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Abstract 

The accuracy of predictions of price and return probabilities substantially determines the 

reliability of asset pricing and portfolio theories. We develop successive approximations that 

link up predictions of the market-based probabilities of price and return for the whole stock 

market with predictions of price and return probabilities for stocks of a particular company 

and show that economic complexity limits the accuracy of any forecasts. The economic 

origin of the restrictions lies in the fact that the predictions of the m-th statistical moments of 

price and return require descriptions of the economic variables composed by sums of the m-th 

powers of economic or market transactions during an averaging time interval. The attempts to 

predict the n-th statistical moments of price and return of stocks that are under the action of a 

single risk result in estimates of the n-dimensional risk rating vectors for economic agents. In 

turn, the risk rating vectors play the role of coordinates for the description of the evolution of 

economic variables. The lack of a model description of the economic variables composed by 

sums of the 2-d and higher powers of market transactions causes that, in the coming years, 

the accuracy of the forecasts will be limited at best by the first two statistical moments of 

price and return, which determine Gaussian distributions. One can ignore existing barriers 

and limits but cannot overcome or resolve them. That significantly reduces the reliability and 

veracity of modern asset pricing and portfolio theories. Our results could be essential and 

fruitful for the largest investors and banks, economic and financial authorities, and market 

participants. 
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1. Introduction 

One can consider the asset-pricing puzzle a two-part problem. The first one describes the 

asset pricing and portfolio models under the assumption that predictions of price and return 

probabilities are given. The second one derives the forecasts of price and return probabilities, 

or only their average values and volatilities at horizon T, using various models, which are 

mostly not based on the first part. However, the market-based choice of the asset price 

probability and its prediction at horizon T hides essential difficulties of an economic nature, 

which significantly limit the accuracy of any price probability forecasts as well as the 

reliability of the asset pricing and portfolio theories. 

In the recent decades, the asset price theories have obtained many important results, and 

references (Markowitz, 1952; Sharpe, 1964; Fama, 1965; Merton, 1973; Fama, 1990; 

Cochrane, 2001; Fama and French, 2015; Campbell, 2018) present only a millesimal part of 

the current studies. Actually, the foundation of modern asset pricing theories remains rather 

peculiar and based on "highly restrictive and undoubtedly unrealistic assumptions.” (Sharpe, 

1964), and Sharpe’s opinion that “…the proper test of a theory is not the realism of its 

assumptions but the acceptability of its implications…” 60 years later, it is generally accepted 

and still in use. 

The predictions of average price, return, and volatilities establish a separate, important field 

of research that is covered by as numerous studies as the asset pricing theories themselves. 

The price forecasting is considered within economic forecasting (Diebold, 1999; Snowberg, 

Wolfers, and Zitzewitz, 2012), time series analysis (Davis, 1941; Brockwell and Davis, 

2002), Monte-Carlo simulations (McLeish, 2005), and, in the last decade, intensive studies of 

machine learning and AI methods for evaluating stock price predictions (Cao et al., 2021; 

Kelly and Xiu, 2023). We refer to these papers to indicate some forecasting methods only, 

but don’t consider here any reasonable review of that broad and important research. 

However, the current models of stock price and price probability forecasts, as well as asset 

pricing theories, may omit important factors and interrelations that determine the dependence 

of market-based price probability on market trade randomness. In turn, the predictions of 

market trade stochasticity should be based on general economic models that link market trade 

evolution with economic development. These rather complex problems cannot be resolved in 

one paper, but we make an attempt to figure out significant factors and relations that vitally 

impact the predictability of price and return probabilities. 

In our paper, we present a pure theoretical consideration of the market-based price and return 

probabilities in a general economic context and highlight the economic obstacles that 
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essentially limit the accuracy of forecasts of the probabilities at any horizon T. It is well 

known (Shephard, 1991; Shiryaev, 1999; Shreve, 2004) that the probability measure, 

characteristic function, and a set of statistical moments present almost equal descriptions of a 

random variable. In this paper, we consider a finite number of statistical moments as a tool 

for approximate predictions of price and return probabilities. We study the economic 

obstacles that vastly limit our ability to consider and predict many statistical moments and 

significantly restrict the accuracy of any forecasts of price and return probabilities. 

To forecast the statistical moments of price and return of stocks of a particular company, one 

should have estimates of similar forecasts of other stocks traded on the market. Obviously, 

predictions of economic variables are impossible without knowledge, forecasts, and estimates 

of their economic environment. 

To derive the forecasts of the economic environment, we consider consecutive 

approximations of the market-based statistical moments of price and return, which are 

determined by the statistical moments of market trade values and volumes. We start with a 

description of the market-based statistical moments of price and returns of stocks of 

individual companies. Further, we consider risk ratings, which take continuous numeric 

values. We show that the description of the m-th statistical moments of trade values and 

volumes for m=1,2,..n, depends on the assessments of the risk ratings of the traded 

companies. To describe the n-th statistical moments of trading stocks of a company, which is 

under the action of a single risk, one should estimate the risk ratings in the form of a n-

dimensional vector x = (x1,...xn). Each component xm, m=1,2,..n of the risk vector x is 

estimated using economic variables of the m-th order, which are determined by the sums of 

the m-th powers of economic or financial transactions. We show that the usage of risk 

coordinates x=(x1,...xn) allows making a transition from the description of statistical moments 

of stocks of individual companies to the description of collective statistical moments of 

stocks of companies with risk ratings in the neighborhood of a vector x=(x1,...xn). That 

transition describes continuous economic media approximation and models the price and 

return statistical moments of stocks as functions of time t and risk vector x. Subsequent 

approximations describe the statistical moments of collective trade, price, and returns of all 

stocks traded at the market as functions of time t only. 

To derive these successive approximations, one should average market trade time series over 

sequential time intervals ε<< Δ ≤ Δx ≤ Δx. As ε we denote the constant period between market 

trades, which could be a second or even a fraction of a second. To assess the statistical 

moments of market trades, price, and return of stocks of a particular company during a 
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reasonable time interval Δ, one should average initial market transactions over Δ. To derive a 

continuous economic media approximation and describe price and return statistical moments 

as functions of time t and coordinates x, one should sum market trades with stocks of 

companies with risk coordinates in the neighborhood of vector x of the economic domain and 

average the time series over the interval Δx. To derive the statistical moments of price and 

return of the whole stock market, one should sum trades with stocks of all companies on the 

market and average the time series over Δm. We derive the equations, which describe the 

dynamics of additive economic variables as functions of (t,x) and the equations of collective 

variables of the whole market as functions of time t only. The slow evolution in time of the 

trade statistical moments of the whole stock market should serve as an economic environment 

for the description of the price statistical moments in the continuous economic media 

approximation as functions of (t,x). The solutions of the equations of the continuous 

economic media approximation at horizon T establish the ground for the estimates of the 

price and return statistical moments of stocks of a particular company. To do that, an investor 

should estimate the possible risk ratings xq=(xq1,…xqn) of a company q at horizon T. Then an 

investor could map the anticipated assessment of risk at the forecast of the collective trade 

statistical moments as functions of (t,x) and estimate the statistical moments of return of 

stocks of a company q at horizon T. That completely determines the statistical moments of 

price at the same horizon.  

