If for a given i the power factors

w are g/ <oo forall j , this means that the variable x; is endogenous.

If for a given i the power factors g/ =0 for all j, then the corresponding variables x, are

not influenced by agents but only by constraints, which means that they are influenced only
by "pure" market forces. Formally, in these cases, the corresponding behavioural equations
can be omitted. This is exactly in line with Sen's procedure to characterize the different
economic theories. The omission of equations can be called drop closure (see chap. 2.3 and
18). For more details see chap. 18.3 and (Glotzl 2015).

Here, an advantage of GCD models becomes quite apparent. Implicit in many economic
models is often an assumption of one-sided power relations as in detail is explained by
Richters und Glo6tzl (2020) along the model SIM of (Godley und Lavoie 2012). In reality,
however, power relations are usually not one-sided but mixed. With GCD models, reality
can be better described, because they can be used to describe not only one-sided power
relationships, but also mixed power relationships.

5.4. Resumé

Models are indispensable for a better understanding of economics.

In order not to be confused by the variety of models, a clear distinction must first be made
between model structure and the substantive assumptions with which a model structure is
filled (i.e., economic theories).

In order to understand the fundamental differences of various model structures, it is of great
advantage to describe the model structures in a unified framework (metatheory of economic
modelling)

In order to understand the fundamental differences of various economic theories, the
description of the various economic theories in a unified framework is of great advantage
(Metatheory of Economic Theories)

General Constrained Dynamic Models (GCD models) can be considered as the basis for
both a metatheory of economic modelling and a metatheory of economic theories. GCD
models are therefore the basis for being able to represent the most diverse views on
economics in a unified framework in the sense of a pluralistic economics.
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The economic mainstream, on the other hand, is characterized, among other things, by the
fatal "maximization assumption" that forms the basis of general equilibrium theory. This
maximization assumption is fatal because it leads to a very simplified model structure that
cannot be filled with substantially different economic content, such as different power
relations. Moreover, it tempts economists to analyse economic systems almost always from
the point of view that they are in equilibrium. However, this is usually not the case for real
systems.
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B. Microeconomic models
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6. Microeconomic example:
Edgeworth-Box

6.1. General description

An important and instructive example of a GCD model can be derived from the Edgeworth-
Box. An Edgeworth-Box is a graphic tool in microeconomics designed to describe the
equilibrium in a pure exchange economy with only two agents A, B and two goods, good 1

and good 2. x',x;',x”,x) denote the amounts of goods 1, 2 of the agents A, B. The utility
function U" depends only on (x;*,x;") and U” depends only on (x*,x?),

U (x',x;)

U (x', %))
The allocation of goods 1, 2 of agents A, B before the exchange is called endowment and
denoted by x,'0, x;'0, x”0, xJ0. The agents reach a Pareto optimum by trading along an

<6.1>

unknown unspecified process called tatonnement. All Pareto optima lie on a curve called
the contract curve. In these Pareto optima, no agent's utility can be increased without
simultaneously decreasing that of another agent. In the standard general equilibrium (GE)
model an auctioneer is assumed to set the prices such that there is no excess supply and no
excess demand. This special Pareto-optimum is called general equilibrium.

General Equilibrium Theory makes no assertions about the tatonnement, i.e. the way how
the general equilibrium is reached. The nature of an GCD model lies exactly in describing
the dynamics of the tatonnement. Obviously, in the general case, it is not possible to predict
the tatonnement on which the agents negotiate, whether they reach a stationary point or
whether they reach a mutually beneficial outcome (Pareto optimum) or the maximum of an
overall utility. However, it is reasonable to model the typical negotiation path of two agents
in terms of a GCD model as follows:

The negotiation strategy of both agents is based on optimizing their individual utility
function under constraints. Each agent will therefore employ an economic force in the
direction which corresponds to the highest increase of his utility function. The more his gain
in utility, the higher will be the force he employs. The direction and magnitude can be
described by the gradient of the utility function, which is perpendicular to the lines of
constant utility. The extent to which an agent can achieve his goal does not only depend on
the force he and the other agent employed, but also on their respective economic power.
The ex-ante change in the allocation of goods will therefore be directed towards the resulting
force of the economic forces employed by the agents, weighted by their respective power
factors. To get the ex-post change one has to add the constraint forces, which arise from the
so-called budget constraints and the constraints which guarantees that excess demand and
excess supply are zero. Since budget constraints depend on the prices of goods, a complete
model requires behavioral equations for prices that correspond to the bargaining process or
the behavior of an auctioneer.
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Simple microeconomic example: Edgeworth Box
2 Agents with 2 utility functions are trading 2 goods

GE Model GCD Model

Me Maximum utility AJ
good 20f B o
ly Utility isolinesB Utility isolineB
A
good 2 of A

Paretoset
Contract curve

Utility.isolinesB Utlity isoline A

k Maximum utility B

M

good 1of A good 10of B 1

unknown trading course (tatonnement) modelling typical trading course (tatonnement),
g general equilibrium depends on economic power

M;,M, total amount of good 1,2 s stationary point

6.2. Aggregability, maximum of overall utility, contract curve

Note that U” depends only on (x,x;) and U® depends only on (x”,x?). Thus, the
utilities are “independent” resp. “self-related” (see chapter 4.3). If

A _ A4 _. A
My = My =

<6.2>
B B B
'ux,B = /uxg =H

then the utility functions U*,U” are aggregable to the master utility function
MU = MU (", x)',x",x)) = p'U* (', x)) + p°U P (5, x))

because

y GUA(xlA,xf) :/JA 6UA(x]A,x2A) oMU

u ox;! ox;! ox;!
s OUP(x7,x2) o oU" (x',x5") _ oMU
X ox] o o
y GUA(xlA,sz) B B@UB(xlB,xf) oMU
& ox; e ox; - ox;
s OUP(x],x))  ,0U°(x',x;) oMU
& oxy e oxy - oxy

If 4" = 1® =1 the master utility MU equals the overall utility
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GU=U"+U?".

Typically, the utility functions are assumed to be of the Cobb-Douglas-type

at l-a*
UA(xlA,x;):(xlA) (x;)( ) 0<a’<l
<6.3>
a? 1-a?
UB(xf,xf)=(xlB) (xf)( ) 0<a® <1
In this case GU is convex and has a unique maximum (max;',max;,max],max.) in the
region x> 0,x;' >0,x" >0,x7 >0
The following graphics show the isolines of

U with a® =0.4, U® with ® =0.6, GU=U"+U?* ,

the red point is indicating the unique maximum of GU .

utility UA utility UB
T N 1 10T T T T T T overall utiity GU=UA+UB,
(1) . . A Maximum o f GU
HEERE \ \ \ N
LN N\ ~
o8kt |\ \ . N 08
L\ \ A\ N 08
o\ N ~
|\ \ ~
osFf |\ \ AN N 06
| \ AN N N 06
\ \ ~ 0
| N :
04t | \ . - 0.4
[\ N\ > — 04
\ ) i
02 \ —~—_ 02 \
\ N — 02
N — —
0.0F 00, . , , , 1 00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 0.4 06 08 10

Let M,,M, denote the total amount of good 1,2 then for the overall utility GU written in
amounts of good 1 results

GU (') =U () + U (M = x', M, = x)) =
=) () () (o)

and for the maximum of GU holds:
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_ 0GU(max;',max;)
omax;"
_ oU " (max;',max3') N oU* (max;',max3") _
omax;' omax;'

= (max? ) (mant )" -

-a’ (M1 — max;' )(a ) (M2 — max; )(l_a )

0

A A
_ oGU (max,” ,max; )
omax;
_ oU " (max;',max3") N oU* (max;',max3") _
omax; omax;

= (1 - aA)(maxlA )(a )(max; )(ﬂl ) -

—(1 - aB)(M1 — max;' )(aﬂ) (M2 — max; )(_ag) <6.4>

0

The Pareto optima and thus the contract curve is defined by the fact that the gradient of the
utility function of A is directed opposite to the gradient of the utility function of B, i.e.

ou” ou”’
ox;! ox;'
=0 for some 6 >0 <6.5>
ou” ou”’
ox; ox;
This results in
A B
0o aUA N 56UA _
Ox, Ox,
=t (max! )\ (maxs ) -
-5a’ (M - max,' )(QE ) (M — max; )(HB)
1 1 2 2
<6.6>
A B
0 8UA N 58UA _
ox, ox,

= (1 - aA)<max,A )(aA) (masz )(70/4) -
—5(1 — Otlg)(M1 — maxlA )(aB) (M2 — masz )(_aﬁ)

Obviously with 6 =1 the maximum of GU lies on the contract curve and is identical
with the maximum on the contract curve.
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6.3. (Static) GE model

Denote x,'0, x;0, x”0, xJ 0 the endowment (the amounts of goods 1, 2 of the agents A, B
before exchange),

x',x,x”,x? the amounts of goods 1, 2 of the agents A, B
U'(x,x)and U?(x?,x?) the utility functions of A, B
p=(p,, p,) prices of good 1 and good 2.

There are 2 equivalent formal descriptions of the GE model:

e the standard description: individual optimization of both agents under budget
constraint + no excess demand

e the alternative description: individual optimization of one agent under budget
constraint + Pareto-optimum + no excess demand

6.3.1. Standard description

For any given price p Agent A maximizes his utility U” under the “budget constraint”
0=2"(x",x}, p»p,) = px' + p,x; —(px 0+ p,xi0) <6.7>
For any given price p Agent B maximizes his utility U” under the “budget constraint”
0=2"(x".X,. pi»Py) = Xy + P,%, (P 0+ p,x; 0) <6.8>

This yields the first order conditions

A

Bl: ozaUA—/lAp1
xl
ou”

B2: 0= 21
6x;l P
out

B3: 0=—1—=-21%p, <6.9>
ox,
oU”

B4: 0= -1
ﬁx; P

z': OZZA(xlA’x;:plspz):plxlA +p2xf—(p1xf0+p2xf0)
Z°: 0=Z%(xl,x),p,p,) =P+ pyx; —(px 0+ p,x; 0)

Since the total amount of good 1 and the total amount of good 2 do not change as a result
of the exchange, the following constraints must be met:

Z: 0=z, x)=x"+x"-(x'0+x"0)
Z,: 0=z,(x,x))=x +xJ = (x/0+x70)

z,,2, describe the excess demand (z, >0 ) resp. excess supply (z, <0) of good 1,2. The

<6.10>

conditions Z,, Z, therefore describe the assumption that in equilibrium the excess demand
resp. excess supply for both goods are zero.
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Since the conditions Z*,Z”,Z,,Z, are linearly dependent one of these conditions can be

omitted. Therefore only the relative price P2 s determined by the equations of the model.

2
Usually one assume that good 1 is a numeraire, which means p, =1.

With GU =U" +U” the equation system <6.9> + <6.10> yields the equation system for
the general equilibrium g/, g;,g’, g?

maximization of GU under budget constraints Z*,Z"
ou' oGU

Bl: 0= A'py=—-2"
A
B2: OzaUA—/1Apz=6G—[AJ—}»AID2
0g; 0g;
B
B3: O:8UB —xprlzaG—(B]—/prl
og, g,
B
B4: 0 ou —przzaG—U—ﬂsz

" og]
budget constraints
z': 0=Z"(g" g pp) = pgl + 0.2 —(pg' 0+ p,gl0)
z": 0=2"(g/.g),pp) =& + 1.8 —(pg 0+ p,g;0)
excess supply conditions
z,: 0=z(g.g’)=g'+g —(g'0+g’0)

Z,: 0=z(g.8))=g; +& —(g/0+g0)

<6.11>

The equation system <6.11> for the general equilibrium consists of 8 equations for 8
variables (x/',x;,x”,x2, p,, p,, A", A%). If the utility functions fulfill the SMD-conditions

(Sonnenschein, Mantel, Debreux conditions) there exists a unique solution. Since the
conditions Z*,Z" ,Z,,Z, are linearly dependent one get a solution for

4 A B B Py 44 5B
(xl ,X2 7x1 9x2 5_7/1 9/1 )
1

Assuming good 1 to be a numeraire, i.e p, =1, the solution for the Cobb-Douglas-type

utility functions <6.3> is given by

pl -1,

2 gla0+glb0—glaO0aa—glbOab
p g2a0aa+g2b0ab

)

aa(—-g1b0g2a0(—1+ab)+g1a0(g2a0+g2boab))

g2a0aa+g2b0oab ’
5 (—1+aa)(—glb0g2a0(—1+ab)+glao(g2ad+g2boab)) <6.12>
gla0(—1+aa)+g1bo(—1+ab)

gla -

g2a


https://www.dropbox.com/s/09xshhos19uz7lr/L%C3%B6sungen%20GE%20Version%203.nb?dl=0
https://www.dropbox.com/s/09xshhos19uz7lr/L%C3%B6sungen%20GE%20Version%203.nb?dl=0
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5 (g1bo(g2b0+g2a0aa)+g1a0(g2b0—g2boaa))ab

g2al0aa+g2b0ab
g1b0(g2b0+g2a0aa)+g1a0(g2b0—g2b0aa))(—1+ab)

gla0(—1+oaa)+glb0o(—1+ab)

glb

)

g2b—>(

6.3.2. Alternative description

Conditions B3, B4 can be substituted by the condition that the general equilibrium must lie
on the contract curve. If the utilities U ,U”* are given in coordinates of good 1, the contract

curve is defined by the condition that the gradient of U* is opposite to the gradient of U”:

contract curve condition : it exists o > 0 such that

_ U (g, gd)

cl 0 L2022 4
agl
+56U3(gf0+g]BO—glj,ngO"‘ng_ng) <6.13>
0g,
A A A
C2 0=M+
agz
50U (g'0+8/0-g".g/0+g70-g)
og;

6.4. (Dynamic) GCD models

6.4.1. Basic equations

If one uses the same utility functions as in the GE model, one obtains, according to <3.4>,
as GCD ex ante equation system

2 OU (" x)

Bl: x' = put
P ox;!
B B B
Bl: xlB' =i, U (%) (xlB,xz )
§ ox,
AU <6.14>
' U'(x],x;)
Bl: x)'=pf /122
2 Ty o}
B B B
Bl: xf' =y —GU (xlB,xz )
& ox,

For the GE model the budget conditions are formulated for the stock variables x/',x;',x”, xJ
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Z': 0=Z"(x".x),p,p,) =
= px + p,xi = (px0+ p,x;0)
<6.15>
Z': 0=Z2"(x/.%),p.py) =
= px + pxy = (px 0+ p,x; 0)

Since in the GCD model the prices changes over time, one must formulate the budget
conditions for a differentially small exchange. This leads to the budget condition for the

flow variables x ', x;' ", x” ', xJ"

Z™: 0=Z"*(x"\x)", p,p,) = px "+ p,x} <6.16>
Z%: 0=2"*(x'"\x] "\ p.py) = px. '+ poxy!

The conditions for the excess supply can be formulated equivalently for the stock variables
Z:  O0=z(x",x)=x"+x - (x'0+x]0)
Z,:  0=z,(x),x))=x +x) —(x{'0+x70)
or for the flow variables
Z*: 0=z *(x""\x'N=x""+x""
x'(0)=x"0
x(0)=x5'0
Z*: 0=z, *(x) "\ x2 ) =x]"+xJ"
x(0)=x/0
x2(0)=x70
Note that the budget constraints <6.17> depend on p,, p,. Therefore, according to remark

<6.17>

2 in chapter 4.1, 2 further behavioral equations are required to obtain a complete model.
Any 2 behavioural equations for p,, p,can be used. This results in the following GCD ex-

post equations:
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A aUA(xlAax;)

B1: xlA':,uA—A+ﬂf1pl+ﬂ1
i Oox,
, oU(x*, x2
B2: sz = ,uﬂ —(xlA’xz ) + /IAp2 +A,
° ox,
B B B
B3: x¥ =45 U (x5, %) (xlB,xZ) +A%p + A,
X axl
B B B
B4 xf' = IuBB —aU (xlB’xz) + +/13p2 +4,
n 0ox,

BS:  behavioural equation for p,

B6:  behavioural equation for p,

Z'%: 0=Z"*(x""\x!" p.p,) = px/ "+ pyx”
Z%: 0=Z"*(x'\x)\ p.py) = px '+ poxy !
Z: 0=zl(x1A,xIB)=x1A+x15—(X1AO+xlBO)

Z,: 0=z, x))=x +x) —(x]0+x70)

We now discuss some possible behavioural equations B5, B6.

6.4.2. Model 1

<6.18>

The auctioneer P knows the general equilibrium price p,, p, and tries to change the actual

price p,, p, with a force which is proportional to the difference of the actual price and the

equilibrium price. This is equivalent that he acts with a force which is proportional to the

gradient of the utility function

1 _ 1 _
UP(pUPZ):_E(pI _p1)2 _E(pz _p2)2

P P . :
and a power u,,u, to influence the price.

<6.19>

To simplify we assume good 1 to be a numeraire, i.e. assuming p, = p, =1From <6.12>

results

(l—aA)xlAOJr(l—ab)xlBO
P, =

a’x!0+a’x20

This yields the behavioural equations for p,, p, :

B5: p =1
ou’
. r _ P _ P = _
B6: b, = H, apz _/Jpz(pz_pz)—
l1—a”)x'0+(1—-a”)x’0
=u;;(( )L (=a)s - p,)

A b_B
a’x,0+a’x,0
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6.4.3. Model 2

Again, we assume the good 1 to be a numeraire, i.e. p, =1.

The auctioneer tries to change the actual price p,, p, with a force that reduces the excess
supply. The model is described in detail in (Glotzl, GI6tzl, und Richters 2019). It results in

B5 p =1

1 oU* oU*
B6 = | ——— |u - +
P ””2{1+(p2)2j”[ax; P ax;*j
L 1 s[0U° oU”
Hr, 1+(p,)’ # oxy & ox;’

6.4.4. Model 3

In reality, price negotiations usually follow the following pattern: If A sells a product to B
then A proposes a selling price p; that is advantageous for him and B also proposes a

purchase price p. that is advantageous for him. Depending on the negotiating power
(negotiating skill) /1;12 and ,ufz of A and B, respectively, a weighted average value for the

price p, is agreed

A B
2 lLl 2
P=— P Dy
'uPz ’upz P2 P2
ou” . . . . . 4 . v .
If e is high A will offer a high selling price p; and if —- 1is low B will offer a low
X, X
purchasing price pi , For the sake of simplicity, we can therefore assume that
ou”
ou* ou” ox;'
A — A A — A :1 = A — 2
P2 ox; P ox;! P =50
ox;!
ou’
ou’ ou’ oxy
B — B B — B :1 = B — 2
P =P o PrmP TG
ox;

This results in model 3a
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B5 p =1
A B
My, M,
B6 p2_ A . B 2A+ A . B f_
’upz +'uPz 'upz + P2
ou” ou”
_ /1;12 6x; ,U,i 6xf
Hy, ¥y, QU iy a1y, OU
ox;! ox)

However, it is also possible that this price does not arise immediately, but that the price
negotiation process causes the current price to move in the direction of this desired price.
This results in model 3b and can be modelled by the behavioural equation

ou” ou”’

ﬂ;,qz ox; N /li ox?
A B

Hy, My, OU™ iy + 1, OU
ox;! ox;’

B6 py'=H

2

: 1 o . .
Here p is a parameter such that — expresses the rigidity of prices. g —> oo results in
U

B6 — B6

6.5. Numerical calculations

Note:

In model 1 and 2 " is a measure for the power of the auctioneer. For #” =0model 1 and
model 2 are equivalent

. 1 .y .
In model 3b 4 is a measure such that — expresses the rigidity of prices
U

Model 3a corresponds to model 3b with z — oo

The following graph shows the tatonnement of model 1,2,3a,3b for

power factors u=u=0

endowment x' =30 x' =5
x) =10 x; =20

start price po =1

power factors =15 u’ =

Cobb — Douglas parameter o =0.3 a’=0.6


https://www.dropbox.com/s/5ja8lrbkwb9iqb0/Edgeworth%20%20Buch%20model%201%2B2%2B3%20Version%203.nb?dl=0
https://www.dropbox.com/s/5ja8lrbkwb9iqb0/Edgeworth%20%20Buch%20model%201%2B2%2B3%20Version%203.nb?dl=0
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The x-axis is x;' , the y-axis is x, .
The contract curve is black dashed.

Isolines of U” are blue, isolines of U” are green, Isolines of the overall utility
GU =U" +U” are brown

The green point is the endowment and thereby the starting point of the tatonnement.

The red point is the general equilibrium point.

The black point is the maximum of the overall utility GU =U" +U”

== model 1 TATONNEMENT Red Thick,
model 2 TATONNEMENT Blue Dashed,
model 3a TATONNEMENT Brown DotDashed,
model 3b TATONNEMENT Magenta DotDashed,
Kontractkurve Black Dashed,
Red Point general equilibrium,
Black Point maximum GU,
Green Point endowment at t=0,
X—axis x1a,y-axis x2a

The higher the power 1” of the auctioneer, the more likely Model 1 and Model 2
converge to general equlibrium. Model 1 converges faster than model 2. The
tatonnements of model 1 and model 2 are shown for 4" =1 in the following graph:

=== model 1 TATONNEMENT Red Thick,
model 2 TATONNEMENT Blue Dashed,
model 3a TATONNEMENT Brown DotDashed,
model 3b TATONNEMENT Magenta DotDashed,
Kontractkurve Black Dashed,
Red Point general equilibrium,
Black Point maximum GU,
Green Point endowment at t=0,
X-axis x1a,y-axis x2a

The higher 4 the more likely the tatonnement of model 3b converge to tatonnement

of model 3a. This shown in the next graph with 2 =0.05 (" =1remains unchanged)
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=== model 1 TATONNEMENT Red Thick,
model 2 TATONNEMENT Blue Dashed,
model 3a TATONNEMENT Brown DotDashed,
model 3b TATONNEMENT Magenta DotDashed,
Kontractkurve Black Dashed,
Red Point general equilibrium,
Black Point maximum GU,
Green Point endowment at t=0,
X—-axis x1a,y-axis x2a

For high 4" (e.g. 1" =5) tatonnement of model 1 and model 2 converge to the general
equilibrium point. For high x# (e.g. ¢ =2 ) the tatonnement of model 3a und model 3b are
identical, but neither converge to the general equilibrium point nor to the maximum of GU.

== model 1 TATONNEMENT Red Thick,
model 2 TATONNEMENT Blue Dashed,
model 3a TATONNEMENT Brown DotDashed,
model 3b TATONNEMENT Magenta DotDashed,
Kontractkurve Black Dashed,
Red Point general equilibrium,
Black Point maximum GU,
Green Point endowment at =0,
X—axis x1a,y-axis x2a

If one changes the parameters (endowment, power factors, initial price and Cobb-Douglas
parameters), the behaviour of the models differs to a greater or lesser extent in each case.
The best summary is that model 1 typically converges best to the general equilibrium.
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C. Macroeconomic models
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7. The principle set up of GCD models

7.1. The model graph

It has proved to be extremely helpful to present each model in the form of a model graph.
This provides an immediate overview of the agents, stock variables and flow variables.
Using model A2 we also show how the constraints can be systematically determined from
the model graph (see chapter 8.2.). Another possibility for the systematic representation of
a model results from specifying the corresponding transaction matrices. This method is
often used to describe SFC models (stock flow consistent models). Constraints can also be
derived from this in a systematic way (see Chap. 8.3). However, we prefer the description
of a model with model graphs, as long as the models are not so complex that the graphs
become unclear.

In detail a GCD model consists of the following elements:

7.2. Agents

In principle, any number of any agents is possible, e.g:

- One or more households
- One or more firms

- One or more banks

- A central bank

- One State

- Any other agents

7.3. Goods

Agents exchange goods (flows) and/or store them (stocks) or create or destroy them. In
GCD models it is useful to consider not only money but also all other goods that are usually
exchanged for money at a certain price.

In principle any number of any goods is possible, e.g:

- Money

- Goods

- Services

- Labour

- debt notes (promissory notes)
(receivables = positive stock of debt notes, liabilities = negative stock of debt notes).
The immediate price of a debt note is usually 1 (e.g.: for lending 100 € you get 100
debt notes). However, debt notes usually trigger corresponding interest payments.

- Energy

- Raw materials
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- etc.

7.4. Variables

All stocks, all flows and all creation and destruction processes are represented by time-
dependent variables.

It is important to distinguish between 2 types of variables: Differentially defined variables
and algebraically defined variables.

We first assume that only differentially defined variables occur. This means that the
behavioural equations of all variables that appear in the utility functions are given by the
differential equations of the general GCD model equations in the form <3.11>. We therefore
refer to these variables as differentially defined variables. However, in the models variables
are also possible for which the behavioural equations are not given by a differential equation
but by an algebraic equation, e.g. by assuming a certain production function

Y(t)= BL°K"
or a specific rule for determining the amount of household income tax
T"(t)=0.3wL

In chapter 7.11 the algebraically defined variables are explained in more detail.

