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Abstract

Knowledge creation either in isolation or joint with another per-

son, using either face to face or internet contact, incorporating internet

search ability is analyzed. In addition to formal knowledge, tacit knowl-

edge plays an essential role in the knowledge production process. The

introduction of tacit knowledge increases the productivity of knowledge

workers dramatically. The framework is applied to pandemic restrictions

on face to face communication; workers with longer commutes experi-

ence less of a relative productivity loss from restrictions than workers

with shorter commutes.
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1 Introduction

How does knowledge creation function when there are multiple ways for people

to communicate, for example face to face or using the internet? Relative to

the one communication channel case, what different patterns of joint research

among knowledge workers emerge, and how is the productivity of research

work affected?

Through a sequence of four papers, Berliant and Fujita (2008, 2009, 2011,

2012), we have developed a micromodel of knowledge creation based on the

interactions among a group of heterogeneous people. These papers form the

basis for the analysis here. In Berliant and Fujita (2008), we develop the basic

model and analyze interactions among a group of knowledge workers under the

assumption of symmetry of the state of knowledge. Berliant and Fujita (2009)

investigates further the case of two knowledge workers, relaxing the symmetry

assumption, whereas Berliant and Fujita (2011) embeds the basic model in a

growth framework to analyze dynamics and the efficiency properties of equi-

librium. Finally, Berliant and Fujita (2012) constructs a two region version of

the model to examine the emergence of cultures in the knowledge production

community. All of these papers feature only one channel of communication,

whereas here we consider both face to face as well as electronic communication.

In related work, Aghion et al. (2017) address the interesting ways in which

artificial intelligence can impact economic growth at the macro level using a

Cobb-Douglas production technology. In contrast, the work here addresses

how internet communication and search affects knowledge creation at a very

micro level. Krugman (1991) points out that face to face contact can promote

knowledge externalities between agents. Ceci et al (2020) conduct a case

study in the aerospace industry, finding that both face to face and electronic

communication are important to knowledge creation in a company, but they are

used differentially by employees depending on both the relationship between

communicators and the activity. Panahi et al. (2012) hypothesize that social

media are a channel for tacit knowledge sharing.

To address our motivating questions, as depicted in Figure 1, a person, say

i, with knowledge Ki can develop new ideas in isolation while interacting with

the Server. Or person i may create new ideas jointly with another person, say

j, by interacting through the Net or by working F2F (Face to Face). Using

this extended model, we can examine the impact of rapidly developing ICT

(including AI) on knowledge creation activities.
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Figure 1

This paper also aims to provide a theoretical framework for the study of

specific recent issues such as the impact of the Covid-19 pandemic on knowl-

edge creation, or the effect of urban structure on the productivity of knowledge

workers as well as on the pattern of knowledge work in large cities.

Our main findings are as follows. In contrast with our previous work, where

tacit knowledge was implicit, the incorporation of tacit knowledge explicitly

into the framework changes the results. In particular, knowledge is generated

not only by patent output but also through search and independent thinking in

preparation for joint or independent research. This represents tacit knowledge

retained by a specific worker for future work. It slows the accumulation of

knowledge in common. Our conclusions are threefold. First, the dynamics

of the system with two workers and tacit knowledge are, in the end, very

different from the dynamics without tacit knowledge. Second, the steady

state will not, in general, be the state with highest productivity. The net

effect is that achieving and maintaining the highest productivity profile of

knowledge in common and differential knowledge requires more heterogeneity

or larger research groups than we found in our previous work. Third, the

effect of tacit knowledge on knowledge productivity is not internalized by the

knowledge workers. We shall provide more discussion of these points in the

conclusions. The the ideas behind “tacit knowledge” originate with Polanyi

(1958). Polanyi (1966, p.4) famously states, “We know more than we can

tell.” Nonaka (2007) develops these ideas further, as we shall see below.

Applying this framework to pandemic restrictions, we show, for example,

how the productivity of knowledge workers with longer commutes to work is

affected less than those with shorter commutes when pandemic restrictions on

face to face work are implemented.

Our analysis proceeds as follows. In section 2, we develop our model of

two knowledge workers using multiple modes of communication and generating

tacit knowledge in addition to patents, and analyze the steady state. In section

3, we apply this analysis to consider pandemic effects. Section 4 considers

knowledge growth under symmetry, whereas section 5 analyzes dynamics in

the two person case. Section 6 presents our conclusions and suggestions for

future research. An appendix contains a discussion of the multiple roles played

by knowledge in common in joint knowledge creation.
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2 The model with two persons in the station-

ary state

In this section, we consider two persons/researchers, i and j, and extend the

model of Berliant and Fujita (2008, 2009) by incorporating multiple modes of

interaction. Wherever possible, we use the same notation as in Berliant and

Fujita (2008, 2009).

Following on our earlier work, we model knowledge creation as a process

of opening up boxes containing ideas. The labels on the boxes, that describe

their contents, are known to all, but it takes time to understand the contents of

the boxes. An example of such a box of knowledge is the creation of this paper

by its authors. The title is its label. Another example is a new recipe for curry

rice. The rate at which the boxes can be opened depends on the stock already

opened by a particular person, either alone or with someone else. When

working in isolation, the total stock of knowledge or boxes already opened by

that person affects the rate at which new boxes are opened. When working

jointly, both the total number of boxes opened previously and their profile

matter. Specifically, whether they were opened together, and thus become

mutual knowledge, or independently, and thus become exclusive knowledge,

matters.

As there is an infinite number of boxes or potential ideas, we assume that

the probability that knowledge workers who are not working together open the

same box is zero.

In what follows, in contrast with our earlier work, we allow more channels

of communication between knowledge workers, namely face to face and inter-

net communication. Moreover, we decompose knowledge creation into more

elementary units or phases, to be described formally in this section. These

phases involve internet search and thinking on one’s own, both when creat-

ing knowledge alone and when preparing to work with someone else. When

working with someone else, there will also be time spent communicating either

face to face or over the internet. We allow each person to optimize over the

allocation of time or frequency to these various activities. For example, when

creating a new recipe for curry rice, a chef might search the internet for recipes

good and bad (respecting reviews on line), and then might engage in trial and

error. The allocation of time is chosen by the chef. Much of what the chef

learns becomes tacit knowledge beyond the final recipe; this recipe might be

secret and used by his restaurant, or sold. The rate at which new recipes are
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created will depend on the chef’s experience with this type of knowledge work,

but also on the tacit knowledge accumulated through the creation process.

To elaborate our model, let us consider a specific time, t ∈ [0,∞), and let

the following variables represent the state of each person’s knowledge at time

t (whenever clear, dropping t for simplicity):

nk: the size of person k’s knowledge (or number of ideas

known by person k at time t); k = i, j

ncij ≡ n
c
ji: the size of knowledge that i and j both know,

or the common knowledge for i and j

ndij: the size of knowledge known by i but not known by j,

or the differential knowledge of i from j,

ndji: the size of knowledge known by j but not known by i,

or the differential knowledge of j from i.

By definition,

ni = n
c
ij + n

d
ij, nj = n

c
ij + n

d
ji.

Let

nij ≡ ncij + n
d
ij + n

d
ji = ni + nj − n

c
ij

be the size of total knowledge that is known either by i or j.

Next, we define the proportion of each type of knowledge in the total size

of knowledge nij:

mc
ij =

ncij
nij
,

md
ij =

ndij
nij
, md

ji =
ndji
nij
,

implying that

mc
ij +m

d
ij +m

d
ji = 1, (1)

and hence

ni = n
ij · (1−md

ji), nj = n
ij · (1−md

ij), (2)

or
ni
nij

= 1−md
ji,

nj
nij

= 1−md
ij.

Using this notation, we describe next the two alternative ways of creating

knowledge (at time t).

In what follows, consistent with the notation introduced above, lower case

letters such as i and j represent persons, whereas upper case letters represent
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activities. Examples of the latter include I, representing isolated or inde-

pendent activity, and J , representing joint activity or activity for the purpose

of joint knowledge creation. Likewise, S represents search activity, to be

explained next.

What we mean by search is to search the web by oneself to prepare for

knowledge creation activity that will occur either in isolation or jointly with

another. Examples are using Google or ChatGPT. The activity is a form of

directed search, in contrast with undirected search. That is, the search terms

or questions guide the use of the web in an important and nonrandom way, and

are progressively refined over the time used for search. Just a few years ago,

when beginning a project, an economics researcher would search the Econlit

database, for example, using search terms that define the new project. The

purpose would be to find related papers at the frontier of knowledge and to see

similar work in terms of assumptions, implications, models, and empirics. For

example, aside from the references we knew about from previous joint work,

to compose this paper we searched on key phrases such as “R&D during the

Covid 19 pandemic.” Refinement of search terms, as well as digesting material,

takes time and effort. Nowadays, with Google Scholar and ChatGPT, the

effectiveness of search has improved dramatically over primitive times. We

will parameterize this effectiveness of directed search in our model.

(i) Knowledge creation in Isolation by each person consists of two distinct

activities: thinking in isolation and searching the web for help. We assume

that knowledge creation in isolation by person i is governed by the following

equation:

AIii = αI · [ωIS · (αIS · ni)]
ρIS · [ωIT · (αIT · ni)]

ρIT (αI , αIS, αIT > 0) (3)

where AIii is the number of ideas produced.
1 On the right hand side, ρIS, ρIT ≥

0 are fixed parameters that weight the search and thought activities with ρIS+

ρIT = 1. We divide knowledge creation activity in a time period into two parts:

search in isolation with frequency ωIS ≥ 0 and thinking in isolation ωIT ≥ 0,

where ωIS + ωIT = 1. In both cases, productivity depends on what a person

1We note here, at the first introduction of a knowledge production function, that we use

extensively the Cobb-Douglas functional form thoughout this paper. Although this use has

drawbacks, for instance in generality of the results, its big advantage is that the functional

form makes calculations vastly simpler than they would be otherwise, and permits analytical

tractability.
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already knows.2 The expression [ωIS · (αIS · ni)]
ρIS gives the total productivity

of the search frequency, where αIS ·ni is the output of the search activity. Here

αIS > 0 represents the effectiveness of search, whereas αIT > 0 represents the

effectiveness of thinking alone. The expression [ωIT · (αIT · ni)]
ρIT gives the

total productivity of the thought frequency, where αIT ·ni is the output of the

thought activity.

This can be rewritten as:

AIii = αI · α
ρIS
IS · α

ρIT
IT · ω

ρIS
IS · ω

ρIT
IT · ni

Knowledge worker i optimizes the choice of frequency over the two activities:

Max
{
AIii
∣∣ωIS + ωIT = 1, ωIS ≥ 0, ωIT ≥ 0

}

yielding the optimal choices of frequencies ω∗IS and ω
∗

IT :

ω∗IS = ρIS, ω
∗

IT = ρIT

Thus, the optimized value of knowledge output is:

AI∗ii = ΦI · ni (4)

where ΦI ≡ αI · (αIS · ρIS)
ρIS · (αIT · ρIT )

ρIT

Likewise, for person j, we have

AI∗jj = ΦI · nj (5)

where ΦI represents the same function of parameters as above. We may

note that the search productivity parameter αIS depends on several factors.

First, it depends on the search technology at the time the work is done. For

example, Google (1998) preceded Google Scholar (2004) and more recently

ChatGPT. Second, it depends on the knowledge stock at the time, for example

inWikipedia. Third, it depends on the learning capacity of person i. Similarly

for the parameter ρIS. In the long run, parameters might change, but here,

for simplicity, we take the parameters as fixed.