The origin of the economic obstacles, which limit the predictive capacity and accuracy of the 

price and return probabilities, lies in the fact that one can approximate only a finite number n 

of the market-based statistical moments. Each m-th statistical moment for m=1,2,..n of price 

or return is determined by the m-th statistical moments of the market trade values and 

volumes averaged over the time interval Δ, Δx or Δm. Each averaging interval contains only a 

finite number of market trades, and that limits the number of statistical moments that can be 

estimated. To increase the accuracy of the current price probability, one can enlarge the 

averaging time interval to assess more statistical moments. However, that ambition is vastly 

limited for two reasons. First, the increase in the time-averaging interval reduces the ability to 

make prompt investment decisions. The second, and much more significant economic barrier, 

is determined by the irremovable growth of the complexity of forecasting of each extra trade 

statistical moment. As we show in sections 3 and 5, each extra m-th statistical moment of 

price or return, which can increase the accuracy of predicted probabilities, creates one 

additional tough problem in the economic description. We show that the sums of the m-th 

powers of market trade values and volumes, as well as the sums of the m-th powers of any 
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economic or financial trades made during the averaging interval, determine the economic 

variables of the m-th order. For example, conventional economic investments during Δ are 

determined by the sums (without duplication) of the first power of investment transactions 

made by the agents during Δ. Similar to that, we call “m-th investments” the sums of the m-th 

powers of the investment transactions during Δ. We denote such economic variables as the 

variables of the m-th order. The mutual interactions of the economic variables of the m-th 

order establish economic problems almost similar to the complex description of conventional 

macroeconomic theories, which model relations between the variables of the first order. In 

turn, the assessments of the risk ratings of companies, must use the economic variables of the 

m-th order, which result in the derivation of components xm of the risk vector x=(x1,…xn).  

The complexity of economic modeling of the m-th order and the strong rise of uncertainty 

driven by the estimates of each additional component xm of the risk vector x=(x1,…xn), 

greatly limit the number of statistical moments that could be predicted, which significantly 

diminish the accuracy of the price and return probabilities forecasts.  

Actually, the stocks traded on modern markets are mostly subject to several risks. The 

estimates of ratings of several risks j=1,2,..J, which use the economic variables of the m-th 

order m=1,…n, produce the risk ratings of a company as matrix variables x=(xmj), m=1,..n; 

j=1,2,..J. Here, J determines the number of risks, and n determines the number of statistical 

moments of the price and return that are predicted by the model. Numerous risks, which 

impact stocks trading, additionally increase the complexity of economic modeling and reduce 

the accuracy of predictions of price and return probabilities. 

Eventually, our findings can be briefly stated as follows: The current markets provide a lot of 

trading data with a period ε, which allows to assess “today” many – 10, 20 or more - 

statistical moments of the market trade, price, and return during any reasonable averaging 

interval that can be equal hours or days. That helps “today” approximate the probabilities of 

the price and return with high accuracy. However, the predictions of the statistical moments 

at horizon T meet the irremovable barriers of economic complexity. The predictions of the 2-

d statistical moments of price and return need forecasts of the 2-d statistical moments of 

market trade. In turn, that requires the economic theory of the 2-d order. The predictions of 

the 3-d, 4-th, etc., statistical moments require corresponding economic models of the 3-d and 

4-th orders, which are even more complex. The assessments of the risk ratings determined by 

the economic variables of the 2-d, 3-d, or 4-th order increase the model complexity further. In 

the coming years, in the best scenario, the accuracy of the forecasts will be limited by the 2-d 

statistical moments, and hence the market-based price probability forecasts will be limited by 
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Gaussian distributions or their extensions (see App. A). The ignorance of the limits driven by 

the existing economic complexity may allow one to derive forecasts of the price and return 

statistical moments and probabilities, but with such high uncertainty that it makes predictions 

useless. 

The rest of the paper is organized as follows: In section 2, we consider the market-based 

statistical moments of price and return. In section 3, we discuss the vector nature of ratings 

for a single risk x=(x1,…xn). Further, we discuss the statistical moments of returns of stocks 

of companies with risk ratings in the neighborhood of a risk vector x and the statistical 

moments of stocks of all companies traded on the whole market. In section 4, we consider the 

statistical moments of stock price, determined by the statistical moments of returns. In section 

5, we discuss the complexities that would face any investor in his attempts to forecast the 

price and return probabilities of stocks of a company using his own predictions and the 

collective economic environment of the market in the continuous economic media 

approximation. Section 6: Conclusion. In Appendix A, we present simple approximations of 

characteristic functions and probability measures by a finite number of statistical moments. In 

Appendix B, we introduce the main notions and equations that describe the dynamics of the 

collective economic variables in the continuous economic media approximation and in the 

approximation of the whole market. 

This paper is not for novices, and we believe that readers already know or can find on their 

own the definitions, terms, and models that are not given in the text. We assume that readers 

are familiar with conventional issues in economic theory, asset pricing and portfolio theories, 

risk assessment, the basics of probability theory, statistical moments, characteristic functions, 

partial differential equations, etc. We use the roman letters A, B, and d to denote scalars and 

bold B, P, to denote vectors and matrices. Reference (3.5) means equation 5 in section 3.  

2. Market-based statistical moments of price and return 

We assume that market trades of stocks of a company are made at a time ti with a constant 

interval ε between trades: 𝜀 − 𝑐𝑜𝑛𝑠𝑡      ;     𝑡𝑖 = 𝑡0 + 𝑖𝜀     ;      𝑖 = 0,1, …   (2.1) 

The trade time series at ti introduces the initial market time axis division multiple of ε (2.1). 

As initial data, we consider the time series of trade values C(ti) and volumes U(ti) with stocks 

at times ti, which determine trade price p(ti) due to a trivial equation: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)      ;       𝑖 = 0,1, …   (2.2) 
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Equation (2.2) defines the market trade price p(ti) of stocks of an individual company at ti. 

The initial time axis division ε can be equal to a second or even a fraction of a second. The 

time series of the trade value C(ti), volume U(ti) and price p(ti) are very irregular and of little 

help for predictions of the stock price at a time horizon T that can be equal to weeks, months, 

or years. One can consider market time series as random variables during any reasonable time 

interval Δ>>ε. For simplicity, we take Δ as a multiple of ε (2.3) with N terms of the time 

series ti inside Δ. To develop a pricing model at the horizon T>>ε one should average the 

initial random market time series over the interval Δ (2.3):  ∆= 𝑁𝜀   ;     𝑁 ≫ 1 ;       𝜀 ≪ ∆< 𝑇    (2.3) 

After averaging market time series over Δ (2.3), one obtains more smooth data that can be 

more useful for forecasting at the horizon T. Averaged time series introduce a transition from 

the initial market time axis division that is multiple of ε to a new one, a rougher time axis 

division multiple of Δ. Market trades with stocks of any company determine three initial time 

series of the financial variables that should be taken into account by any pricing model: the 

trade value C(ti), volume U(ti) and price p(ti) (2.2). It is impossible to independently define 

the probabilities of the trade value C(ti), volume U(ti) and price p(ti) that match equation 

(2.2). The given probabilities of the trade value C(ti) and volume U(ti) determine the 

probability of the price p(ti) (2.2). We consider the random time series of the trade values 

C(ti) and volumes U(ti) as the primary, which completely determine the stochasticity of the 

market price p(ti). To support this statement, we refer to Fox et al. (2017), which provides the 

perfect methodology for estimating national accounts on basis of the aggregation of additive 

economic variables as the ground for the definition of non-additive variables such as price, 

inflation, bank rates, etc. We follow Fox et al. (2017) and consider the additive random 

variables determined by the time series of trade values C(ti) and volumes U(ti) as the basis for 

describing stochastic properties of the stock price and return. 