7.5. Constraint conditions

For every agent and every good, the following conservation equation, which is called a
constraint, must necessarily apply:

Incoming goods - outgoing goods + production of goods —

- destruction of goods - change in stock of goods = 0

E.g. for a company that produces a number Y(¢#) of machines, designate

C(¢) the part of the machines which are sold,

S(t) the stock in the warehouse,

K(t) the number of machines used for production, i.e. the real capital stock and

I(t) the investment, i.e the part of production used for its own further production, the
following constraint holds

Y&)-Ct)-S't)-1(t)=Y(t)-C(@)-S'(t)-K'(t)=0
We avoid the formulation of this constraint by valuation at market prices p

pY(®)— pC(1)-pS' () pI(1)=0
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because only the term p C(¢) corresponds to a real flow, namely the flow of money when

machines are sold, whereas the other terms correspond to a flow of values. However, since
valuations can change very easily, the conservation equation for values generally applies
only to a very limited extent and must be applied with great caution.

In addition to the above-mentioned constraints, which are derived from the conservation
equations for each good for each agent, there are also other constraints imposed by model
assumptions, such as the assumption that all consumer goods are consumed immediately
and not stored.

Model graphs in the form of flow charts and/or transaction matrices for all goods are very
helpful in establishing the constraints. We show model graphs in the form of flow charts for
each model. We explain the use of the corresponding transaction matrices with an example
in chapter 8.3.

Note: The conservation equations for GCD models are closely related to the conservation
equations of physics and chemistry, e.g:

1%t law of thermodynamics (conservation of energy)
15t law of chemistry (conservation of mass)

Since debts (liabilities) and accounts (receivables) always arise simultaneously and in the
same amount, it applies that in a closed system the sum of debts (liabilities) must always be
the same as the sum of accounts (receivables). This analogy to the conservation laws of
physics makes it reasonable to call this fundamental relationship for a monetary economy
"1st law of economics" (Glotzl 1999; 2009)

7.6. Utility functions for each agent

The behaviour of an agent is described by its utility function. These utility functions are not
subject to any restrictions and can basically depend on all variables (stocks and flows) and
any parameters.

In equilibrium models, as for example also in DSGE models, the utility functions must
always be required to be able to be aggregated, because otherwise a description via a
maximisation is basically not possible. (For the definition of aggregability see Chapter 4.3).
GCD models are not subject to this restriction.

7.7. Power factors for each agent for each variable

An agent's interest in changing variables does not per se lead to actual change, because the
agent must also have the power or opportunity to actually implement its desire for change.
This is described by the so-called power factor

., which can assume values between 0 and ©. A high-power factor leads to a rapid

temporal adjustment of the variables. The power factors in some sense can therefore also be
interpreted as speed adjustment factors.
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7.8. GCD model equations for the simple case (utility functions
and constraints depend only on (x,x,))

7.8.1. Ex-ante equations of motion
We explain the principle for 2 agents 4,B and 2 variables x,,x,.

The utility functions of 4,B are U“(x,,x,),U”(x,,x,). The interest of 4 is to change x,,x,
so that the increase of his utility function is maximal. This is given, if the change of x,,x,

is done in the direction of the gradient of U”(x,,x,) U”(x,,x,), i.e.

ou”
Oox,

ou”
ox,

[x{ J .
. proportional
X

2

The interest of 4 in a change of the variables does not lead alone to an actual change,
because the household must have also the power and/or possibility of actually implementing
its change desire. For example, a household cannot or can only partially enforce its
additional consumption desire, e.g., to go to the cinema or go on vacation, because it is
possibly quarantined or the borders are closed. This limitation of the possibility to enforce
his consumption change requests is described by a (possibly time-dependent and
endogenously determined) "power factor" 7 . In general, the change request for each of the

variables is described by "power factors" ,u;]l , y;i , y)f , yfi . Considering the power factors, the

following applies to the change of x,,x, (due to the interest of 4 and the power of 4 to
enforce this interest)

A
x | " ox
. proportional
‘xz A aUA
ﬂxz
ox,

Just as 4 has an interest, to change x,,x, , also B has an interest to change these two

variables. The actual change is therefore the result of the two individual efforts to change,
weighted with the power factors. We therefore refer to this behaviour as "individual utility
optimisation".

L ou’ 50U
, Hy My
x| ox, ox,
[ I] = + <7.1>
X L ou” 5 OU”
H,, H,,
ox, ox,

In case there is a "master utility function" MU such that
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,ou’ 50U oMU
My Ay
ox, ox, ox,
—+ = <7.2>
L, ou” 5 oU” oMU
M, A,
ox, ox, 0x,
the two utility functions can be aggregated. Then
oMU
x| ox,
= <7.3>
X, oMU
ox,

Equation <7.3> describes the temporal change of the variable along the gradient of MU .
If MU is concav, (x,,x,) converges to the maximum value of MU , i.e.

lim(x,(¢),x,(t)) = (™, %) with MU (x™,x,") = maximal

Define the overall utility function GU =U" +U” (see also chapter 4.3). If the overall utility
function equals the master utility function, i.e. GU = MU , we therefore refer to
ou” ou”
NP Hy
[xl ] B ox, . ax |
X 4 oU” 5 OU”

" 0x, = ox,

<7.4>
oMU oGU oU*+U")
ox, ox, ox,
“lomu || a6u || st + U
ox, ox, ox,

as "overall utility maximisation"'.

These equations of motion <7.1> resp. <7.4> describe the dynamics of (x,,x,) under the

condition that there are no constraints that restrict the dynamics. It is therefore referred to
as the ex-ante equation of motion.

7.8.2. Ex-post equations of motion

7.8.2.1. Vertical constraint forces

If a constraint

Z(x,x,)=0

has to be fulfilled, an additional constraint force f“ has to be added to the ex-ante force

J
x'=> i=12,..,1 <7.5>
J=1
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to ensure the constraint Z to be fulfilled at all times. In physics, this constraint force f“is
perpendicular to the constraint at all times due to the so-called d'Alembert principle, i.e.

0Z(x,,x,)
fz(x x,) 8); 2
frxnxy) =71 " =2 <7.6>
Sy (%, x,) 0Z(x,,x,)
ox,

We therefore refer to this type of constraint forces as "vertical constraint forces". The
time-dependent factor 4 = A(¢) is called Lagrange multiplier, as in the case of optimisation

under constraints.

Vertical constraint forces can also be characterised by the following equivalent principles.
This is because the theorem (GI16tzl 2018) holds that the following principles are equivalent:

Theorem:
(1) d'Alembert's principle (constraint forces do no work)

(2) vertical constraint forces (constraint forces are perpendicular to the manifold of
constraint conditions)

(3) Gaussian principle of least constraint (those constraint forces f“ occur for which

Hfz" H — minimal )
(4) unnamed principle
If x is a solution of

X'=f)+ (%)
0=Z2Z(x)

) . d|x' x',
then f7 satisfies the unnamed principle < M = w
di x|
Note: If one of the equivalent principles is satisfied, then the constraint force has no effect

on |x'| but only on the direction of x'. Note, however, that the inverse does not hold.

It is therefore plausible in many cases to model constraint forces in economics in an
analogous way to physics in terms of d'Alembert's principle respectively as vertical
constraint forces.

From <7.1> and <7.6> results the "equation of motion considering the constraint condition",
called ex-post equation of motion:
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L OU (x,,x,) W oU”x,, x,

Lx{] oy N T ox .
X ﬂ; oU"(x,,x,) p. oU” (x,,x,)

ox,
0Z(x,,x,)
ox,
A
0Z(x,,x,)
ox,

<7.7>

0=2(x,x,)

If U*,U” can be aggregated to a master utility function MU , the equation of motion is as

follows
oMU (x,,x,) 0Z(x,,x,)
[xl } _ ox, 2 Oox,
X, oMU (x,,x,) 0Z(x,,x,) <7.8>
ox, ox,
0=2Z(x,x,)

and if the master utility function MU 1is concave, (x,,x,) converge to a local maximum

value of MU under the constraint Z , i.e.
lim(x, (1), x, (1)) = (™, x%)

with MU (x™*% , xY*?) = maximal under constraint Z

max, Z max zZ

and it holds that the dynamics at (x; ) is stationary, 1.e.

aMU(xmax zZ , ;nax Z) aZ(xmax zZ , ;nax Z)
x| Ox, Ox,
, = 5 p + ﬂ, 7 7 = 0 <79>
x2 aMU (xmax , ;nax ) aZ(xmax , ;nax )
ox, 0ox,

or equivalently

aMU(xmaxZ’ max, Z) aZ(xmaxZ maxZ)
ox, ox,
=-1 <7.10>
aMU(xmaxZ, max, Z) aZ(xmaxZ’ maxZ)

ox, ox,
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In general, for

J agents with the designations Jj j=L2,...,J

I Variables with the designations x, i=12,..,1
X = (X, X500 X;)

K Constraints with the designations Z* k=1,2,...K

the 7 general GCD model equations for vertical constraint forces are obtained
analogously

i=1,2,..1 <7.11>

Loooul & oz
X = / +y A
l _,-ZO'UX" Ox ; ox,

i

If there is a "master utility function" MU such that

ZJ:M oU’ MU

| i=12....1 <7.12>
j=0 ! 5xi axi

the utility functions U’, j=1,2,...,J are called aggregable.

J
If MU = z U’ , the master utility function is called the overall utility function. If the master
j=I1
utility function MU is convex, x converges to the maximum value of MU under the
constraint conditions Z*, k=1,2,...,.K .

7.8.2.2. Other constraint forces

Another type of constraint force that can occur, especially in the case of a constraint force
describing a limited resource, is a constraint force that is centrally directed to the origin. We
therefore refer to this as a "central constraint force".

zZ
P (D) = [flzm ()., (r»j _ (p(t)(xl (t)j
A CAIGRNG) X, (1) <7.13>
A model for this are constraint forces such as occur in theoretical biology in the derivation
of the so-called replicator equation (Glotzl 2023a). In biology, this model assumption of a
central constraint force is equivalent to the assumption that in the struggle for limited
resources, equally high death rates are triggered for all species.

Let us illustrate this with an example. A typical dynamic in biology is the initially
independent exponential growth of 2 species 4 and B with birth rates b,,b, .
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’

n,=bn b, "growth rate"

A U s 8 <7 14>
ny =byn, b, "growth rate"

A constraint typical for biology is, for example, the assumption of limited resources. This
can be given, for example, by a limitation of the food supply or also by a limitation of the
habitat. This results in the sum of the number of absolute frequencies of the different species
remaining constant. This is formally described by the constraint condition

Z(n,n,,...)= Zni —constant =0

Assuming that the constraint condition triggers equally high death rates in both species, the
differential algebraic equation system is obtained
n,=bn,—on,
n, =byn, —on, <7.15>
Z(n,ng)=n,+n,—n=0 n constant

Assuming that 4 is twice as successful ("powerful") in the struggle for resources, the death
rate for 4 would be half as high and thus the system of equations would be

, |
ny=bn, — ¢5nA
ny =byn, —gn,
Z(n,ny)=n,+ny,—n=0 n constant
When applied to economic constraints, this can be interpreted as follows. Agents can have

different powers to oppose constraints. For example, if raw materials are limited in total, it
may be easier for some countries to obtain the necessary raw materials than for others.

In the most general case, different types of constraint forces can occur. Essential for the
modeling is only that the constraint forces used must be linearly independent and multiplied
by the respective Lagrange multiplier.

Note: In the case where not all constraint forces are vertical, x typically does not converge
to the maximum value of MU under the constraints Z* ,k=12,...,K , even if the master
utility function is convex.

As arule, it is sufficient to use purely vertical constraint forces. In the following, we will
therefore always restrict ourselves to vertical constraint forces.

7.9. GCD model equations for the general case (utility functions
and constraints also depend on antiderivatives and/or
derivatives of x4, x5)

7.9.1. Constraints depend on antiderivatives and/or derivatives

So far, we have assumed that the constraints depend only on x . However, the constraints
can also depend on the antiderivatives X = (X, X,,...,X,) . This means, X, is antiderivative
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ofx,, iff X/ =x . The constraints can depend in principle, however, also on the time

derivatives x' = (x],Xj,...,x;) . In physics it is valid (Flannery 2011), that the constraint force
always results from derivative with respect to the highest time derivative of x , i.e.

oz
If Z(..,X,,..) then £ =— and
(e Xis) then f7 =22

LU & s X
w =S &y LX) i=1,2,..1 <7.16>

If Z(...,X,,x,...) then f7” :Z—Z and

1

LoyoU & 028 (XX
x;zzﬂ;_ﬁl+z/1ka CoXiXion) gy g <7.17>
= Ox; o ox,;

i i

If Z(...,X,,x,,x,...) then f” :% and

i

LU & 02N (XXX
=S S 3 g L XX Xon) gy <7.18>
j=0 ’8xl. k=1 OX-

1

We assume that this approach is also plausible in economics in the case of vertical
constraints.

7.9.2. Utility functions depend on antiderivatives and/or derivatives

So far, we have assumed that utility functions only depend on x. But also, the utility
functions can additionally depend on antiderivatives and derivatives of x . In these cases,

both the antiderivatives X = (X, X,,...,X,) and the derivatives x'=(x],x,...,X;) are to be
considered as additional variables in their own right, i.e.

X=X, X, X)) = (X, 15X, e X))

X' = (0, X500, X7) = (X115 Xy 450000 X3 )
In that case, the following additional constraints must be used

X, —x =0 i=12,..,1

1

X —x,,=0 i=12,..,1

1
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7.10. Market forces

The behaviour of x, is given by the general GCD model equation (for vertical constraint

forces) for x, <7.11>

J J k
X =>u U zyﬁz i=1,2,..1 <7.19>

Jj=0 1' l

The right-hand side of <7.19>
Zﬂk
k=1

thus describes the market forces that lead to a change in x; and is composed of 2 parts.

S oU’ oz"

Zﬂ

Jj= i

The market forces that agents exert on x,

J ) aU/
2
j=0 ‘ 5x

i

and the market forces that the constraints Z*exert on x,. These are just the constraint forces

k
)=k = oz k=12,...K
ox,
: . oU’ (x)
If for a particular i it holds that P =0, i.e. that the utility functions do not depend on
X,

,u)é , or that the power factors ,u)é =0 , the general GCD model equation (for vertical

constraint forces) reduces for x, , to
: 8Z"
=>4 i=12,.1
k=1

In this case, the behaviour of x; is determined exclusively by the constraint forces.
Therefore, the constraint forces can also be called "pure" market forces,

7.11. Algebraically defined variables

So far we have assumed that the behavioural equations for all variables are given by
differential equations in the form <7.11> to <7.18>. We therefore call these variables
differentially determined variables. In the models, however, also variables are possible, with
which the behavioural equations are not determined by a differential equation, but by an
algebraic equation, e.g. by the assumption of a certain production function

Y(t)=BL K"

or a specific rule for determining the amount of household income tax.
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T"(t)=03wL

We call these variables algebraically defined variables. These algebraic behavioural
equations can often be seen as limit values of differential equations with infinitely large
power factors. For example, the behaviour of the government in collecting income tax could
be described by the following behaviour. It aims to collect 30% of the wage income of the
household as a tax. If the tax paid is less than this, e.g. through tax evasion, the government
will try to increase the collection of the tax. This behaviour can be modeled in the following
way, for example:

1 . .
Let U(T") = —5(0.3 —T") be the utility function of the Government G and Z any
constraint, then results the behavioural equation

" . oU° oz " Y oz
=t v ) =y (03WL-T"y+ A —
r or? or” Hpn ( ) oT"

If the government has infinite power to prevent tax evasion, this results in

oz

"=, (03wL-T")+ 2 7
T Z
& —H:(O.3wL—TH)+LH 6H
T Hyn or

for ,u;f, — oo results
0=(03wL-T") =
T" =03wL

The algebraic behavioural equation T =0.3wL can thus be interpreted as a differential
behavioural equation with infinite power of the government.

In case of occurrence of algebraically defined variables, when forming partial derivatives
of utility functions and constraints with respect to the differentially defined variables, it
must be taken into account that the algebraic variables occurring in utility functions and
constraints may also depend on differentially defined variables. It is best to insert the
algebraically defined variables into the utility functions and constraints before the
differential equations are formed.

7.12. Numerical solutions

In most cases, the differential algebraic systems of equations cannot be solved analytically,
but only numerically.

7.12.1. Initial values

In ordinary differential equation systems of the 1st order, the initial values for all variables
are freely selectable. In contrast to ordinary differential equation systems, not all initial
values of the variables are freely selectable in differential algebraic equation systems. The
reason for this is that the initial values must satisfy the differential equations and also the
constraints.
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If there are no time derivatives in the constraints and there are K linearly independent
constraints, only 7 — K initial values can be chosen freely. The other initial values result
from the solution of the system of equations of the constraints. However, if the constraints
are nonlinear an analytical solution is often not possible. In many practical applications,
however, the situation is much more complex, especially if time derivatives of variables
also occur in the constraints.

In the usual numerical programs for solving differential-algebraic equations, an algorithm
is therefore built in, which calculates from a sufficiently large number of initial values, other
possible initial values, which approximately fulfill the system of equations up to a certain
tolerance. One therefore needs an understanding of the model and a certain amount of
experience to determine suitable initial values.

7.12.2. Parameter selection

The parameters of a GCD model cannot be chosen arbitrarily either. For the system of
equations, a solution does not have to exist for every combination of parameters or be stable
over a longer period of time. Therefore, one also needs an understanding of the model and
a certain experience for the selection of the values for the individual parameters.

7.12.3. Numerical solution methods

We make use of two solution methods within the framework of MATHEMTICA, namely
NDSolve and Modelica. Since differential algebraic systems of equations have a much
higher overall complexity than ordinary differential systems of equations, many different
methods of numerical procedures are available in NDSolve.

By default, it is usually sufficient to use:
Method— Automatic
Sometimes you need:
Method— {"EquationSimplification"->"Residual"}
Sometimes one needs:
Method— {IndexReduction— Automatic }
Sometimes one needs:
Method— {IndexReduction— {True, ConstraintMethod—Projection} }

May be in special cases also other methods must be used

For the stability of the solutions, one has to distinguish 2 cases:

- The model itself may become unstable after a certain time because, for example, certain
variables become 0.

- The model is basically stable, but the numerical errors can lead to instabilities after a
longer runtime.
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8. Examples of possible utility functions

8.1. Household

For example, a household may have the following targets:

Consumption target: he would like to consume. His desire to consume more is greater
the less he is currently consuming or can consume, and his desire to consume even more
is smaller the more he is already consuming.

Labour target: he would like to work, but not too much and not too little.

Money management target (cash management target): he always wants to have liquid
funds, not too little, so that he can buy everything he wants to buy at the moment and
not too much, because he does not get any interest for it and it would be more
advantageous to lend the money to the bank against interest on savings. Therefore, the
higher the interest on savings, the lower his money-holding target.

Receivables holding target (savings target): he would like to hold assets in the form
of receivables from the bank, the more the higher the savings interest.

The stated targets of the household can be expressed, for example, by the following utility
function:

Ut M 4"y = (") (£ —LH)2 M = MY 4 4

Variable : c” consumption
L labour
M"  money holding (liquid assets)

A" claims on bank (savings)

Parameter :  y 0<y<l1
L’ targeted labour

targeted money holding,
possibly depending on the interest rate

8.2. Firm

A firm can have the following targets, for example:

Profit target: The greater the profit, the greater the utility.

Warehousing target: Warehousing causes costs and should therefore be as low as
possible; on the other hand, it must not be too low, otherwise fluctuations in demand
cannot be compensated.
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¢ Investment target: The interest in investing depends (also!) on the level of interest
rates on loans. If lending rates are 0 (or even negative due to possible investment
incentives), as much is invested as is organisationally feasible. If lending rates rise,
correspondingly less is invested.

The stated targets of the firm can be expressed, for example, in the following utility function.
U" = profit" - (3’ -S) - (invmax(l -Q(r+ rD)) - inv)z

whereby the following ,,algebraically“defined variables are used

Y= BLK"™
profit’ = pY -wL-(r+r, )(-D" )- DP =
=pBLK" -wL-(r+r,)(-D" )- DP

invmax : =inv K

The following gives the dependence of the utility function on the “differentially” defined
variables:

U"(p,L,K,w,D" ,DP,S,inv) =
= profit” — (3‘ ~-8)7 - (invmax(] -0, + rD)) - inv)2 =
= pBL'K" ~wL~ (1, +r,)(=D" )~ DP -

(S8 ~(inv K (1-0(1, + 1, ) —inv)

whereby the following ,,differentially““defined variables are used

p price
L labour
K capital
w wages

D" loans payable
DP  depreciation
S inventories

inv Net investment

whereby the following “algebraially” defined variables are used:

Y total output,Cobb - Douglas function
profit” profit
invmax maximum net investment,

when credit interest rates = 0
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and whereby the following “parameters” are used:

a Cobb — Douglas parameter

g technology factor

Vi central bank prime rate

7, ending rate premium on central bank base rate

S stock-keeping target

inv maximal net investment factor

0 factor for the interest rate dependency of the investments

Note: Note that the constraint 0 = K'—inv must apply to the variables K and inv in the
sense of chapter 7.9.2.

8.3. Bank

For example, a bank may have the following target:
Profit target: The greater the profit, the greater the utility.
The stated target of the bank can be expressed, for example, in the following utility function.
U’ = profit®
»Algebraically* defined variable
profit® = +(r, +1,)-(=D") + (r, + r)(~D%) -
~li A = (1 + 1) A"
insert in U”
U (D", D%, 4% A") = +(1, + 1,)(~D") + +(ri,, +7,)(~D") -
— g A = (1 + 1) A"
,Differentially defined variables:

D" loans payable of firm
D¢ loans payable of government
A”  loans receivable of central bank

A" loans receivable of household (Savings deposits)

,Parameters‘ are:
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Vi central bank prime rate
7, lending rate premium on central bank interest rates
r, Savings interest surcharge on central bank interest rates

8.4. Central bank

The FED (Federal Reserve) has 3 targets:

¢ Inflation target: Inflation should be as close as possible to 2%.

e Full employment target: i.c., there should be neither unemployment nor
overemployment due to overheating of the economy.

e Target for the long-term interest rate: moderate long-term interest rate. For the sake
of simplicity, we will not consider this target any further in the following.

The first two targets can be modelled within the framework of the GCD models in the
following two ways: by means of corresponding utility functions or by prescribing the
setting of the prime interest rate by means of the so-called Taylor rule.

8.4.1. Utility function of a central bank

The full employment target can be expressed analogously to the utility function of the
household by the term

—(]:—L)z

in the utility function of the central bank. In contrast to the household, however, the central
bank has no direct influence on employment, but only an indirect influence through its
interest rate policy or its money supply policy. This means

ZB . H
m; =0 in contrastto m; ' 0
ZB
m; " >0 Influence on the central bank base rate r, ,,
eit
ZB . ZB
m g > 0 Influence on money creation N

A central bank can try to achieve the target of inflation in 2 different ways. Through interest
rate policy (we characterise this by o =1) or through money creation policy (we
characterise this by 6 =0). This behaviour of the central bank can be described by the
following term in the utility function
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(=61, + (=8N )(p —%

with  0<0<1
0 = I (pure interest rate policy)

0 = 0 (pure money creation policy)

. central bank base rate

N7 money creation (_flow variable!)
p inflation target

p price

ps temporal price change

(due to constraint 0 = ps - p')
because of chapter 3.9.2

It should be noted that the central bank has no direct influence on the price p, but can again
only influence p and ps indirectly via the central bank base rate and money creation. This

means
,ujB =0 Influence on the price p
,uff =0 Influence on the change of the price ps
,ufli >0 Influence on the central bank base rate r,,
yi; >0 Influence on money creation N*

The utility function
A 2
U” =(-8r+1-6N)(p-L)-(L - 1)
p

with constraint 0 = ps - p'

because of chapter 3.9.2

leads (in addition to the other terms from the utility functions of other agents and the
constraints) in the general GCD - model equations <3.11> to

aUZB .
= —— =—,ur235(p—ﬁ
or p
a ZB pS
Br=u? Fo=+u2 (1-8)(p-—=
v Moy (1= 0)(p ,
aUZB
'= 53 3 + e =0+...... because of ,ujB =0
P
aUZB
ps'= ,ujf p +.neee =0+...... because of ,ujf =0
ps
aUZB
L'=u?” S =0+...... because of 1° =0
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The term —u”* 5(p —ﬁ) means: If the central bank pursues an interest rate policy (
p

o =1bzw. 6 >0 ), it exerts a force on the interest rate » such that » grows (i.e. '>0), if

the actual inflation is greater than the targeted inflation P2 The same is true in reverse.

p

The term + ,ufji (1-0)p- ﬁ) means: If the central bank pursues an interest rate policy (
p

0 =0 bzw. & <1), it exerts a force on the interest rate » such that r grows (i.e. »'>0), if

the actual inflation is smaller than the targeted inflation PS5 The same is true in reverse.
p

8.4.2. Taylor rule

The Taylor rule is a monetary policy rule for setting the central bank base rate by a central
bank. It reads:

base rate = real equilibrium interest rate + inflation + S 1>

+0, inflation gap + o, growth rate gap

Thereby, the weighting factors o,,0, are derived from the actual behaviour of the central
bank. If both gaps are equal to 0, the Taylor rule is equivalent to Fisher's rule

base rate = real equilibrium interest rate + inflation <8.2>

We make the following simplifying assumptions:

Assumption 1: The economy is in equilibrium; therefore, it is reasonable to assume that the
real equilibrium interest rate is equal to the real growth rate

r
v
Assumption 2: Full employment of the economy prevails exactly when the actual labour
L is equal to the targeted labour L,ie.
Production at full employment Y = BK [
_r
Y

growth rate at full employment

If p denotes the targeted inflation rate, this results in

YV 1 1 . Y/ YA'
=—+£+0'1(£-p)+0'2(——7) <8.3>
Y p p Y Y

’}eit
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Interpretation: The interest rate is higher if the inflation rate P s higher than the target
p

1

. : . Y. .
inflation rate p and/or the growth rate ¥ is higher than the (target) growth rate at full

employment.