(ii) Joint knowledge creation by two persons is conducted through the combi-

nation of the following three basic activities with appropriate frequencies.

• Working/thinking in Isolation for the common purpose of joint knowledge

creation, which is governed by the equation:

aIii = αJI · [ωJIS · (αJIS · ni)]
ρJIS · [ωJIT · (αJIT · ni)]

ρJIT (αJI , αJIS, αJIT > 0)

(6)

2“What you can learn from Wikipedia depends on what you already know.”
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where ρJIS and ρJIT are positive parameters such that

ρJIS + ρJIT = 1,

whereas ωJIS and ωJIT are endogenous frequencies such that

ωJIS + ωJIT = 1, ωJIS ≥ 0, ωJIT ≥ 0.

The left hand side of the equation (6), aIii, represents the number of intermedi-

ate ideas created specifically for the purpose of joint knowledge creation. This

is analogous to equation (3), but in the context of preparing for joint knowl-

edge creation. The endogenous frequencies ωJIS and ωJIT again represent

the time devoted to search and thinking activities, respectively. Solving the

optimization problem similarly to the case of knowledge creation in isolation,

the optimal choices of frequencies ω∗JIS and ω
∗

JIT are given by:

ω∗JIS = ρJIS, ω
∗

JIT = ρJIT

The optimized value of knowledge production is given by:

aI∗ii = ΦJI · ni (7)

where ΦJI ≡ αJI · (αJIS · ρJIS)
ρJIS · (αJIT · ρJIT )

ρJIT

Likewise, for person j, we have:

aI∗jj = ΦJI · nj (8)

where ΦJI represents the same function of parameters as above.

• Jointly working F2F, conducted through the combination of two activities,

searching the web independently and thinking together, is governed by the

following equation:

aFij = aFji = αF · [ωISF · (αISF · ni + αISF · nj)]
ρISF (9)

×
{[
ωJTF ·

(
αJTF · (βF (θF ) · n

c
ij)
1−θF · (ndij · n

d
ji)

θF
2

)]}ρJTF

where ρISF and ρJIT are positive parameters such that

ρISF + ρJTF = 1,

whereas ωISF and ωJTF are endogenous frequencies such that

ωISF + ωJTF = 1, ωISF ≥ 0, ωJTF ≥ 0.
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The left hand side of this equation, aFij, is the quantity of new intermediate

ideas generated by F2F work for the purpose of joint creation. The right

hand side of the first line of the equation describes independent search when

working face to face. Each of the workers has their own web access, and

searches independently at endogenous frequency ωISF . What a person learns

from the web is proportional to their knowledge stock ni or nj. The weight of

this search activity in knowledge production is parameterized by ρISF , whereas

its effectiveness is parameterized by αISF .

The second line of the equation represents how the frequency ωJTF of face

to face joint thinking translates into new intermediate ideas. When two per-

sons are thinking jointly, new intermediate ideas are generated at a rate pro-

portional to the normalized product of their knowledge in common, ncij, the

differential knowledge of i from j, ndij, and the differential knowledge of j from

i, ndji. The rate of creation of new intermediate ideas is high when the propor-

tions of knowledge in common, knowledge exclusive to person i, and knowledge

exclusive to person j are in balance. The parameter θF represents the weight

on differential knowledge as opposed to knowledge in common in the produc-

tion of new ideas. Knowledge in common is necessary for communication

between the two persons, whereas knowledge exclusive to one person or the

other implies more heterogeneity or originality in the collaboration. Finally,

βF (θF ) ≥ 1 is used to represent an implicit weight on knowledge in common

as follows. If the two researchers work separately, the stock of knowledge in

common is counted twice (βF (θF ) = 2), since it is a part of the stock of each of

the people working independently. Furthermore, knowledge in common plays

an important role in facilitating communication between the two workers when

they work together. So relative to working independently, the size of the stock

of knowledge in common while working jointly should be counted more than

once. However, the degree of double counting can be limited. We will explain

the nature of the function βF (θF ) in more detail in the Appendix.

Knowledge workers i and j jointly optimize the choice of frequencies ωIS

and ωIT over the two activities:

Max
{
aFij
∣∣ωISF + ωJTF = 1, ωISF ≥ 0, ωJTF ≥ 0.

}

yielding the optimal choices of frequencies ω∗ISF and ω
∗

JIT :

ω∗ISF = ρISF , ω
∗

JTF = ρJTF
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Thus, the optimized value of knowledge output created face to face is:

aF∗ij = ΦJF · (ni + nj)
ρISF ·

[(
ncij
)1−θF · (ndij · n

d
ji)

θF
2

]ρJTF
(10)

where ΦJF ≡ αF · (αISF · ρISF )
ρISF · (αJTF · ρJTF )

ρJTF · βF (θF )
(1−θF )·ρJTF .

• Similarly, jointly working through the Net is governed by the equation:

aNij = aNji = αN · [ωISN · (αISN · ni + αISN · nj)]
ρISN

×
{[
ωJTN ·

(
αJTN · (βN(θN) · n

c
ij)
1−θN · (ndij · n

d
ji)

θN
2

)]}ρJTN
.

where ρISN and ρJTN are positive parameters such that

ρISN + ρJTN = 1,

whereas ωISN and ωJTN are endogenous frequencies such that

ωISN + ωJIT = 1, ωISN ≥ 0, ωJTN ≥ 0.

The two types of activities in new intermediate idea production are again

independent search on the Net and joint thinking through the Net, where the

frequency, ωISN and ωJTN , of each is determined endogenously. We define

βN(θN) analogously to βF (θF ).

Knowledge workers i and j jointly optimize the choice of frequencies ωIS

and ωIT over the two activities:

Max
{
aNij
∣∣ωISN + ωJTN = 1, ωISN ≥ 0, ωJTN ≥ 0.

}

yielding the optimal choices of frequencies ω∗ISN and ω
∗

JTN :

ω∗ISN = ρISN , ω
∗

JTN = ρJTN

Thus, the optimized value of knowledge output created using the Net is:

aN∗ij = ΦJN · (ni + nj)
ρISN ·

[(
ncij
)1−θN · (ndij · n

d
ji)

θN
2

]ρJTN
(11)

where ΦJN ≡ αN · (αISN · ρISN)
ρISN · (αJTN · ρJTN)

ρJTN · βN(θN)
(1−θN )·ρJTN .

The final output of the joint work for knowledge creation is generated by

combining the outputs of three basic activities, (7), (10) and (11), as follows:

AJij =
[
λI · (a

I∗
ii + a

I∗
jj )
]ρI ·

[
λF · a

F∗
ij

]ρF ·
[
λN · a

N∗
ij

]ρN , (12)
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where each of ρI , ρF and ρN represents a given positive weight on each type

of basic activity such that

ρI + ρF + ρN = 1,

whereas each of λI , λF and λN denotes the frequency of each basic activity

over a unit of time. The two persons can jointly choose λI , λF and λN freely,

subject to the following constraint:

(1 + εI) · λI + (1+ εF ) · λF + (1+ εN) · λN = 1, λI ≥ 0, λF ≥ 0, λN ≥ 0, (13)

where εk > 0 represents the lead time which reflects the proportion of time-

loss for each person in preparing for various types of meetings k = I, F,N .

For example, εF reflects the time cost of preparing for F2F meetings, such

as commuting time to the common CBD office, or to the common university

office.3

(iii) In jointK-creation, under the given state of knowledge {ni, nj, n
c
ij, n

d
ij, n

d
ji}

at time t, the two persons choose jointly the optimal combination of {λI , λF , λN}

by solving the next problem:

max{AJij | (1+εI)·λI+(1+εF )·λF+(1+εN)·λN = 1, λI ≥ 0, λF ≥ 0, λN ≥ 0},

(14)

where, rewriting equation (12), we have

AJij = λI
ρI · λF

ρF · λN
ρN ·

[
aI∗ii + a

I∗
jj

]ρI ·
[
aF∗ij
]ρF ·

[
aN∗ij

]ρN . (15)

In the right side of this equation, terms involving a’s are independent of λ’s.

Hence, the problem (14) amounts to the next simple problem:

max{λI
ρI ·λF

ρF ·λN
ρN | (1+εI)·λI+(1+εF )·λF+(1+εN)·λN = 1, λI ≥ 0, λF ≥ 0, λN ≥ 0},

(16)

which yields the following solution:

λ∗I =
ρI

1 + εI
, λ∗F =

ρF
1 + εF

, λ∗N =
ρN

1 + εN
. (17)

3In Battiston, Vidal and Kirchmaier (2021), the core role of communication in organi-

zations is assumed to be to transmit information that helps co-workers do their job better.

In this context, the time cost incurred by the sender is emphasized. In the present context

of joint knowledge creation, in contrast, the time involved in F2F communication among

researchers itself is not a cost but an essential input for producing new ideas jointly.
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Not surprisingly, frequency of the activity, λ∗k, decreases as lead time εk in-

creases.

Substituting (17) into (15), the maximum value of AJij is given by

AJ∗ij ≡ (1 + εI)
−ρI · (1 + εF )

−ρF · (1 + εN)
−ρN · ρI

ρI · ρF
ρF · ρN

ρN (18)

×
[
aI∗ii + a

I∗
jj

]ρI ·
[
aF∗ij
]ρF ·

[
aN∗ij

]ρN .

Finally, substitution of (7), (10) and (11) into this equation leads to

AJ∗ij = ΦJ · [ni + nj]
ρI+ρISF ·ρF+ρISN ·ρN ·

[
(ncij)

1−θF · (ndij · n
d
ji)

θF
2

]ρJTF ·ρF
(19)

×
[
(ncij)

1−θN · (ndij · n
d
ji)

θN
2

]ρJTN ·ρN
,

where

ΦJ ≡ (1 + εI)
−ρI · (1 + εF )

−ρF · (1 + εN)
−ρN · (αJI · ρI)

ρI · (αF · ρF )
ρF · (αN · ρN)

ρN

× (αJIS · ρJIS)
ρJIS ·ρI · (αJIT · ρJIT )

ρJIT ·ρI

× (αISF · ρISF )
ρISF ·ρF · (αJTF · ρJTF )

ρJTF ·ρF

× (αISN · ρISN)
ρISN ·ρN · (αJTN · ρJTN)

ρJTN ·ρN

×βF (θF )
(1−θF )·ρJTF ·ρF · βN(θN)

(1−θN )·ρJTN ·ρN (20)

and

ρI + ρF + ρN = 1, ρJIS + ρJIT = 1, ρISF + ρJTF = 1, ρISN + ρJTN = 1 (21)

(iv) Next, recalling the definitions in the first part of this section, we can

rewrite (19) in terms of mc
ij, m

d
ij and m

d
ji as follows:

AJ∗ij = nij · ΦJ ·
[
(1−md

ji) + (1−m
d
ij)
]ρI+ρISF ·ρF+ρISN ·ρN ·

[
(mc

ij)
1−θF · (md

ij ·m
d
ji)

θF
2

]ρJTF ·ρF

×
[
(mc

ij)
1−θN · (md

ij ·m
d
ji)

θN
2

]ρJTN ·ρN
(22)

where ΦJ is a function of parameters given by (20).