Assume that the averaging interval Δ defines the time axis division tk, k=0,1,.. multiple of Δ: ∆𝑘= [𝑡𝑘 − ∆2 ; 𝑡𝑘 + ∆2]     ;    𝑡𝑘 = 𝑡0 + ∆ ∙ 𝑘   ;   𝑘 = 0, 1, 2, …   (2.4) 

For convenience, we renumber the initial trade time series ti (2.1; 2.3) and note them as tik, 

which belong to interval Δk (2.4):  𝑡𝑘 − ∆2 ≤ 𝑡𝑖𝑘 ≤ 𝑡𝑘 + ∆2    ;   𝑡𝑖+1,𝑘 − 𝑡𝑖𝑘 = 𝜀    ;    𝑡𝑖,𝑘+1 − 𝑡𝑖𝑘 = ∆      ;       𝑖 = 1, . . 𝑁   (2.5) 

Thus, we consider N terms of the time series tik in each interval Δk (2.4). That allows equally 

assessing the statistical moments of the market trade value C(tk;n) and volume U(tk;n) in each 

averaging interval Δk as (2.6): 
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𝐶(𝑡𝑘; 𝑛) ≡ 𝐸[𝐶𝑛(𝑡𝑖𝑘)]~ 1𝑁 ∑ 𝐶𝑛(𝑡𝑖𝑘)𝑁𝑖=1   ;    𝑈(𝑡𝑘; 𝑛) ≡ 𝐸[𝑈𝑛(𝑡𝑖𝑘)]~ 1𝑁 ∑ 𝑈𝑛(𝑡𝑖𝑘)𝑁𝑖=1   (2.6) 

Actually, the initial time series tik in each interval Δk (2.5) presents discrete data, as there is no 

data available between the trades with period ε. However, averaging the initial discrete time 

series during each interval Δk results in a continuous time model. One can use a moving 

average or other smoothing procedure to define (2.6) as a continuous time model. We use the 

notation tk in (2.6) to outline the particular time interval Δk (2.5), which results in definition 

(2.6). We use the symbol ~ to underline that relations (2.6) define only assessments of 

mathematical expectation E[..] by a finite number N of terms of the time series that belong to 

the interval Δk (2.5). The n-th power of equation (2.2) at time tik gives: 𝐶𝑛(𝑡𝑖𝑘) = 𝑝𝑛(𝑡𝑖𝑘) 𝑈𝑛(𝑡𝑖𝑘)    ;     𝑛 = 1,2, …   (2.7) 

Equation (2.7) introduces the price n-th statistical moments (Olkhov, 2021a; 2022a; 2023a) in 

a way that has parallels to the definition of volume weighted average price (VWAP) 

(Berkowitz et al., 1983; Duffie and Dworczak, 2018): 𝑝(𝑡𝑘; 𝑛) ≡ 𝐸[𝑝𝑛(𝑡𝑖𝑘)] =  1∑ 𝑈𝑛(𝑡𝑖𝑘)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖𝑘)𝑈𝑛(𝑡𝑖𝑘)𝑁𝑖=1     (2.8) 

Relations (2.6 - 2.8) give:  𝑝(𝑡𝑘; 𝑛) =  ∑ 𝐶𝑛(𝑡𝑖𝑘)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖𝑘)𝑁𝑖=1 = 𝐶(𝑡𝑘;𝑛)𝑈(𝑡𝑘;𝑛)     (2.9) 𝐶(𝑡𝑘; 𝑛) = 𝑝(𝑡𝑘; 𝑛) 𝑈(𝑡𝑘; 𝑛)      (2.10) 

The first statistical moment of price p(tk;1) completely coincides with VWAP. It is well 

known that one can equally describe a random variable by its probability measure, 

characteristic function, or set of statistical moments (Shephard, 1991; Shiryaev, 1999; 

Shreve, 2004). Thus, the market-based statistical moments of price (2.8-2.10) completely 

describe the price as a random variable during Δk. A finite number N of the marker trades 

during any reasonable interval Δ results in that one can assess only a finite number of 

statistical moments of the trade value C(tk;n) and volume U(tk;n) (2.6). Hence, one can assess 

only a finite number of statistical moments of price (2.8-2.10). The finite number of price 

statistical moments p(tk;n) approximates the market-based price characteristic function and 

probability (Appendix A). The market-based price statistical moments (2.8-2.10) differ from 

the frequency-based price statistical moments π(tk;n): 𝜋(𝑡𝑘; 𝑛)~ 1𝑁 ∑ 𝑝𝑛(𝑡𝑖𝑘)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖𝑘)𝑈𝑛(𝑡𝑖𝑘)𝑁𝑖=1       

determined by probability P(p) ~ m(p)/N, which is proportional to the number m(p) of trades 

at a price p if the total number of trades equals N during the interval Δ. The economic nature 

of these distinctions between the conventional frequency-based and the market-based price 
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statistical moments is as follows: The market-based price statistical moments (2.8-2.10) take 

into account the impact of the size of the market’s trade values and volumes. With growth of 

n, the price n-th statistical moments (2.8-2.10) more and more take into account the 

contribution of the market trades with huge values and volumes. Contrary to that, the 

frequency-based statistical moments π(tk;n) describe the price statistics determined by 

frequencies of price only. The market-based price statistical moments p(tk;n) equal 

conventional frequency-based statistical moments  π(tk;n) only if all trade volumes U(tk) 

equal 1. Such an approximation is far from the reality of financial market trade. The market-

based probability of stock price and return was described by Olkhov( 2021a; 2022a; 2023a; 

2023b), and we refer there for further details. Predictions of price probability on the horizon 

tK =T ∆𝐾= [𝑡𝐾 − ∆2 ; 𝑡𝐾 + ∆2]     ;    𝑇 = 𝑡𝐾 = 𝑡0 + ∆ ∙ 𝐾  (2.11) 

require forecasting statistical moments of the trade values and volumes (2.6) at the same 

horizon tK =T. The more trade statistical moments that can be predicted, the higher the 

accuracy of the market-based probability of the stock price. 

To describe statistical moments of stock return when an investor sells stocks at time tik during 

Δk (2.4; 2.5), which he previously purchased at time tik-ξ one should consider the trade 

equation (2.2) during interval Δk (2.5) as follows: 𝐶(𝑡𝑖𝑘) = 𝑝(𝑡𝑖𝑘)𝑈(𝑡𝑖𝑘) = 𝑝(𝑡𝑖𝑘)𝑝(𝑡𝑖𝑘 − 𝜉)  𝑝(𝑡𝑖𝑘 − 𝜉)𝑈(𝑡𝑖𝑘) = 𝑟(𝑡𝑖𝑘 , 𝜉)𝑆(𝑡𝑖𝑘 , 𝜉) 

We denote here return r(tik,ξ) as the ratio of price p(tik) at moment tik (2.5) to price p(tik-ξ) in 

the past at a time ti,k -ξ. For convenience, we take the time shift ξ as a multiple of ε: 𝑆(𝑡𝑖𝑘, 𝜉) ≡ 𝑝(𝑡𝑖𝑘 − 𝜉)𝑈(𝑡𝑖𝑘)    ;       𝑟(𝑡𝑖𝑘, 𝜉) ≡ 𝑝(𝑡𝑖𝑘)𝑝(𝑡𝑖𝑘−𝜉)    ;      𝜉 =  𝜀 𝑗 (2.12) 

To simplify notations, we denote time shift ξ without index j (2.12). We denote S(tik,ξ) as the 

past value of the volume U(tik) of stocks at a time tik-ξ at a price p(tik-ξ). Using (2.2; 2.12), we 

present the return trade equation (2.13): 𝐶(𝑡𝑖𝑘) = 𝑟(𝑡𝑖𝑘 , 𝜉)𝑆(𝑡𝑖𝑘 , 𝜉)    (2.13) 

Similar to (2.6), we introduce statistical moments of the past value S(tik,ξ) (2.12) determined 

by the volume U(tik) of stocks at the price p(tik-ξ): 𝑆(𝑡𝑘, 𝜉; 𝑛) ≡ 𝐸[𝑆𝑛(𝑡𝑖𝑘, 𝜉)]~ 1𝑁 ∑ 𝑆𝑛(𝑡𝑖𝑘, 𝜉) =𝑁𝑖=1 1𝑁 ∑ 𝑝𝑛(𝑡𝑖𝑘 − 𝜉)𝑈𝑛(𝑡𝑖𝑘) =𝑁𝑖=1  (2.14) 