If one inserts and simplifies one obtains

' ' ! !

P A A ST TP S T 8.4
P p K L

In terms of the GCD methodology, the Taylor rule sets the value of the policy rate as an
algebraically defined variable. If the central bank acts only according to the Taylor rule, it
does not act in the sense of optimising a utility function, but according to empirical values
that have proven themselves in the past. In this case, one can therefore set the utility function
of the central bank equal to 0.

8.4.3. Modified Taylor rule: Consideration of the interest rate
premium on the key interest rate

The Fischer rule does not actually refer to the central bank's base interest rate, but to the
lending rate. This consists of the base interest rate plus a premium. In economic equilibrium,
this results in

Loan interest rate = base rate + premium =

<8.5>
= growth rate + inflation
Under these assumptions, this results in the modified Taylor rule
base rate =
= growth rate — premium + inflation+ <8.6>

+o, inflation gap + o, growth gap
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8.5. Government

The government pursues the following targets, for example.

Government expenditure target: Government expenditure serves to fulfil
government tasks and is often also referred to as government consumption. For
simplicity's sake, we assume that the government behaves like a household. Its desire
to consume even more is smaller the more it consumes anyway.

Government debt target: e.g., target government debt in the sense of the Maastricht
criteria (60% of GDP).

Employment target: The government has the target of full employment, as does the
Fed in the USA.

Tax ratio target: for the sake of simplicity, we will not discuss this further below.
Growth target: for the sake of simplicity, we will not discuss this further below.

The stated targets of the government can be expressed, for example, in the following utility
function.

U°® =(C°Y* —(D°Y -D%) —(L- L)

Where the ,,algebraically*“defined variable Y is used

Y :=pBLK"™

Insert and you get the dependence of the “differentially” defined variables, i.e. the variaables
defined by equation <3.7>

U°(C° L,K,D% =(C°" —(D° BL'K"* — D)’ —(L- L)’
with parameters

Ve Cobb — Douglas parameter

for governmental consumption

D°=-0.6 Maastricht factor

L targeted labour
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9. What insights can be gained from
the modeling of GCD macro models

9.1. Practical insights: Causes and pattern of business cycles,
analysis of measures to achieve economic policy targets

The simplest macroeconomic model imaginable consists of 2 agents: 1 company that
produces 1 good and 1 household that works for the company and buys or consumes this
good.

Even this simplest macroeconomic model shows that under certain assumptions about the
power relations between household and firm and assumptions about the other parameters of
the model, business cycles occur. This means that the individual variables show an
approximately cyclical behaviour and the phase shifts between the individual variables
remain approximately the same.

In chapter 11 we present and analyse this simple model and present some basic results.

As an example for measures to achieve economic policy targets in model B1, B2 and C1,
C2 we analyse in a simple way the different effects for possible central bank policies:
monetary supply policy, interest policy or behaviour in the sense of the Taylor rule.

The most important tasks that need to be done in the future to be able to use GCD models
for practical problems in economics are:

a) Adjustment of parameters to describe real circumstances and comparison of model results
with real business cycle trends.

b) Extend GCD models to multiple households, firms, and goods, and in particular to
commodity and financial markets. For a first approach see (Richters 2021)

¢) In the long run, develop a more complex, real-world model to enable better economic
forecasting and test measures to achieve economic policy targets.

d) Elaborate GCD models with economic shocks in detail.

e) Elaborate GCD models with intertemporal utility functions in detail.

9.2. Theoretical insight: Different macroeconomic theories
differ in their assumptions of different power factors

A. Sen has shown in (A. K. Sen 1963) that

- the basic neoclassical model of macroeconomics
- the macroeconomic model of Kaldor

- the macroeconomic model of Johansen

- and the Keynesian model
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differ only in their assumptions about which variables are exogenous and which variables
are endogenous.

In the methodology of the GCD models it holds:

The variable x is exogenously determined <> There is an agent A with u’ = o0

The variable x is endogenously determined <> For all agents 4 =0

This means that the economic models described by Sen always assume one-sided power
relations. Since in the GCD models the power factors can assume all values between 0 and
o, i.e. that also not one-sided power relations are possible, all hybrid forms of economic
theories can also be modeled within the framework of GCD models. This means that a
continuous transition from one economic theory to another economic theory can be
represented by the continuous transition of the various power factors from 00— oo or.
o0 — (. Since one-sided power relations hardly ever occur in reality, reality can therefore
be better described with GCD models. In chapter 18 we describe in detail examples of
corresponding theories and the corresponding models.

We show, for example, that even the theoretical assumptions about the causal relationship
between "saving" and "investing", which differ from a neoclassical and a Keynesian
perspective, can be understood as assumptions about one-sided power relations from the
perspective of GCD models:

‘ Investing = Saving

Keynes: Neoclassical, mainstream:

* Investing — Saving * Saving — Investing

* Investing exogenous variable * Saving exogenous variable

+ Saving endogenous variable * Investing endogenous variable
GCD interpretation: GCD interpretation:

* Investing = Saving * Investing = Saving

* Power of the investor = oo * Power of the investor =0

* Power of the saver =0 * Power of the saver = ca

| GCD maodels in general: not one-sided power relations |

In Chapter 18.2 we describe the corresponding models and their interpretation as GCD
models in detail.
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10. The open-source programme
"GCDconfigurator”

In order to facilitate the concrete application to any complex GCD models (with non-
intertemporal utility functions), we have written the open-source program
"GCDconfigurator", with which any GCD model can be programmed very comfortably and
solved numerically with the help of MATHEMATICA.

Essentially, it is sufficient to enter the following:

- The algebraically defined variables
- The utility functions for each agent
- The constraints

The output is the time evolution of all variables depending on the freely variable size of the
power factors, the other parameters and the initial conditions.

The programme requires the installation of JAVA and MATHEMATICA. It can be
downloaded from GitHub with the corresponding instructions (Glotzl und Binter 2022)
under

https://github.com/lbinter/gcd

It allows in the 1st step to set up the GCD equation system in a convenient way just from
the specification of the utility functions, constraints and initial conditions. In the 2nd step,
the program enables the calculation of the solutions using MATHEMATICA. The results
are calculated and plotted graphically as a time evolution of the variables, where the
individual parameters can be varied in a convenient way.

All MATHEMATICA program codes used for calculations of the various GCD models can
be downloaded under

https://www.dropbox.com/sh/npis47xjgkecgev/AAAMzCVhmhDYIThoB5SMfATFvya?dl=0



https://github.com/lbinter/gcd
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=0

68

11. Model A1, (1 household, 1 firm, 1
g00d, without interest)

11.1. Overview of the setup

| Model A1: 1 household, 1 firm, 1good |

L iabor
I=wL wage
W wage (per hour)

Activa Passiva L targeted labour
K capital

S srorage

DP depreciation
C consumption

C = pC consumption expenditure
p price gf good
M* money siock firm

MY maney stock household

i Y production

EK equity
——> money
—> labor
————3 good

N
A

Model A1: basic equations

algebraically defined variables
Y(L.K)= BLEK " production function"
DP(K)= ;’;)K " depreciation”

utdlity functions

-

U¥(C,L.MH)= c’— [i - L] —(MF - MFY "utility function household"
UF(Y.L.S)= pY-wL- (E} - Sy "utility function firm"
CONstramts

Z¥=0=wL-pC-M*' for money of household H

ZF=0=pC—-wL-M""' for money of firm F

Z, =0=Y(L.K)-C—-K'-S'-DP for good lof firmF 3

With the aid of the GCDconfigurator programme, the differential-algebraic equation system
of the A1 model is calculated from this:
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Model Al: diff.-alg. equation system

uF[t] = - (sdach - s[t])% - 1[t] ~w[t] + p[t] =y [L]
uH[t] = cH[t]" - (ldach - 1[t])? - (mHdach - mH[t]}*

dp[t] = dpdach k[t]
inv[t] = k'[t]
yIt] = Ak[t]* = 1[t]"

cH'[t] =y uHeH eH[£] 1" + p[t] A1 [t] - p[t] Az [t] - A3[t]

K'[t] = (1-a) BuFkk[t] = L[t]%p[t] - As[t]

1'[t] = 2 uH1 {1dach - 1[t]) + pF1 (a Bk [£] ™ 1[£] " p[t] -w[t]) -w[E] A, [E] +
Wit] Az[t] +aB k(] 1[t] " A5(t]

mF' [t] = -2 [t]

mH' [t] = 2 uHmH (mHdach - mH[t]) - Az[t]

PIE] = Bufpk[t]" 1[£]7 + cH[t] Ay [t] - cH[t] Az [t]

s'[t] == 2uFs (sdach-s[t]) - A3[t]

wW[t] == =uFwl[t] =1[t] A;[t] + 1[t] Aa[%]

@ == cH[t] «p[t] - 1[t] «w[t] - mF’ [t]
@= -cH[t] ~p[t] + 1[t] ~w[t] - mH [t]

@ = -cH[t] -dpdach k[t] + Bk[t]¥ " L[t]" - k' [t] - s"[t]

cH[8] = k&'~ 18"

k[@] = ke
1[@] = 1@
mF [8] == mF@
mH[@8] = mHa
p[@] = p@
s[@] = s@
W[@] = we

11.2. Description of the A1 model in detail

The one good serves as both a consumption good and an investment good. We assume that
vertical constraint forces occur.

Since the target is first to show the principle, we choose the production function and the
utility functions as simple as possible.

We choose a simple Cobb-Douglas production function as the production function, and the
goods excreted per year (depreciation) are proportional to the capital stock. This results in
the 2 necessary algebraically defined variables. They are necessary because they occur in
the utility functions or constraints.

Y(L,K)=BL'K" B>0, 0<a<l
DP(K)=dpK 0<dp<l

<1l.1>

In addition, one can be interested, for example, in net investment, for which one defines as
a further algebraically defined variable

inv(K)=K" <11.2>

Households want to consume with decreasing marginal utility. Consumption of consumer
goods C leads to a utility for households in the amount of C” withO< y <1 . They strive

for a desired working time L. Deviations from the desired working time L lead to a
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reduction of utility by (L — i)z . In addition, households aim to keep cash in the amount of
M . Deviations from the desired cash position A" lead to a reduction in utility by
(M " — M"™)?. This leads to the utility function for the household

UT=C"—(L-LY*-=(M"=M") 0<y<l <11.3>

For the company, in the simplest case, the utility initially consists of the goods produced,
which are valued at the selling price, i.e. pY . The produced goods are used for:

C Sales = Consumption
S’ change in inventory
K' changes in productive capital stock

In principle, it would be possible to weight the utility of these uses differently. For the sake
of simplicity, we will refrain from doing so. Therefore, this utility is reduced by the cost of
labor and the cost of storage, which we evaluate through the deviations from the planned
inventory. For simplicity, we assume that holding money in cash has no influence on the

utility. This leads to the utility function for the firm
U =pY(L,K)—wL—(S-S)* =
- <11.4>
=pBL K™ —wL—-(S-S)

From the model graph, it can be seen that the following constraints must be satisfied:
Z,=0=wL-pC-M"" for money of household H
Z,=0=pC-wL-M"" for money of firm F <11.5>
Z,=0=Y(L,K)-C—-K"'-S§" for good 1of firm F

According to the methodology of GCD models, the interest or desire of households to

change consumption is the greater the more the utility changes when consumption changes,
H

i.e., the interest is proportional to . However, the interest in changing consumption

does not in itself lead to an actual change in consumption, because the household must also
have the power or opportunity to actually implement its desire to change consumption. For
example, a household cannot or can only partially enforce its additional consumption wish,
e.g., to go to the cinema or on holiday, because it is in quarantine or the borders are closed.
This restriction of the possibility to enforce his or her consumption change wishes is

described by a (possibly time-dependent) "power factor" ,ug . Analogously, the firm could
F
and power ,ug to influence consumption. In the specific case

have an interest

oU”
aC = 0. This results in the following behavioural equation for the ex-ante planned
change in consumption
ou” oU”
C'=ul ——+ul ——=ulyC"™
oC oC <11.6>
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The same considerations apply to labour L as to consumption. Even the household's wish
to increase or reduce working time does not in itself lead to an actual change in working
time, because the household must also have the power or possibility to actually implement
its wish to change. For example, a household might not be able to enforce its wish to increase
working time, or only partially, because it is on short-time working or unemployed, or it
might not be able to enforce its wish to reduce working time because it is contractually
obliged to work overtime. This restriction of the possibility to enforce his wishes for a
change in working time is also described by a (possibly time-dependent) power factor,

which we denote with £ . The same applies to the firm's ability to influence working time.

Therefore, the behavioural equation for the ex-ante planned change in working time is as
follows

ou"  ,oU" v F e
+ =2 L-L)+ alF 7K™ —w
oL H oL /UL( ) H (pB )

L'=u

The ex-ante behavioural equations for the other variables result analogously.

However, the plans of the 2 agents household and firm to change consumption C, labour L
and the other variables cannot be enforced independently of each other, because the
constraints

Z,=0=wL-pC-M"" for money of household H

Z,=0=pC-wL-M"" for money of firm F

Z,=0=Y(L,K)-C—-K'-S'-DP  for good 1of firm F
<11.7>

lead to constraint forces, which we assume are vertical constraint forces. The constraint
force for the change in consumption therefore results in

0Z, 0Z, 0Z,
+ + =-Ap+Ap-
Aocthoe Thae T APt AP A
The behavioural equation for the actual ex-post change in consumption is therefore

ou” oz oz oz
C'=u" A4 )24 )=
e a0 T hac T ac T a0 <11.8>

=u yC" = Ap+ Ap -4

Analogously, the actual ex-post change in labour is as follows

ou”™  .oU" oz, oz oz
+ +A—L+ A, =2+, —=

o Mo ﬂ‘aL 2oL ﬂ?aL

=20/ (L— L)+ pf (pBa L’ K" —w)+

+Aw=Aw+ LaB LK

L'=u

This also applies analogously to the company's investments. In the case of the company,
too, the actual implementation of ex-ante planned investment increases can be prevented by
real restrictions, e.g. by interruptions in supply chains. In the same way, a desired reduction
in investment may not be possible to the desired extent because the project is a large-scale
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project of many years' duration. These restrictions can in turn be described by a (possibly
time-dependent) power factor ,uﬁ. This results in the following behavioural equation for
the actual ex-post change in capital

ou” /4 oz o7
F + _1+l _2+ =3 _
K oK A oK oK € oK' <11.9>

= s pB—a) LK™ — 4,

K'=u

oz, . oz .
Note that we have to use a—K" instead of —2 because the constraint forces are always

derived from the highest time derivative of the variables (see chapter 7.9.1 and (Flannery
2011)).

The equations of behaviour for M, M”, S, p, w are derived analogously. In sum, this
results in the model equations

differentiell behavioural equations

ou” oU” oz oz oz
C'=pu +ul R Wt Rt R Pt R
He —po THe Bt At AT
= ulyC" = Ap+ Ap — 24
ou" Ut oz oz oz
L'=u’ +ur A+ =244 2=
U T YA TR A
=" (L-L)+ Aw-Aw+ Laf L' K"
au™ Ut oz oz oz
K'= + 4y iy R AR it St R
e o T e YA TR TR o
=uppP(l—a) 'K — 1,
Ut ou* oz oz oz
M= +u”, 4 ) 2 3 _
it g e o A G gy A
H “r H H H
=2ull, (M =M™ )= 4
ou” ou” oz 07" oZ
Foo oy 2= 4 4, +A"7 + A7 + ==
Hu oM* Hu oM* oM* oM* /llaMF
-1
au™ out oz oz oz
S'=pu" +ub AL+ A, =2+ A=
Hs o5 THs a5 Thag TR s T g
=i ($-5)-4
ou” ou” oz o7 oz
PlEp A At A=
op op op op op
= pr,BKl_aLa —Ac+Ae
au” out oz oz oz
w'=pu! + iy ptant Wy [ iont Ry Jint R
H ow Hh ow A ow ow 4 ow

——u L+ AL-A,L
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Or written in a clearer way

differentiell behavioural equations

C'=pulyC"™ = Ap+A,p—7A

L'=2p] (L— L)+ py (aBK' L p—w)+ 4w Aw+ LaBK' L

K'=ufp(1-a) 'K p— 1,
M =opl (M M"Y - 4,
MFr=-2,
S'=uf ($-5)-4

p'= y}fﬁK”‘L”‘ - Ac+Ac
w'=—u"L+AL- AL

11.3. Calculation results of model A1

Depending on the choice of parameters, the system converges to a stationary state (see
figure 1) or the system describes the occurrence of business cycles (see figure 2). A change
in the parameters usually only changes the frequency and amplitude of the business cycle
fluctuations. This means that the qualitative sequence of business cycles over a wide range
of parameters is independent of the specific choice of parameters. For example, it can be
seen that the minima or maxima of the variables typically occur in the following order (see

figure 2):
Minima Maxima
1 | Profit Price
2 | Price Profit
3 | Investment Employment
4 | Employment Investment
5 | BIP BIP
6 | Capital Money stock of the company
7 | Money stock of the company | Storage goods
8 | Storage goods Capital
9 | Consumption Consumption
10 | Wages Wages
11 | Money stock of the household | Money stock of the household
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Existing business cycle theories each assume certain cause-and-effect relationships between
different variables. In contrast, in GCD models, business cycle fluctuations can only be
explained by assumptions

- on the behaviour or utility functions of agents
- and about the balance of power between the agents.

In this context, the following remark seems important: In economics, there is usually a
very complex interplay of the various variables. This complex interaction can be modeled
well by systems of differential equations. However, the complex behaviour of differential
equation systems cannot usually be described by simple cause-effect relationships. Simple
cause-effect relationships are therefore generally not suitable for correctly reflecting
economic interactions.

Figure 1: model A1

Figure 2: model A1, business cycle analysis
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https://www.dropbox.com/s/4yeu7j077yiis65/Modell%20A1%20Version%2012.ndsolve.nb?dl=0
https://www.dropbox.com/s/4yeu7j077yiis65/Modell%20A1%20Version%2012.ndsolve.nb?dl=0
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https://www.dropbox.com/s/evx09cjv18d2k7a/Modell%20A1%20Version%207%2C%20Konjunkturanalyse%20V6.ndsolve.nb?dl=0

Figure 2: model A1, business cycle analysis
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12. Model A2: 1 household, 1 firm, 1
g00d, with accounts/debts and interest

12.1. Overview of the setup

L labar

Model A2: 1 household, 1 firm, 1 good, with
accounts/debts and interest

L=11 wage
11 1vexge (per how)
i.rzr_g?raﬁ:,i:ow

K copital
S sigrage
DPdepreciation

i =K net -investrrert

Activa l Passiva Activa l Passiva C cormungrion
C = pC comimptionexpanditre|
F r(—DF) b priceqf good
% M mogy stack fim
¥ 14" oy sock howshoid
|I| |4" awcomz howshold
%ﬁ | 3" tarzstad accown Howshold
C T D7 (=-4" ) btz firm
—_——> |9 cracht cemhn flons
Y |V tacrmcte fiow
- C=rC Hy (D" )ieret pymes
L=wlL Il, > M ¥ prodbwiion
& | EF agquairy
L [Note : N =N" =—D""=4
Note the direction of flow for constraints = 0" '=—1

Note: accounts with positive entrystand under activa
accounts with negative enfry stand under pastiva

Model A2: basic equations

algebraically defined variables
Y(L.K)= BLKE™
DP(K)=  dpk

uiility flnctions
U (C,.L.M")=
U(F.L.5)=

consiraints

Z =0=wL-pC+rd" —N" —M""
Z,=0=pC—wL_r(-D" )+ N¥ _M*"
Z =0=V(LK)-C-5-DP-K"

z" =0=N" 4"

ZF =0=—N¥ _D*'

€7 —(E—L) —(8f* - M) + 14"
pY-wL-(§-5) —r(-D")

" production fimction"

" depreciation”

"utility finction household"

"utility finction firm"

Jor money flow of howsehold H
Jor money flow of firm F

Jor good 1 flow gf firm F

Jor accournts | debis flow of H
Jor accowns | debis flow of F

Assuming vertical constraints, the differential-algebraic equation system of model A2 is
calculated from this with the help of the GCDconfigurator.
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Model A2: diff.-alg. equationsystem for verticalconstraints

UF[t] = rdF[t] - (sdach - 8[£])% - 1[t] ~wW[t] + pIE] « ¥[E]
WHIt] = FaH[t] + cH[t]" - {ldach - 1[t]}% - (mHdach - nH[t]}?

dpt] = dpdach k[t]
i [t = kT[]
¥It] = Bk[t]* " 1[t]"

aH' [t] = r uHaH = P33 [t] - 3y [t]

cH [t] = ¥ pHCHeH[t]) ™7 4 pt] A3 (1] - pIt] Az [t] - As(t)

dF'[t} = r uFdF erdy[t] - a5t]

k(€] = (3 -a) BuFkk[t]"" 1[£]" p[t] - A3[t]

17[t] = 2wl (1dmch - 1721 » wFL (o SR[ET™ 2 108] 2" plt] -w(t]) -w[t] Ag[t] »
wit] Ag[t] s e Bkt 1ft]- 1 Ay )

M [E] = -2y [t]

mH [t] = 2 yMinH {midach - mH[£]) - Az [t]

nH[E] = Ay [t] - A3 (%] - Aa[t] + Ag €]

PIE] =B uFpkIt] 2 1[£]% + cHE] Ag[t] - SH[E] Az[t]

5°[t] = 2 iFs (sdach - 5[X]) - Ax[t]

WlE] m =pPwl[t] = 1[] Ag[t] « 1[£] A3[t]

s reF[£] + nH[t] « <[] = p[t] = 1[¢] ~ w[t] - mF[£]
o raH[t] - nH{t] - cH[E] - pt] « 1[t] - w(t] - mér [£]
= —gH[t] - dpdach k[t] + Bk [€]* = 1[L]° - k' [] - &' [¢]
= -nH[t] - dF [t]

= nH[t] - aW'[t]

Lo T

aH[8] = aHa
cH[®] = ko' " 18° g
dF (8] = dFB
k[9] = k&
1[8] = la
mF [8] = mFa
mH (@] == mHB
nH[8] = nHea
p[@] = p@
5[8] = 58
W8] =l

12.2. Systematic derivation of constraints from the model graph

Using the A2 model, we show how to systematically derive the relevant constraints.
Arrows represent flows. In model A2 there are 3 different flows.

e The flow of the good (violet)

e The flw of money (red)

e The flow of debt notes when money is given as credit (light brown)
e The flow of labour (green)

Each flow leads to a decrease in the corresponding balance sheet item (stock) in the balance
sheet of the agent from which the flow originates and to an increase in the corresponding
balance sheet item (stock) in the balance sheet of the agent to which the flow goes.

In addition, there are source terms, such as production by the company, or sinks, such as
actual consumption of consumer goods by the household. This sink for consumer goods at
home is not shown in the graph for the sake of clarity and because it leads to a trivial
constraint under the assumption that everything is consumed immediately.

Thus, for each agent and each flow there is a constraint in the form

inflow - outflow - stock change=0 <12.1>
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e.g., this results in a constraint Z, for the flow of money at the firm

Z2:0:pC—wL—rAH +N-mE

When considering the direction of flow and the sign of variables on the liabilities side of
the balance sheet (passive), one must respect the convention we use, namely that entries
on the liabilities side of the balance sheet have a negative sign. This results, for example, in
a constraint on the flow of debt notes in the company

zF —o=-n-DI"
For interpretation: if the bank gives the company a loan of N =10 €, this means that

e N =+10 money (red arrow) flows from the bank to the firm

e N =N =+10debt notes flow from the firm to the bank (light brown arrow) if a debt
note is issued for every euro

o that the debt increases and thus, due to the sign convention, the debt account on the
liabilities side is reduced by 10,i.e. D" =-10

This results in

e debt note inflow to the firm =0
e outflow of debt notes to the bank N =10
e outflow of debt notes to the balance sheet D" =—-10

ZF

= promissory note inflow—
—outflow of promissory notes to the bank —

— outflow of promissory notes to the balance sheet =
=0-N-D"'=0-10—(-10)=0
If C denotes the inflow of consumption goods to the household and C denotes actual
consumption and hence the destruction of consumption goods, then, assuming immediate
consumption, the following applies:
C=C.
Under the given assumption this is nothing else but the algebraically given behavioural
equation for actual consumption C. The constraint for the flow of consumption to the

household 0= C - C is therefore equivalent to the algebraic definition equation of C . Since
C does not occur in the utility functions, this constraint is superfluous.