Before moving to the next section, we discuss briefly the comparative statics

of knowledge productivity. As equation (4) indicates, knowledge productivity

in isolation, AI∗ii , increases as ΦI increases. This has the following implica-

tions, among others. As αIS (the effectiveness of search) increases, A
I∗
ii is

larger. Likewise, as equation (22) indicates, the productivity of joint knowl-

edge creation increases as ΦJ rises. Analogously, we can see from equation

(20) that as either εk (lead time in preparing for a type k meeting, k = I, F,N)
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decreases, or as either αJIS (effectiveness of independent search while thinking

in isolation), αISF (effectiveness of independent search while working F2F), or

αISN (effectiveness of independent search while working via the Net) increases,

ΦJ increases and hence the productivity of joint knowledge creation increases.

In contrast, the impact of parameters indexed by ρ and θ is more complex, as

seen in the following sections.

3 The impact of regulating communication modes

on joint knowledge productivity

“TheWorld Health Organization officially declared Covid-19 a pan-

demic on March 11. Within a few weeks, an estimated 16 million

U.S. knowledge workers had switched to working remotely to flat-

ten the curve of the health crisis, according to a new survey by

Slack.

This amounts to nearly one-quarter of all knowledge workers in the

U.S., and that proportion has climbed even higher as more states

have urged citizens to stay home.”

Hanson (2020)

During the Covid-19 pandemic, the intensity of use of communication chan-

nels between researchers changed, as many switched to work from home, for

instance. How does the availability and use of both electronic and face to face

communication change from an exogenous event, and how does it affect the

patterns and volume of knowledge creation? How do pandemic restrictions

change the use of various modes of communication as well as the characteristics

of the knowledge creation process?

In this section, using our model developed in the previous section, we an-

alyze the effect of restrictions on face to face communication in our model.

There is a large and rapidly expanding literature on the economic effects

of the Covid19 pandemic. Here we focus on the effects of the pandemic on

the knowledge creation activity when multiple channels of communication are

present, and in particular on the productivity of researchers under pandemic

restrictions. How do they change their choice of joint or individual work,

and how do they change their modality of joint work (face to face or internet

communication) with the imposition of pandemic restrictions? And how does

13



this interact with the differing commuting cost faced by workers living at

various distances from work?

There is some interesting empirical work associated with these questions.

Morikawa (2020) finds significant effects, as well as significant heterogeneity

in effects, of pandemic restrictions on workers in Japan. For example, worker

productivity was reduced by 30-40% when working from home as opposed

to commuting to work. We shall discuss in more detail below how further

empirical results from this paper support our theory. Inoue et al (2022)

examine the effect of the Spanish flu pandemic from the early 20th century

on patent productivity in industries where face to face communication was

important, and find a huge effect. Finally, Yamauchi et al (2022) find a

significant negative shock to patent applications as a result of the Covid-19

pandemic. Interestingly, they find that shocks are fine tuned even to the

timing of the waves of the pandemic in Japan,4 suggesting upheavals in the

modes of collaborations used in R&D.

In the formulation (14), the combination of communication modes, {λI , λF , λN},

has been freely chosen. In reality, however, there exist numerous restrictions

on the usage of communication modes; some are explicit whereas others are im-

plicit. For example, old metropolises, such as London, New York and Tokyo,

have big CBDs that formed a long time ago when commuting railways were

predominant. In these metropolises, before the Covid-19 pandemic a large

proportion of workers were forced to commute to CBD offices to ease F2F

communications. Likewise, professors and students at traditional universities

have been forced to commute to their main campuses for ease of F2F com-

munications. For another example, conversely, during the recent Covid-19

pandemic, many governments introduced regulations that forced a large pro-

portion of workers and students in large cities to work at their homes through

the net while discouraging F2F meetings. Specifically, in the early period

of the Covid-19 pandemic, the Japanese government asked business offices in

large cities to reduce their commuting workers by 80% by switching their work-

ing status to WFH (working from home) to avoid the transmission of corona

virus through F2F communications.

Given such examples of restrictions on communication modes in the real

world, let us try to apply our model in the previous section to study the impact

of such restrictions on joint knowledge productivity. Here, we focus on the

regulation of F2F communications, so we set εI = εN = 0 and slightly modify

4See their Figure 3.
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the maximization problem of (14) as follows:

max{AJij | λI + (1 + εF )λ̄F + λN = 1, λI ≥ 0, λN ≥ 0}, (23)

where λ̄F is a parameter exogenously specified such that

0 < λ̄F <
1

1 + εF
. (24)

That is, we fix the frequency of F2F communications at λ̄F , and then let the

two persons choose λI and λN optimally. In this context, similar to the case

of (16), the problem (23) amounts to the next problem:

max{λI
ρI · λ̄F

ρF · λN
ρN | λI + (1 + εF )λ̄F + λN = 1, λI ≥ 0, λN ≥ 0} (25)

which yields the following solution:

λ̂I = ρI ·

(
1− (1 + εF )λ̄F

1− ρF

)
≡ ρI ·

[
1 +

(1 + εF ) · (λ
∗

F − λ̄F )

1− ρF

]
, (26)

λ̂N = ρN ·

(
1− (1 + εF )λ̄F

1− ρF

)
≡ ρN ·

[
1 +

(1 + εF ) · (λ
∗

F − λ̄F )

1− ρF

]
, (27)

where λ∗F ≡ ρF/(1 + εF ). We can see that when λ̄F = λ∗F , it holds that

λ̂I = ρI ≡ λ
∗

I and λ̂N = ρN ≡ λ
∗

N , not surprisingly; whereas when λ̄F 6= λ
∗

F , λ̂I

and λ̂N are adjusted so as to accommodate the difference between λ̄F and λ
∗

F .

Substituting λ̂I and λ̂N in (26) and (27) into equation (15), we get

ÂJij(λ̄F ) ≡ ρI
ρI · ρN

ρN ·

[
1− (1 + εF )λ̄F

1− ρF

]ρI+ρN
·
(
λ̄F
)ρF

×
[
aIii + a

I
jj

]ρI ·
[
aFij
]ρF ·

[
aNij
]ρN

= (1 + εF )
−ρF · ρI

ρI · ρF
ρF · ρN

ρN ·

[
1 +

(1 + εF ) · (λ
∗

F − λ̄F )

1− ρF

]ρI+ρN
·

(
λ̄F
λ∗F

)ρF

×
[
aIii + a

I
jj

]ρI ·
[
aFij
]ρF ·

[
aNij
]ρN , (28)

where the last equality follows from λ∗F ≡ ρF/(1 + εF ). This equation gives

the maximum value of AJij when λF is fixed at λ̄F ∈ (0, 1/(1 + εF )).

Using (18) and (28), we divide ÂJij(λ̄F ) by A
J∗
ij , and obtain

h(λ̄F ) ≡
ÂJij(λ̄F )

AJ∗ij
=

[
1 +

(1 + εF ) · (λ
∗

F − λ̄F )

1− ρF

]ρI+ρN
·

(
λ̄F
λ∗F

)ρF
, (29)

since εI = εN = 0. We call h(λ̄F ) the relative productivity function, which

measures the effect of the restriction λF = λ̄F on joint knowledge productivity.

We can readily see from (29) that when λ̄F = λ
∗

F , h(λ
∗

F ) = 1 as to be expected.
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Differentiating h(λ̄F ) yields

h′(λ̄F ) = h(λ̄F ) ·
(1 + εF ) · (λ

∗

F − λ̄F )

[1− (1 + εF )λ̄F ] · λ̄F
, (30)

implying that

h′(λ̄F ) R 0 as λ̄F Q λ∗F for λ̄F ∈
(
0,

1

1 + εF

)
(31)

Thus, h(λ̄F ) is strictly quasi-concave on [0, 1/(1+εF )], achieving the maximum

value, 1, at λ̄F = λ
∗

F . We can also readily see from (29) and (30) that

lim
λ̄F→0

h(λ̄F ) = 0, lim
λ̄F→0

h′(λ̄F ) =∞,

lim
λ̄F→1/(1+εF )

h(λ̄F ) = 0, lim
λ̄F→1/(1+εF )

h′(λ̄F ) = −∞,

implying that h(λ̄F ) decreases sharply towards 0 as either λ̄F decreases towards

zero, or λ̄F increases towards 1/(1 + εF ).

For numerical illustration, Figure 2 depicts the shape of function h(λ̄F ) for

parameters,

ρF =
1

2
, ρI = ρN =

1

4
, εF = 0.2,

implying that

λ∗F =
ρF

1 + εF
=

1

2.4
.

Figure 2

In this figure, when parameter λ̄F is set either at λ̄F1 = 0.2λ∗F or at

λ̄F2 = 1.8λ∗F , the value of h(λ̄F ) is 0.6, implying 40% reduction of the joint

knowledge productivity by either restriction. The case of λ̄F1 = 0.2λ
∗

F may

correspond to the instance when the Japanese government asked 80% of office

workers in big cities to work at their homes in the early period of the Covid-19

pandemic.5 The case of λ̄F2 = 1.8λ∗F might suggest the possible reduction

5The empirical productivity of working from home during the Covid-19 pandemic in

Japan was examined by Morikawa (2020). It is reported there that in the early period of

the Covid-19 pandemic in Japan, the mean productivity of workers WFH (working from

home) relative to WWC (working with commuting) at their usual workplace was about 60-

70%. Thus, the case λ̄F1 = 0.2λ∗F in Figure 2 happens to correspond rather well to the

Japanese experience. Needless to say, empirical applications of the results in this section to

the real world requires careful examination of the situations before and after the imposition

of such regulations.
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of joint knowledge productivity by the de facto enforcement of commuting to

CBD offices on their knowledge workers.

Notice also from the shape of function h(λ̄F ) that when the restriction on

λF is such that

0 ≤ λF ≤ λ̄F ,

the optimal joint choice of λF is given at λ̄F if λ̄F ≤ λ
∗

F ; in contrast, if λ̄F > λ
∗

F ,

this restriction is not effective. Likewise, when the restriction on λF is such

that

λ̄F ≤ λF ≤
1

1 + εF
,

then the optimal joint choice of λF is given at λ̄F if λ̄F ≥ λ
∗

F ; in contrast, if

λ̄F < λ
∗

F , this restriction is not effective.

In order to study more closely the nature of relative productivity function,

substituting λ∗F = ρF/(1 + εF ) into equation (29), we rewrite (29) as follows:

h(λ̄F ; ρF , εF ) ≡
AJij(λ̄F )

AJ∗ij
=

[
1− (1 + εF )λ̄F

1− ρF

]1−ρF
·

(
(1 + εF )λ̄F

ρF

)ρF
, (32)

which is a function of three parameters: the regulation parameter λ̄F , and

original parameters ρF and εF . First, to examine how the change in F2F

intensity parameter ρF affects the value of relative productivity at given λ̄F

and εF , we differentiate (32) with ρF , and obtain

∂h(λ̄F ; ρF , εF )

∂ρF
= h(λ̄F ; ρF , εF ) · log

[

1 +
(1 + εF ) · (λ̄F −

ρF
1+εF

)

ρF · [1− (1 + εF )λ̄F ]

]

(33)

implying that

∂h(λ̄F ; ρF , εF )

∂ρF
Q 0 as λ̄F Q

ρF
1 + εF

≡ λ∗F . (34)

Using this result, we can obtain Figure 3.