The n-th power of (2.13) gives 𝐶𝑛(𝑡𝑖,𝑘) = 𝑟𝑛(𝑡𝑖𝑘 , 𝜉)𝑆𝑛(𝑡𝑖𝑘 , 𝜉)    (2.15) 
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Similar to (2.8-2.10), we define the n-th statistical moments of return r(tk,ξ;n) of stocks at the 

time tk with respect to the time shift ξ in the past at tk-ξ as: 𝑟(𝑡𝑘, 𝜉; 𝑛) ≡ 𝐸[𝑟𝑛(𝑡𝑖𝑘, 𝜉)] =  1∑ 𝑆𝑛(𝑡𝑖𝑘,𝜉)𝑁𝑖=1  ∑ 𝑟𝑛(𝑡𝑖𝑘, 𝜉)𝑆𝑛(𝑡𝑖𝑘, 𝜉)𝑁𝑖=1   (2.16) 𝑟(𝑡𝑘, 𝜉; 𝑛) =  ∑ 𝐶𝑛(𝑡𝑖𝑘)𝑁𝑖=1∑ 𝑆𝑛(𝑡𝑖𝑘 ,𝜉)𝑁𝑖=1 = 𝐶(𝑡𝑘;𝑛)𝑆(𝑡𝑘,𝜉;𝑛)    (2.17) 𝐶(𝑡𝑘; 𝑛) = 𝑟(𝑡𝑘, 𝜉; 𝑛)𝑆(𝑡𝑘, 𝜉; 𝑛)    (2.18) 

A finite number of statistical moments of return r(tk,ξ;n) determine the approximations of the 

return characteristic function and probability measure alike to approximations of the market-

based price probability (Appendix A). For further details on the market-based probability of 

stock return, we refer to Olkhov (2023a; 2023b).  

Relations (2.9; 2.10) on the price statistical moments p(tk;n) and relations (2.17; 2.18) on the 

statistical moments of stock return r(tk,ξ;n) establish mutual relations between them: 𝑝(𝑡𝑘; 𝑛)𝑈(𝑡𝑘; 𝑛) = 𝑟(𝑡𝑘, 𝜉; 𝑛)𝑆(𝑡𝑘, 𝜉; 𝑛)   (2.19) 𝑝(𝑡𝑘; 𝑛) = 𝑟(𝑡𝑘, 𝜉; 𝑛) 𝑆(𝑡𝑘,𝜉;𝑛)𝑈(𝑡𝑘;𝑛)      (2.20) 

Relations (2.19; 2.20) prove that one can define the price statistical moments, characteristic 

function, and price probability measure using the statistical moments of stock return r(tk,ξ;n) 

and vice versa. To forecast the price probability, it is sufficient to predict the probability of 

return, and vice versa. These problems complement each other completely. One can forecast 

return statistical moments, and that is enough to predict price statistical moments.  

However, the predictions of the market-based statistical moments of price and return of stock 

of a company are impossible without knowledge of the financial and market “environment”: 

the estimates of the price and return of other stocks traded on the market. To describe the 

statistical moments of numerous stocks traded at the NYSE or Nasdaq, one should distribute 

different stocks by certain parameters to distinguish them from each other. As a parameter 

that helps develop a distribution of different stocks, we select the risk ratings of their issuer 

companies. In the next section, we explain how assessments of the risk ratings of issuer 

companies traded on the market introduce the notion of risk coordinates in the economic 

domain and describe the market-based statistical moments of the stock return as functions of 

risk coordinates.  

3. The market-based statistical moments of stock return as functions of risk 

In this section, we describe the statistical moments of stock return as functions of risk ratings, 

which we consider their coordinates in the economic domain (Olkhov, 2016a-2020). Up now, 

the major risk agencies, such as Fitch, Moody’s, and S&P, assess the risk ratings of the 
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majority of stocks, major banks, and corporations (Metz and Cantor, 2007; Chane-Kon et al., 

2010; Kraemer and Vazza, 2012). Risk agencies use the letter notations AAA, AA, BB, and C 

to designate the risk rate. Each rating agency has its own letter grade system to protect and 

promote its business. However, more than 80 years ago, Durand (1941) proposed the use of 

numerical risk grades. Indeed, risk ratings are conditional terms that are used in economics 

and finance as helpful tools for sustainable management, investment, and economic 

modeling. Primarily, the risk notations should support the problems of economic modeling 

but not the promotion of a particular business. The use of numeric risk grades can support a 

unified methodology for risk assessments by different agencies and opens up wide 

opportunities for economic and financial modeling. We take the idea of numeric risk grades 

proposed by Durand (1941) and complement it by introducing continuous numeric risk 

grades. The notions of the most secure and the most risky grades are entirely contingent, and 

the symbol AAA can easily be replaced by a numeric value. We take the most secure risk 

grade to be equal to 0 and the most risky grade to be equal to 1. Thus, we replace the letter-

based risk grade symbols AAA, BB, and CC by continuous numeric risk grades that fill the 

unit interval [0,1], which we call the economic domain. If one considers the economic system 

under the action of J risks, then the numeric values of agents’ risk grades fill the economic 

domain as a unit cube [0,1]
J of R

J. The description of the economic agents by their risk 

coordinates in the economic domain gives great advantages for economic and financial 

modeling and reveals hidden economic factors and processes that impact economic evolution 

and forecasting. Continuous numeric risk grades distribute market stocks by their risk 

coordinates. That helps develop a description of the statistical moments of market trades, 

prices, and returns, taking into account the risk coordinates of the stocks of a company. For 

simplicity, at the first stage, we consider market trades under the action of a single risk. Even 

the description of the statistical moments under action of a single risk requires an essential 

modification of the risk rating notion. 

3.1 Risk ratings as vector variables 

Here we reconsider and extend the notion of risk ratings in such a manner that it can match 

the description of a set of statistical moments as functions of risk. We don’t discuss here a 

particular methodology for the assessment of numeric risk ratings and consider it a worthy 

task for the risk rating agencies. However, the complexity of financial markets and the 

description of statistical moments of stock prices and returns as a tool for approximations of 

price and return probabilities require significant complication of the risk rating notion. We 
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consider the conventional assessments of risk ratings (Metz and Cantor, 2007; Chane-Kon et 

al., 2010; Kraemer and Vazza, 2012) to be a zero approximation. Actually, the substitution of 

the conventional letter designations of risk ratings by the proposed numeric continuous risk 

ratings is like opening the hidden Pandora’s box of economic complexity. Indeed, one can 

ask a simple question: should the numeric risk rating of an economic agent be a scalar or a 

vector? Such a question is almost impossible for literal notations and thus could be a surprise 

for researchers. Actually, the idea of describing the n-th statistical moments of the market 

trade value C(tk;n) and volume U(tk;n) (2.6), statistical moments of price p(tk;n) (2.8-2.10), 

and the return r(tk,ξ;n) (2.16-2.18) of stocks of a company as functions of the company’s risk 

rating x is very simple. The risk rating x can serve as the coordinates to describe the evolution 

of a company’s economic and financial variables and statistical moments in particular. 

However, to identify the m-th statistical moments of return r(tk,ξ;m) (2.16) for m=1,2,…n, 

one should assess the component xm using the economic variables of the m-th order. The risk 

rating of a company for the economic model that describes n statistical moments takes the 

form of a n-dimensional vector x=(x1,…xn). 