Analogously, the following constraints therefore arise:
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Z,=0=wL—-pC+rd" - N" -Mm"

for money of household H
Z,=0=pC-wL—-r(-D")+N" -M""

for money of firm F
Z,=0=Y(L,K)-C-S'-DP-K'

for good 1 of firm F
ZH — O — NH _AHV

for receivables / liabilities of household H
z"'=0=-N"-D"
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12.3. Systematic derivation of constraints from the transaction
matrices

The constraints can also be derived from the transaction matrices used to describe SFC
models. It should be noted that this always results in linearly dependent constraints that can

be omitted.

The relevant constraints are marked in red.

Transaction matrices of model A2

money | constraint— Zy Z, Zmoney balance
agent— H F
stock— MH MF
wage +L=4w.L| -L=-w.L 0
consumption | —C = —p.C | +C = +p.C 0
credit —N=-1LN| +N=+1N 0
flow| -
interest :Z+r. AH —Z=-r.A" 0
sum > =M¥ > =M EZMH' - MF

Z, =0=wL—pC— N+ rAf — M¥’

Z, =0 =—wL+ pC+ N —rAf — MF

Zimoney balance = 0 = MH' + MF" linearly dependent on Z; and Z,

g(e)lt)et constraint— | - Zs Zy | Zdebt note balance
agent— H F
stock— AH DF

flow| credit +N —N 0
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Z; =0=N-—AY
Z,=0=N-DV

Zebt note balance = 0 = AR + DF’ linearly dependent on Z; and Z,

In the case of the good, we consider the following stocks:

K  "Capital”

S "Storage goods"
CS  "Consumption stock" (all goods consumed by the household)

good | constraint— Zs Ze Z Zgo0d balance
agent— H F F
stock— CS K S
production +Y +Y
storage goods —-S" | +S" |0
depreciation —DP —DP
flow] Con;umption i _C 0
goods
use of C —C —C
N
sum §c9 §K‘ §S' §%if§:0
=0 =0 =0

Zgoodbalance =0=-CS-K—-S§+Y-DP-C)

linearly dependent

Zs =
0=C-
C—CS§'

trivial

7o =
0=Y-
S —
DP —
C—K

Z7 =
0=S -
trivial

No non-trivial constraint arises for the labour L. Therefore, only the constraints coloured
red remain. These are the same as those that resulted from the model graph in chapter 12.2.
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12.4. Calculation results of model A2

https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsol
ve.nb?dl=0
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https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsolve.nb?dl=0
https://www.dropbox.com/s/qe3qettcg714ztb/Modell%20A2%20Version%208.ndsolve.nb?dl=0
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13. Model B1, (1 household, 1 firm, 1
g00d, 1 banking system), Interest rate
policy versus monetary policy

13.1. Overview of the setup

The target of models B1 and B2 is to model the money creation process by the central bank
in a simplified way.

In model B1, the central bank is seen as an endogenous money creator and the bank is seen

!

as an endogenous credit creator. The central bank's target is to keep inflation P ot the target

inflation p =0.02 i.e. 2% by means of interest rate policy (6 =1) and monetary-supply
policy(6=0).

In this model B1, the central bank's interest rate policy is still modeled in a very simplified
way. We assume that the policy rate is constant 0 (banks do not pay interest to the central
bank) and that the central bank can, however, influence the interest rate directly. That the
policy rate is constant 0 is possible and does not cause the bank to borrow arbitrarily from
the central bank, since the bank is assumed to have a constant 0 utility function. This means
that the bank has no particular interest in lending to firms or receiving savings deposits from
households. Thus, the bank lends endogenously and accepts savings deposits endogenously.

In model B2, we will model the behaviour of the central bank according to the Taylor rule.

All these simplifying restrictions regarding money creation, we will still keep in models C1,
C2. This is because in models C1, C2, we are concerned with modeling the government.

It is only in the much more comprehensive model D2 that we will largely abandon the
restrictions on the modeling of money creation and the modeling of the government.
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Model B1: 1 household 1 firm, 1 good, 1 bank. 1 central bank
= - Llabor
Aktiva|Passiva 5] money creation B :
75 B ~7B o7 f=1e Lage
R N= =N~ w wage (par howr)
RE : Lt gmtedicbonr
N L capital
5 storage
Activa Passiva DP depraciation

e = I meet - irnvestmenst

C corcumgrion

C = pC comungrion expendinre

P price of good

M mong: stock firm

A" mongy stock howsehold

1" targered mong: stock howwshald
M* money stock berd:

|7 monsy creation camral bark
77 credit mansy frambeank to firm
Y sawings money fromhowsehold o bark]
ME DD debes

.4, 4" accowr

r(D Jr A" interast pyments

EE squity

Pay attention when establishing the constraints:
(1) Claims A have a positive sign, liabilities D have a negative sign

(2) Banks' equity capital is 0. They do not make profits.

Model B1 : basic equations

algebraically dglined variables

NIK)= prE® " production function”

DPK)= 4&:-.& "dgpreciation”

wtility fimctions

UNC.LM")y= c —(L- I}J — (M MUY +r A "utility furction household"

UNY. LSy = pPY—wI—(§-8¢-—r{-D%) "utility furnction firm"

U =0 "utility furnctionbank"

U (r, p N*)= |—dr+{1-d)\V }(_g":-—i} "utility function central bank"
£

consiraings

Z=0=wl-pC+rd" -N"-M"" for money flow of household H

Z,=0=-wL+pC-r(-D")+N -M"' for money flow of firm F

Z,=0=N"-N +r-D)—rd" +N -M"" for monsy flow of bank B

Z,=0=-N"-R"" for maney flow of central bank ZB

Z,=0=FILK)-C-5-DPF-K' for flow of good 1 af firm F

Z =0=N"-4"" for accounts | debts flow of household H

Z =0=-N"=-D"" for accowtts | debts flow of firm F

Z =0==-N"+N"-N" -D"'— 4°" for accowrnts | debts flow of of bank B

Z,=0=N"-4"" Sfor accournts | debts flow of central bemk ZB

12
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Model B1: diff. -alg. equation system

uB[t] =8
UF[t] = dF[t] - r[t] - {sdach - s[£])? - 1[£] - w[t] » p[t] -¥[t]

WH[t] = cH[E]" - (ldach - 1[+]}? - (mbidach - H[£])7 + aHLE] - r[£]
uzB[t] = [pd::h_ L

{(1- &) nB[t] - Sr[t])

dplt] = dpdach k[t]

inflation[t] = LU
Fitl
dnv[t] = k'[£]

¥IE] = @k[t]t 12"

all’ [£] = -A[t]

AH [E] = HaH P[E] - A4 [t] - F[E] A [£] + F[£] Aglt]

228 [£] w -25[t)

<H [E] =y pHeH SHE] " + p[&] A7 [£] - pIE] A [t] - 2a[t]

dBTE] = -2 [t]

dE[E] = uFdF PLE] - 35 [£] - FLE] Ag[#] + r[£] 3, [4]

K [t] = (L=a) BoFkk[t]" L[] p[t] = As[t]

1'[#] = 2HL (1dach - 1[£]) « wFL {af k[£] 10 L[] 27 p[£] - w[t]} -w[t] 2y[t] «
Wt] Ag[t] + aBhit] " 1[E] "+ ag[1]

mE[E] - Ay [t]

W] = - [t]

w [£] o 2 unH (mHdach - mH[t]) - ag[t]

NFE] = -Ag[4] r A2 (8] - Ae[E] + A7 [%]

oH[E] s =25 (8] + Ae[] ¢ Ag[t] - Aa[2]

A28 [t] w (1~ 5) uZBn2B (pdach - B - ap (2] - Aalt] » As[t] + dg (]

IR] = BFp K313 4 (5] 4 SEERILAGR NS | oy 3] A5 (2] - CHIT] Aa[T] - A [T

P i) o - LS

(€] = wHr aH[£] + uFr dF [£] - & uZBr | pdach - EE.L] o (-aH[t] - dF[£]} 3g[t] +

dF (] 35[t] + 3H[E] Aa[t]

2B [£] w =3y [t]

5 [t] = 2Fs (sdach - 5[t]) - Ag[t]

Wlt] = Pl [e] - 1[¢] A (£] + 1[¢] 24 [¢]

-RF[t] - dF[t]

NF[t] = nH[t] =nZB[t] = aB' [t] = dB'[t]
-nZB[t] - rZ8 [t]

nHIE] - aH [t]

nIB[t] - aZB'[t]

nF[t] + cH[t] ~ p[t] + dF[£] ~r[t] - L[] «w[t] - mF' [t]

= =cH[t] - dpdachk[t] + Bk[t]* 1[t]% - k' [t] - 5'[t]
@ = ps[t] - pr[t]

aB (@] = aB@
al[@] = aHe
azg[e] = aZse
cH[0) = 1 ko' 1e"
dB[@] = dBO
dF[0] = dFe
k[e] = ke
1[e] = 18
mB[8] = mBO
mF[@] = mFe
BH[@] == mHe
nF[@] = nF@

nH[@] =

nze[e]

pre] e 2 - 143 1973 (- kS aHD r8s 16
a

ps[6] = psé

r[e] = re

rZ8[e] = rZBa

s[e] == s@

w[8] == wd

-nF[t] + nH[t] ¢ nZB[t] - aH[t] ~r[t] - dF[t] « r[t] - mB'[t]

-nH[t] - cH[t] «p[t] # aH[t] « r[t] + 1[t] ~w[t] -mH' [t]

13
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13.2. Calculation results of model B1

https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%?20Version%207.ndso
lve.nb?dl=0

dpdach
Idach
middach
pedach
sdach
tmax

plotmax

=0.05}

-0.10

agent H

agent F

uF
dp
inv
———
dF
—_k
—
—P
- uZB
iation inflation
nz8 nZB
uzZg Ps



https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%20Version%207.ndsolve.nb?dl=0
https://www.dropbox.com/s/rbtt9da2x8xm40n/Modell%20B1%20Version%207.ndsolve.nb?dl=0
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Comparison of

pure money supply policy 6 =0

agent F

agent ZB

0.10

0.05
ps
inflation
=~ nz8
R o=t
“uzB

-0.05 -

-0.10

uZB
inflation
nZB

ps

T

}
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mixed money supply-interest rate policy 6 =0.5

agent F

0.10

0.05

-0.05

-0.10!

agent ZB

ps
P inflation

~ —nzB

50 e S
~uzB

- uZB
inflation
nZB

ps

r

}

w



pure interest rate policy 6 =1

agent F
10- k
- e uF
8-
P— dp
8 W y
i ur - dF
4r —k
g _
25 P
0 20 30
agent ZB
uzZB
ps
inflation
_— inflation
7B nZB

60 .;\<_7 UZB eeerges ps
—r
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14. Model B2, (1 household, 1 firm, 1
g00d, 1 bank, 1 central bank) Taylor

rule

14.1. Set up

Model B2 differs from model B1 only in the assumption that the central bank acts according

to the Taylor rule.

In terms of the GCD methodology, the Taylor rule sets the value of the policy rate as an

algebraically defined variable (see chapter 8.4.2).
If p denotes the target inflation rate, this results in

A
1 ' 7 4

' p )2
r=—+—+o,(—-p)to,(—-—=)
Y p 1(]? p 205 7

(For simplicity we write r instead of 7, ).

If you insert and simplify you get

1 1 ! !/

r=P P yr-a) X o)
p K L

<14.1>

If the central bank acts only according to the Taylor rule, it does not act in the sense of
optimizing a utility function, but according to empirical values that have proven their worth
in the past. In this case, therefore, the utility function of the central bank can be set equal to

0.
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Model B2 : basic equations

for standard Taylor rule

algebraically defined variables

T(LK)= pIFE™®
DP(E)= ap k
:'=p——cr_rp—- ;}J+('.—cx)'?+ ('.+c:r_.}:x"'7

utility funetions

U C, LMY = C LI}~ —M") +r 4"
UT(rL L8 = pT—wIL—(§-5Y -r(-D")
Us=0

L').-s = 0

consirainis

Z =0=wLl-pC+rd?-N"-M""
Z,=0=-wLl+pC—-r{-D)+N -M""
Z,=0=N" =N +r(-D")—rd" + N" - "'
Z,=0==-N"-2"

Z, =0=I(LE)-C-5-DF-L"

Z, =0=N"-4"%"

" production function”

"depreciation”

" standard Taylor rule"

"utility function household"
"utility function firm"
"utility function bank"

"uiility function cemtral bank"

Sfor money flow of household H

Jor money flow of firm F

SJor money flow of bank B

for money flow of central bank ZB

for flow of good 1 of firm F
Sforacconnts | debts flow of household H

Z,=0=-N"-D"" foraccounts | debis flow of firm F
Z,=0=-N"4+N"-N" -D""— 4% Sforaceonnts | debts flow of of bank B
I, =0=N" 4" foraccounts | debis flow of ceniral bank ZB
Model B2 : diff.-alg. equation system standard Taylor rule
uB[t] ==

UF[t] = dF[t] » r[t] - (sdach - s[t])2-1[t] ~w[t] +p[t] ~y[t]

UH[t] = cH[t]¥ - (ldach-1[t])? -
uzB[t] ==

dp[t] = dpdachk[t]

inflation[t] == B2l
plt]

inv[t] == k'[t]

olps[t] _ (-1:a) k' [t]

(mHdach - mH[t])2 + aH[t] ~ r[t]

+ 2 (1+02) 17 [t]

r[t] = -pdach ol +

pIt] k[t] 1[t]

y[t] = Bk[t]*1[t]"

15

14
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W LED = - dal8]
Gl Aee ach o1 - ELSIE | Ll K1Y _ sty |
HEE] = =g (€] + A [€] [paach o1 - 22 — sl
o (-peacn o1+ e _ ilimul | s v
ot i 1re)
2a0t] (-pdach o1 ¢ S _ skl , ekl
26 (] = -As[t]

cH[£] ¥ uHCHCH )17 4 p(t] 25([t] - p[t] Ag[t] - Jg(t]
@8 [t] = -z t]

dF[E] m a2y [£] « 3g[t] ﬁzmaa.ﬂﬁﬂ.mlfﬂ_u*—:ﬁ‘im)‘
whdf (-pach a1 B2 | Ll | 2 v }_

ort1 3 el
0t [_,,m,l,ﬂﬂu_uﬁ:_m,ugﬁﬁnu]

k(8] = D] dcdzalatinl  fedetddin) g, Lofealhit] , Lheab PN, Lkeal BAALY g
K [T wout wa we i

i e

Ag[t] o o[- CUAEI 4, _dhmliiinl, Ll U] g, py
H T o

e s e

B | Gl ey |
o e L

uihE{l-a)Dk[!]"l[!]"p[tlt 2l -[:-P -
e) =
e[ il it g, bl | sl
Lre oy " s u

o e e 1] | 8 ey e ey

P o aute +
atlesti g1 Ll e ededigpOs

1F[ MLy g, BB, Ly e IEICR

oA Lo siemen Ly | e s

B emememiy
L (2 (daeh - 1121 e aml|

4F1 @ BKIE) 1141 ple] - wlk) - 2Lk T =)

9= -nF[t] - dF [t]
@ = nF[t] - nH[t] - nZB[t] - aB'[t] - dB’[t]
® = -nZB[t] - rZB[t)
= nH[t] - aH'[t]
= nZB[t] - aZB'[t]
8= -nF[t] +nH[t] +nZB[t] - aH[t] (-pda:ha1+ gi:[_:gg = “—:[‘ﬁm e
dF[t] (-pdach o1 o SELL | el €1 | 2 Vi) gy
) kil )

0= nF[t] + cH[t] -~ p[t] - 1[t] ~w[t] « dF[t] [-pdacho:+ ipsltl &::ﬁm + ﬂ‘—:ﬁ%ﬁl) =

pltl
mF'[t]

@ = -nH[t] - cH[t] - p[t] + 1[t] - w[t] + aH[t] (fpdacha1¢m—54—'°’ﬁﬂ+mm

plt]
mH’ [t]

0= —cH[t] - dpdachk[t] + Bk[t]32 1[£]? - k' [t] - s’ [t]
8= ps[t] - p'[t]

I.\,m a@k[t]P L] T A k] 4

uHmH (mHdach - nH[t]) - 25 [t]
A[t] + 23 [] - A6 [t] + A7 [t]
A2[t] + A4 [t] + A6[t] - Agt]
=22[t] - A3[t] + As[t] + A6 [t]

uHp o1 aH[t] ps[t o a_ oldF[e] pst
—"P—LLLLIP[‘}J + ufp (Bk[t] 1rt] —U—U—lp[t]] );
clsH[t] ps|t ol df [t ps[t = o1dF[t Pt
prn? N prer? ) AsLX] + (cH[t] prer? ] L%l

[-cH[t] - —LLLL”“"F:“,! = ) Ag[t] - Aalt]
pa’[£] = MESeleWit)  pFpecldry) (_vlaﬂ t] _ gldE[t; )A‘[t] i
T e plt) ] plt]
% oldF[t] ag[t & olaH !ﬂ“ t + A0 [t]
]

rZB[t] = -23[t]
s [t] = 2 uFs (sdach - s[t]) - Ag[t]
W [t] = -pFWl[t] - 1[t] A7 [t] + L[t] g [t]

1t ) -

k(t) 11t ] =

nZB[@)] = nZBe
ple] = pe
ps[@] = pse
rZB[@] = rZBe
s[0] = s@
w[e] = wé
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14.2. Calculation results of model B2

https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.nds
olve.nb?dl=0

£
aHo
azB0 . .
l agentH ¥
B0
dFD

mBO

| ee=ghl | = uH
1 b7 - —mh f

mFo

-3
L2 R &} B J | B E
r

il |
o ] a4
nzeo [ |

agent F

c
&

.-
=

40

E)

=
s
5
B
&
]

o I i agent ZB

ey | u 0.10

uzB

inflation

Y
-

//‘_P

<. .
_— inflation
S — 0

dpdach I a - ©ps

E
E
z
g
- -

sk I i -0.10

plotmax I


https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.ndsolve.nb?dl=0
https://www.dropbox.com/s/5rj153v24swq7m7/Modell%20B2%20Version%203.ndsolve.nb?dl=0
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15. Model C1, (1 household, 1 firm, 1
g00d, 1 banking system, 1 government)
interest rate policy versus money

supply policy

15.1. Set up

The target of model C1 is to extend model B1 by the government G as an agent in a simple
form.

The government has a utility function analogous to that of the household. It collects an
income tax from the household, which either flows to its money stock M “ or is used for
government consumption C .

Model C1: 1 household, 1 firm, 1 good, 1bankingsystem,1 Government PART 1

Tlcbar
L=vwLwas

¢ 1eage fper hour)
1 1o geved icbonr
I copival

Activa_| Passiva

:

S storage

LP depreciaion

i = K met - fimvestners

C cormungrion

¢ = pC corcunption spenditure

P priceof good

A" nong siock firm

M mongy stock hosehald

it 1argeed money srock howsshold
14" morey siock bed

% money creation camral bark
|7 aredit monsy frombankto firm
(7 savings monsy frombosehnld 1o bark|
D' D" debrs

47, 4" acomr

(D ), r A" imerest paymerns
X squiyy
L 18
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Model C1: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 2

Tt housahold

C" govermmernt consumption

A" money stock of government

bl

Model C1 :

basic equations

dgebraically defined variables
F(LE)= BLE™
DP(E})=  dpk
T, I)= 'wl
utility frmctions
U =0 (LI} = (3" - A"y +r.a"
U =pF-wL—(§-8§F—r(-D")
U=0
U™ =(0r+1-aN" Kp-E)
r

Uf=gn
COnsr s

Z=0=wLl-pCird"-N"-T" -M"

I =0=—wLl+pC—-r(-D")+N' = pG-1""
Z.=0=N"=N"+r(-D")-rAd" = N" - M"
Z,=0=-N"-R""

Z =0=NLE-C-G-5-DP-L"

Z o=0=N"-4""

Z.=0=-N"-D""
Z=0=-N"+N"-N"-D""- 4

Z =0=N"=4"

Z,=0=-pG+T"-M

Z =0=ps—p

"production function”
"depraciation”

"imcome rax household"

"wrility fimction househol d"
"wility furction firm"

"wrility frmction bank"

"wrility furction ceraral bank"

"wrility fimction govarrmers "

Sor money flow of housghold H

Jor monsy flow of firm F

Jor monsy flor of bank B

S money flow of ceniral bark ZB

Jor flow gf good laf firmF

Jor acconets | debis flove gf howcehold H
Sfor accots | debis flow gf firm F

for acconmts | debts flow gf of bank B

Jor acconmts | delbes flow gf cenmral bark ZB

for money flow gf sovermment

becemise "no derivation in utility fimction of ZB"

20
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ModelC1: diff. -alg. equation system

B[] =8

UF[t] = dF[T] - F[t] - (seach-s[t])} - L[t] - W[t] +p[t] - y[T]
UG[t] = cG[t] ™

UHI] == eHIt]™ - (1dnch - 1[21)° - (eHidach - mH T} ¥ v AHIE) - 2]
uzB[2] = [pdach ((1-8) nZB[E] - Br[E])

el

cGschlangelt] = 6 [t] - pIt]
@p(t] = dpdachk(t)
inflation[t] = 25

]

dnv[t] = k[t]
taH[t] = cH1[E] o m[E]
VIt] = pRIEIF1[E])"

aB [t] = -Aglt]

aH' [£] = aHaH P[] + F£] Au(t]) = r[2] Aalt] - e[t]

2B [t] v -2 [£]

€6’ [t] = y6 uGel cB[t] M e p(t] Alt] - As[t] - pIt] Asalt]

CH[£] w yH UHCH EHLE] 7 - p (€] A 1] 4B E] A t] - 24[)

OB [£] = - Aglt]

GF'[£] = uFdF p[E] + [£] A [E] - F[E] AS[t] - 3r[1]

KEE] = {1-m) B aFk k(8] 1[€1° pIt] - Aa(t]

T[E] = 2 M1 (1dach - 1[E]) + L [a kL] 1[E] " LE] ~w[E]) + (wIE] = tHuwlE]] A4[E] -
WIt] Aa[E] + @ BRIET LIEN M A0 18] + cHWE] e (4]

e 2] = - Aalt]

W] = - Aaft]

w0 [t] = -dult]

mH (4] = 2 W (mHdach - mHt]) - 3y [t]

F ] w3, (8] - A (4] -3 [4] « Aat]

TH[2] = M EE] 62y [E] ¢ da[T] - Aa(t]

NZB[E]  (1- ) 28020 [pdach - BLEL] L 23[t] - 3041 - Jalt] +dalt]

BLE) m k6] ) o SRS B S L g 4]+ (<BLE] + <HIR]) AalE] -

st
B[] A [t] - Anlt]
P 1] m - EELLSISEL gy, 1)

FIt) = e M [t] + uFr dF (t] - 6 uZBr pdach - ?f‘-:-l\] +aHt) 2 [€]) « dF [£] 2, (] +
(-aHt] - dF[2]) Ay0t)

FIE[E] = - (t]

S'[t] = 2Fs (sdach- 3[8]) - Aet]

W] s -uFuLE] o (L[] - SHILE]) A3 (8] - 1[E] Ao [t] o THALE] A lt]

L] rH[t] - cH[£] - p[t] «aH[t] - r[t] « 1[t] ~w[t] - cH1[%] < w([t] -nH [t]
@=nF[t] +cG[t] - p(t] + CH[T] - pIt] +aF(E] - r{t] -1[t]  w[t] -mF [t]
B <0F[t] « WH[E] « AZB(E] = 8H[t] - #[t] =dF[t] - r[t] = mB [t]

@ = -nZB(t] - 128 [£]

@ -eG[T] - cH[t] - dpdachk[t] + Bk[t]} 7 L[t]? - k'[t] - 5°[1]

RH[E] - aH'[1)

8= -nF[t] - dF [t]

8w nF[t] - nH[t] -nZB[t] - aB'[t] - dB'[¢]

® = nzB[t] - aZ8 [t]

8w -eB[T] - p[t] « CHL[T] - W[T] = G [T]

0= ps[t] -p[t]

ai (8] = aBo
aH (8] == aHo
aZB (8] = aZBe
Ll
cafe) = =
CHIE] oo CEEEEREE T " leTpe sty
El
@819) = dbo
P L
k(0] == k8

pLo] « po

~mB - MFO - mG8 - BHE.

21
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15.2. Calculation results of model C1

https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.n

dsolve.nb?dl=0

Agent F

—w
uF
i uF ’
o dp s
| v —— W
—
& ¥
& R oF
B 10 o 5 E) ; "
—_
2 —_—p
o
4k
8l
Agent G
2l
Gschiange
— tanH
uG
6
TR O cGschlange
taxH
----- cG
........ mG
"
i
e
AgentH
-
N " uH
§ B —— taxH
o taxH ~ aH
r —cH
TP ' cH
- e — = \
—_— uH T
— mE e
5 a 5 . 5 0 By m
aH —F
r
w
-4
Agent z8
03
02
01 uZB
- infiation infiation
= — - — ' nze
5 I is 0 3 g a8 £
nz8



https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.ndsolve.nb?dl=0
https://www.dropbox.com/s/vmg7wbyghwbg2h7/Modell%20C1%20Version%2019.ndsolve.nb?dl=0
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16. Model C2, (1 household, 1 firm, 1
g00d, 1 banking system, 1
government)), standard Taylor rule

16.1. Set up

Model C2 corresponds to the extension of model B2 by the agent government in the sense
of model C1 and corresponds to model C1 with the change that the central bank acts in the
sense of the standard Taylor rule.