Figure 3

In drawing this figure, we choose two different values of F2F-intensity pa-

rameter ρF such that

ρF1 < ρF2. (35)

Then, given each chosen value of ρF , we can draw the corresponding relative

productivity curve. Since the curve h(λ̄F ; ρF1, εF ) achieves the maximum value
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of 1 at λ∗F1 = ρF1/(1+ εF ) and the curve h(λ̄F ; ρF2, εF ) at λ
∗

F2 = ρF2/(1+ εF ),

and since ρF1 < ρF2, the left bold-curve corresponds to function h(λ̄F ; ρF1, εF )

whereas the right broken-curve corresponds to h(λ̄F ; ρF2, εF ).

In Figure 3, two fixed values, λ̄F1 and λ̄F2, of F2F-regulation parameter

are chosen such that

λ̄F1 < λ
∗

F1 =
ρF1
1 + εF

< λ∗F2 =
ρF2
1 + εF

< λ̄F2. (36)

Then, as predicted by (33), as the curve h(λ̄F ; ρF1, εF ) shifts to the curve

h(λ̄F ; ρF2, εF ), at λ̄F1 the relative productivity decreases from a to a
′, whereas

at λ̄F2 the relative productivity increases b to b
′.

For concreteness, given ρF1 and ρF2 as in (35), we may say that the system

of joint knowledge creation associated with ρF2 is more F2F intensive than the

system associated with ρF1. Then, we can summarize the observations above

as follows:

Proposition 1: Let us consider two systems of joint knowledge creation as-

sociated with different levels of F2F-intensity, ρF1 and ρF2. Set two different

levels of F2F regulation, λ̄F1 and λ̄F2, such that relation (35) holds. Then,

(i) Under the regulation λ̄F1 < λ
∗

F1, relative productivity in the joint system

of knowledge creation with the higher F2F-intensity decreases more than in

the system with the lower F2F intensity;

(ii) Under the regulation λ̄F2 > λ
∗

F2, relative productivity in the joint system

of knowledge creation with the lower F2F-intensity decreases more than in the

system with the higher F2F intensity.

In the proposition above, case (i) may correspond to the situation with

strong request for WFH (working from home) introduced in the early period

of the Covid-19 pandemic, whereas case (ii) may reflect the situation of forced

WWC (working with commuting) in large old cities.

Regarding empirical evidence, Inoue et al (2022) look at the effect of the

Spanish flu epidemic in the early 1900’s on patent applications using a differ-

ence in differences approach, where the control group is industries where face

to face communication is not intensive, and the treatment group is contact

intensive industries. In accordance with Proposition 1(i), they find that the

pandemic caused patent applications in contact intensive industries to decline

significantly relative to the control group.

Likewise, let us next examine how the change in time-loss parameter εF

affects the value of relative productivity at given λ̄F and ρF . Differentiating
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(32) with respect to εF yields

∂h(λ̄F ; ρF , εF )

∂εF
= h(λ̄F ; ρF , εF ) ·

ρF
1+εF

− λ̄F

1− (1 + εF )λ̄F
, (37)

implying that

∂h(λ̄F ; ρF , εF )

∂εF
R 0 as λ̄F Q

ρF
1 + εF

≡ λ∗F (ρF , εF )

⇔ εF Q
ρF − λ̄F
λ̄F

(38)

where λ∗F (ρF , εF ) represents the optimal frequency of λF under the set of pa-

rameters, ρF and εF . Based on (38), we can draw Figure 4.

Figure 4

In drawing this figure, we choose two different values of time-loss parameter

ε such that

εF1 < εF2. (39)

Then, for each chosen value of εF , we can draw the corresponding relative

productivity curve as in Figure 4. Given (39), it holds that 1/(1+εF1) > 1/(1+

εF2) and λ
∗

F1 ≡ λ∗F (ρF , εF1) = ρF/(1 + εF1) > λ
∗

F2 ≡ λ∗F (ρF , εF2) = ρF/(1 +

εF2). Hence, the right bold-curve corresponds to function h(λ̄F ; ρF , εF1) and

the left broken-curve corresponds to h(λ̄F ; ρF , εF2).

In Figure 4, two fixed values of F2F regulation parameter, λ̄Fa and λ̄Fb,

are chosen such that

λ̄Fa < λ
∗

F2 ≡
ρF

1 + εF2
< λ∗F1 ≡

ρF
1 + εF1

< λ̄Fb (40)

Then, as predicted by (38), when the bold-curve h(λ̄F ; ρF , εF1) shifts to the

broken-curve h(λ̄F ; ρF , εF2), at λ̄Fa the relative productivity increases from a1

to a2, whereas at λ̄Fb the relative productivity decreases from b1 to b2.

For an intuitive understanding of the result above, let us consider two pairs

of joint-knowledge workers, (i1, j1) and (i2, j2). And, suppose that εF1 rep-

resents the commuting time of each i1 and j1 to the common CBD office,

whereas εF2 the commuting time of each i2 and j2 to the common CBD of-

fice. Here, as indicated by (39), each of (i2, j2) resides farther from the CBD

than each of (i1, j1). Thus, the bold-curve in Figure 4 represents the relative

productivity curve of pair (i1, j1) with shorter commuting time εF1, whereas
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the broken-curve represents the relative productivity curve of pair (i2, j2) with

longer commuting time εF2.

In this context, given the regulation λ̄Fa in Figure 4, the deviation of λ̄Fa

from the optimal F2F frequency for pair (i1, j1) with shorter commuting time

εF1 equals (λ
∗

F1 − λ̄Fa), whereas the deviation for pair (i2, j2) with longer

commuting time εF2 equals (λ
∗

F2 − λ̄Fa), where

λ∗F2 − λ̄Fa < λ
∗

F1 − λ̄Fa

Thus, the relative productivity loss (1− a2) for the pair with the longer com-

muting time is smaller than the relative productivity loss (1− a1) for the pair

with the shorter commuting time.

Conversely, given another regulation λ̄Fb in Figure 4, we can see that

λ̄Fb − λ
∗

F1 < λ̄Fb − λ
∗

F2, (41)

implying that the relative productivity loss (1−b1) for the pair with the shorter

commuting time is smaller than the relative productivity loss (1− b2) for the

pair with longer commuting time.

We may summarize the observation above as follows:

Proposition 2: Let us consider two pairs of joint knowledge workers, (i1, j1)

and (i2, j2), such that each of (i1, j1) has commuting time εF1 to the common

CBD office whereas each of (i2, j2) has commuting time εF2 to the common

CBD office, where εF1 < εF2. In this context, let us consider two different

levels of F2F regulation, λ̄Fa and λ̄Fb, such that relation (41) holds as depicted

in Figure 4. Then,

(i) Under the regulation λ̄Fa < λ
∗

F2, the relative productivity decrease for the

pair with longer commuting εF2 is smaller than that for the pair with shorter

commuting time εF1.
6

(ii) Under the regulation λ̄Fb > λ
∗

F1, the relative productivity decrease for the

pair with shorter commuting time εF1 is smaller than that for the pair with

longer commuting time εF2.

In Morikawa (2020), it is reported that in the early period of the Covid-19

pandemic in Japan, “long-distance commuters tended to exhibit a relatively

small reduction in productivity when participating in the WFH arrangement,”

which happens to be consistent with Proposition 2(i).

6In Morikawa (2020), it is reported that in the early period of the Covid-19 pandemic in

Japan, “long-distance commuters tended to exhibit a relatively small reduction in produc-

tivity when participating in the WFH arrangement,” which happens to be consistent with

Proposition 2(i).
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4 The knowledge growth rate in the pairwise

symmetric case

Before going further, we must specify what is the objective of knowledge cre-

ation by each person. Specifically, we need to clarify how to output AJ∗ij is

split / not split between i and j. In this connection, we introduced in our

early papers two different specifications. In Berliant and Fujita (2008, 2009),

assuming that AJ∗ij contributes directly to increasing each person’s felicity (or

instantaneous utility) at that time, AJ∗ij is not split between the two persons.

In contrast, in Berliant and Fujita (2011, 2012), a fixed proportion of every col-

lection of ideas created are assumed to become new patents, which are sold at a

given market price at that time. The revenue from new patents is split evenly

if persons i and j produce new ideas together. Although either specification

would lead to similar results, in this paper we adopt the latter specification of

Berliant and Fujita (2011, 2012).

To go further, we must define the rule used by each person to decide whether

they create new ideas jointly or in isolation. For this purpose, we assume that

income for each person derives from selling new ideas created as patents. The

revenue from new patents is split evenly if persons i and j produce new ideas

together.

Let δij(t) ∈ {0, 1} be a function such that if

δij(t) = δji(t) = 1 for j 6= i, (42)

then joint knowledge creation occurs at time t. In contrast, if

δii(t) = δjj(t) = 1, (43)

then each person creates new knowledge in isolation. Notice that since the

two persons must agree either to work jointly or to work in isolation each,

either (42) or (43) can occur exclusively at time t.

Let yi(t) be the income of each person at time t, and let Π(t) be the price

of patents at time t. Then suppressing t for notational simplicity:

yi = Π ·
[
δii · A

I∗
ii + δij · A

J∗
ij /2

]
for j 6= i. (44)

Since person i chooses δii and δij so as to maximize yi and similarly for person
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j, it follows that7

δij = δji = 1⇐⇒ AJ∗ij /2 > A
I∗
ii and A

J∗
ij /2 > A

I∗
jj , (45)

δii = δjj = 1⇐⇒ AJ∗ij /2 ≤ A
I∗
ii or A

J∗
ij /2 ≤ A

I∗
jj . (46)

To study this system in greater detail, in the following we focus on the

special case where persons i and j are pairwise symmetric in terms of knowledge

heterogeneity. Specifically, suppose at time t that (suppressing t for notational

simplicity):

ni = nj ≡ n. (47)

By definition,

nc ≡ ncij = n
c
ji.

Then since ndij = n− n
c, it follows that

ndij = n
d
ji ≡ n

d, (48)

and

n = nc + nd, nij = nc + 2nd = n+ nd, (49)

implying that

md ≡ md
ij = m

d
ji =

nd

nij
, mc ≡ mc

ij = m
c
ji =

mc

nij
, (50)

mc ≡ mc
ij = m

c
ji =

nc

nij
= 1− 2md.

It also follows from (2) that

n = nij · (1−md), (51)

Furthermore, from (4) and (5),

AI∗ii = A
I∗
jj = ΦI · n. (52)

Hence, relations (45) and (46) can be restated as

δij = δji = 1⇐⇒ AJ∗ij /2 > ΦI · n, (53)

δii = δjj = 1⇐⇒ AJ∗ij /2 ≤ ΦI · n, (54)

7Recall from equation (12) that AJ∗ij = AJ∗ji by definition. In equations (45) and (46),

we can use either strict inequality or weak inequality. However, since the case of ties is not

important in the following analysis, for convenience we use strict inequality in (45) whereas

we use weak inequality in (46).
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where equation (22) for AJ∗ij is now given by

AJ∗ij = nij · ΦJ ·
[
2 · (1−md)

]ρI+ρISF ·ρF+ρISN ·ρN ·
[
(1− 2md)1−θF · (md)θF

]ρJTF ·ρF

×
[
(1− 2md)1−θN · (md)θN

]ρJTN ·ρN (55)

Using (51) and rearranging terms, let us define the knowledge growth rate

for joint creation per person by

gJ(m
d) ≡

AJ∗ij /2

n
= Ω · (1−md)ρI+ρISF ·ρF+ρISN ·ρN−1 · (1− 2md)(1−θF )ρJTF ·ρF+(1−θN )ρJTN ·ρN

× (md)θF ρJTF ·ρF+θNρJTN ·ρN ,

= Ω · (1−md)a · (1− 2md)b · (md)c

(56)

where

Ω ≡ ΦJ · 2
a (57)

a ≡ ρI + ρISF · ρF + ρISN · ρN − 1

b ≡ (1− θF )ρJTF · ρF + (1− θN)ρJTN · ρN

c ≡ θFρJTF · ρF + θNρJTN · ρN

We may note that the knowledge growth rate defined by equation (56)

represents the “public aspect” of the knowledge creation and accumulation

process. That is, AJ∗ij in equation (56) represents the newly created “formal

knowledge” to be accumulated in the “Server” in Figure 1 as public documents,

which are accessible by any person in the future. In contrast, as discussed

in Section 5, “inside the brain” of each person i and j, the tacit knowledge

generated in the process of creating AJ∗ij is also accumulated for the future

activity of knowledge creation. Furthermore, in equation (56), AJ∗ij is divided

by 2 to account for the number of “patents” created per person.