As an example, compare two statistical moments of the trade value of two companies a and 

b: Ca(tk;1), Ca(tk;2) and Cb(tk;1), Cb(tk;2). Assume that Ca(tk;1)=Cb(tk;1). Then it is reasonable 

to assume that the risk coordinate x1 of the company a, which identifies Ca(tk,x1;1) is almost 

equal to the risk coordinate y1 of the company b, which identifies Cb(tk,y1;1), and x1~y1. 

However, if the second statistical moments are very different and Ca(tk;2)>>Cb(tk;2), then to 

describe such a case, one needs additional variables x2 and y2 to take Ca(tk,x2;2)>>Cb(tk,y2;2). 

Thus, to describe a set of two statistical moments, one should use a vector x=(x1, x2). The 

description of n statistical moments requires a n-dimensional vector x=(x1,…xn).  

The origin of the complexity of risk ratings for a company relates to the complication of the 

economic model, which takes into account a finite set m=1,..n of the statistical moments of 

the market trade values C(tk;n) and volumes U(tk;n) (2.6). Indeed, conventional economic 

models describe macroeconomic variables, which are composed of the sums of the first 

powers of trade values and volumes. For example, macroeconomic investments, credits, or 

consumption are determined by the sums (without doubling) of investment, credit, or 

consumption transactions made by all agents of the entire economy during an interval Δ. One 

can consider an investment made by an agent at time ti during an interval Δ as a market 

transaction, and the sum of investments made by all agents during an interval Δ defines 

macroeconomic investments as a macroeconomic variable. We underline that the sums are 

taken over the first powers of investment transactions. To a certain extent, conventional 



 13 

economic models describe the relations and mutual dependence between the macroeconomic 

variables, composed by the sums of the first powers of market transactions. For convenience, 

we note them as the 1st order economic variables and call conventional macroeconomics the 

1st order economic theory. Assessments of the risks of a company using economic variables 

of the 1st order, generate the x1 component of the risk rating vector x=(x1,…xn). However, the 

sums of squares of the market trades, and the squares of investment, credit, or consumption 

transactions made by agents introduce the macroeconomic variables of the 2-d order. For 

example, the sums of squares of the investments made by all agents during the interval Δ 

define the investments of the 2-d order. The sums of squares of credits during Δ define the 

credits of the 2-d order. We consider the description of the mutual dependence between 

macroeconomic variables of the 2-d order as the 2-d order economic theory (Olkhov, 2021b; 

2021c; 2022b). The description of the 2-d order macroeconomic variables and the description 

of the 2-d statistical moments of the market trade value C(tk;2) and volume U(tk;2) (2.6), and 

the 2-d statistical moments of the price p(tk;2) and return r(tk,ξ;2) averaged during Δ establish 

the unified problem. Predictions of the 2-d statistical moments of the price p(tk;2) and return 

r(tk,ξ;2) depend on forecasting of the 2-d order variables. The use of the 2-d order economic 

variables to assess the risk ratings of a company generates ratings x2, which serve as 

coordinates of the 2-d statistical moments of price, return, trade values, etc. Consequently, 

the sums of n-th order market trade values, investment transactions, etc., during Δ determine 

variables of the n-th order. Risk assessments based on the economic variables of the n-th 

order generate risk ratings xn as the n-th component of the risk rating vector x=(x1,…xn). Risk 

assessments depend on the complexity of the economic model. The simplest case is presented 

by conventional economic models, which are based on the economic variables composed by 

the sums of the first powers of economic or financial transactions during Δ. Such models can 

assess the average market price and return as functions of x1. However, predictions of the 

market-based volatilities of price and return require forecasts of the 2-d statistical moments of 

the market trade value C(tk;2) and volume U(tk;2) (2.6) and the 2-d order economic theory. 

The predictions of the set of m-th statistical moments m=1,…n of price p(tk;m) (2.8-2.10) and 

return r(tk,ξ;m) (2.16-2.18) that approximate price and return probabilities require economic 

models of the m-th order for m=1,2,..n. The assessments of risks based on the economic 

variables of the m-th order generate xm components of the risk rating vector x=(x1,…xn). As 

we show below, predictions of the risk rating vector x=(x1,…xn) of a company on the horizon 

T determine the finite number of m=1,..n of statistical moments of return r(tk,ξ,xj;m) and 

define approximations of return and price probabilities. 
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3.2 Statistical moments of the return as functions of time and risk coordinates  

In this section, we consider the statistical moments (2.6) of the market trade values 

C(tk,xqm;m) and volumes U(tk,xqm;m), the statistical moments S(tk,ξ,xqm;m) (2.14), the 

statistical moments of price p(tk,xqm;m) (2.8-2.10) and return r(tk,ξ,xqm;m) (2.16-2.18) of the 

stocks of a company q as functions of xqm component of the risk vector xq=(xq1,…xqn) for 

m=1,2,..n. We consider the transition from the description of the statistical moments of the 

stocks of a particular company as functions of its risk coordinates xq=(xq1,…xqn) to the 

description of the collective statistical moments of the stocks of all companies, which have 

risk coordinates in the neighborhood of the vector x=(x1,…xn). As the economic domain for 

the model, which describes m=1,2,..n statistical moments of the market trades, price, and 

return, we take (3.1):   𝒙 ∈  [0,1]𝑛  ;     𝒙 = (𝑥1, … 𝑥𝑛)        ;        0 ≤ 𝑥𝑚 ≤ 1  ;    𝑚 = 1, … 𝑛  (3.1) 

In 2022, the NYSE traded around 2500 stocks and the Nasdaq traded almost 3600 stocks of 

domestic and international companies (Statista, 2023). Let us study the stock market, which 

trades Q>>1 stocks of companies, and assume that the stocks are traded under the action of a 

single risk. A huge number Q>>1 of companies traded on the market causes that a lot of 

different companies q=1,..Q(x) can have coordinates xq in the neighborhood of the vector x 

of the economic domain. Choose a scale d<1, which defines a small volume dV(x) in the 

economic domain (3.1): 0 < 𝑑 < 1 ;   𝑑𝑉(𝒙)~𝑑𝑛 ;   𝒙𝑞 ∈  𝑑𝑉(𝒙) ↔ 𝑥𝑖 − 𝑑2  ≤ 𝑥𝑞𝑖 ≤ 𝑥𝑖 + 𝑑2  ;  𝒙 = (𝑥1 … 𝑥𝑛)  (3.2) 

The choice of the scale d allows at time tik sum the trade values and volumes of all the stocks 

of companies q, q=1,..Q(x) which have the risk coordinates xq (3.1) inside a volume dV(x) 

(3.2) near vector x of the economic domain.  

Because each company traded on the market is described by the individual risk vector 

xq=(xq1,…xqn), we denote its trade values C(tik,xq) and volumes U(tik,xq) as functions of xq. 