Model C2: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 1

Activa money creation 4 i {J
= ZB ol < B Activa_| Passiva =1L wage
R B N — T

1 y, N7 AF v wage (per howr)
RZ" 0 - £ 1ov gevect labour
L I cqpial

5 storage

Passiva

DP depreciatian

lirn = KT rast - irmvestmers
Activa |Passiva |- coumErion

C' = pC comunprion expeadiure

p prics of good

M momgy stack firm

M mongy stock howehald

Xt targered money stock howsehold
A mansy stack bark

4H |

money areation catral bark

| 7F arectr money frombemkro firm

|V sewings monsy frombocehnid 1o bark]
ME DF D deber

4%, 4" apcowr

ri-D ). r 4" iterect pmmerts
EE sguaty

22

Model C2: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 2

F B H
T tax household
C" government consienption
(A" money stock of govermment
G T
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Model C2 : basic equations

al gebraically defined variables
TLE)y= BLE"

DP(E)= &K
T, D)= wl
i T
r=E 0B i+ :'_—cr:i_—:'_—a.:cr"—
P P K L

utility fumctions
U =% —{L=L) (A" = M"Y +rd"
U'=pl—wl—($-5F-r(-D")

"production function"
" depraci ati on’”
"income tax household"

"stendord Teaplar ride”

"raility furection househal d"

"waility frovction firm"

U= “reility fimerion bank"
U= =0 "wrility furction certral bank"
Uf =G "wility fimction goverrmers"
COMSIY i s
Z=0=wl-pC+rd" -N"-T"-M" S money flow gf household H
Z.=0=—wL+pC-r{-D )+ N +pG-M"" S maney flow af firm F
Z =0=N"=N"=p(-D")—r A" + N" -M""  for monsy flovr of bemk B
Z, =0=-N"-F*"" for money flow of cemtral bark ZB
Z,=0=NLE-C-G-5-DP-K' Jor flow af good laf firmF
Z, =0=N"-4"" Jor accowms | debes flow of howsdhold H
Z.=0==-N"-D"" for aceowmis | debis flaw gf firm F
Z =0=-N"*+N" - N" - D"'— 4% Sor aceonis | debes flow qf af bank B
Z =0=N" - 47 Jor accownis | debis flow of central bark ZB
Z,=0=-pG+T"-M Jor money flow of government
Z =0=pr—p' becase "no devivation in utility fumetion of ZB"
Model C2: diff.-alg. equation system
uB[t] == @
UF[t] = dF[t] ~r[t] - (sdach-s[t])2-1[t] w[t] +p[t] ~y[t]
UG[t] = cG[t]*®

uUH[t] == cH[t]™ - (1dach-1[t])2 - (mHdach-mH[t])2+ aH[t] ~r[t]

uzZB[t] =

cGschlange([t] == cG[t] ~p[t]
dp[t] == dpdach k[t]

inflation[t] = B3t
plt]

inv[t] = k' [t]

a (1+02) 17 [t]

P[t] == -pdach o1 + Sips[tl _ (lea) KI[E] |

plt] k[t]
taxH[t] == tH1[t] ©~w[t]

y[t] = Bk[t]**1[t]"

1[t]
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PN [t] == -2 [%]
pe[ s | snmen o cusen | s cusmmv s | s[t] =
kit) W T e k7 OTH ared

Jalt] - dg[t] » LRSI L gy ((1-a) B[] 1[1]" plt] « SlRELLEL .T';z el )

we?
18] v 14| 2Lt ey fesi " _ gt epn e

”[7.”"‘1\.1«“ _Sled o) o | oilesEhsw(e) _ o ilesd afe)
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i (2 (ddach - 1[¢1) - SR
#FL [ag k()T 1[4] B2 p (4] - we) - LB BT

© = -nH[t] - cH[] - p[t] + 1[t] ~w[t] - cH1[] -w[t] +
& olps[t = -1ra) k't a(leo2) 17[t i v
aH[t) ( pdach o1 4 SLE8E _ LLal [, 2l Vsl ) mH [t]
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dF[£] (—pdar.h o1 CBE | L K(t) | aQeon (e ) —mE (]
PIt] kit] 1e)
@ = -nF[t] + nH[t] +nZB[£] - aH[t] (-pdachal+ L‘ﬁgﬂ -%‘%‘ﬂ + H%l]im] -
ik olpst x ~lea) K[t @ {1s+02) 17|t o -
dELt] ( Placiiol.+ pit] kit) & 1ie) ) e
© = -nzB[t] - rzB [t]
@ = -cG[t] - cH[t] - dpdach k[t] + B k[t]* L[] - k' [t] - 5'[t]
@ = nH[t] - aH [t]
© = -nF[t] - dF'[t]
@ = nF[t] - nH[t] - nZB[t] - aB’[t] - dB’[t]
© = nzB[t] - azB' [t]
@ = -cG[t] - p[t] + TH1[t] ~w[t] - mG [t]
0= ps[t] - p'[t]

PIt] =~

=-2[t]

=-2(t]

=-2e(t]
= 2 uHmH (mHdach - mH[t]) - A, (]
=[] - 23[t] - 4 [t] + Ag[t]

= =[] + 23 [t] + A6 [t] - Ag[t]

ple)

z

NZB[1] = A3 [t] - Aa[t] - As[t] + A [T]
iyt ML) palt] | pn (sk[t]“l[ta"- o1dr :ﬂ;x + ) "

;. | stampy page K .  crare) page .
( CH[t] . ].\.[t] (csm CcH[t] b )A,[t]
BLSLELIL ) 3, [t] - €6[t] Ao [t - Aus 1]

, hpe I Fps o1 dF oAaM[t] Ag[t]) | eldF[t] 3p(¢
pe’[t] m LS | ufpscldtity ESTL N 20t]
It elt] elt) plt]

) 2atel + autt]

2 uFs (sdach - s[t]) - As[t]
W] = -uFwl[t] « (L[¢] - TH1[t]) Ay [4] - 1[t] Az [t] + TH1[%] Ae[t]

aB[@] == aB@®
aH([@] = aHe
aZB[@] = azBo

cG[e] = —“:“‘

cH[@] = -dpdach ke pa.k6? "% 16% p6 p-10we tH

Po
dB[@] = dBe
dF [@] = dpdach ke pd + 16we - ke'-* 10" pe 3
k(@) = ke
1[0] = 1@
nB[e] = mBo
mF [@] = mF@
mG[@] = mGa
mH[@] = mHo
nF[@] = nFo
nH[@] = nHO
nZB[@] == nZBO

ps@

= -mB@ - mF@ - mG@ - mHe
s[@] = s@

W(e] = we
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16.2. Calculation results of model C2

https://www.dropbox.com/s/tuytrcb4rh1rOvh/Modell%20C2%20Version%201%20
%?28Taylor-Regel%29.ndsolve.nb?dl=0
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17. Model D2, comprehensive model

17.1. Setup

We extend the C2 model in the following aspects:

- The interest rate is formulated in more detail: in central bank policy rate, premium for

lending rates, premium for savings rates 7, 7, 7,

- The central bank distributes the profit to the government, the bank distributes the profit to
the household, the firm distributes a part of the profit to the household

- Taxes are composed of income and property taxes for household and firm.

- The government aims to achieve a debt level of 60% of GDP in line with the Maastricht
criterion.

- The central bank acts according to the modified Taylor rule

- The target level of the firm's investment and the target level of the household's money
stock are interest rate dependent.

- The targeted level of the government's money stock is not interest rate dependent

Activa| passiva 7= | Model D2, PART 1 Cior

[ EK | 7y AT L=+ Liase
[ &—+— | B v viage (por howr)

475 \ N moneLc$%hon — L

42zt —E_>

I 1evgered laborr
Activa Passiva

K capital
.5 storags

| DP depracicrion

i = I mer - ivesrma
C cormumprion

C = pC cormmmptionapendinre
p price of good

— N " movey stock firm
A" mong: stock howshold
F 3" targeted money stock housshold
M money stock bark
|77 oy areation cevtval bank
Y o) " credit monsy frombarskto firm
_pat=T%) 57 savings money from howsehold to bark:
ch D°.D" debis
M 45, 4" acoornr
<,; (. + 5, 0ED0), (40, ) A" interent peymss
DP L=wl 1. prims rats carmral bonk
— | - L 2 dvidend factor

L EX aguity 28
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Model D2, PART 2

T tax household
" rax firm
G govermment consumpiion

D" government debt

M"Y money stock govermment

(N credit mongy ffom bamk to govermment

Cé=pce L @+ )0(=D")

Model D2 : basic equations

algebraically dgfimed variables

DP=gp IL "depreciation”
irflation= £ "imflation"
r

i =K' "net imvestment "
irmmae = 0.1 K "mervimal irvestment (fm if v Tr, =
r=a,+Z+o (2 _pra-ot sq+0,)0 "mod ified Taplor ruds”

TP P E - L
T" =" (wL +(r+r)4")+ 0" (4" = ™) "imcome tax + asser rax H"
I = | pfL°K ™ -wl—(r =r,{-D")-DP |+

v(MT+5+E+D7) "income fax + asset tax F"

7' = prafit’ = +r =, ) ~D 3+ (r =, W=D )= rt™ = (r 2y 2" “prafit before taves BT

7' =pmafit" = pBL°E ™ —wl-(r+r ,{-D"}-DP "prafit before taves F”

T = prafit™ =r A "prafit ZB"
¥=pItre " production fimetion”
Nutzerfunktionsn

U¥ = mrafit® "rtility frovction bark B"

U’ = prafir’ - {5 - 5): — {imvmere| L— 9(r = v} ) — v :J: "wtifity froction firm F"
U =(C%y - (D ¥ - D%y

"wility fimction government G

UY =@ty —(I-1 :]: — (e (1= 8(r = v ) )= MY = (r=r 4" "wrility fumetion H"

= "wility frction cenira bark ZB"

oy

30
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constraint s
Z,=0=-7TAZ+ NZ - N7 + (r + i, X-D7) + (r + 1,).(-D%)

~(r+r)AT + NF -7 - N® - M® money flow B

Z,=0=-wL+ pC¥ — p(x" =TF)=(r+ 1, X=D7)

+NF+pC®-TF —MT! money flow F
Z,=0=—pC+T" + 7% + N® —(r +1,)(-D®)+ T¥ - M*" money flow G
Z,=0=wL-pCT¥+ p(x" -TH)+(r+r)4" - N" + 22 -TF — M7  money flow H
Z,=0=rd4® - 7% -M*" money flow ZB
Z,=0=-N?Z —R#® reserve flow ZB
Z,=0=¥-DP-C*-C°-K"-§ flow of good F
Z,=0=-NZ +N* -N¥ + N®- 4% D% accounts / debts flow B
Z,=0=-N%-D" accounts | debts flow  F
Z,=0=-N°-D% accounts / debts flov G
Z,=0=N7-4% accounts / debts flow H
Z,.=0=NZ%_4% accounts / debts flow ZB

uB[t] = profitB[t]

UF[t] = profitF[t] = (=inv[t] + invmax[t] (1 -7 (rd[t] + rleit[t])})? - (sdach-s5[t])?

uG[t] = e6[t]" - (mGdach - mG[t]}? - (-dG[t] + dGdach y[t])}?

uH[t] = cH[t]™ - (1dach - 1[t])? + aH[t] (ra[t] + rleit[t]) -
(-mH[t] +mHmax (1-6& (ra[t] +rleit[t]})))?

uzZB[t] == @

dp[t] = dpdachk[t]
inflation[t] = EL
LI
inv[t] = k' [t]
inumax[t] == 8.1 k[t]
profitB[t] = -azB[t] (-pdach o1+ SEAltl  ichliinl , sgdestiiyn)

plt] k[t] 1[4]
aH[t] (-pdach ol ERBELEL L oper Ll k6] aleod) It } :
r) kit] 1[t]
P
d6[t] (-pda:h als+ ﬂﬁllll srd[t] - .:_J_h:“:' 5 ﬂ;lq:::]],'“
L

profitf [t] = —dpdachk[t] + Ak[t]TT1[£]% p[t] - 1[£] -w[t] +
dF [t] (-pdachcl . ﬂl’ﬁ‘fl «rd[t] - “—:RL'I‘N * “—‘M&m}
P

1[¢]
profitZB[t] = aZB[t] {_pdach ol ¢ ShEslt] _ (cleab W7[E] Mﬂ}
plt] k[t] 1[%])
rlelt(t] = ~pdach ol « S . pqpy] . LLAIVIL , ) P10
P

tF[t] = vF (dF[t] + k[t] +mF[t] +s[t]) +
F [—dpdachk[t] +BK[E]T1[t]7pt] - 1[t] ~w[t] +
dF[t] (-pdachols SEELEL , pgpg) - LShmin , speeBdin))
plt] kit) 18
tH[t] =
vH (aH[t] + mH[t]) +

oH [l[t] wlt] +aH[t] (—pda:h ol+ ﬂf’l—:ﬂﬂ +raft] - %‘:ﬁlﬁh “—l"—;f:%m)}
3 1

y[t] = BKk[£1**1[¢]"

31
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uB[t] = profitB[t]
uF[t] = profitF[t] - (-inv[t] + invmax[t] (1 -7 (rd[t] + rleit[t])})? - (sdach-s[t])?
uG[t] = ¢G(t]"™ - (mGdach - mG[t])? - (-dG[t] + dGdachy[t])?
uH[t] = cH[t]™ - (1dach - 1[t])? + aH[t] {ra[t] + rleit[t]) -
(-mH[t] + mHmax (1 -6 (ra[t] + rleit[t])})?
uZB[t] =

dp[t] = dpdachk[t]

inflation[t] = ELL
PIt]
inv[t] = k'[t]
invmax[t] = 8.1 k[t]
profitB[t] = -aZB[t] (_Pd.:h ol s SLELIE] | Lead iyl n_ch_r-a_);m} Al

Blt] k[t] 1041
:

dF[t] (—pdl:hol+ cipajt] | rd[t] - slemp Wfe) | oo (leod Vit ) "
Plt] Kit) 11t)

dG[t] {-ﬂd.:h al+ olpst frd{t] - =lea) k[t + afleod) 1 [t )
pIt] K[t] 11t]

profitF[t] = —dpdach k(] + Ak[t]¥ = 1[t]% p[t] - 1[t] -w[t] +

dF(t] (-pdach o1+ B L pgpy) - el ateldin )

plt) 1r¢)
profitZB[t] = aZB[t] {~pdacho:l. o Shpltl | Llealkife] “—‘ﬁ&m)
plt] k[t] 1]
rleit[t] = -pdach ol + 2L _ pqpe) - LRAKL , 2 LY

tE[t] = vF (dF [t] + k[t] +mF[t] + s[t]) +
F [—dpdachk[t] +BK[TITT L[] p[t] - 1[t] ~w[t] +

dF[t] (-pdach o1+ S | pgpe) - LRl ageenim )
plt] k[t] 1[¢]

tH[t] =
vH (aH[t] + mH[t]) +

oH (1[t1 Wit] + aH[t] (—pda:h ol+ "—‘Pﬁilﬂ- +raft] - i‘—:[%lﬁh Mﬂﬂ)}

11t 31

y[t] = Bk[t]*"1[t]°

uB[t] == profitB[t]
UF[t] == profitF[t] = (=inv[t] + invmax[t] (1 =n (rd[t] + rleit[t])})? - (sdach-s[t]}?
UG[t] == ¢G[t]" - (mGdach -mG[t])? - (-dG[t] = dGdach y[t])?
UH[t] = cH[t]™ - (1dach - 1[t])2 + aH[t] (ra[t] + rleit[t]) -
{-mH[t] + mHmax (1 -6 (ra[t] +rleit[t])))*
uZB[t] =@

dp[t] == dpdach k[t]

inflation[t] == ELEL
plE]

inv[t] = k' [t]

invmax[t] == @.1" k[t]

profitB[t] = -azB[t] (-pdach o1+ ZLEALLL | Llemliin | slesi )

plt] k[t] 11¢]
BH[t] (-pdach o1 + BLEELEL | pape) - Lhalkin | ageabilin)
Pitl klt] 11t]
dF (4] (-pdach o1+ 22U, pgpe) - LlmK el agenilin)
PG kit] 1(t]
g (-pd“h oL ﬂﬁlﬁl Sl Ih:n:l HEE 1-::‘]1' . ]
P

profitF [t] = -dpdachk[t] + A k[t]""'“][‘l‘.]“ plt] - 1[t] ~w[t] +
dF [t] (-pda:h i olps(t] +rd[t] - (-1+a) k'[%] r a(lio2) 1' [t ]

pltl [ 1811 1[t]
profitzB[t] = aZB[t] [-pdach o1+ SLESIEL _ Llem) bT[E] M)
plt] K[t] 1[%]
rleit[t] == -pdach ol + 2B _ pqpeg - LR WIE] | o flead) 18]
[t] pd PIE] [t k[t] 11t]

tE[t] = vF (dF[t] + k[t] + mF[t] + s[t]) +
F [-dpdachk[t] +BK[t]Y"1[t]"p[t] -1[t] - w[t] +

dF[t] [-pduh ol s SREELE) | pgpey - Llead YR, 2 (isoR) 1'“1}:]
It K[t] 1[t]

tH[t] =
vH (aH[t] + mH[t]) +

H [l[t] Wit] +aH[t] [—pda:h ol "—:%llﬂ- rra[t] - IL':[%EM ﬂ“—:ﬂﬁm]]

y[t] = Bk[t]*"1[t]®
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olak[t] ol a?B[t] oldF[t]

Po LA = e (' »lt) pIt] slt)

oldG[t] } 5
plt]
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uHra
{au[t] %
2 mHmax @

(-mH[t] + mHmax (1-9 (-pdach o1+ SBULL , rat] - rd[t] - Lhm iy ﬁﬁ“—m)”)
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@ -nF[t] -nG[t] + nH[t] + nZB[t] + aZB [t] (-pdnchuzoﬂﬁ“ﬂ- JL:{’#EL + “—“'—;’ﬁ‘#ﬂl} =

dF[t] (-pﬂi:hq’l-vALl—l”’H‘“' % il_':iﬁtil LM)L&[) i
d6[t] (_Mﬂ‘hﬂ,m_w Miﬁl)
blt] kitl am
aH[t] l:-PdI:ha’J+ ”—"ﬁﬁ sraft] - %ﬁ'ﬁh 1.:“1 5 ) !
azB[t] (-pdach o1 o LI  pypy) - LD 2llead Liul)
it kIt 10t]
aM[t] (7pd:(ha1+—Lu”1 SI8] L ore) - pdpt] - AbERIE] 8 Gea v ] o
R kel 1t
dF[t] (.Pd.ghﬂ,,mzm 4 rdpt] - LRG|, sgead Y ) i
(1G] e e
do[e] (-pdach o3 » BB, ragy] - MBI, LUSLIIL) g (1]

=nf[t] + cG[t] - p[t] +« cH[t] - p[t] - vF (dF[t] + k[t] +mF[t] + s[£]) - 1[t] w(t] +

AR (4] (-pdach o1 o SELL_ Lhali | ameniin)
Pit] kit) 1

oF (-dpd::h k[t] + B[] 1[t]17p[t] - 1[t] ~w[t] +

AF[4] (-pach ot + BB, pgpe] - LRSI | s@ienlig)
Pit] [T 1t

5 (~dpdachk[t] + @K[£17 1[£17pIE] - vF (dF[E] + K[E] +F[£] + [E]) - 18] -ulE] +
5 ctpage Gl | ey
aF[t] ( pdach o1 + 2L 4 rat) e )

F {—dpdi:h K[t] +Ak[t)3 7 1[t] " plt] - 1[t] ~W[t] +
dF[t] (-pd-:hq:\- ﬁvﬂﬂlord[t] . 1’—:‘5%&1 . “—L:EEMH) —mF[t]
0 nH[t] - 3H'[£]

© = nZB[t] - aZ8'[t]
@ -cG[t] —cH[t] -dpdachk[t] + Bk[t]* " 1[t]" - k' [t] - &' [t]

0= ps[t] - p'It]

34
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aB[@] == aB@
aH[@] == aHo
azB[@] = azBe
€G[@] == cGB
cH[®] == cHe
dB[@] == dBB
dF [@] == dFe
dG (@] == dGe
k[8] = k&
1re] == 18
mB[@] == mBO
mF (@8] == mF@
mG[@] == mGe

nG[@] = mGo
mH[@] = mHo

mZB[@] = nZBe

Nk [@] = nFe

nG[e] = nGe

nH[@] = nHe

nZB[@] = nZBe

ple] = pe

ps[e] = ps@

rZB[@] = -mB@ - mFO - NGO - mHe
rafe] = rae

rd[@] = rdo

s[e] = se

wie] = we

17.2. Calculation results of model D2

https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2 %20V ersion%2011.ndsol

ve.nb?dl=0

Agent F

Agent &

Agent B

------- W —p
inv ps
invmax rd
----- R
leit w
o
—
—
PlotH uH
it
w o, ¥
— W
¥ -~ - aH
..... oG —w
o | oH
it i
..... me —m
o et oo mH
n
4 - H
ra
B
128
infistion g
————— profitB inflation
leit i
nfaton o
aB a —— nZB |
nZ8
a8 ™ a
m8 e wd
oz
=
3
rd


https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/xf95y9seacer2lh/Modell%20D2%20Version%2011.ndsolve.nb?dl=0

108

18. Different economic theories ditfer
only by different assumptions about
the power of agents

18.1. Basic idea

The basic idea of GCD models can also be formulated in the following way: With GCD
models, the supposedly insurmountable opposition of different economic models can be
eliminated in the sense that they can be understood as versions of a single model that differ
from each other only by different one-sided power relations or adjustment speeds. On the
other hand, GCD models offer the possibility of better representing reality, because mixed
power relations usually correspond better to reality than one-sided power relations.

This is illustrated by the following 2 examples.

18.2. Savings = Investment (Neoclassics) or Investment -
Savings (Keynes)

18.2.1. Problem description

The two economic schools of neoclassical economics and Keynesianism differ
diametrically in their assumptions about the variables "saving" and "investing".

In the Keynesian sense, investing is an exogenous variable, saving is an endogenous
variable and the cause-effect relationship applies

Investing = Saving

In the neoclassical sense, the opposite is true: investing is an endogenous variable, saving
1s an exogenous variable and the cause-effect relationship applies.

Saving = Investing

From the perspective of the GCD models, these seemingly insurmountable opposites can be
overcome and resolved in the following sense. The statement that saving and investing must
always be the same corresponds to an accounting identity that results from the definition of
saving and investing. The two economic schools differ only in the different assumptions
about the power of savers and investors.

The Keynesian cause-effect relationship results from the assumption that the power of
investors is o0 and the power of savers is 0. The neoclassical cause-effect relationship
results from the opposite assumption that the power of investors is 0 and the power of savers
is 0.
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In reality, however, these one-sided power relations do not usually occur, but rather mixed
power relations. Therefore, reality can be better described with GCD models than with
Keynesian or neoclassical models.

Investing = Saving |

Keynes: Neoclassical, mainstream:

* Investing — Saving * Saving — Investing

+ Investing exogenous variable ¢ Saving exogenous variable

* Saving endogenous variable * Investing endogenous variable
GCD interpretation: GCD interpretation:

* [nvesting = Saving * Investing = Saving

* Power of the investor = w * Power of the investor =0

* Power of the saver = () * Power of the saver = oo

GCD modelsin general: not one-sided power relations

The model equations for the Keynesian model are

A

I1=171
S=1

The model equations for the neoclassical model are

A

NERY
I1=S
Furthermore, with the assumed master utility function

1 4 1 -
U==I-1’+=(S-9)
2( ) 2( )

the general equilibrium model can be formulated as maximising MU under the constraint
Z(1,S)=1-S =0 in the following way:

0=MY 2% (-1«
o o
0=MY 32 _(5-5)-
os oS
0=1-5

All these 3 models can be understood as special cases of the following GCD model:
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utility functions
1

U = E(f -1y F firm, I investment, I targeted investment
1 4 N

U= E(S -S) H household, S savings, S targeted savings

constraints

0=71-§

basic GCD - equations

(@ I'=uf(I-D+2
B S'=p(S-8)-4
(c) 0=I-S

From this GCD model we get the Keynesian model with the assumptions

H =0
u =0 (oder 0 < uf <o)

because it follows from equation (a)

. I - A
I'spu/(I-D+i=>—=U-1)+—
H; H;
= wegen i, = 0=(f—1)+0
= /=]

and from equation (c)
S=1
Equation (b) is not needed. It would also be possible 0 < x! <oo.