By definition,

a+ b+ c = 0.

Since the function gJ(m
d) contains onlymd as a variable, differentiating gJ(m

d)

yields

g′J(m
d) = gJ(m

d) ·
c− (b+ 2c) ·md

md · (1−md) · (2−md)
. (58)

Let us define

mB ≡
1

2 + b
c

(59)

=
1

2 + (1−θF )ρJTF ·ρF+(1−θN )ρJTN ·ρN
θF ρJTF ·ρF+θNρJTN ·ρN
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which is smaller than 1/2 since θF < 1 and θN < 1. Thus, (58) implies that

g′J(m
d) R 0 as md Q mB for md ∈

(
0,
1

2

)
(60)

Hence, gJ(m
d) is strictly quasi-concave on [0, 1/2], achieving its maximal value

at mB, which we call the "Bliss Point."

Next, for the case of knowledge creation in isolation, from equations (4)

and (5), the knowledge growth rate for each person is obtained as follows:

AI∗ii
ni

=
AI∗jj
nj

= ΦI , (61)

which is constant for the two persons.

Overall, the knowledge growth rate per person is given by:

g(md) = max
{
ΦI , gJ(m

d)
}

(62)

Using function gJ(m
d), the selection rule (45) and (46) can be restated as

δij = δji = 1⇐⇒ gJ(m
d) > ΦI (63)

δii = δjj = 1⇐⇒ gJ(m
d) ≤ ΦI (64)

Figure 5 depicts the shape of the function gJ(m
d) for parameters:

ρF =
1

2
, ρI = ρN =

1

4
, ρJIS = ρJIT =

1

2
, ρISF = ρISN =

1

4
, ρJTF = ρJTN =

3

4
,

θF =
1

4
, θN =

1

2
, εF = 0.2, , εI = εN = 0, βF (θF ) = βN(θN) = 4,

αF = 2, αJI = αN = 4, αJIS = αJIT = αJSF = αJTF = αISF = αISN = αJTN = 3

together yielding

mB = 0.4, gJ(m
B) = 1.0.

Figure 5

In Figure 5, the horizontal line with height

ΦI = 0.5

represents the knowledge growth rate when i and j are working separately in

isolation, which is obtained from the set of parameters:

αI = αIS = αIT = 1, ρIS = ρIT =
1

2
.
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This horizontal line intersects the gJ(m
d) curve at points E and H. Hence,

δij = δji = 1 for m
d ∈ (mE,mH), (65)

δii = δjj = 1 for m
d ∈ [0,mE] ∪ [mH ,

1

2
]. (66)

(Some comparative statics of g(md) might be conducted.)

5 Dynamics of the two-person system

“Tacit knowledge consists partly of technical skills–the kind of informal, hard-

to-pin-down skills captured in the term ‘know-how.’ A master craftsman after

years of experience develops a wealth of expertise ‘at his fingertips.’ But he is

often unable to articulate the scientific or technical principles behind what he

knows.”

Nonaka (2007)

Thus far, through Sections 2 to 4, the size of each person’s knowledge as well

as the relative composition of two persons’ knowledge have been treated para-

metrically. In this section, we examine how the size of each person’s knowledge

as well as the relative composition of two persons’ knowledge change endoge-

nously over time when they continue interacting by sequentially choosing either

to work alone or to work together for knowledge creation.

To study such dynamics of the two-person system, in the following we focus

on the special case where persons i and j have the same size of knowledge at

the initial time, t = 0; namely

ni(0) = nj(0) ≡ n(0). (67)

It holds by definition that

ncij(0) = n
c
ji(0) ≡ n

c(0),

thus as shown in equations (47), (48) and (49), condition (67) means

ndij(0) = n
d
ji(0) ≡ n

d(0), (68)

and

md
ij(0) = m

d
ji(0) ≡ m

d(0). (69)
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Given that the initial state of knowledge is symmetric for persons i and j as

above, as seen below, it turns out that the equilibrium configuration at any

time also maintains pairwise symmetry between the two persons; at any time

t ∈ [0,∞),8

ni(t) = nj(t) ≡ n(t), (70)

and hence,

ndij(t) = n
d
ji(t) ≡ n

d(t),

md
ij(t) = m

d
ji(t) ≡ m

d(t),

whereas, by definition,

ncij(t) = n
c
ji(t) ≡ n

c(t).

In this context of a pairwise-symmetric equilibrium path, our main goal is

to examine how the knowledge growth rate per person changes in the long-run.

As defined in equation (62), given md ∈ [0, 1
2
], the knowledge growth rate per

person, g(md), is given by

g(md) = max
{
ΦI , gJ(m

d)
}
.

To make the analysis interesting, let us consider the case

gJ(m
B) > ΦI . (71)

Then, as depicted in Figure 5, on the horizontal axis md, there exist mE and

mH such that 0 < mE < mB < mH < 1
2
and

gJ(m
d) > ΦI for m

d ∈ (mE,mH),

ΦI > gJ(m
d) for md ∈

[
0,mE

)
∪ (mH ,

1

2
]

Let md(0) be the initial value of md at time 0. First, let us assume that

gJ(m
d(0)) > ΦI . (72)

That is,md(0) locates betweenmE andmH in Figure 5. Then, the two persons

will continue to work jointly (i.e., δij = δji = 1) as long as

gJ(m
d(t)) > ΦI . (73)

8This can be seen from the fact that when condition (70) is met at any time t (say, t = 0),

the right hand side of the differential equation specifying ṅ(t) (also ṅd(t) and ṁd(t)) does

not involve any variable that is specific to i or j. For a more precise explanation of this

point, please see Berliant and Fujita (2011).
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In order to know which directionmd(t)moves and how long the two persons will

continue working jointly, let us examine the dynamics of md when condition

(73) holds. To do so, recalling the definition md ≡ nd/nij and dropping t for

simplicity, we have that:

ṁd =
ṅd

nij
−
nd · ṅij

(nij)2

= (nij)−1 · [ṅd − ṅij ·md],

Since nij ≡ nc + 2nd, it follows that

ṁd = (nij)−1 · [ṅd − (ṅc + 2ṅd) ·md] (74)

implying that

ṁd R 0⇔ ṅd − (ṅc + 2ṅd) ·md R 0. (75)

Hence, to identify the sign of ṁd, we must know the values of ṅd and

ṅc. That is, when md(t) locates in between mE and mH in Figure 5, the

knowledge growth rate gJ(m
d(t)) is realized for each person, and therefore we

must calculate how much differential knowledge (ṅd(t)) for each person and

how much common knowledge (ṅc(t)) for the two persons has been generated

at that moment, t.

However, knowing the values of ṅd(t) and ṅc(t) is not a simple task because

joint knowledge creation is composed, as explained in Section 2 (ii), of three

layers of activities: the production of the final output AJ∗ij , which is generated

by combining the outputs of three types of basic activities, whereas each basic

activity consists of multiple sub-activities. Since the final output AJ∗ij is pro-

duced jointly, it will naturally become a part of new common knowledge for

the two persons. The output of a basic activity or a sub-activity is not only

used as the input for an activity at the next higher level, but it is also kept

as new tacit knowledge for knowledge creation in the future; when the out-

put is produced jointly, that tacit knowledge becomes a part of new common

knowledge for the two persons. In contrast, when the output is independently

created by a person, say i, it becomes a part of new differential knowledge of

i from j. Thus, calculating the values of ṅd(t) and ṅc(t) is a complex task,

which is attained through a sequence of steps as follows.

In the first step, we clarify the structural relationship among all basic ac-

tivities and sub-activities. As depicted in Figure 6, the relationship among all

of the activities used to generate the final output AJ∗ij is represented as a tree.

Table 1 provides further description of this activity tree.
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Figure 6

Table 1

The activity tree depicted in Figure 6 consists of three tiers of knowledge

creation activities. We may note that in describing a tree in mathematics,

the term “level” is used instead of “tier.” In the present context, however,

the diagram shown in Figure 6 resembles the structure of a supply chain that

produces a final industrial product (e.g., automobiles) by sequentially assem-

bling various parts produced through multiple tiers of many factories. Thus,

here we use the term “tier.” The major difference between “automobile pro-

duction” and the present “knowledge production” must be noted. That is,

all parts used in the production process of a car “disappear” into the car at

the end of the assembly process. In contrast, the tacit knowledge created

and used in the knowledge production process is accumulated for knowledge

creation in the future.

In Figure 6, each node denoted by a black square � or a black dot •

represents a joint activity by persons i and j, whereas each node denoted by

a white circle ◦ represents an independent activity conducted by either i or j.

Each node is labelled by the output of the corresponding activity, where the

sign ∗ attached to an output means that the frequency variables (ω’s and /

or λ’s) have been chosen optimally. The precise description of each output is

provided in the fourth column of Table 1.

The top node � in Figure 6 represents the final output AJ∗ij . The second
tier consists of four basic activities: aI∗ii (the output of searching and thinking

by i), aI∗jj (the output of searching and thinking by j), a
F∗
ij (the output of

independent searching by i and j, and joint thinking by i and j while jointly

working F2F), and aN∗ij (the output of independent searching by i and j, and

joint thinking by i and j while jointly working through the Net).

The third tier consist of four groups of sub-activities:
∗

a
JIS

i and
∗

a
JIT

i (sub-

activities of aI∗ii ),
∗

a
JIS

j and
∗

a
JIT

j (sub-activities of aI∗jj ),
∗

a
ISF

i ,
∗

a
ISF

j and
∗

a
JTF

ij

(sub-activities of aF∗ij ),
∗

a
ISN

i ,
∗

a
ISN

j and
∗

a
JTN

ij (sub-activities of aN∗ij ). Further

description of each sub-activity is provided in the third column (type) of Table

1.

In the second step, the output of each activity / sub-activity is represented

by an equation, which is listed in the fourth column of Table 1. (The output

description of each sub-activity in the fourth column comes from the equation

of the corresponding second-tier activity in the text.)
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Although each equation in the fourth column of Table 1 represents new

tacit knowledge generated by each activity / sub-activity, different pieces of

new tacit knowledge cannot simply be added up because each one has different

importance for the creation of new knowledge in the future. Thus, in the third

step, we attach a “weight” to each specific output, say x. For the weight on x,

following the tradition of microeconomics, we use the value, ∂AJ∗ij /∂x, which

represents marginal contribution of x to the final output AJ∗ij . Then, we

calculate the (total) contribution of x to the final output AJ∗ij by

∂AJ∗ij
∂x

· x, (76)

which we call the imputed value of x, using the terminology of microeconomics.