However, we assume that the sums of the m-th powers of trade values Cm
(tik,xq) and volumes 

U
m
(tik,xq) depend on the m-th components xm of the vector x=(x1,…xn). For m=1,2,..n we note 

the sums of the m-th powers of values Cm(tik,xq) and volumes Um(tik,xq) inside dV(x) (3.2) as: 𝐶(𝑡𝑖𝑘, 𝑥𝑚; 𝑚) = ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑥𝑞∈𝑑𝑉(𝑥)    ;    𝑈(𝑡𝑖𝑘, 𝑥𝑚; 𝑚) = ∑ 𝑈𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑥𝑞∈𝑑𝑉(𝑥)    (3.3) 

The value C(tik,xm;m) (3.3) at a time tik equals the sum of the m-th powers of trade values with 

the stocks of different companies q, which have coordinates xq inside a small volume dV(x) 

(3.2) near the vector x of the economic domain (3.1). The volume U(tik,xm;m) (3. 3) equals 

the corresponding sum of the m-th powers of all trade volumes at a time tik. Simple relations 
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(3.3) for m=1,2,..n transfer the description of the trade values C
m(tik,xq) and volumes 

U
m(tik,xq) as functions of coordinates xq of the stocks of a company q to the description of the 

collective trade values C(tik,xm;m) and volumes U(tik,xm;m) as functions of coordinates x. We 

introduce a similar definition of the sums of the m-th powers of values Sm(tik,ξ,xq): 𝑆(𝑡𝑖𝑘, 𝜉, 𝑥𝑚; 𝑚) = ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝑥𝑞∈𝑑𝑉(𝑥)     (3.4) 

The sums on the left side of (3.3; 3.4) are functions of xm components of coordinates x. The 

relations (3.3; 3.4) roughen the description of the market trade with the stocks of companies 

q=1,..Q and transfer it to the description of the collective trade values and volumes as 

functions of components xm of the vector x. We take the return equation (2.15) as: 𝐶(𝑡𝑖𝑘, 𝑥𝑚; 𝑚) = 𝑟(𝑡𝑖𝑘, 𝜉, 𝑥𝑚; 𝑚)𝑆(𝑡𝑖𝑘 , 𝜉, 𝑥𝑚; 𝑚)   ;    𝑚 = 1,2, . . 𝑛   (3.5) 

Equation (3.5) at a time tik for the time shift ξ (2.12) introduces a new notion: the collective 

m-th return r(tik,ξ,xm;m) as a function of xm. The economic meaning of (3.5) is that it 

determines the collective return r(tik,ξ,xm;m) as a ratio of the sums of the m-th powers of 

values C(tik,xm;m) (3.3) of the stocks of all companies in the neighborhood of the vector x, 

which were sold at a time tik to the sum of the m-th powers of their values S(tik,ξ,xm;m) (3.4) 

in the past at time tik-ξ. Equation (3.5) transfers the description of the values and returns of 

the stocks of a company q with coordinates xq to the description of the collective market trade 

values C(tik,xm;m) (3.3), S(tik,ξ,xm;m) (3.4), and return r(tik,ξ,xm;m) (3.5), as functions of xm. 

That is the first step to replacing consideration of the financial properties of stocks of a 

particular company with a description of the collective market-based financial properties as a 

function of coordinates x. However, the return r(tik,ξ,xm;m) determined by (3.5), depends on 

the time tik (2.5) of a particular trade. The interval between trades equals ε (2.1; 2.3), which 

can be equal to a second or even a fraction of a second. Such frequencies of trades result in 

high irregularities in the trade values and cause irregularities or randomness of the return. To 

derive a regular and smooth description of return as a function of time and coordinates, one 

should average the return r(tik,ξ,xm;m) (3.5) over the averaging interval. The choice of the 

time averaging interval is not a simple problem. We have already described the time interval 

ε (2.1; 2.3), which is determined by the frequency of the market trades. We introduced the 

interval Δ (2.3-2.5), which determines the averaging of the trade values and volumes of the 

individual stocks of a particular company. We assume that Δ is the same for all Q stocks 

traded on the whole market. The trade values C(tik,xm;m) (3.3) and S(tik,ξ,xm;m) (3.4) for 

m=1,2,..n are determined by the sums of corresponding variables of the individual stocks in 

the neighborhood dV(x) (3.2) of x. We assume that the time averaging interval Δ≤Δx and take 
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that Δx is the same for all points x in the economic domain. The choice of the averaging 

interval Δx introduces a new time axis division with time series τk, which describe the 

collective trades averaged over Δx. For simplicity, we take Δx as a multiple of Δ and (2.3) ∆𝑥= 𝑘𝑥∆= 𝑘𝑥𝑁𝜀    ;   𝑘𝑥 = 1,2, . .  ;     ∆= 𝑁𝜀     (3.6) 𝜏𝑘 = 𝑡0 + 𝑘 ∆𝑥  ;     𝑘 = 1, . .    ;    𝜏𝑘 − ∆𝑥2 ≤ 𝑡𝑖𝑘 ≤ 𝜏𝑘 + ∆𝑥2      ;     𝑖 = 0,1, … 𝑘𝑥𝑁  (3.7) 

We mention that in (3.7), the time series tik represents the renumbered times ti (2.1) of the 

initial time series of market trades. Similar to (2.4; 2.5) we renumber the initial time series ti 

(2.1) so that each interval Δx (3.6; 3.7) contains kxN terms of the market trades (3.3-3.5) at tik. 

The choice of the interval Δx helps average the sums of the trade values C(tik,xm;m) (3.3). We 

determine the m-th statistical moments of the trade values C(τk,xm;m) at time τk averaged over 

Δx as (3.8; 3.9): 𝐶(𝜏𝑘 , 𝑥𝑚; 𝑚) ≡ 𝐸[𝐶(𝑡𝑖𝑘, 𝑥𝑚; 𝑚)]~ 1𝑘𝑥𝑁  ∑ 𝐶(𝑡𝑖𝑘, 𝑥𝑚; 𝑚)𝑘𝑥𝑁𝑖=1 =  1𝑘𝑥𝑁  ∑ ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1 (3.8) 

If one changes the order of sums in (3.8) then: 𝐶(𝜏𝑘 , 𝑥𝑚; 𝑚)~ ∑ 1𝑘𝑥𝑁  ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑘𝑥𝑁𝑖=1𝒙𝑞∈𝑑𝑉(𝒙) = ∑ 𝐶(𝜏𝑘 , 𝑥𝑞𝑚; 𝑚)𝒙𝑞∈𝑑𝑉(𝒙)   ;   𝑚 = 1,2, . . 𝑛  (3.9) 𝐶(𝜏𝑘, 𝑥𝑞𝑚; 𝑚) =  1𝑘𝑥𝑁  ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑘𝑥𝑁𝑖=1      

Above relations denote the m-th statistical moment of the trade values of the stocks of 

company q averaged over Δx. The variable xqm defines the m-th component of the vector 

xq=(x1,…xn). Thus, C(τk,xm;m) in (3.8; 3.9) for m=1,2,..n equals the sum of the m-th statistical 

moments of the trade values of stocks of all companies q with coordinates xq in the dV(x) 

(3.2) averaged over Δx (3.6; 3.7). We denote C(τk,xm;m) in (3.8; 3.9) as the m-th statistical 

moment of the trade value. The similar meaning has the m-th statistical moment of the trade 

volume U(τk,xm;m) in (3.10; 3.11):   𝑈(𝜏𝑘, 𝑥𝑚; 𝑚) ≡ 𝐸[𝑈(𝑡𝑖𝑘, 𝑥𝑚; 𝑚)]~ 1𝑘𝑥𝑁  ∑ 𝑈(𝑡𝑖𝑘, 𝑥𝑚; 𝑚)𝑘𝑥𝑁𝑖=1   ;   𝑚 = 1,2, … 𝑛 (3.10) 𝑈(𝜏𝑘, 𝑥𝑚; 𝑚)~ ∑ 1𝑘𝑥𝑁  ∑ 𝑈𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑘𝑥𝑁𝑖=1𝒙𝑞∈𝑑𝑉(𝒙) = ∑ 𝑈(𝜏𝑘, 𝑥𝑞𝑚; 𝑚)𝒙𝑞∈𝑑𝑉(𝒙)  (3.11) 

Relations (3.8-3.11) define the m-th statistical moments of the market trade values C(τk,xm;m) 

and volumes U(τk,xm;m) as functions of time τk and components xm of the vector x=(x1,…xn). 