Similarly, the neoclassical model results with the assumptions

w =0 (oder 0 <y < 0)
ps = o0
and the general equilibrium model with the assumptions

I'=0 Annahme des stationdren Gleichgewichts

S"=0 Annahme des stationdren Gleichgewichts
H =1
' =1
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GCD ~ mixed power Keynesian,Neoclassic ~ one sided power
Constraint GE ~ stationary

GCD — Model Kevnes Neoclassie Constraint GE

"Lagrange — Closure"

MU
I'= uf(IF-D+ A I=1IF KK U=C“ +A=(IF-1I)+ 4
a
i AT
S'=uB(SF-85)-4 XK K K S=8F U=C'1{SIL—/'.=(SF—SJ—/'.
a
I-5=0 S=1T I=5 I-5=0
,{ff Power of Business ;rf = ;ff =0 ,u;? =1
_ﬂf Power of Households ,u;" =0 ;1;" =m _uf =1

MU = %((IF — DY+ (SF -5

tH-CheT HerhaTaretotz #E

18.2.2. Formally analogous problems

Completely analogous to the accounting identity / =.5, in a closed economy the accounting
identity applies that the sum of the accounts A (receivables) is always equal to the sum of
the debts D (liabilities), i.e. A =D or with the convention used in this paper for the negative
sign of liabilities A=—D. The development of these quantities over time depends on the
one hand on the interests of the sum of creditors and the sum of debtors, and on the other
hand on their power to enforce these interests® (Glotzl 1999; 2015).

The two models (investing/saving and liabilities/receivables) are not only formally
mathematically completely equivalent to each other, but they are also formally completely
equivalent to the movement on an inclined straight line inclined at 45 degrees, which is

described by the constraint x, = x, (see chapter 3.3 and (Glotzl 2015)).

2 (Glotzl 1999; 2009; 2023b) describes the "fundamental paradox of the monetary economy". It states that in an economy
where credit is measured in monetary units, the power of the sum of creditors to increase their acounts is always greater
than the power of the sum of debtors to reduce their debts. In other words, it describes the "powerlessness" of debtors
relative to the "power of creditors™”. These power relations are ultimately the cause of debt traps and the constant growth
of accounts and debts.



112

Similar Models

= Model variables constraint condition
* Inclined plane x1 x2 x1=x2

* Investment versus Saving I S I=8

* Creditors versus Debitors R D R=D

18.2.3. Calculations

The GCD equation system is given by:

uF[t] = - (idach - inv[t])?

uH[t] == - % (sdach - spar[t])?

NP NP

inv'[t] == uFinv (idach - inv[t]) + Xy [t]
spar’[t] == uHspar (sdach -spar[t]) - A;[t]

@ == inv[t] - spar[t]

inv[@] == inve
spar[@] = inv@

We assume that investors want to invest 4 units and savers want to save 2 units, i.€.
idach =4
sdach =2

At the time 7 = 0 neither investing nor saving occurs, i.e.
inv[0] = spar[0]=0

The following numerical calculations show the different behaviour for the different
assumptions about the power factors.

Keynes uFinv = o« (approximated by uFinv =10), uHspar =0


https://www.dropbox.com/s/mq6s03sbunlmzob/Keynes%20Version%206.ndsolve.nb?dl=0
https://www.dropbox.com/s/mq6s03sbunlmzob/Keynes%20Version%206.ndsolve.nb?dl=0
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Keynes versus Neoklassik

SfeE oo i
----- uH
spar
uH

Investing (= saving) converge against the firm's targeted investments.

equal power uFinv =3 HHspar =3

Keynes versus Neoklassik

_—inv SRR
I ~— spar
{2 ----- uH }
/ a0 | ; O i — N1V
o 0.5 _:::I_Q:.:::u-qgs- ...... 2_0_.
5 ‘,-—" uF spar
2 -
'I
L .
-4 '

Investing(=saving) converges to a mixture of the investment targeted by the firm and the
saving targeted by the household. The speed of convergence, depends on the level of the
power factors, because the power factors can always be interpreted as speed-adjustment
factors (see also chapter 7.7).

Neoclassics — pFinv =0 uHspar = oo
(approximated by uHspar =10)

Keynes versus Neoklassik

4
Lt =eesa uF
2E spar
{ ; inv sass (M }
/__i ___________________________ uH ——— |\
t g 0.5 1.0 15 2.0
spar
=2F e s eSS S S S uF
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Investing (=saving) converge against the saving targeted by the household.

18.2.4. On the relationship of "drop closure", "Lagrange closure",
GCD and general equilibrium GE

We explain the relationship first with the simple example above and then in the following
chapter 18.3 with the models of A. Sen (A. K. Sen 1963). More detailed information can be

found in (Glo6tzl 2015).
Based on the utility functions for F and H
1 -
U' = —E(I —Iy F Firma, I Investieren,

I angestrebtes Investieren

U’ = —%(S’ -S)’ H Haushalt, S Sparen,
S angestrebtes Sparen

the ex-ante behavioural equations (i.e., the behavioural equations without considering the
constraint 0 =17 —§) are as follows

(@ I'=pjd-Dr2
B S'=ul(S-85)"2

<18.1>

This system of equations has 2 variables ( S,7) and 2 equations. It is therefore solvable

with appropriate initial conditions.

However, these ex-ante solutions do not describe the reality, because they usually do not
fulfill the constraint 0 =/ —.S which has to be fulfilled.

If the constraint is added to the ex-ante system of equations, the following is obtained
' F 1 -
(@) I'=p 5(1—1)

(b) S‘=,u§1%(§—S) <18.2>
(¢ I=S8

This system of equations consists of 3 equations for 2 variables and is therefore
usually not solvable. A method with which this system of equations is changed in such
a way that it becomes solvable is called a closure method.

18.2.4.1. Drop closure

In the simplest case, one omits so many equations until the system of equations becomes
solvable. This basic procedure is used by A. Sen in (A. K. Sen 1963)).

If in the case of equation system <18.2> equation (a) is omitted, the result is
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Ll
®)  S'=u ($-9)

<18.3>
() I=S
which corresponds exactly to the neoclassical approach and, in equilibrium (§'=0)
b §=8
(c) I1=S
results.
If we omit (b), we get
1 .
I'=ul —(I-1
@ I'=pf (-1 s

(¢) I=8

which is exactly in line with the Keynesian approach and in equilibrium (/'=0)

(@) I=1I
(c) I=S§
results.

18.2.4.2. Lagrange Closure, GCD, general equilibrium

In the case of Lagrange Closure, the opposite approach is taken: equations are not omitted,
but new additional variables are introduced until the system of equations becomes solvable.
In the concrete case, one adds the Lagrange multiplier A as a new additional variable to the
variables and the constraint forces to the behaviour equations in the sense of the GCD
methodology. This results in the GCD equation system, which is usually solvable.

1« oz 1 -
I'=u" ~(I-D+AZ=u"—U-D+2
(a) 7 2( ) o M 2( )
1 - YA 1 -
b S'=u' (S-S +A==u"—(§-8)- 2 <18.5>
(b) I 2( ) o5~ Hs 2( )

(¢) Z=0=1-S

We show that in the Keynesian case, because of 4 =0 this system of equations <18.5>
transforms to the system of equations

Lo
@ I'=po(-D+2 <1865

(c) Z=0=1-5

This means that z =0 leads to (b) becoming linearly dependent on (a) and (c) and can

therefore be omitted in the sense of drop closure. This is discussed in more detail in (Gl6tzl
2015).

In the case of the general equilibrium /'=0, because of x4, = oo it follows that
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Il
T ~

(a) 1
(o I
Proof:

Because of x!' =0 and because of (c), it follows from <18.5>

(@) r==ﬂf%d—1)+z

b)) S'=-4
(¢) Z=0=I-S
(d) Z'=0=I-§

If we apply (d) in (b1), we get

() P:yf%d—[}h%

(b2) I'=-2
(¢) Z=0=I-S
(d) Z'=0=I'-8

From (a) and (b2) we get

1 .1 -
A=——uf —(-1
5 Hi 2( )

Inserting into (a) and (b1) results in

1,1

(a) 1'=5ﬂ1 5(1—1)
(b) y—l-Fld—z)
Il

() Z=0=1-8
d Z'=0=I-§

Thus, equation (b) is linearly dependent on (a) and (d) and can therefore be omitted.

In the case of the general equilibrium (/'=0), this results in the following equations
because of g, =

A

(a) 1=1
(c) I1=S

by bringing x to the left side at first.

Summary: The Keynesian model results from the GCD model both by drop-closure, by
omitting equation (b), and by setting the power factor . =0. The power factor u, need

only be x>0, it can also be x =oo. The magnitude of g, only determines the speed of
convergence. For the neoclassical model, everything applies correspondingly.
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18.3. A. Sen: different economic theories differ in their
assumptions about the endogeneity or exogeneity of different
variables.

18.3.1. Problem description

In 1963, Amartya Sen showed that neoclassical and Keynesian models can often be derived
from the same system of equations and essentially differ only in which behavioural
equations are dropped (A. K. Sen 1963). This also corresponds to a decision on the direction
of causality within the model.

Similarly to the previous chapter, all models examined by Sen can be understood as special
cases of a single GCD model and dropping certain equations is equivalent to assuming
different one-sided power relations. Again, it is true that in reality, these one-sided power
relations do not usually occur, but rather mixed power relations. Therefore, reality can be
better described with GCD models than with the models cited by Sen.

The original system of equations of Sen is

)] Y(L,K)=BL'K" we assume a Cobb — Douglas

production function

(2) w= Z—z w wages, L labour

(3) Y=P+wlL P profit

(4) I=S8S.L+SpP St Savings share of <18.7>
employment income
Sp Savings share of profit

(5) I=i+i,Y we assume this

standard investment function

For clarity, we also introduce the variable S for saving and the constraints 0 =/—-§ and
I=K'. Implicitly, Sen assumes that L is exogenously given by L =L . This yields the
system of equations (14.8) which is equivalent to (14.7). We write it in our methodology as
follows
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algebraically defined variables
) Y(L,K)= BL'K"

behavioural equations

oY
) W_E
(4) S=8: L+SpP
(5) I=i+i,Y <18.8>
6) L=L
constraints
(3) 0=Y-P-wL
(7) 0=71-S§
®) 0=/-K'

This system of equations consists of 8 equations for the 7 variables
Y,L,K,w, S,P,I

and is therefore generally not solvable. Sen shows that by dropping different equations (drop
closure) different solvable economic models result:

omitting (5) results in the neoclassical model
omitting (2) results in the Kaldor model
(Neo - Keynesianisches Modell)

omitting (4) results in the Johansen model

<18.9>

omitting (6 ) results in the Keynesian model

of the General Theory

We show below that the system of equations <18.8> and the various models <18.9> arise
from a single GCD model through a specific choice of power factors in each case.
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Standard model SEN

price good market: pc = py,, =1, price capital market: pg,,, =1 |

price labor market: w

23.10.2015

Activa:

Passiva

L labar
L=1wLwass

v rage(per howr)
ijasrd.l‘m:
. copital

v

L |Ppaft

I =L imvestmes
-I=p. I it in nongy
C corzimvpeion

(= p, C comnption ependiwe in mong

Erha

rd Glotzl

4" aevows H
D' y=-A" ) kIt F
|V = spewr senings mong: flone
N clebt e flar
EX agrary

41

The variables N, D", A" are only listed for the sake of completeness. They are omitted in

the following (as by Sen ), because due to the assumption p , =limmediately

spar = p,,,.N =N" is valid.

| Standard model SEN, neoclassic, Kaldor, Johansen, Keynes, GCD |

SEN

overdetermined

7 variables Y, L. K, w, S P T
8§ equations

algebraically defined variables
1 VLEK)= LK™
behavioural equations

&
(2, w=—

/ aL
4  §=5.L+5.P
(5)  I=i+i¥
6 L=L

constraints

(3) 0=F-P-wl
(7y 0=I-5

® 455

neoclassic

drop (5)
o =m
=
=0
=

Kaldor
drop (2)

Johaisen Keynes

drap (4) drop(6)

M, = u, =

=0 i =

== U =

m =0 w' =0
Erhard Gltz

GCD - Modell

" Lagrange — Closure"

-

2]

W=l

S'= g (s, wL+5,P-5)- 4,
el (G +1Y DA+ 4

— )AL
L

L= (L-L)— .+ 4 (%—u‘)

42

The GCD model SEN results from the following basic equations:
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GCD-Modell SEN : Grundgleichungen

algebraically defined variables
Y(LK)=pLK™ " production fimction"

ufility flinctions

Ut = _%{ I-1 }_. —% (§;. L+5.P -5Y "utility fimction household"
Uf = 1 (i +iY =TIy - 1 (E —-w) "utility fimction firm"
20 2L )

consiraints

(3 0=T-P-wL
7y 0=I-5

8 0=I-X'

42

The GCD equations are then

UF[t] = -2 (aBk[t]*1[t] - w[t])? - i (il-inv[t] +i2y[t])?
(

1
2
uH[t] == -i ldach-1[t])? - i (spardachl 1[t] + spardachprofit profit[t] - spar[t])?
c[t] = -spar[t] + 1[t] «w[t]

y[t] = Bk[t]* " 1[t]"

inv'[t] = pFinv (i1 -dnv[t] + i2Bk[t]**1[t]7) + A, [t] + A5[t]
k'[t] =
pFk (-12 (1-a) BK[t]™®1[t]% (i1 -inv[t] +i2 B k[t] " 1[t]%) -

(1-a) aBk[t]*L1[t] 2% (aBK[EI*L1[t] - wt])) + (1-a) BK[t] *1[t]* A, [t] - A3[t]

1°[t] == uH1 (ldach - 1[t] - spardachl (spardachl 1[t] + spardachprofit profit[t] - spar[t])) +
WFl (-i2aBk[E]* = 1[t] 7 (i1 - inv[t] +i2 Bk[t] " 1[t]7) -

(-1+a) a BRI L[E] 72 (a BRI LIE]1 M -w[t])) + (@ BK[E] 1[t] 71 -w[t]) A1 [t]
profit’'[t] == -spardachprofit uHprofit (spardachl 1[t] + spardachprofit profit[t] - spar[t]) - A;[t]
spar’[t] = pHspar (spardachl1[t] + spardachprofit profit[t] - spar[t]) - A;[t]

w [t] = uFw (a,B k[E]1= 1[8] 2 - w[t]) - 1[t] A, [t]

8= Bk[t]1*1[t]% - profit[t] - 1[t] ~w[t]
@ == inv[t] - spar[t]
0= inv[t] - k'[t]

inv[@] == inve

k[@] = ke

1[e] = 1o

profit[@] = -10we + ke' = 1e° g
spar[@] = inve

w[@] = we

Dividing the differential equations for w,S,1,L by u’,ul', 17, 1]" in each case and setting
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we get the 4 behavioural equations of the standard model SEN

oY
) =
2 w==r

4) S=S.L+SrP
(5)  I=i+i¥

6 L=L

In addition one has the differential behavioural equations for K and P.

If one sets individual power factors equal to 0, this leads in an analogous way, as it was
shown in chapter 18.2.4.1, to the fact that the corresponding differential equation becomes
linearly dependent on the others and can therefore be omitted. More details can also be
found in (Glotzl 2015).

18.3.2. Calculation results

In order to solve the differential-algebraic GCD equation system with NDSolve one has to
use the method

Method— {IndexReduction—Automatic}

1 =oo 1s always approximated by 4 =6.

Neoclassical model ! =oo, ul' =0, 11 =0, ' =0

Agent F Agent H

F _ H _ F _ H _
Kaldor model “» =0, g =00, gy =00, p7 =0



https://www.dropbox.com/s/p0280ndhlb946lg/Modell%20SEN%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/p0280ndhlb946lg/Modell%20SEN%20Version%2011.ndsolve.nb?dl=0
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Johansen model x =0, 1! =0, u =0, u/' =

Agant F AgentH
; k
¥ uF uH
2 = rofit
—_—  p e i =
w s
i |  meeem inv 2 e |
— ey TErTYTTTIL  —— e !
S FETEEAmamamsmsssssmmamamneaannan inv k A Eveweswssmssssssssssmeesmssessn proft
5 10 15 20 25 30 uF 5 10 | 0 P
2

Keynes model ! =oo, ul' =0, yuf =0, 11

Agent F Agent H

18.3.3. On the relationship between GCD models, General
Constrained Equilibrium models (GCE model) and DSGE models.

A general equilibrium model can only start from 1 master utility function to be maximized
(note: multiple utility functions cannot be maximized at the same time, they have to be
combined to 1 master utility function, e.g. by weighting). A possible master utility function
for a general constrained equilibrium (GCE) model would be:

U=U"+U"
_ e o1 , 1 , Loy
__E(L—L) =S SLLHSPP=S) =G +iY =) =~ (o= W)

With the algebraically defined variable
Y(L,K)=BL'K"“

this results in
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A 1/~ 2 ]
U(L,P,S,K,[,w)z—E(L—L) —E(SLL+SPP—S)2—

1 1
_E(ll +izﬂLaKl_a _1)2 _E(ﬂaLa—lKl—a _W)2

The constraints remain the same:
Z,=0=Y-P-wL
Z,=0=1-S
Z,=0=1-K'

A maximum under constraints can only exist if the "first order" conditions are fulfilled, i.e.

H F
U oz, oz, oz, oUu" oU" . oz, oz, oZ,
1 PN _2 = + — 1 — 4 A
T op ﬂan AZGP ﬂgaP oP  oP /118P > oP i}@P
aU' oz, oz, ou” an oz, oz, oz
M—%—4%4= #— b+ h—>
os oS oS oS oS
H F
O.
ou . oz, oz oz, ou' exﬂ‘ Y4 Y4 oz
=s—+ AL+, 2+ A= + A+ A2+ A2
ol %(y > ol 23&‘ ol ol %éﬂ > ol ﬂ3m
H F
0= aU il_ %4_%%—6(] _;,_aU +/’LlaZ ﬂéi ﬁg%

ow ' ow ow ow  ow  ow ow ow ow
Z, =0=Y-P-wlL
Z,=0=1-§
Z,=0=1-K' <18.10>

This system of equations <18.10> is obviously identical to the GCD system of equations in
steady state, 1.e. for

L'=P=8=K'=I'=w=0

Note: This does not apply in general, but only if the utility functions can be aggregated to
a master utility function (see chapter 4.3, chapter 7.6 and chapter 7.8.2).

In contrast to GCE models, in DSGE models in particular (apart from the stochastic terms)
not a master utility function is maximized under constraints, but rather the master utility
function discounted by the discount rate S is maximized

t
Uy(t) = I e PU(t)dt —» max under constraints

For holonomic constraints this problem can be solved by the variational problem with the
Lagrange function
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i

. : . oZ
VAGE j e’ (U(t) +> 4, a—x’J dt — max

0

This leads to the corresponding Euler equations that describe the dynamics of the DSGE
model.

Note: Without going into more detail here, we would like to point out the following: If the
constraints are neither holonomic nor integrable nor linear, the two problems

e U (t)dt > max under constraints

@ p(0) =

!
(2) (t):je P ( jdt—)max

l

are different and lead to different Euler equations and thus different dynamics. The
dynamics to (1) is called "vakonomic mechanics". For more details see (Glotzl 2018).
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19. Obesity or
consumption/environment model

In section 7.9.2 we referred to the special case where a utility function depends on variables
xX= {xl,xz, vens x,} as well as on their antiderivatives X =(X,,X,,...,X,;) and/or the
derivatives x'=(x{,x,...,x;) of these variables. In these cases, both the antiderivatives
X =(X,,X,,...,X,) and the derivatives x" = (x],x},...,x]) are to be regarded as additional
variables of their own and appropriate constraints are to be added describing the relations

between antiderivatives, functions and derivatives of the function.

We will describe this situation using a simple example with only one variable x, where the
utility function depends on a flow variable x as well as on some stock variable X .

A good illustrative example is that we all like to eat but do not want to be fat. Here, x
describes the flow variable eat and X the stock variable, which describes the body weight.

utility function
Ux,X)=—(£-x)>—(X - X)* oder U=x"—(X-X)

constraint
0=X'-x+o0X

The utility function describes the decreasing marginal benefit of eating and the increasing
marginal cost of body weight. The constraint describes that eating increases weight and
decreases it at the rate o due to natural weight loss. If the parameter o =0, then the

constraint just describes the direct stock-flow relationship X '=x between X and x.

This results in the following GCD equation system
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UA[t] = x[t]" - xx[t]*?2

X [t] = y1pAx x[t] 17 - 2y [t]
XX [t] == —y2 phoxx xx [£] 7172 + A4 [t]

== =X[t] + oxx[t] + xx'[t]

X[0@] == x0
Xx[@] == xx0

The result of the calculation is, for example:

(In the plot stands xx for the stock variable X )

J i
-+ Ry —
00 1
05 = it AY - Agent A
Ak [ |
1 — kit RRZ
whin n y
1 - » + RY — \ 2 A
v [ | \ — * |
as —ivid Rlg i — whe =% ]
2 [ | S ) i -
5 - + A ¥ —
|
05 — P+ RYT
R |
8 P+ AR
plotmax [
1 - P+ Ay —

We give this simple example mainly because this contradictory behaviour of flow variable
and stock variable is also relevant in many environmental problems. For example, the
following other interpretations are also possible:

Flow variable x Stock variable X
Land consumption Building Built-up area
Waste Production Total waste
Plastic packaging Consumption l:elzstlc waste in the



https://www.dropbox.com/s/7cj6lflrc9qybgg/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
https://www.dropbox.com/s/7cj6lflrc9qybgg/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
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Carbon dioxide

Carbon dioxide Fossil . concentration in the
fuel combustion air

Furthermore, this simple model serves as an example for a model in which the stock and
flow variables occur simultaneously in the utility function. As already explained in chapter
7.9, in this case a separate variable must be introduced for the stock variable and the flow
variable. The relationship between the two is described by a constraint X' =x—ocX . Ifthe
parameter o =0, then the constraint just describes the direct stock-flow relationship

X'=x between X and x.
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D. Supply, demand and price shock
models
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20. Modeling of supply, demand and
price shocks

20.1. 2 different types of shocks

Basically, a shock can lead to 2 fundamentally different types of shocks:
(1) Variable shock

All model parameters remain unchanged, but at the time of the shock ¢ one or more model
variables V € {C,L,K,M" ,M",S, p,w} abruptly change by the factor f, from V to f, V

Ve, = £ V()

Interpretation: The basic behaviour of all agents remains the same, but an external event
suddenly changes the value of a variable (e.g. the price of energy). The system restarts, as
it were, with this new value as the starting value.

(2) Model shock

All variables remain unchanged, but one or more model parameters or power factors
=R T T T T ,uz,, Ay s ,u]f, .} are no longer constant but change over time,

i.e. 7 — z(t). For the sake of simplicity, we describe the temporal behaviour of such a
parameter z(¢) by multiplication with a sawtooth curve:

n(t)=ro(t)

where the sawtooth curve i1s defined by

t, time of the shock
f shock factor
d duration of the linearly decreasing shock effects

1 fort<t

f fort=t,
a)=4.

linear from f tol fort <t<t +d

1 for t, +d’ <t

20.2. Examples of demand shocks

For example, a demand shock N can have three different causes:
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(1) Variable shock: A demand shock can be triggered by the fact that at the time of the
demand shock ¢, consumption C is reduced by a factor £, from C to £V C:

C-fic

At the same time, the constraint Z, must always be fulfilled, even during the shock.

This is always guaranteed by the numerical solution method for differential-algebraic
equations of Mathematica NDSolve. In addition, of course, one can make any other
assumptions, such as that production Y and investment K’ remain the same and that
everything that is consumed less (1— £ )C(t,,) is stored, i.e.

S,(tA) i S’(tA)+ (l_gC]Y)C(tA)

The dynamic system then continues to develop with these new initial values.

(2) Model shock: The model parameter y describes the consumption preference of the
household. A demand shock can be triggered by the changes of y over time

according to a sawtooth curve:
y=>r@=oc@y

(3) Model shock: The power factor 4 describes the power of the household to

actually enforce its consumption interests (e.g. due to quarantine measures). A
demand shock can be triggered by a change of g/ in time according to a sawtooth

curve:

ul = ul ()=o)

20.3. Examples of supply shocks

For example, a supply shock A at the time can have the following causes:

(1) Model and variable shock: A supply shock could be triggered by the fact that the
production function

Y(L,K)=BL'K"™

changes over time according to a sawtooth curve with a shock factor f, ﬂA. This
initially corresponds to a model shock, because this is described by the fact that the
parameter S changes according to a sawtooth curve with a shock factor f, ﬁA :

B> pO)=c@®)p
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At the same time, production Y suddenly changes by the shock factor f, ﬂA at the time
of the shock ¢, :

Y(tA) - fﬂA Y(tA)
Because of the constraint
Z,=0=Y(L,K)-C-K"'-§'

at the time ¢, therefore, C,K’, S’ must also change so that the constraint is fulfilled.