Here, it must be noted that in each calculation of (76), the pairwise symmetry

stated in equation (70), namely ni(t) = nj(t) ≡ n(t), is taken into account.

For example, let us focus on the top row in the third tier of Table 1. On this

row, the last term, AJ∗ij ·(ρI ·ρJIS/2), is obtained as follows. First, substituting

ρJIS (the optimal value of ωJIS) for ωJIS and ρJIT (the optimal value of ωJIT )

for ωJIT in equation (6), the optimized value of a
I
ii is given by

aI∗ii = αJI · [
∗

a
JIS

i ]ρJIS · [
∗

a
JIT

i ]ρJIT , (77)

where
∗

a
JIS

i = ρJIS · αJIS · ni,
∗

a
JIT

i = ρJIT · αJIT · ni. (78)

Similarly, we can obtain aI∗jj (detail about which is not important here). Next,

using (77) and (78), from (23) we can obtain that

∂AJ∗ij

∂
∗

a
JIS

i

·
∗

a
JIS

i = AJ∗ij ·
ρI · ρJIS · a

I∗
ii

aI∗ii + a
I∗
jj

.

Since ni(t) = nj(t) = n(t) at any t, it follows that a
I∗
ii = a

I∗
jj . Hence,

∂AJ∗ij

∂
∗

a
JIS

i

·
∗

a
JIS

i = AJ∗ij ·
ρI · ρJIS
2

, (79)

which gives the last term on the top row of the third tier associated with the

output,
∗

a
JIS

i , in Table 1.

Likewise, for each output x, we can calculate the imputed value, (∂AJ∗ij /∂x)·

x, of each x as listed in the last column of Table 1.

Next, using the terms listed in the last column of Table 1, we calculate the

values of ṅd(t) and ṅc(t). Before doing so, however, let us observe from the
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last column of Table 1 that

the sum of imputed values in the second tier

= AJ∗ij ·
ρI
2
+ AJ∗ij ·

ρI
2
+ AJ∗ij · ρF + A

J∗
ij · ρN

= AJ∗ij · (ρI + ρF + ρN)

= AJ∗ij , (80)

since ρI + ρF + ρN = 1. Likewise, using the relations among ρ’s noted in (21),

it can be readily confirmed that

the sum of imputed values in the third tier

= AJ∗ij . (81)

Therefore, when the final output AJ∗ij is created, the same size of tacit knowl-

edge (in terms of imputed values) is generated in tier 2 as well as in tier 3.9

In calculating the values of ṅd(t) and ṅ(t), we may take into account all

imputed values in tier 2 and tier 3. However, the contents of tacit knowledge

generated in tier 2 seem rather close to those in tier 3. Thus, in order to

avoid double counting of similar pieces of tacit knowledge, we consider only

the tacit knowledge generated in tier 3.10 In this context, the value of ṅd

for each person, say i, is obtained by summing up the imputed values of all

third-tier activities by person i that are identified by ◦ circles in the second

column of Table 1 as follows:

ṅd = AJ∗ij ·
ρI · ρJIS
2

+ AJ∗ij ·
ρI · ρJIT

2
+ AJ∗ij ·

ρF · ρISF
2

+ AJ∗ij ·
ρN · ρISN

2

=
AJ∗ij
2
· (ρI + ρF · ρISF + ρN · ρISN), (82)

using the identity ρJIS + ρJIT = 1. This equation represents the size of the

differential knowledge generated by each person at the time. Next, the value

of ṅc is obtained as the sum of final output AJ∗ij and the imputed values of

third-tier joint activities by i and j as follows:

ṅc = AJ∗ij + A
J∗
ij · ρF · ρJTF + A

J∗
ij · ρN · ρJTN

= AJ∗ij · (1 + ρF · ρJTF + ρN · ρJTN). (83)

9If we recall the microeconomics of production, this result is not surprising. That is,

“all production functions / sub-production functions” in each tier are composed of Cobb-

Douglas functions, and each function displays constant returns to scale as can be seen from

(21). Hence, the sum of all imputed values in each tier equals the value of the final output,

the price of which is normalized to be 1.
10Even if we take into account all pieces of tacit knowledge in tier 2 and tier 3, the main

results below would not change qualitatively.
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This equation represents the size of common knowledge generated by the joint

work of i and j.

Finally, substituting (82) and (83) into equation (74) and noting that ṅc+

2ṅd = 2AJ∗ij , we have that

ṁd = (nij)−1 ·
AJ∗ij
2
· [(ρI + ρF · ρISF + ρN · ρISN)− 4m

d] for md ∈ (mE,mH).

(84)

Let us define

m̃ ≡
ρI + ρF · ρISF + ρN · ρISN

4
, (85)

which represents the stationary point of ṁd. Then, it follows from (84) that

ṁd R 0 as md Q m̃ for md ∈ (mE,mH). (86)

Although we have identified the sign of ṁd when the two persons work

jointly, we must also consider the case when two persons working indepen-

dently. Fortunately, this case is rather simple. First, by definition of

md ≡ nd/nij, the dynamics ofmd are given by equation (74) also in the present

context of each person working in isolation. Hence, to identify the sign of ṁd,

we need to know the values of ṅd and ṅc in the present context. To do so, we

focus on person i and rewrite equation (4) as follows:

AI∗ii = αI · [
∗

a
IS

i ]
ρIS · [

∗

a
IT

i ]
ρIT , (87)

where
∗

a
IS

i = ρIS · αIS · ni,
∗

a
IT

i = ρIT · αIT · ni. (88)

Thus, the activity tree for the knowledge creation by person i in isolation can

be represented simply as in Figure 7.

Figure 7

The top node� in Figure 7 represents the final output created by person i in
isolation. The second tier consists of two basic activities:

∗

a
IS

i (the intermediate

output of searching by i) and
∗

a
IT

i (the intermediate output of thinking by i).

From (87), the imputed value of each intermediate output can be obtained as

follows:
∂AI∗ii

∂
∗

a
IS

i

·
∗

a
IS

i = AI∗ii · ρIS,
∂AI∗ii

∂
∗

a
IT

i

·
∗

a
IT

i = AI∗ii · ρIT . (89)
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implying that:

the sum of imputed value in the second tier

= AI∗ii · ρIS + A
I∗
ii · ρIT

= AI∗ii , (90)

since ρIS + ρIT = 1.

By assumption, since person i is working in isolation (from j), the formal

output AI∗ii and imputed values of second-tier activities by person i become

differential knowledge of person i (from j).11 Hence, the value of ṅd for

person i is obtained as follows:

ṅd = AI∗ii + A
I∗
ii · ρIS + A

I∗
ii · ρIT

= 2AI∗ii , (91)

whereas no common knowledge is generated for the two persons:

ṅc = 0. (92)

Substituting (90) and (91) into (74) yields that

ṁd = (nij)−1 · 2AI∗ii · (1− 2m
d) > 0 for md ∈ [0,

1

2
). (93)

Therefore, whenever each person is working in isolation, the proportion of

differential knowledge, md, will keep increasing.

Now, combining the two situations of working jointly and working in iso-

lation by two persons, we can derive the overall dynamics of md. Again, we

assume that condition (70) holds. Then, as shown in Figure 8, depending

on the relative position of m̃ and mB on the md-axis, we have three different

diagrams for the dynamics of two-person system.

Figure 8

11The formal output AI∗ii by person i will be registered in the knowledge stock in the

Server. Given that the size of the total stock of knowledge in the Server is almost infinite,

it can be safely assumed that the probability of person j finding AI∗ii in the Server is nearly

zero (and vice versa for i). Even if we assume that a part of AI∗ii and A
I∗
ij is transferred to

each other by some mechanism, it will not change the sign of ṁd below.
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In Figure 8, (a), (b) and (c) respectively show one of three possible dynam-

ics of md, whereas diagram (d) explains the determination of the relationship

between m̃ and mB.12

First, diagram (a) shows the dynamics of md for the case, mE < m̃ < mB.

As depicted in this diagram, if the initial position, md(0), at time 0 is to the

left of m̃, then md(t) gradually increases towards m̃. If m̃ < m(0) < mH ,

then md(t) gradually decreases towards m̃. Only when md(0) > mH does

md(t) move away from m̃ toward 1/2. Hence, whenever md(0) < mH , md(t)

approaches the sink point, m̃, which is to the left of the bliss point mB.

Next, diagram (b) depicts the dynamics of md for the case mB < m̃ < mH .

In this case, except when md(0) > mH , md(t) approaches the sink point m̃ to

the right of the bliss point mB.

Third, diagram (c) is the case where m̃ < mE, which happens when

gJ(m̃) < ΦI . In this case, except when md(0) > mH , md(t) approaches

the sink point mE, where the K-growth rate is much lower than at the bliss

point mB.

Diagram (d) in Figure 8 explains when each of the three possible cases of

dynamics happens. For the purpose of intuitive understanding of when each

case happens, we here focus on the special situation where

θF = θN ≡ θ. (94)

That is, both in equation (10) (the K-production function for joint thinking

F2F) and equation (11) (the K-production function for joint thinking through

the Net), the weight on differential knowledge has the same value. In this

case, from (59), we have that

mB =
1

1 + 1
θ

≡ mB(θ), (95)

meaning that the value ofmB is uniquely determined by the value of parameter

θ. In diagram (d) of Figure 8, function mB(θ) is depicted by the bold curve

for θ ∈ [0, 1].

In contrast, the value of m̃ is determined, as in (85), by the values of ρ’s,

independently of θ. Hence, here we treat m̃ as a single parameter. By

12Theoretically speaking, there exists the possibility of a fourth case where mB < mH <

m̃ < 1/2. This can happen only in the extreme situation where both θF and θN are close

zero, and ΦI and gJ(m
B) are nearly equal. Hence, in the following discussion, we neglect

this fourth case. Actually, it is possible that m̃ = mB . But this case happens on a set of

measure zero, so we neglect it as well.
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definition, the maximum value of m̃ equals 1/4:

max m̃ =
1

4
.

Given each m̃ ∈ (0, 1/4], as shown in diagram (d), by setting

m̃ = mB(θ), (96)

the value of θ(m̃) is uniquely determined by m̃ = mB.

Now, given m̃ ∈ (0, 1/4], we can see from diagram (d) that

m̃ < mB(θ) for θ ∈ (θ(m̃), 1/2). (97)

That is, given m̃ ∈ (0, 1/4], if we take the value of θ sufficiently large so that

θ > θ(m̃), then the corresponding bliss point, mB(θ), locates to the right of

m̃, which corresponds to diagrams (a) and (c) in Figure 8. By definition,

θ > θ(m̃) means that the weight on differential knowledge in knowledge sub-

production functions (10) and (11) is sufficiently large. Furthermore, when θ

is close θ(m̃), then we have diagram (a). On the other hand, when θ is much

larger than θ(m̃), then the corresponding bliss point mB is far to the right of

m̃, yielding diagram (c).

In contrast to (97), we can see from diagram (d) that for each m̃ ∈ (0, 1/4),

m̃ > mB(θ) for θ ∈ (0, θ(m̃)). (98)

That is, given m̃ ∈ (0, 1/4), if the value of θ is sufficiently small so that

θ < θ(m̃), then the corresponding bliss point, mB(θ), locates in the left of m̃,

which corresponds to diagram (b) in Figure 8. By definition, θ < θ(m̃) means

that the weight on common knowledge in sub-production functions (10) and

(11) is sufficiently large.