Similar considerations determine the m-th statistical moments S(τk,ξ,xm;m) of (3.4) at xm: 𝑆(𝜏𝑘 , 𝜉, 𝑥𝑚; 𝑚) ≡ 𝐸[𝑆(𝑡𝑖𝑘 , 𝜉, 𝑥𝑚; 𝑚)]~ 1𝑘𝑥𝑁  ∑ 𝑆(𝑡𝑖𝑘, 𝜉, 𝑥𝑚; 𝑚)𝑘𝑥𝑁𝑖=1 =  1𝑘𝑥𝑁  ∑ ∑ 𝑆𝑚(𝑡𝑖𝑘 , 𝜉, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1    (3.12) 𝑆(𝜏𝑘 , 𝜉, 𝑥𝑚; 𝑚)~ ∑ 1𝑘𝑥𝑁  ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝑘𝑥𝑁𝑖=1𝒙𝑞∈𝑑𝑉(𝒙) = ∑ 𝑆(𝜏𝑘 , 𝑥𝑞𝑚; 𝑚)𝒙𝑞∈𝑑𝑉(𝑥)   (3.13) 
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We highlight that we use the symbol ~ to show that (3.8-3.13) are the assessments of the 

statistical moments by a finite number kxN of terms of time series. We consider the return 

equation (3.5) and determine the m-th statistical moments of return r(τk,ξ,xm;m) at τk (3.7): 𝑟(𝜏𝑘 , 𝜉, 𝑥𝑚; 𝑚) ≡ 𝐸[𝑟𝑚(𝑡𝑖𝑘, 𝜉, 𝑥𝑞𝑚; )] = ∑ 𝑟(𝑡𝑖𝑘,𝜉,𝑥𝑚;𝑚)𝑆(𝑡𝑖𝑘,𝜉,𝑥𝑚;𝑚)𝑘𝑥𝑁𝑖=1 ∑ 𝑆(𝑡𝑖𝑘,𝜉,𝑥𝑚;𝑚)𝑘𝑥𝑁𝑖=1 = ∑ 𝐶(𝜏𝑘,𝑥𝑞𝑚;𝑚)𝒙𝑞∈𝑑𝑉(𝒙)∑ 𝑆(𝜏𝑘,𝜉,𝑥𝑞𝑚;𝑚)𝒙𝑞∈𝑑𝑉(𝒙)  (3.14) 𝐶(𝜏𝑘 , 𝑥𝑚; 𝑚) = 𝑟(𝜏𝑘 , 𝜉, 𝑥𝑚; 𝑚)𝑆(𝜏𝑘 , 𝜉, 𝑥𝑚; 𝑚)   ;    𝑚 = 1,2, . . 𝑛   (3.15) 

To justify our definitions of the statistical moments of the trade values C(τk,xm;m) (3.8-3.9), 

volumes U(τk,xm;m) of “sale” (3.10-3.11) and values of “purchase” S(τk,ξ,xm;m) (3.12; 3.13), 

which define the m-th statistical moments of return r(τk,ξ,xm;m) (3.14; 3.15), we refer to the 

famous work by Markowitz (1952). If one follows Markowitz, one can assume that an 

“investor” has a portfolio of q=1,..Q(x) stocks, which are determined by their coordinates xq. 

An “investor” purchased these stocks in the past at tik-ξ and “today” at tik sells them. The 

volume of the sale U(tik,xq) at tik is the same as the volume of the purchase at tik-ξ. Thus, the 

values of a single purchase S(tik,ξ,xq1) and the values of a single sale C(tik,xq1) determine the 

return r(tik,ξ,xq1) of stock q at tik at point xq as (3.16): 𝐶(𝑡𝑖𝑘, 𝑥𝑞1) = 𝑟(𝑡𝑖𝑘, 𝜉, 𝑥𝑞1)𝑆(𝑡𝑖𝑘, 𝜉, 𝑥𝑞1)    (3.16) 

The total value of purchase SΣ(τk,ξ,xq1) at τk-ξ and the total value of sale CΣ(τk,xq1) at τk 

determine the total values of an “investor’s” portfolio q at τk-ξ and now at τk during interval 

Δx (3.6).  The ratio of the portfolio’s values define the return r(τk,ξ,xq1;1) of the portfolio q as:  𝐶𝛴(𝜏𝑘, 𝑥𝑞1) = 𝑟(𝜏𝑘, 𝜉, 𝑥𝑞1; 1)𝑆𝛴(𝜏𝑘, 𝜉, 𝑥𝑞1; 1)   (3.17) 𝐶Σ(𝜏𝑘, 𝑥𝑞1; 1) = ∑ 𝐶(𝑡𝑖𝑘, 𝒙𝑞)𝑘𝑥𝑁𝑖=1   ;    𝑆Σ(𝜏𝑘, 𝜉, 𝑥𝑞1; 1) = ∑ 𝑆(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝑘𝑥𝑁𝑖=1   (3.18) 

Due to Markowitz (1952), the return r(τk,ξ,x1;1) of the portfolio formed with q=1,..Q(x) 

stocks at x at a time τk should be weighed by the “purchase” values SΣ(τk,ξ,xq1): 𝑆Σ(𝜏𝑘, 𝜉, 𝑥𝑞1; 1) = ∑ 𝑆Σ(𝜏𝑘, 𝜉, 𝑥𝑞1; 1)𝒙𝑞∈𝑑𝑉(𝒙) = ∑ ∑ 𝑆(𝑡𝑖𝑘, 𝜉, 𝑥𝑞1)𝑘𝑥𝑁𝑖=1𝒙𝑞∈𝑑𝑉(𝒙)  (3.19) 𝐶Σ(𝜏𝑘, 𝑥1; 1) = ∑ 𝐶Σ(𝜏𝑘, 𝑥𝑞1; 1)𝒙𝑞∈𝑑𝑉(𝒙) = ∑ ∑ 𝐶(𝑡𝑖𝑘, 𝑥𝑞1)𝑘𝑥𝑁𝑖=1𝒙𝑞∈𝑑𝑉(𝒙)     (3.20) 

From (3.19; 3.20) obtain the return r(τk,ξ,x1;1) of the portfolio at x (3.21;3.22): 𝐶Σ(𝜏𝑘, 𝑥1; 1) = 𝑟(𝜏𝑘, 𝜉, 𝑥1; 1)𝑆Σ(𝜏𝑘, 𝜉, 𝑥1; 1)   (3.21) 𝑟(𝜏𝑘, 𝜉, 𝑥1; 1) = ∑ 𝑟(𝜏𝑘,𝜉,𝑥𝑞1;1)𝑆Σ(𝜏𝑘,𝜉,𝒙𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙)∑ 𝑆Σ(𝜏𝑘,𝜉,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙) = ∑ 𝐶Σ(𝜏𝑘,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙)∑ 𝑆Σ(𝜏𝑘,𝜉,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙)   (3.22) 

From (3.22) and (3.9; 3.13) obtain the return r(τk,ξ,x1;1) of the portfolio through statistical 

moments of the “purchased” S(τk,ξ, x1;1) (3.12; 3.13) and “sold” C(τk, x1;1) (3.8; 3.9) values 𝑟(𝜏𝑘, 𝜉, 𝑥1; 1) = ∑ 𝐶Σ(𝜏𝑘,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙)∑ 𝑆Σ(𝜏𝑘,𝜉,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙) = ∑ 𝐶(𝜏𝑘,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙)∑ 𝑆(𝜏𝑘,𝜉,𝑥𝑞1;1)𝒙𝑞∈𝑑𝑉(𝒙) = 𝐶(𝜏𝑘,𝑥1;1)𝑆(𝜏𝑘,𝜉,𝑥1;1)  (3.23) 
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Our definition of the m-th statistical moments of the return r(τk,ξ,xm;m) (3.14; 3.15) at a point 

x for m=1 completely coincides with the definition of the portfolio return (3.21-3.23) by 

Markowitz (1952). For m=2,3,..n the market-based m-th statistical moments of the 

“purchased” values S(τk,ξ,xm;m) (3.12; 3.13) and “sold” values C(τk,xm;m) (3.8; 3.9), trade 

volumes U(τk,xm;m) (3.10; 3.11) and the m-th statistical moments of return r(τk,ξ,xm;m) (3.14; 

3.15) give a direct extension of Markowitz’ approach for the m-th statistical moments of the 

portfolio return. 