This leads to sudden changes in at least one of the variables or in all of them. This
is always guaranteed by NDSolve. For example, one can also make additional more
precise assumptions about the behaviour of the other variables, e.g. one could

assume that at the time ¢, also C,K’,S’

change by the shock factor f, /JA , 1.e.
Ct,)— f; Ct,)
K'(t,) > f; K'(t,)
S't)— f; 8",

and that the dynamic system can then adapt to these new starting conditions and the
time-varying parameter

By =0,

(2) Model shock: The model parameter ¢ describes the labour intensity of production.
A supply shock can be triggered by the changes of & over time according to a
sawtooth curve

a—>>alt)=clt)ax

(3) Model shock: The power factor g, describes the power of the firm to actually

enforce its investment interests (e.g. because of administrative regulations). A
supply shock can be triggered by the fact that the power factor gz, changes over

time according to a sawtooth curve:

py > p (6)= o ()

20.4. Price shock

For example, a price shock P can be modeled by changing the price p at the time ¢, by the
factor f, pP

pltp) > fpp p(ty)

This corresponds to a variable shock.
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20.5. Policy shocks

In addition, a wide variety of fiscal and monetary policy measures that apply from certain
time points can of course also be interpreted as economic policy shocks and modelled in the
same way, e.g:

e government measures:
o Tax reform
o Increase or decrease in public debt
o etc.
e Changes in central bank policy:
o From money supply control to interest rate control
o Change in the inflation target
o Purchase programmes
o etc.
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21. Topics to be discussed

In the economy, a shock can occur for a number of reasons, e.g.

e sudden changes in raw material prices

e sudden changes in consumer behaviour due to quarantine regulations
e sudden production restrictions due to a disruption in the supply chain
o ctc.

From an economic point of view, there are 2 fundamental topics related to shocks:
(1) Forecasting: How will the economic variables change?

(2) Evaluating countermeasures: What measures can be taken to overcome the shock as
quickly as possible or with as little effort as possible?

Possible measures are, for example:

e Various forms of financial assistance from the government to firms

e Various forms of financial benefits to consumers

e Different ways of financing additional government expenditure

e short-time working models

e Central bank monetary policy measures

e Organisational measures, e.g. relieving companies of administrative regulations,
extending opening hours in the retail sector, etc. Such organisational measures are
expressed in the models by changes in power factors or other parameters.

The target of section C. is to show that GCD models are basically suitable for answering
these 2 questions and that this can be done very easily and conveniently with the help of the
open-source program GCDconfigurator. The additions necessary to incorporate shocks into
a model programmed with GCDconfigurator are very easy to program.

In order to apply GCD models to real economic situations, they would of course have to be
extended accordingly and adapted to the real conditions.

Using model A1 as an example, we show how special supply, demand and price shocks can
be modeled and what effects they have on the further course of the economy.

Using model B1, we show how central bank measures have different effects on a price shock
depending on whether the central bank pursues a monetary policy or an interest rate policy.

In order to make the effects clearly visible, the model calculations are carried out for very
strong shocks of a magnitude that is unlikely to occur in reality.
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22. Calculations with model A1 on
various shocks

We model the following shocks

«Price shock as variable shock,

Variable shock for p[t] at time tnp, p[t] jumps to fpp x p[t] at time tnpx)
WhenEvent [t = tp, {p[t] = fppp[t]1}],

bei Ereignis

~Demand shock as variable shock,

Variable shock for C[t] at time tnc, C[t] jumps to fnc x c[t] at time tncs)
WhenEvent [t = tnc, {c[t] » fncc[t]}],

bei Erelgnis

+ Demand shock as model shock (shock of power of household),

Model shock for pHc[t] at time tn, decays over the time period of dn,

anuHc[t] a sawtooth curve,

onuHe [8]=1, jumps at time tn to fnuHc, goes back linearly to 1 in the time period of dn,

uHc[t]=pHc x onuHc[t] a sawtooth curve,
1

uHc[@] =uHc, jumps at time tn to puHc x fnuHc, goes back linearly to pHc in the time period of dn =)

onpHe[t] == onuHc@[t] + onuHcl[t] (t - tn),
onuHc@[@] =1, onuHci[@] = @,
WhenEvent [t = tn, {onuHc@[t] - fnuHc, onuHcl[t] = (1 - fnuHc) /dn}],

bei Ereignis

WhenEvent [t = tn + dn, {onuHc@[t] » 1, onuHcl[t] - @}],

bei Ereignis

- Supply shock as model shock (shock of power of firm),

Model shock for pFk[t] at time ta, decays over the time period of da,

ocauFk[t] a sawtooth curve,

cauFk[@]=1, jumps at time tn to fauFk, goes back linearly to 1 in the time period of da,
uFk[t])=uFk x cauFk[t] a sawtooth curve,

uFk[@]=uFk, jumps at time ta to uFk x fauFk, goes back linearly to pFk in the time period of da *)

cauFk[t] == cauFk@[t] + cauFk1[t] (t -ta),
cauFke[@] =1, cauFki[e] =@,
WhenEvent [t = ta, {cauFke[t] » fauFk, cauFki[t] » (1 - fauFk) /da}],

bei Ereignis

WhenEvent [t = ta + da, {cauFke[t] » 1, cauFk1[t] »@}],

«Supply shock as model shock (technology shock),

Model shock for B[t] at time tap, decays over the time period of dag ,

cafi[t] a sawtooth curve,

caf3[@]=1, jumps at time tapf to faB, goes back linearly to 1 in the time period of dag,

B[t]=B x cafi[t] a sawtooth curve,

Ble]=B, springt zum Zeitpunkt tag auf g x faB, goes back linearly to B in the time period of dag =)

https://www.dropbox.com/s/dn6uxjb0134qzwo/Modell%20A1schock%20Version %20

24.nb?d1=0

With no shocks


https://www.dropbox.com/s/dn6uxjb0l34qzwo/Modell%20A1schock%20Version%2024.nb?dl=0
https://www.dropbox.com/s/dn6uxjb0l34qzwo/Modell%20A1schock%20Version%2024.nb?dl=0
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With multiple shocks
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Price shock at =20, p—>2p
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Demand shock due to variable shock (consumption shock)
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Demand shock due to model shock (shock to power of households)

Demand shock g —0.5. at t =10, thereafter, the power of the households increases

again linearly to . within the time period dn =5
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Supply shock due to model shock (shock to power of the firm)

Supply shock uf —0.5u; at t=10, thereafter the power of the firm increases again

linearly to 4, within the time period da =5

/'/7
=
o ——
T s 10 15 20 25 30
L
3.
2 .
)
1l
' 5 L 20 25 30
-1
8
8
! L
2
0 5 10 15 20 25 30

Supply shock due to model shock (technology jump)

kit]
vl

—~w(t]
mbft]
mh[t]
s[t]
I
plt]

ZB3+24
-ZB2+2.2
ZB1+2

—ylt]

—c

KTt
sTt]

oaf0[t]+6
oapi[t]+6
oapFk+4

oapFko+3

- oapFk1+3

anuHe+1

- anuHel

anpHe1

— C

— KM

— s

— yit]

— ZB142
— ZB2+2.2
— ZB3+2.4

— onpHc1
—— gnuHc0
— onpHc+1
— gapFk1+3
—— gapFk0+3
—— gapFk+4
—— oapl[t]+6
oapo[t]+6
— oaBit]+7

Supply shock g —1.54 at t =10 i.e. a technological jump occurs, the resulting increase in

productivity is maintained permanently



141

kIt

—c
i — kIt]
e — 1
i — mbit]
4mb{ﬂ — mht] ,
1 — < mhitl  — pit]
N st
— st
= = \I[t] s[t]
; ‘ . ; \pm Wi
10 15 20 25 30 — yIt]
_1 .
3
yitl
— C
s
) _———— _ —ZB3+24 — KM
2 T zp2422 .
g N Zm1e — s
c;:f_’—_—J —
1 — ZB142
— ZB2+2.2
—— KM — ZB3+2.4
10 15 20 25 30 st]
T —caBl)+7
8 — onpHe1
J ol o il
6 — s e
— oapFk1+3
B i K
4 ————— oapFk0+3 — oapFk+d
————— oapFk1+3 — caf1[t]+6
2 ———— anpHe+1 —— 0ap0t]+6
— oaf[t]+7
— anpHco
anpHot

20

25

30



142

23. Calculations with model B1 for
central bank polices in case of inflation
and deflation shock

23.1. Inflation and deflation shock as variable shock for the
price

The simplest way to model an inflation respectively deflation shock is to model it as a
variable shock for the price as shown in chapter 22.

For example, we use:

inflation shock: p —1.5p
deflation shock: p —0.5p
at time ¢ =20 , because by this time the system has already settled in.

https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Ver
sion%203.ndsolve.nb?dl=0

Certainly, one could also interpret these calculations in economic terms. But without prior
adjustment of the models to real conditions, a real interpretation is not really serious.
Therefore, we will not comment further on the calculated graphs.

As emphasized several times, the target of this book is to present the methodology of the
GCD models in principle and to give an idea of what can be done with them and in what
form. For application to concrete economic questions, the GCD models still need to be
adapted to real conditions. This is one of the tasks that still has to be done in the future.

Model B1 without shock as in chapter 13.


https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Version%203.ndsolve.nb?dl=0
https://www.dropbox.com/s/2k4699r3b0aswsv/Modell%20B1%20SCHOCK%20Version%203.ndsolve.nb?dl=0
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Inflation shock p — 1.5 p, pure money supply policy of central bank 6 =0
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deflation shock p — 0.5 p, pure money supply policy of central bank ¢ =0
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23.2. Inflation and deflation shock as model shock

Another possibility to model an inflation or deflation shock would be:

Introduce an agent 4 who has some power ,u;ls to influence the price change ps=p'.

(Consider e.g. OPEC as agent, which has the intention and the power to influence the
trend in oil prices). If 4 intends to increase the price p at time £, for 1 year this leads to

an inflation or deflation shock which can be modeled in the following way:
U'=~(ps-ps)’
y;S(t):O forte[O,tO]and t>t,+1
,ulfs(t)=1 forte[to,t0+1]

We give this as an example, but do not calculate this model in detail.

Obviously there are a lot of other possibilities to model price respectively inflation or
deflation shocks.
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E. GCD with intertemporal utility
functions (IGCD models)
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24. IGCD: Intertemporal General
Constrained Dynamics

For sake of simplicity most is described for 2 agents 4,B and 1 constraint Z .
24.1. Comparison of the basic ideas

24.1.1. GE (for non-intertemporal utility functions)

The economic system jumps from endowment at t = 0 along an unspecified tatonnement
curve to equilibrium value as symbolically is shown in the following graphic. (see more in
chapter 6).

GE

The economic system jumps from endowment at t=0 along an unspecified tatonnement curve to equilibrium value

I . B
equilibrium value @ maximumU

maximumU? @
Ox(0) Endowment at t=0

15.01.2022 Erhard Glotzl 2014

24.1.2. GCD (for non-intertemporal utility functions)

The basic idea of the GCD method for non-intertemporal utility functions is that each
agent tries to change the variables in the direction in which the change in its individual
utility function is maximum at any given time. In other words, every agent tries to change
the variables in the direction of the gradient of its individual utility function:

oU"(x,,x,) oU” (x,,x,)
Ox, Oox,
resp.
aUA(xlaxz) 6UB(x1,x2)

Ox, Ox,
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His desire for change is limited by his power to enforce his interest. This is expressed by
the power factors (,u)f]1 ,,u)f ,,uxA; ,,uf; ). ﬂ;f describes the power of the agent 4 to influence
aUA(xl’xz)
X
change of the variable. This results in the effective forces

the variable x, and ,u;l‘ describes the effective force exerted by the agent on the

/UA aUA(xpxz) /JB aUB(xlaxz)
T oy T oy
, resp. 5
40U (x,,x,) 5 OU” (x,,x,)
Ox, Ox,

Since normally the desires and the power of different agents are different, the system
develops ex-ante according to the resultant of the two effective forces:

A aUA(xpxz) ,UB 6UB(x1,x2)
[xl'] T oy T oy
P | T +
x2 /UA aUA(xpxz) ,UB aUB(xpxz)
° ox, 2 ox,

Considering the constraint Z , we obtain the GCD equation system for the ex-post
dynamics:

yA 6UA(x1,x2) uB 6UB(x1,x2) 0Z(x,,x,)
(xl'j Tt e .\ T oy ) ox,
X, y oU" (x;,x,) . oU” (x,x,) 0Z(x,,%,)
" ox, " Ox, 0x,
0="Z2(x,x,)

The dynamics of a GCD model symbolically is shown in the following graphic.

GCD with 14 = p4= 1, without constraint

@ maximumU®

- At time t:
s A exerts a force in the direction & =y
‘7‘;1?;”) the gradient of the utility of A~ @
@ maximum U® &) B exerts a force in the direction & ()
ah of the gradient of the utility of B. 8%
N The temporal change of the
\NX(1) variable x'(t) is equal to the e | F )
AN “am

~ resultant of the forces of A and B @ &l
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24.1.3. GE for intertemporal utility functions

GE models are characterised by the fact that an objective function is maximised at the time.
In GE models, in contrast to GCD models, it must therefore always be assumed that the
individual utility functions can be aggregated to a master utility function MU , which then
serves as an objective function, because maximisation is only ever possible for one objective
function and not for several at the same time. In the case of non-intertemporal GE models,
such as the Ramsey model or DSGE models, this objective function is the time integral over
a master utility function MU discounted at a discount rate », which is maximised. The
model equations therefore result from the requirement

U™ = Ie_”MU(xl(f),xz (7))dr = max

0

or, in the case of a constraint arising from the requirement

U = T o't ( MU (x,(1),x,(7))=A(r)Z (xl(z'),xz(r)))dr —> max

0

These variation problems lead to the Euler-Lagrange equation system for ex-ante
respectively ex-post dynamics. This is a differential equation system which the solutions for
the intertemporal GE model must fulfill in any case. The Euler-Lagrange equation system
thus describes the dynamics of an intertemporal GE model in the same way as the GCD
equation system <7.7> does for a GCD model.

The dynamics of the Ramsey model symbolically is shown in the following graphic.

Ramsey
X(Thax ) = maximum MU
.\ ,
SS X (tz)
s ~
~ x(t) is the solution of EulerEquations

with an intertemporal utility function
and
initial value x(0)

X(tz) end value x(Tyqy )

\

x'(ty) X
I\Y(tﬂ
~
©x(0)

24.1.4. IGCD: GCD with intertemporal utility functions

The basic idea of the GCD method for intertemporal utility functions is that each agent
solves its own variational problem at any given time ¢ . In other words, each agent looks
for the solution that maximises its individual intertemporal utility function at the time ¢ :
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0

At = J'e"(’”)UA(xlA""”(t +17),x,"" (¢t + 7)) dr = max
0

respectively

e o]
yAnt = Ie_’('+T)UB(xfi""(t +17),x)™ (¢t + 7)) dr = max
0

Thus
"Mt + ), XM (E+ 7))

™Mt + 1), XM (t+ 7))

denotes the solutions of the independent variational problems for 4 and B at time ¢ ,
which depends on the future time 7 .

In non-intertemporal GCD models the agents try to change the variables in the direction of
the gradient of its utility functions,

U (x,x,) oU” (x,,x,)
Ox, Ox,
, resp. 5
oU" (x,,x,) oU” (x,,x,)
Ox, Ox,
which, taking their individual economic powers ,u;f, XA; , )f ,,uz into account, leads to

! OU " (x,x,) s oU” (x,x,)

[xl' ] T Ox, N . Ox,
X, ! oU " (x,x,) s oU " (x,,x,)
" Ox, )

In intertemporal IGCD models the agents try to change the variables in the direction they
assume to be optimal for their intertemporal utility, that is just the time derivative of their
individual solutions

dx'"™ (t+1) dx"™ (t+1)
dr =0 dr 0
Aint¢ VeSp. Bintt
dx; ™ (t+7) dx,™ (t+7)
dr 0 dr 0

Assuming that their power to enforce their interests in such a way is proportional to their
relative individual powers

' 1 s w
s+ ey

leads to the ex-ante IGCD equation (for intertemporal utility functions)
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/ulA

dx"™ (t+71)

u'

dx™(t+71)

dr

A B
o, M+ 4 <24.1>

o)) | 4w’ dr |
X (1)

W dx™(t+1)

dx"™ (1 +7)
oAy dr |

dr

w
o)\ +

For sake of simplicity, we denote in the following also the solutions of the variational
problems with constraint Z by

(xlAintt,Z(t_l_ z_)’x;intt,Z(t_'_ T))

(xlBintt,Z(l + z_)’x2Bintt,Z(t+ T))

then the ex-post IGCD equation (for intertemporal utility functions) reads formally the
same as <24.1>

/JIB dxlBintt(t + 7/_)
o| | M dr |
+ .
dx;™ (t+71)
dr

' dx"™(t+ 1)
mpdr |
W dxi™(t+r)
1+ 1y dr |

(xf(f)J _ <24.2>
X3 (1) w
o) e+

The dynamics of an IGCD model symbolically is shown in the following graphic.

IGCD

O xBint Clnax

XBTax =
maximum U

(t+Tinax ) =

B int (6. Tmax (t+7)

odx )
oy (r+.—)|
x4t ETmax (147) dar
N
~
Aint (T, s
X (14 nax) = Sox)

XATax =
maximum U4

24.2. Definition of IGCD in detail:

For the sake of clarity and simplicity, we rewrite the GCD-system of equations for two
agents A,B with the non-intertemporal utility functions U*,U”, the 2 variables x,,x, and

the constraint Z .
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A B
Z
= i ou il ou +16
' Ox, " Ox, Ox,

A B
U, Ut 02
' Ox, Ox,

0=Z(x,,X,%,,X,)

Designate 7, _the end time and for each 7€[0,7, ] designate U*™ ") {y#" T the
intertemporal utility functions of the two agents 4, B for optimization in the period from ¢
to 7, with discount rates »?,7” and describe x,(z+7), x,(t +7) the time evolution of

max

x,, X, as a function of 7 €[¢,T, ]. The intertemporal utility functions are given by

max

A T,
Ut (3, x,) =

max

J e (U 40, x4 ) = AZ(x, 1+ ), (1 4 7))

0
Bint (¢,7,,4,) =
U int (¢, (x] , xz) =

TVH[IX

[ e (U + ) x,(t+ D)= AZ(x,(t+1),x,(t + 7)) ) de

At each point in time 7, both agents independently try to maximise their intertemporal
utilities under the constraint Z. The initial conditions must correspond to the values of the
variables at the current time. The final condition is chosen by each agent individually
according to his individual interest.

Amt(t T”w)(t) _ xl (f) Amt(t Thnax) ( max) x14T i
Amt(t Tmﬂ)(t) =X, (t) Amt(t T ) ( max) x2AT max
Bmt(t T"m)(t) = x, (t) Bmt(t Thnax ) ( max) x1BT max
Bmt(t Tm)(t) =x, (l‘) Bmt(t Tax) ( max) ngTmax

This gives for each fixed point in time ¢ and for each agent for the period of time from ¢
until 7 the intertemporal optimal solutions which are designated by

max

Aint (¢,7,

xl mm)(t+ Z_) xAlnt(l‘T

w) (14 7)

respectively

Bint(t,7,

xl muX)(t+ T) met(t T

mux)(t- + T) )

This solutions result from the Euler equations® of the two variation problems with
constraints and with the corresponding initial and final conditions and thus for each fixed

t and T _ are functions of 7 €[t,T, ]:

max max

3 Be careful: to use “EulerEquations” in Mathematica correctly, one has to define X t(T) = X(f +7 ) and use X I(T)
instead of X(¢ +7)
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EulerEquations[e™ “*?U* (x AT (¢ 4 1),
x/‘ml(l Tn1nv)(t+ T))+ ﬂ,Z(XAmm Tma\)(t+ T) x/iml(l Tmm)(t+ T)),
{xlAlm(z,Tﬂm)(t + T),szmt(r,Tm)(t + T)} ,z’]

with intial and end values

xlAim(t,T,,,‘,,)(t) — x] (f) Aml(t T )(T ) x1A4AT

max max

x;im(xj,,m)(t)zxz(t) Ammr )(T ) Y2AT

max max

EulerEquations [¢™ “9U® (xZ™ ) (1 4 1),
X2 O h) (4 7)) AZ (6™ T (8 4 1), 32O (£ 4 7)),
{xB““” Toa) (¢ 4 ), x 2O To) (£ 4 1)},1]
with intial and end values

xlBim(t,T,,m,\.)(t) =x (t) Bml(t T )(T ) x1BT

max max

szim(t,T”m)(t) = x2 (t) Bmt(t T )(T ) X2BT

max max

Typically, the constraint does not depend on X, (%), i.e.

0= Z(xl(t),xl'(t),xz(t))

and the variable x,(f) can be expressed as a function of x,(f) and inserted into the utility

function. This is what we will always assume in the following, because this simplifies the
problem considerably. This is explained using the Ramsey model as an example (see
chapters 25.1, 25.2). It leads to the fact that the Lagrange multiplier A(z) drops out and the

variational problem with constraint is simplified to a variational problem without constraint
and the utility function only depends on x,(),. The variational problem to be solved is then

EulerEquations [¢™ 9 U (x/™“Tw) (1 4 7)),
Aml(l‘ Tmm)(t_l_z_)} z_]
with initial and end values

Amt(t Tmm)(t) xl (t) Alnt (T ) ( max) le -

EulerEquations [¢™ 9 U® (xZ™ 1w (1 4 7)),
Blnt(t T’”‘")(Z‘+T)} T]
with initial and end values
Bmt(t Tm)(t) X (Z) Bmt(t Tnax) ( max) x1BT

The end values can be selected freely.
Assuming the trajectory of x, until ¢ is x,(s) with s<z.

In order to follow its optimal path for the future, agent 4 must try to set the temporal change
at time ¢ equal to the temporal change of its intertemporal maximised trajectory, i.e.

d Amt(t ”m)(t'l'f)
dr

X ()=

7=0
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But also, the agent B must try to set the temporal change x,(¢) equal to the temporal change

of his intertemporal maximized course, i.e.

d xlBint(t,Tm(,X)(t + T)
dr

'
X ()=
7=0

But these two wishes cannot both be fulfilled at the same time. The actual temporal change
of x,(¢) at the time ¢ therefore results in retrospect on the one hand as a mixture of the

wishes of 4 and B (weighted with their relative power relations) and on the other hand
from the fact that the constraint at the time must also be fulfilled. This results in

et M)
7 dr =0
ot A e B2 (0. 3(0)
A, B d @ 0
T T =0 % (0)

Since we have assumed the simplifying case and expressed x,(¢)through x,(¢), the
constraint is always fulfilled and the last term falls away. This results in

,UlA dxlAint(t,Tmax)(t_'_z.)| N MB dxlBint(t,Tmax)(t+z_)|

x't=
1) '+ dr

=0 lLllA + ILllB dz—

=0

This equation describes the temporal behaviour of x; as function of ¢ . The initial condition

x,(0) results from the model assumptions for the time =0 .

Thus, taking into account the final values x147T _,x1BT _ assumed by the agents for their

variational problem and the initial value x,(0)=x10, the following IGCD (intertemporal
GCD) equation system results:



156

behavioural equation for x,(t)

w' o d X (¢ 4 z')| N ul o dx"e) (¢ 4 r)|
oy dr o M dr
initial value for x,(t)

x,(0) =x10

xi(0) =

=0

Aint (¢,7,

Euler equations for x; w) (1) for A with initial and final values

EulerEquations[ DA (T (1 4, T)),{le (- Tna) (¢ 4 z’)},r]

Aml(l‘ T’"“)(t) Xl(t) Amt(t D) ( max) x14T

max

. . Bmt(f T,
Euler equations for x,

EulerEquations |:e"B DY E (x4 7)), { Bt Tnar) (4 o 1')} , z’}

Bmt(t Tmm)(t) xl(t) B‘“‘(’ ) ( max) XIB max

””‘)(T) for B with initial and final values

<24.3>

GCD) equation system for 2 agents and & variables

With » variables and m constraints, the number of variables is reduced to k=n—m
variables Xx,,X,,...,X, respectively x,,i=12,....,k . This results in the IGCD (intertemporal

foralli=1,2,...k
behavioural equations for x,(t)

/Jl-A dxAmt(t Tma()(t_l_,z-)| N ,uiB dx Bmt(t mm)(t_l_ T)|

x(H) =
z() /Jl-A +/J[B dT Y ,uiA+,u,~ dT

=0
initial values for x,(t)
x,(0) = xi0

Aint (1,7,

Euler equations for x; (1) for A with initial and final values

EulerEquations [¢™ *OU* (x/ T (¢ 4 7)., x0T (£ 4 7)),
(G (t +7),... “”ma+r»}ﬂ

A T, A T,
lm(t nm)(t) X; (t) mt(’ " ( max) XIA max

b’lnt(r T

Euler equations for x| ”’“‘)(T) for B with initial and final values

EulerEquations [¢™ “+7U* (T (7, x 2 e (7)),

{ x1B int 7, (T), Bmt T (Z'))}

Bml(t Ta) (t) X (t) Blnl(t . )( max) XIB -

<24.4>]
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Note

(a) Up to now we have set fixed end values for the end time 7, for intertemporal

optimisation. For other end conditions (e.g. "free" or "greater than") these conditions can be
replaced by the corresponding so-called transversality conditions.