We have seen through Figure 8 that except when m̃ happens to coincide

with the bliss point mB, K-growth rate at the sink point is lower than at the

bliss point. In particular, when the bliss pointmB is close 1/2 (which happens

when the weight on differential knowledge in K-subproduction functions (10)

and (11) is sufficiently large), we have diagram (c), where the K-growth rate

at the sink point mE is much lower than that at the bliss point. Thus, it is

important to ask: When the K-growth rate at the sink point is lower than that

at the bliss point, what possible mechanism could make the new sink point

coincide with the bliss point? Before examining this question further in the

last section, however, we need to ask another fundamental question here.
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Recall the discussion near the end of Section 4 stating that AJ∗ij in equa-

tion (56) represents newly created formal knowledge to be accumulated in the

Server as public documents. However, we have just seen that the knowledge

production process also yields a large amount of tacit knowledge which will

be accumulated inside the brain of each person for future knowledge creation

activity. Thus, we need to know the growth rate of total knowledge per per-

son, including both formal knowledge and tacit knowledge. Furthermore, we

must examine the relationship between the knowledge growth rate defined by

equation (56) and the growth rate of total knowledge for each person.

To answer these questions, let us first calculate the growth rate of total

knowledge, ṅi, for person i when working in isolation. From (91) and (92),

we have that

ṅi = ṅd + ṅc

= 2AI∗ii . (99)

Thus, recalling (61), the growth rate of total knowledge for person i when

working in isolation is given by

GI ≡
ṅi
ni
=
2AI∗ii
ni

= 2ΦI . (100)

Next, when person i is working jointly with j, from (82) and (83) we have

that

ṅi = ṅci + ṅ
d
i = ṅ

c + ṅd

= AJ∗ij · (1 + ρF · ρJTF + ρN · ρJTN) +
AJ∗ij
2
· (ρI + ρF · ρISF + ρN · ρISN)

= AJ∗ij · (1 +
1 + ρF · ρJTF + ρN · ρJTN

2
), (101)

by using a relation in (21). Hence, the growth rate of total knowledge for

person i when working jointly with j is given by

GJ(m
d) ≡

ṅi
ni
=
AJ∗ij
ni

· (1 +
1 + ρF · ρJTF + ρN · ρJTN

2
)

=
AJ∗ij /2

ni
· (3 + ρF · ρJTF + ρN · ρJTN)

= gJ(m
d) · (3 + ρF · ρJTF + ρN · ρJTN), (102)

recalling definition (56) and setting ni = n.
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Putting together (100) and (102), the growth rate of total knowledge per

person is given by:

G(md) =

{
2ΦI when ΦI ≥ gJ(m

d),

gJ(m
d) · (3 + ρF · ρJTF + ρN · ρJTN) when gJ(m

d) > ΦI .

(103)

Let us recall equation (62) which defines the growth rate of public knowl-

edge per person. By comparing equations (62) and (103), we can see that the

two functions are significantly different, but they also have a close relation-

ship. First, we can observe that each term inside the parentheses of equation

(103) is a product of the corresponding term in equation (62) with a constant.

Specifically, the first term in equation (103) is twice the corresponding term

in equation (62), reflecting the fact that the total knowledge newly created

in isolation includes the same amount of tacit knowledge (given by (90)) as

formal knowledge. The second term in equation (103) is more than the triple

of the corresponding term in equation (62), reflecting the fact that the total

knowledge newly acquired by person i through joint work with person j in-

cludes the full amount of newly created formal knowledge, AJ∗ij , and the tacit

knowledge represented by equations (82) and (83).13

Next, observe from equation (102) that since function GJ(m
d) is the prod-

uct of gJ(m
d) and a constant, it follows that

mB ≡ the bliss point of function gJ(m
d)

= the bliss point of function GJ(m
d), (104)

where mB is defined by (59), meaning that the maximum values of two func-

tions, gJ(m
d) and GJ(m

d), are attained at the same point, mB ∈ (0, 1/2).

We are now ready to summarize the dual dynamics of formal-K and tacit-K

in the two-person system. Notice that along the symmetric equilibrium path,

at any t ∈ [0,∞), if values of ni(t) = nj(t) ≡ n(t) > 0 and m
d(t) ∈ (0, 1/2) are

known, then values of all the rest of structural variables, nc(t) ≡ ncij(t) = n
c
ji(t),

nd(t) ≡ ndij(t) = ndji(t), n
ij(t) ≡ n(t) + nd(t), mc(t) = 1 − 2md(t), AJ∗ij (t),

AI∗ii (t), gJ(m
d(t)), gI(m

d(t)) are uniquely determined, together with the values

of choice rules,

δii(t) = δjj(t) = 1 if ΦI ≥ gJ(m
d(t)), δij(t) = δji(t) = 1 if ΦI < gJ(m

d(t)).

(105)

13Recall that in the definition of the function gJ(m
d) in (56), the formal K-output AJ∗ij

created by joint work is divided by 2 to account for the number of “patents” created per

person. In contrast, in deriving equation (100), the full amount of knowledge embodied in

these “patents,” AJ∗ij , is considered a part of new knowledge acquired by each person.
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Hence, given the initial values, n(0) > 0 and md(0) ∈ (0, 1/2), solving the

system of differential equations, (84) and (93) for ṁd, and (99) and (101) for

ṅ = ṅi = ṅj, together with the choice rule (105), the equilibrium path of m
d(t)

and n(t), together with all the rest of the structural variables, is uniquely

determined for t ∈ [0,∞).

For example, let us focus on the case of diagram (a) depicted in Figure

8. In the context of diagram (a), Figure 9 synthesizes the dual dynamics of

formal-K and tacit-K in the two-person system.

Figure 9

In the bottom part of Figure 9, diagram (a) in Figure 8 is duplicated,

representing the dynamics of formal-K for the case of mE < m̃ < mB. The

top part of Figure 9 depicts the dynamics of total-K. Comparing the bottom

part and the top part of Figure 9, we can recognize similarities and differences

between the two dynamics. Since the upper curve GJ(m
d) is the product of

the lower curve gJ(m
d) with the constant (3 + ρF · ρJTF + ρN · ρJTN), the two

curves share the same bliss point, mB, and the same sink point, m̃, on the

md-axis. Hence, in the phase of joint work by i and j, and hence when mE <

md(t) < mH , the two dynamics are essentially parallel, leading respectively

to the sink points S and S∗ at the same m̃. However, since the constant of

multiplication, (3 + ρF · ρJTF + ρN · ρJTN), is more than 3, the upper curve

GJ(m
d) is much higher than the lower curve gJ(m

d). This indicates that by

working jointly for knowledge creation, the accumulation of total knowledge

by each person is much higher than that of formal knowledge created jointly.

In contrast, the phase of knowledge creation in isolation by each person

independently, the two dynamics are significantly different. In the bottom

part of Figure 9, formal-K dynamics, when md(0) < mE, the switch from

working in isolation to joint work occurs at the point E, where the horizontal

line with of height ΦI crosses the gJ(m
d) curve. Since mE on the md-axis

represents the real switching point based on the switching rule noted in (105),

in the top part of Figure 9 the switching is realized at point E ′ when the

growth rate of total knowledge, 2ΦI , from working in isolation is much lower

than that from working together. The opposite situation happens at pointmH

on the md-axis. Hence, from the view-point of total knowledge accumulation,

the myopic switching rule (105) is not optimal. This is in contrast with our

previous work.
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6 Conclusions

Building on our earlier work, we have developed a model of knowledge cre-

ation in the context of two persons when multiple modes of communication

are available, and knowledge workers can independently use the internet for

the purpose of search. Tacit knowledge plays a huge role in our analysis.

We apply our model to analyze consequences of Covid policies and firm re-

quirements for office presence. When considering long run dynamics, the sink

point of the system generally yields a suboptimal configuration of knowledge

differentiation. Finally, we find that if knowledge workers use a myopic rule

to determine whether they work jointly or independently, they will not inter-

nalize tacit knowledge creation in their decisions, leading to a second source

of inefficiency. In summary, we have seen the importance of tacit knowledge

when considering the process of knowledge creation in the long run.

How can these two inefficiencies be addressed? For the first type of in-

efficiency, illustrated in Figure 8(a,c), the solution would be to have larger

research group sizes as pointed out in our earlier work. This prevents the

dynamic buildup of knowledge in common, so the bliss point can be decentral-

ized using the myopic core. Our restriction to two persons here does not allow

that, so the extension of the model to more than two persons would have to

be considered.

For the situation illustrated in Figure 8(b), again we should consider an

extension of the model to more knowledge workers. If the workers have a

diversity of backgrounds in terms of differential knowledge relative to each

other at time 0, initial partners for knowledge creation could be chosen so

that this case is excluded. In other words, it would be best if a person’s

initial partner were chosen so that knowledge in common is large. Both

partners would find this optimal in the long run, and thus could be optimal

for forward looking agents. Another way to justify this is to notice that

in Figure 8(b), every knowledge state to the right of the bliss point can be

matched in terms of knowledge growth by a state to the left of the bliss point,

but the (absolute value of the) slope of the knowledge creation function is

higher to the left of the bliss point for each level of growth rate or point on

the vertical axis. So even if agents are myopic, the derivative of the rate of

growth to the left of the bliss point is higher at the same level of knowledge

growth as the corresponding point to the right of the bliss point. Given a

choice of backgrounds for their initial partner, myopic agents would choose an

initial partner with more knowledge in common. That is to say, it is a weakly
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dominant myopic strategy. The assumption here is that if there is an initial

partner with a profile to the right of the bliss point available, then there is also

one to the left of the bliss point with the same or higher initial K-growth rate

available.

Regarding the second inefficiency, a result of the myopic rule and tacit

knowledge, the use of forward looking agents should be investigated.

As illustrated in Figure A(a), productivity of a pair of researchers depends

on the weight that the knowledge production technology places on differential

knowledge, θ. It is vexing that productivity is highest at the extreme values

of θ, namely when only differential knowledge matters or only knowledge in

common matters, since the function is convex. We have resolved this in

the Appendix by weighting θ using a function β(θ), resulting in a concave

function where the maximal productivity is at intermediate values of θ, namely

where differential and knowledge in common are balanced. However, this

modification seems artificial to us. An alternative way to approach this issue

is to let θ vary endogenously with the particular knowledge profile of the two

agents who are meeting to produce new knowledge. That is, the agents who

meet know their respective profiles of common and differential knowledge, but

choose a project summarized by θ to maximize their output. Then, the output

curve would be the upper envelope of productivity at the bliss points.

Of course, it is important to extend the model to many people in a spatial

context to examine patterns of knowledge creation in an academic society.

To sum up, there is much further work to be done to analyze the micro-

economic dynamics of knowledge creation in settings with tacit knowledge.
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7 Appendix: The many roles played by com-

mon knowledge in joint knowledge creation

7.1 Preliminaries

In equation (9), we introduced the function βF (θF ) in order to represent an

implicit weight on knowledge in common during F2F creation. As explained

next, when persons i and j work jointly for knowledge creation, the stock of

knowledge in common, ncij, should play multiple roles.

For example, when two economists are working together, basic mathematics

and microeconomics constitute a part of their knowledge in common; they

are used by each person while collaborating, and the two persons are able to

communicate effectively based on such common knowledge. So, relative to

working independently, the size of the stock of knowledge in common while

working jointly should be counted more than once. However, the degree of

double counting should be limited.

Likewise, when two persons are jointly working through the Net, we in-

troduced the function βN(θN) in order to represent an implicit weight on

knowledge in common. In this Appendix, we examine the question: What

are appropriate functional forms for βF (θF ) and βN(θN) to represent the mul-

tiple roles of common knowledge in joint creation?

Here, our major concern is the influence of the functions βF (θF ) and βN(θN)

on the per person knowledge growth rate gJ(m
d), defined by (56). To examine

this effect, we decompose the function Ω given by (57) as follows:

Ω = Ω̂ · P, (A.1)

where

P ≡ βF (θF )
(1−θF )·ρJTF ·ρF · βN(θN)

(1−θN )·ρJTN ·ρN , (A.2)

Ω̂ ≡
Ω

P
. (A.3)

By definition, the new function Ω̂ does not contain θF nor θN . Using these

functions, the knowledge growth rate function (56) can be rewritten as follows:

gJ(m
d) = Ω̂ · P ·Q, (A.4)

where

Q ≡ (1−md)a · (1− 2md)b · (md)c, (A.5)
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and where a, b and c are functions of parameters defined in (57).

Now, substituting the bliss point functions (59) into (A.4) and (A.5), we

have

gJ(m
B) = Ω̂ · P ·Q, (A.6)

where

Q =
cc · (δ − c)δ−c

δδ
, (A.7)

and

c ≡ θF · ρJTF · ρF + θN · ρJTN · ρN ,

δ ≡ ρJTF · ρF + ρJTN · ρN . (A.8)

By definition, δ is independent of θF and θN .

7.2 The Symmetric Case

First, let us consider the special case where

θF = θN ≡ θ, (A.9)

and the functions βF and βN are assumed to be the same:

βF (θF ) = βN(θN) ≡ β(θ) for θ ∈ [0, 1]. (A.10)

Then, substituting (A.9) into (59) yields

mB =
1

1 + 1
θ

≡ mB(θ), (A.11)

whereas P and Q respectively become

P = β(θ)(1−θ)δ ≡ P (θ), (A.12)

Q = θθδ · (1− θ)(1−θ)δ ≡ Q(θ). (A.13)

Substituting (A.11), (A.12) and (A.13) into (A.6) yields

gJ(m
B(θ)) = Ω̂ · P (θ) ·Q(θ)

or

gJ(m
B(θ))/Ω̂ = P (θ) ·Q(θ), (A.14)

which represents the (normalized) bliss point growth rate of knowledge per

person as a function of θ.
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In order to capture the essential nature of the issue at hand, first let us

assume that

β(θ) = 1 and hence P (θ) = 1 for all θ ∈ [0, 1], (A.15)

implying that

gJ(m
B(θ))/Ω̂ = Q(θ). (A.16)

In diagram (a) of Figure A, the function (A.16) is represented by a curve,

which we call the (normalized) bliss curve.

Figure A

From (A.13), it can be readily shown that the bliss curve, Q(θ), is strictly

convex on [0, 1] whereas

Q(0) = Q(1) = 1, (A.17)

and

min{Q(θ) | θ ∈ [0, 1]} = Q(
1

2
) = 2−δ, (A.18)

That is, the bliss curve achieves its minimum at θ = 1/2. The corresponding

proportion of differential knowledge of each person is obtained from (A.11) as

mB(
1

2
) =

1

3
, (A.19)

and hence the corresponding proportion of common knowledge is

mc = 1− 2mB(
1

2
) =

1

3
. (A.20)

Unfortunately, however, the implications of (A.18), (A.19) and (A.20) are

inappropriate. That is, when we introduced the production function (9) for

joint knowledge creation F2F, we said, “The rate of creation of new interme-

diate ideas is high when the proportion of knowledge in common, knowledge

exclusive to person i, and knowledge exclusive to person j are in balance.”

However, (A.17), (A.18) and (A.19) together mean almost the opposite. That

is, the rate of creation of new intermediate ideas at the bliss point is low-

est when the weight on differential knowledge and the weight on common

knowledge are in balance (i.e., θ = 1 − θ = 1/2) and when the proportion of

knowledge in common and knowledge exclusive to each person are in balance

(i.e., md
ij = m

d
ji = m

c
ij = 1/3).
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In order to remedy this undesirable result, we now abandon the assumption

(A.15), and introduce a more appropriate functional form for β(θ), whereas

the simplifying assumptions (A.9) and (A.10) are maintained for the remainder

of this subsection. It is evident from diagram (b) of Figure A that when the

curve Q(θ) is strictly convex on [0, 1], in order to make the new bliss curve

P (θ) · Q(θ) be strictly concave, function P (θ) should be strictly concave on

[0, 1]. To obtain such a strictly concave function P (θ), let us consider the

following functional form for β:

β(θ) = θ−
θφ

1−θ · (1− θ)−φ for θ ∈ [0, 1], (A.21)

where φ is a positive constant. Then, substituting (A.21) into (A.12) leads to

P (θ) = θ−θφδ · (1− θ)−(1−θ)φδ

= Q(θ)−φ, (A.22)

using (A.13). As depicted in diagram (b) of Figure A, since Q(θ) is a strictly

convex curve, the P (θ) curve defined by (A.22) with φ > 0 is strictly concave.

Furthermore, substituting (A.22) into (A.14) yields

P (θ) ·Q(θ) = Q(θ)−(φ−1). (A.23)

Hence, when φ > 1, the new bliss curve, P (θ) · Q(θ), is strictly concave on

[0, 1], whereas

P (0) ·Q(0) = P (1) ·Q(1) = 1 (A.24)

and

max{P (θ) ·Q(θ) | θ ∈ [0, 1]} = Q(
1

2
)−(φ−1) = 2δ(φ−1) > 1. (A.25)

using (A.18). Furthermore, setting θ = 1
2
in (A.11), we have (A.19) and (A.20)

as before.

Summarizing the analysis above, we can conclude as follows:

Proposition A.1: Consider the special case where θF = θN . If we specify

the weight function β(θ) on knowledge in common as (A.21) with φ > 1, then

the bliss point growth rate of knowledge defined by (A.14) attains its highest

value at θ = 1/2 with mB(1
2
) = mc = 1/3. That is, the knowledge growth

rate at the bliss point is highest when the weight on differential knowledge and

weight on common knowledge are in balance (i.e., θ = 1−θ = 1
2
) and when the

proportion of knowledge in common and proportion of differential knowledge

of each person are in balance (i.e., mc
ij = m

d
ij = m

d
ji = 1/3).
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7.3 The General Case

In this subsection, we show that the desirable result above holds in the general

case without assuming θF = θN .

As before, let us assume that βF (·) and βN(·) have the same functional

form given by (A.21) with φ > 1. Then, (A.2) becomes

P = PF (θF ) · PN(θN) ≡ P (θF , θN), (A.26)

where

PF (θF ) ≡ β(θF )
(1−θF )·ρJTF ·ρF

= θF
−θF ·ρJTF ·ρF ·φ · (1− θF )

−(1−θF )·ρJTF ·ρF ·φ, (A.27)

PN(θN) ≡ β(θN)
(1−θN )·ρJTN ·ρN

= θN
−θN ·ρJTN ·ρN ·φ · (1− θN)

−(1−θN )·ρJTN ·ρN ·φ. (A.28)

Substituting (A.26) into (A.6) yields

gJ(m
B) = Ω̂ · P (θF , θN) ·Q, (A.29)

where Q is given by (A.7) together with (A.8). Noting that parameter c

defined in (A.8) contains θF and θN as arguments, differentiation of (A.29)

with θF and θN yields respectively that

∂gJ(m
B)

∂θF
= 0⇒

(
θF

1− θF

)φ
=

c

δ − c
,

∂gJ(m
B)

∂θN
= 0⇒

(
θN

1− θN

)φ
=

c

δ − c
,

meaning that

θF
1− θF

=
θN

1− θN
=

(
c

δ − c

)1/φ
. (A.30)

The first equality above implies that

θF = θN ≡ θ, (A.31)

which in turns implies from (A.8) that

c

δ − c
=

θ

1− θ
. (A.32)

Since it is assumed that φ > 1, conditions (A.30), (A.31) and (A.32) together

imply that

θ∗F = θ
∗

N =
1

2
. (A.33)
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where ∗ means the values of θF and θN that satisfy the first-order conditions

for optimization. Substituting (A.33) into (59) yields

mB =
1

3
≡ mB∗ at θ∗F = θ

∗

N =
1

2
, (A.34)

which in turn, from (A.26) and (A.7), yields

P (θ∗F , θ
∗

N) = 2
δφ and Q = 2−δ.

Hence, from (A.29),

gJ(m
B∗) = Ω̂ · 2δ(φ−1) > Ω̂ (A.35)

since φ > 1. On the other hand, from definition (A.6), it follows that

gJ(0) = gJ

(
1

2

)
= Ω̂. (A.36)

From (A.35) and (A.16), we can conclude that gJ(m
B∗) represents the max-

imum value of gJ(m
d) on the parameter space {(θF , θN) | 0 ≤ θF ≤ 1, 0 ≤

θN ≤ 1}.

Summarizing the results above, we can generalize Proposition A.1 as fol-

lows:

Proposition A.2: Let us specify the weight functions, βF (·) and βN(·), on

knowledge in common by the same functional form given by (A.21) with φ > 1.

Then, on the parameter space {(θF , θN) | 0 ≤ θF ≤ 1, 0 ≤ θN ≤ 1}, the bliss

point growth function given by (A.29) achieves its maximum value when

θ∗F = θ
∗

N =
1

2
,

and hence

mB∗ =
1

3
,mc∗ =

1

3
.
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Figure 1. Knowledge creation through multiple modes of communication 

 

  



 

Figure 2. The relative productivity curve ℎ �̅�  when 𝜌 , 𝜌 𝜌 , 𝜀 0.2. 

 

 
Figure 3. The effect of different 𝜌  on the shape of relative productivity curve ℎ �̅� ;𝜌 , 𝜀 , where 𝜌 𝜌 . 
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Figure 4. The effect of different 𝜀  on the shape of relative productivity curve ℎ �̅� ;𝜌 , 𝜀 , where 𝜀 𝜀 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The knowledge growth rate curve 𝑔 𝑚  and the Bliss Point 𝑚 . 
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Figure 6. The activity tree for joint knowledge creation: 

         ■ the final output of the joint work 

● representing a joint activity with subscript 𝑖𝑗, 
○ representing an independent activity for the purpose of joint creation  

with subscript 𝑖, 𝑖𝑖, 𝑗 or 𝑗𝑗. 
 

 

 

Figure 7. The activity tree for the knowledge creation by person 𝑖 in isolation. 
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Figure 8. The three possible cases, (a), (b) and (c), for the dynamics of two-person 

system; and diagram (d) for explaining the relationship between 𝑚 and 𝑚 . 
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Figure 9. Dual dynamics of formal-K and total-K for the two-person system. 
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Figure A. (a) Bliss curve 𝑄 𝜃  when 𝑃 𝜃 1, (b) Bliss curve 𝑃 𝜃 ∙ 𝑄 𝜃  when 𝑃 𝜃 𝑄 𝜃  and 𝜙 1. 
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Table 1. Further description of the activity tree for joint knowledge creation  

in Figure 6 
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