(b) The intertemporal optimisation for infinite time intervals can be approximated by large
T

max *°

24.3. Numerical solution

The differential equation systems <24.3> and <24.4> cannot be solved directly with

NDSolve from Mathematica. For the numerical solution the interval [O,T ] must be

max
divided into N intervals with the points in time #, = 0,7,,¢,,....t, =T . Proceed step by step
as follows:

(1) Solve the Euler equations for the interval [O,T max] with initial and final values

xIAinI(t()sTmm)(ZO) = xi0 x./‘“nt(f()sT;rmx)(T ) = xiAT

i i max max

xfint(ro,n,ax)(to) = xi0 xiBint(tO’Tmnx)(T )= YiBT

max max

(2) Calculate x[' ()

, B ,uiA dxl.A int(tO’Tmux)(l»O + Z')|
x(t,) =—; n 7
W+ T

i i =0

ﬂiB dxiBim(to,TW)(tO + z‘)|
A B
M+ dr

+
=0

(3) Calculate x,(t,)

either as a linear approximation:
x.(t)=x.(t,)+x/(t,)(t —1,)

or as an exponential approximation:

x () = x,(1) e () (i=to)
(4) Solve the Euler equations for the interval [fl,T max:| with initial or final values

xiAint(n,Tm)(tl) =X, (tl) x;ﬁnt(tl,Tm)(T )= xiAme

max

/O Tne) (1 = x.(2,) x/ T (T Y = xiBT,

max max

(5) Calculate xi' )
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/U,-A d xiAint(tl ,T,,m)(t1 + T)|

’
x () =—; B
M+ dr o
N ,u,'B dxfim(t"T”’““')(tl + Z')|
ﬂiA + /LliB dT =0

(6) Calculate x,(?,)
either as a linear approximation:

x,(t,)=x.(t)+x/(t)(t,—t,)

or as an exponential approximation:

i (tZ) =X (t1) et ) (=t)

(7) Solve the Euler equations for the interval [tz,T m] with initial or final values

Aint (15, T ) — Aint (15,7,0) — 7

xi e (t2) - xi (tZ) xi e (Tmax) - xlA me(
Bint (ty, 7,4 — Bint (1.7, — i

xi e )(tZ) - 'xi (t2) 'xi e )(7:11ax) - 'XlBTmax

(8) Etc.
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24.4. The relationship between the dynamics of GCD models
(with non-intertemporal utility functions) and the dynamics of
GE models with intertemporal utility functions

24.4.1. Basic principles

In simplified terms, non-intertemporal GCD models behave at =0 the same as
intertemporal GE models, in which the future is increasingly devalued by shortening the
optimisation period. It should be noted that intertemporal GE models require that the utility
functions can be aggregated. Therefore, the relationship between these two models can only
be established for utility functions that can be aggregated. For simplicity, we describe

everything for 2 agents 4,B,2 goods (x,,x,) and 1 constraint
Z(x,,x,)=0

2 utility functions U*,U” are called aggregable if there is a utility function MU so that (see
chapter 4.3)
L,ou L eUu’ oMU
M T4, =
' Ox, ' Ox, Ox,
ou"  ,oU" aMU

H—
e ox, = ox, O,

The non-intertemporal GCD model is described ex-ante (i.e. without considering the
constraints) by

, OMU
X =
Ox,
, OMU
X, =
Ox,

and ex-post (i.e. taking into account the constraints) described by

, OMU 0Z
X = +A—
Ox, ox,
, OMU 0Z
X, = +A—
Ox, Ox,
0=2(x,x,)

The GE non-intertemporal model is described ex-ante (i.e. without considering the
constraints) by:

Tmax
j' MU (x,(t), x, (1)) dt = max
0

and ex-post (i.e. with consideration of the constraint) described by
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]m (MU()C1 (®),x,())+ A(H) Z(x,(2),x, (f)))dt > max

A necessary condition that must be fulfilled by x,,x, such that the integrals become
maximum are the Euler-Lagrange equations.

24.4.2. A non-intertemporal GCD model behaves at time t =0 in
the same way as an intertemporal GE model with a very short
optimisation interval

Looking at the ex-ante behaviour of a GE model with a non-intertemporal utility function,
it follows

T,

max

j e MU (x,(£), x,(1))dt = max

Assume that 7, and r are very small. If one carries out a series expansion of e"* and
MU with respectto ¢ at point #=0 one obtains the following
I+
- 2 d
d MU

1 +....]dtz
=0
.t+....]dt
dt |,

because of the assumption r is small and for small T _ tis small

max

T,

max

j e MU (x,(t), x,(£))dt =

0

d MU 1d°MU

- '—'s\]

(1—rt+ )(MU(xl(O),xz(O))+

T,

max

~ I[MU(XI(O),XZ(O))"'

0

T MU OO + f OMU (x,(1), x, (1)) dxl(t)l idie
) O T
+ I aMU(xl (t) i (t)) —d 2 (t) tdt+ ...
0%, (1) % (1)=x, (0) dt iy
2
T, MUG 0,0 +| 22l MY ) e o a7,
ox, =0 Ox, =0 2

The first term is constant, the second term becomes maximal exactly when the vector
(6M U oMU

ox,  ox,
there is a x € R such that

) and the vector (x,',x,) atthe time =0 point in the same direction, i.e.
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oMU OuMU
X, Ox, Ox,
. t=0=“ omu | | aumu
o, ), o, ),

This means that it applies to small » and small 7 :

max

A GE model with an intertemporal utility function
Tma)c
UM = [ e MU (x,(6),x, (1) dt
0

behaves at the time 7 =0 ex-ante (i.e. without considering the constraint) similar to a non-
intertemporal GCD model with the utility function x MU .
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25. The principles of IGCD are first
presented using the Ramsey model as
an example

25.1. The Ramsey model

The standard Ramsey model consists of 1 agent (household) that attempts to maximize the
intertemporal utility of consumption C over the period from ¢, =0t T _ . The utility

function U" is
U*(C(t) =C(t) 0<y<l
The constraint Z is given by

Z(Ct),K1t),K't)=K(t)"™™ -K'(t)-C(t) =0

Aint

The intertemporal utility function of the household U“™ is given by

T Tnax
UAim(o,me)(C) _ I e’ T UA(C(T))dT = .[ e’ " C(Ty dr
0 0

Calculate C(f) from the constraint and insert in U . This results in the variation problem

T,

max

Um0 () = J‘ e (K(r)"* = K'(1)) dr — max
with K(0) = k0 0 K(T ) = kT,

The solution is obtained by solving the Euler equation with initial and final values:
EulerEquations [e"” (K(2)"™ = K'(7)) {K(7)}, T]
with K (0) = k0 K(T ) = kT

max

which result in the differential equation system to be solved

0=(-1+)K(2)+rK' (1) + (-1 + a)(-2 + »)K(r)* K'(z) +
+K (7)* (=r K'(7) + (=1+ )K" (7))

<25.1>
K(0) = k0
K(Tmax) = kT:nax
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25.2. The Ramsey model (modeled with Lagrange function with
constraint)

To model the standard Ramsey model, you can also use the Lagrange function with
constraint and proceed as follows:

As before the standard Ramsey model consists of 1 agent (household) that attempts to
maximize the intertemporal utility of consumption C over the period from 7, =0 to 7,

max

. The utility function U is
U*(C(t) =C(t) 0<y<l
The constraint Z is given by

Z(C(), K@), K'(6) =KO)" - K'(t)-C(t)=0

The intertemporal utility function of the household U*™ is given by
Tmax Tmax
Um0 = [ e TUNC()dT = [ e C(eY dr
0 0

Instead of using the constraint, we use the Lagrange function with constraint. This results
in the variation problem

T,

TX (e’”C(r)y + U)K (D)™ - K' (1) - C(r)))dz' — max

with K (0) = k0 K(T

max

) = kTmax

This results in the Euler equation with initial and final values:

EulerEquations [(e”"C(z)" + A(r)(K (r)"™ - K'(z) - C(2))),
{C(2),K(7),A(7)},7]

K(0) = k0

K(T, )=kT

which result in the following differential equation system
e TyC(r) ™ = A1) =0

—(-1+a)K(z) “Ar)+ A(r)=0
~C(t)+ K@) -K'(r)=0

K(0)=KO0
K(Tmax) = KTmax

The differentiation of the first and third equations and the addition of these equations to the
equation system results in the differential equation system
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O eyCEO T - Ar)=0

2) - "rC(r) " + e (14 y)yC(r) T C(r) - A(r) =0

3) —(-1+a)K(r) “Ar)+ A'(r) =0

4)  -C()+K(@)" -K'(r)=0 250>
(5) —C'(t)+(1-a)K(r) “K'(r)-K"(r) =0

(6) K(0)=K0

(7)  K(T,,)=KT,,

max

The solution of this (complicated) differential-algebraic equation is much more complicated
than the solution of the equation system <25.1> in chapter 25.1.

To show that both systems of equations are equivalent, the following steps are taken:

Calculate A'(r) from (3) and leave out (3)
Insert A'(7) into (2)
Calculate A(z) from (1) and leave out (1)
Insert A(7) into (2)
Calculate C(7) from (4) and leave out (4)
Insert C(7r) into (2)
Calculate C'(r) from (5) and leave out (5)
Insert C'(7) into (2)

Simplify under the condition » >0 and K(r)— K(7)*K'(7) #0

This again results in <25.1>

0=(-1+)K (1) +rK'(0)" + (-1 +a) -2+ )K()*K'(r) +
+K(0)* (-r K'(0) + (-1+7)K"(7))

K(0) = k0
K(Tmax) = kTmax

The conclusion from all this: It is much more convenient to use the constraint to calculate
C(r) and to eliminate A(zr) and to use the Lagrange function without constraint than the

Lagrange function with constraint.
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25.3. The GCD Ramsey model (with non-intertemporal utility
function)

The utility function U* can be used not only to construct the (intertemporal) standard
Ramsey model (see Chapter 25.1), but also to construct a (non-intertemporal) standard GCD
model, which we call the GCD Ramsey model. This makes it possible to show the different
dynamic behaviour of these two models (see chapter 25.5)

The utility function U* and the constraints are the same as in the standard Ramsey model

U*(C(t)) = C(t) 0<y<lI
Z(C(t), K@), K't)=K®)" -K'(t)-C()=0

So we have 2 variables C(¢),K(¢) and 1 constraint. The corresponding differential-

algebraic GCD equation system consists of 2 differential equations (the behavioural
equations for the 2 variables) and 1 algebraic equation (the constraint). For the sake of
simplicity, we set all power factors to 1. The ex-ante behavioural equations describe that
the household tries to change the consumption C(¢) along the partial derivation of

U*(C(t).K(t)) with respect to C(¢f) and tries to change the capital K(¢) along the partial

derivation of U"(C(¢).K(t)) with respect to K (¢) . The ex-post equation for the behavioural
equation for C(¢) is obtained by adding the constraint forces given by A(¢) multiplied by
the partial derivative from Z with respect to C(¢). In the same way, the ex-post behavioural
equation is obtained for K(¢) by adding the constraint force given by A(¢) multiplied by
the partial derivative from Z with respect to K(z). Together with the constraint, the
differential algebraic GCD equation system to be solved is obtained:

oU(C(1),K (1)) 0Z(C(t),K(®),K'(t)) _

C'(t)= 50O + A1) 200 =yC(H)" ™" = A(t)
K'(t) = 6UA(8C[§?;)K(O) +A(0) 8Z(C(t211<(((tt)),l<'(t)) —0— A1)

0=Z(C(1),K(1),K'(t)) = K()"™ - K'(t) - C(r)
This results in

C'()=yC@®)"" = A1)

K'(t)=-2(@)

0=K®"™ -K'(t)-C(t)

25.4. The IGCD Ramsey model (with intertemporal utility
function)

Aint

The utility function U, the intertemporal utility function U“™ and the constraints are the

same as in the standard Ramsey model
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We

intertemporal utility function U

U (C(t)=C(t) 0<y<lI
Z(C(0),K).K'0)=K(@0)"™ -K'(1)-C(t)=0
Ut () = j e U (C(t)dr = j e’ "Ctydr

calculate C(r) from the constraint and insert it into U“. This results in the
Aint(0,T,,)

Tmax
UAint(O,TmaX)(K) — J‘ e—r T(K(t))(l—a) _ K’(t))}/ dz’ —> max
0

with K(0) = k0 K(T

max

) = kTmax

Since we only have 1 agent 4 and 1 variable x, = K, <24.3> reduces to

M

(2)
€)

d KAim(z,Tm)(T)|

K'(t)=
(1) 77 3
k(0) = kO
EulerEquations [e””* (KAim(”T"’"*‘)(t + 7)) - KA (4 r))y ,
{KAim(t’T’””l)(T)} , T]

with initial and final value
KAint(t,Tmux)(t) =K(¢)
KAint(t,T,,m)(T )=KT

max max

From the uniqueness theorem for differential equations, it follows that the standard
Ramsey model and the IGCD-Ramsey model have the same solutions if they have the
same initial values:

a)

Designate K, (1) =K, ,, ,(t) the solution of the classic Ramsey model and K. ()
the solution of the IGCD-Ramsey model with the initial condition K,(0) = K;(0) = K0
and the final condition K (7, . ) = K;(T,,.) = KT,

Let ¢, €[0,T,

max

] and designate K, , , (#) the solution of the classical Ramsey model
with the initial conditionK, , . (¢,)=K(Z,) and the final condition

K T )=KT

R0t T) Do max
then the following applies:

K, +7)=Ky ; (t,+7) forall 7€[0,T  —1,]

max

Because a variational problem for a part of the whole interval gives the same solution
as the variational problem for the whole interval, if the initial and final values
correspond to the solution values of the variational problem for the whole interval.
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b) K, ()= KR,(r,,,Tmax)’(ta) =

!
= KG,(tu,T ) (ta) =

= KG' (ta )

o) K=K (1)

d)  Kp(0)=K;(0)

because of a)

because K =K

R Tax )

because of (3)
because of (1)

G, (145 Tnax )

because of (b) and because

t, can be chosen arbitrary
because of preconditions

because of c),d) and

the uniqueness theorem

of differential equations

Of course, this only applies to this special case, where there is only 1 agent. Of course, this
does not apply if there are several agents.

25.5. Numerical calculations and comparison of Ramsey model
and GCD Ramsey model

The Ramsey model is equivalent to a IGCD Ramsey model, because there is only 1 agent
involved (see chapter 25.4). We therefore only compare the Ramsey model with the GCD
Ramsey model.

Results of the calculations for “large” discount rate » =0.5 and 7, =¢, =1.5 you can find

in the next graphic. It shows the difference in the dynamics of the standard (intertemporal)
Ramsey model and the non-intertemporal GCD-Ramsey model.

Ramsey intertemporal ©
(] K[0}==k0 kt1]==k1

GCD non-intertamporal
KI0)==K0K{t1]==k1

1 —K K
1 | —_—f e
i e e mmees ] ;‘:—-‘-:‘*’—':L:__'_—‘ _____ |

and small T =t =0.25 gives the
expected result shown in 24.4.2.: If discount rate and optimisation interval are small, the
two models (standard (intertemporal) Ramsey and non-intertemporal GCD-Ramsey) are

similar.

A calculation for the “small” discount rate » =0.25


https://www.dropbox.com/s/2sn0hh7tdry7wdp/Vergleich%20Ramsey%20klassisch%2C%20GCD%20klassisch%2C%20GCD%20intertemp%20Version%2010.nb?dl=0
https://www.dropbox.com/s/2sn0hh7tdry7wdp/Vergleich%20Ramsey%20klassisch%2C%20GCD%20klassisch%2C%20GCD%20intertemp%20Version%2010.nb?dl=0
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Ramsey intertemporal
K[O}==kD.K[t1]==k1
K

GCD non-intertemporal
K{0J==kO k[t J==k 1

—K
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26. Comparison of IGCD models with
DSGE models

DSGE models require utility functions that can be aggregated to a master utility function.
In the case of GCD and IGCD models, the utility functions do not need to be able to be
aggregated.

Due to the use of a master utility function, DSGE models consist of only 1 variational
problem and the economic system is in principle controlled by only 1 agent. The simplest
DSGE model is the Ramsey model. In chapter 24.4 we showed for the Ramsey model that
it is equivalent to the corresponding IGCD Ramsey model. As a main result, we therefore
propose (that it should be possible to show) that (non-stochastic, expectation-free) DSGE
models are in principle equivalent to (non-stochastic, expectation-free) IGCD models with
only 1 agent.

But although this is not currently done, GCD and IGCD models can in principle be extended
by stochasticity and expectations in the same way as DSGE models. Thus, DSGE models
should in principle be equivalent to IGCD models with only 1 agent.

DSGE models are essentially equilibrium models. The dynamics in DSGE models arise
from the maximisation of an intertemporal master utility function leading to the Euler-
Lagrange equations. The dynamics after a shock is caused by the swing back to the
equilibrium state. However, non-intertemporal GCD and (intertemporal) IGCD models are
"true" dynamic models that can be formulated independently of any equilibrium states.
Both can also be used to model economic shocks (Gl6tzl 2022).

In summarising, IGCD models can therefore be seen as a generalisation or alternative to
DSGE models.
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27. Model A1™t: IGCD model
corresponding to model Al

We develop the IGCD model from the non-intertemporal GCD model A1l. For this purpose,
we develop the intertemporal utility functions from the utility functions for the A1 model
and specify the system of differential equations for the corresponding IGCD model in
accordance with the definition in Chapter 24.2.

27.1. Intertemporal utility functions

The algebraically defined equations, utility functions and the constraints of model Al are
unchanged:

algebraically defined variables

Y(L,K)=pBL' K" £>0, 0<a<l

utility function

UT=C"—(L-L)y -M" =My’ 0<y<l

Ul =pY(L,K)—wL—(S-8)* = pBL°K"™* —wL—(S-5)°
constraints

Z"=0=wL-pC-M""
ZP=0=pC-wL-M"
Z,=0=Y(L,K)-C-K'-S'=BL°K"“-C-K'-S'

We simplify in the following steps

e Calculate wL=pC+M"" from the constraint Z” and put in U” and in Z*

o Calculate C= LK™ —K'-S"from the constraint Z and put in U” and U” and
simplify.

This results in

UH :(ﬂLaKl—a_Kv_Sv)y_(L_i)Z_(MH_MH)z
U’ =K'+S+M"'—(S-S)
ZP=0=M""+M"

The utility functions depend on the 4 variables

LK,S,M"
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or their derivatives. The system is completely determined by these variables, because the

variable M *is completely determined by the variable M by M”'=—-M""due to the
constraint Z”.

This gives the intertemporal utility functions

Uit e —
Tuge
= I e (:+r>((ﬁL“(t+r)KLa(t+f)—K'(t+f)—S'(t+T))’V ~(L(t+7)- L) _(MH(I+T)_MH)2)dT

B L)

//////

= | e”H(””(K'(t F0)+S (1) + Mt + 1)~ (St +7) —S‘)z)dr
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27.2. Intertemporal GCD-equations

The (intertemporal) IGCD equations are obtained according to
Fehler! Verweisquelle konnte nicht gefunden werden.:

for all i=1,2,3,4

denote

x,=L

x, =K

x==5

=M
behavioural equations for x,(t)
)= Aﬂf B dx™ )| AMB dx™ ) (14 7))
YT 7k dr o Mt u’ dr 0

initial values for x(t)
x,(0) = xi0

. . . . Ai T,
Euler equations for A with intial and end values for x'™“™)(r)
T,

max

EulerEquations [ I T g (AT (p 4 ), T (14 7)),
t
{ Aint (¢, Tm,)( ) Alm(t Tml)(z_)} 7]
Amt(t Tt )(t) x(t) xAlnt(t TW)(I) .)‘/_1147—;”‘0C

. - . . . g Bi T
Euler equations for B with intial and end values for x’™"™)(r)
Tax

EulerEquations [ j T+ D) U P PO (1 1), xE ) (14 7)),

t

{ XE O Tha) (7) | B T"’““)(T))} 7]
xiBim(t,T,mm)(t) = x[ (t) met(l T 1)(T ) XZBT

max

27.3. Numerical calculations

The numerical calculations can be performed as shown in chapter 24.3
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F. Summary
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28. Summary and conclusions

28.1. Principle of GCD

By using differential-algebraic equations in continuous time, the GCD approach extends
existing analogies between classical mechanics and economics from constrained
optimization to constrained dynamics.

28.2. Problem 8 by Stephen Smale

Problem 8 of the 18 problems published by Smale in 1998 (Smale 1991; 1997; 1998; Smale
Institute 2003) is: introducing dynamics (adjustment of prices) in economic equilibrium
theory (Arrow-Debreu equilibrium model). The problem arose from Smale's own
involvement with mathematical economics.

GCD models describe the dynamics of economic systems away from equilibrium. They
converge to the solutions of general equilibrium theory under certain conditions. They
describe not only the dynamic adjustment of prices but also of all other economic variables
and thus may represent a solution to S. Smale's problem 8.

The method is based on the standard method in physics for modeling dynamics under
constraints.

28.3. GCD is a fundamentally new methodology for modeling
economic systems and, in a certain sense, can be seen as a
metatheory of economic modeling

Simplified, there are so far 4 basic groups of methods for modeling economic systems:

28.3.1. Neoclassical general equilibrium theory (GE, DSGE)

This is essentially based on the maximization of an (overall) utility function under
constraints (overall utility maximization). The existence of an overall 1 utility function
presupposes the aggregability of individual utility functions.

28.3.2. Post-Keynesian Models

These reject the use of individual utility functions and describe the aggregate variables via
differential equations.

A special case of these are the Stock-Flow-Consistent (SFC) models.

28.3.3. Agent-Based Models (ABM)

These describe the behaviour of mostly many agents based on individual interactions among
them.
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28.3.4. The relation of the basic principles of GCD models to these
types of economic models

The dynamic evolution of the variables is determined in GCD models by the fact that
each of the agents applies an individual force to these variables and the actual dynamics
is determined by the resultant of these forces. These individual forces can be described
(in most practical cases) as gradients of individual utility functions. The resulting
dynamics can be called individual utility optimization as opposed to neoclassical
overall utility maximization. A detailed discussion of the relationship between
individual utility optimization and overall utility maximization can be found in (Glotzl
2023a).

Note on post-Keynesian models: However, agents' forces do not necessarily arise as
gradients of individual utility functions. Therefore, GCD models can also describe post-
Keynesian models that cannot be described by utility functions. In principle, the forces
(on the right-hand side of the differential equations of post-Keynesian models) can
always be decomposed into a gradient component (resulting from a utility function) and
a rotation component. This is called a Helmholtz decomposition, which is not only
possible in 3 dimensions, as it usually occurs in physics, but is possible in arbitrary
dimensions (Glo6tzl und Richters 2021b; 2021a)

GCD models are always stock-flow consistent (SFC). But not only (economic)
accounting identities, but also any other relations or conservation laws like the 1st law
of chemistry (conservation of mass) or the 1st law of thermodynamics (conservation of
energy) can be used as constraints.

GCD models are always agent-based respectively microfounded

28.4. GCD models can be the bases for a new economic thinking

in terms of: economic power, economic force, economic
constraint force

Especially the concept of economic power is of fundamental importance for understanding
economics (Rothschild 2002b). With GCD models, this concept can also be formally
incorporated into economic models. In comparison with classical mechanics in physics,
power factors correspond to the reciprocal of mass (Glotzl 2015). Conventional economic
models usually describe one-sided power relations, which, however, rarely occur in reality.
GCD models can also be used to better describe mixed power relations and thus reality.

GCD models can be the basis for a new theoretical understanding of e.g.:

Economic growth
Business cycles and economic crises
Analogies between physics and economics
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28.5. With the help of the GCD methodology, a formally clean
definition of the terms ex-ante and ex-post is possible

28.6. Non-equilibrium dynamics

NCD models can be used to describe true disequilibrium dynamics. In particular, it is also
possible to describe situations in which no equilibrium exists or situations in which the
utility function is not concave.

28.7. Genuine competitive models

Apart from game-theoretic models, the other types of economic models mentioned cannot
be used to describe genuine competition models, i.e. models in which the individual
optimization strategy does not lead to an overall optimum. In reality, however, such
situations, which are similar to the prisoner's dilemma, are very common. With GCD
models, genuine competition models can be described very well.

28.8. Applications

GCD models and IGCD models can be used for many practical tasks such as economic
forecasting, modeling the impacts of fiscal or monetary policy, modeling business cycle
fluctuations and economic shocks.

28.9. GCD models are a generalisation and alternative to DSGE
models

GCD models in principle can also be formulated with intertemporal utility functions called
IGCD models (Glotzl 2023a). IGCD models can be seen as a generalisation or alternative
to DSGE models.

28.10. What remains to be done in the future
a) Adjustment of parameters to describe real circumstances and comparison of model results
with real business cycle trends.

b) Extend GCD models to multiple households, firms, and goods, and in particular to
commodity and financial markets.

¢) In the long run, develop a more complex, real-world model to enable better economic
forecasting and test measures to achieve economic policy targets.

d) Elaborate GCD models with economic shocks in detail.

e) Elaborate IGCD models (with intertemporal utility functions) in detail.
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