3.4 The statistical moments of the return of the whole stock market  

To define the market-based statistical moments of return of the whole market, one should 

sum in (3.3) the stocks of all companies, traded on the market. We define the collective m-th 

trade values C(tik;m), the m-th volumes U(tik;m), and the m-th “purchased” values S(tik,ξ;m): 𝐶(𝑡𝑖𝑘; 𝑚) = ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞    ;    𝑈(𝑡𝑖𝑘; 𝑚) = ∑ 𝑈𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞   (3.24) 𝑆(𝑡𝑖𝑘, 𝜉; 𝑚) = ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝒙𝑞    ;      𝑚 = 1,2, … 𝑛    (3.25) 

Relations in (3.24; 3.25) denote sums of trade values and volumes of stocks over all Q 

companies traded on the whole stock market. The collective m-th return r(tik,ξ;m) of all stocks 

on the market at time tik takes the form: 𝐶(𝑡𝑖𝑘; 𝑚) = 𝑟(𝑡𝑖𝑘, 𝜉; 𝑚)𝑆(𝑡𝑖𝑘, 𝜉; 𝑚)    (3.26) 

To smooth variations of the return at a time tik, one should choose the market’s averaging 

interval Δm. The collective values and volumes (3.24; 3.25) of the stock market have a 

characteristic time of change longer than the interval Δx selected for the averaging of market 

trades and returns at the point x of the economic domain. For simplicity, we take the market 

averaging interval Δm as: ∆𝑥≤ ∆𝑚   ;    ∆𝑚= 𝑘𝑚∆𝑥=  𝑘𝑚𝑘𝑥∆= 𝑘𝑚𝑘𝑥𝑁𝜀    ;    𝑘𝑥, 𝑘𝑚 = 1,2, ..  (3.27) 

The market averaging interval Δm introduces a new time axis division multiple of Δm 𝜇𝑘 = 𝑡0 + 𝑘 ∆𝑚  ;     𝑘 = 1, . .    ;    𝜇𝑘 − ∆𝑚2 ≤ 𝑡𝑖𝑘 ≤ 𝜇𝑘 + ∆𝑚2      ;     𝑖 = 0,1, … 𝑘𝑚𝑘𝑥𝑁   (3.28) 

Similar to (3.8-3.15) for m=1,2,…n obtain the m-th statistical moments of the trade values, 

volumes, and returns of the whole market as follows: 𝐶(𝜇𝑘; 𝑚) ≡ 𝐸[𝐶(𝑡𝑖𝑘; 𝑚)]~ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝐶(𝑡𝑖𝑘; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1 = 1𝑘𝑚𝑘𝑥𝑁  ∑ ∑ 𝐶𝑚(𝑡𝑖𝑘 , 𝒙𝑞)𝒙𝑞𝑘𝑚𝑘𝑥𝑁𝑖=1  (3.29) 𝐶(𝜇𝑘; 𝑚)~ ∑ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝑘𝑚𝑘𝑥𝑁𝑖=1𝒙𝑞 = ∑ 𝐶(𝜇𝑘, 𝑥𝑞𝑚; 𝑚)𝒙𝑞   (3.30) 𝑈(𝜇𝑘; 𝑚) ≡ 𝐸[𝑈(𝑡𝑖𝑘; 𝑚)]~ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝑈(𝑡𝑖𝑘; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1     (3.31) 𝑈(𝜇𝑘; 𝑚)~ ∑ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝑈𝑚(𝑡𝑖𝑘 , 𝒙𝑞)𝑘𝑚𝑘𝑥𝑁𝑖=1𝒙𝑞 = ∑ 𝑈(𝜇𝑘, 𝑥𝑞𝑚; 𝑚)𝒙𝑞   (3.32) 
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𝑆(𝜇𝑘, 𝜉; 𝑚)~ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝑆(𝑡𝑖𝑘 , 𝜉; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1 = 1𝑘𝑚𝑘𝑥𝑁  ∑ ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝒙𝑞𝑘𝑚𝑘𝑥𝑁𝑖=1   (3.33) 𝑆(𝜇𝑘, 𝜉; 𝑚) ≡ 𝐸[𝑆(𝑡𝑖𝑘, 𝜉; 𝑚)]~ ∑ 1𝑘𝑚𝑘𝑥𝑁  ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝑘𝑚𝑘𝑥𝑁𝑖=1𝒙𝑞 = ∑ 𝑆(𝜇𝑘, 𝑥𝑞𝑚; 𝑚)𝒙𝑞   (3.34) 

From (3.29-3.34) obtain for the m-th statistical moments of return r(μk,ξ;m) of the whole 

market at a time μk averaged during the interval Δm (3.27; 3.28): 𝑟(𝜇𝑘, 𝜉; 𝑚) ≡ 𝐸[𝑟(𝑡𝑖𝑘, 𝜉; 𝑚)] = ∑ 𝑟(𝑡𝑖𝑘,𝜉;𝑚)𝑆(𝑡𝑖𝑘,𝜉;𝑚)𝑘𝑥𝑁𝑖=1 ∑ 𝑆(𝑡𝑖𝑘,𝜉;𝑚)𝑘𝑥𝑁𝑖=1 = ∑ 𝐶(𝜇𝑘,𝑥𝑞𝑚;𝑚)𝒙𝑞∑ 𝑆(𝜇𝑘,𝑥𝑞𝑚;𝑚)𝒙𝑞   (3.35) 𝐶(𝜇𝑘; 𝑚) = 𝑟(𝜇𝑘, 𝜉; 𝑚)𝑆(𝜇𝑘, 𝜉; 𝑚)    (3.36) 

At the end of this section, we highlight the importance of the four consecutive time axis 

divisions determined by the four time intervals ε << Δ ≤ Δx ≤ Δm. The smallest interval ε is 

determined by the frequency of market trading. It introduces the initial market trade time 

series at ti (2.1) for the further averaging procedures. The scale Δ determines the time 

averaging interval for the assessments of statistical moments of market trade and return of 

stock of a particular company. For simplicity, we assume that Δ is the same for all stocks, 

traded at the market and that Δ is multiply of ε, so that Δ=N ε (2.3). The interval Δ introduces 

a new time axis division tk (2.4; 2.5) multiply of Δ. The sum of trades with stocks with risk 

coordinates xq in the neighborhood of point x of the economic domain transfers the 

description of the statistical moments of market trade and return of stocks of particular 

companies to the description of the statistical moments of collective market trade and return 

as functions of coordinates x. The collective trade value, volume, and return of stocks with 

risk coordinates xq in the neighborhood of point x change more slowly than the trade value, 

volume, and return of the individual stocks. Hence, the effective averaging of the time series 

of the collective trade value, volume, and return near point x can require a time interval Δx 

that is longer than the interval Δ of the individual stocks. For convenience, we take the time 

scale Δx as a multiple of Δ. We take Δx=kx Δ=kx Nε (3.6) and (3.7) Δx introduces a new time 

axis division τk (3.7) as multiple of Δx. The time series τk (3.7) describe the statistical 

moments of trade value, volume, and return averaged over Δx. Finally, the collective trade 

and return of the whole stock market determine the market interval Δm. The change in trade of 

the whole market is slower, than the change of collective trade of stocks near point x. Thus, 

the market interval Δm can be longer than Δx. We take market interval Δm, which determines 

time averaging of the collective trades of stocks of all companies on the whole market, as 

Δm=km Δx = km kx Δ=kmkxNε (3.27). The market interval Δm introduces the market time axis 

division μk (3.28), which determines the time series of the statistical moments of trade value, 

volume, and return of all stocks traded at the whole market. These four time series describe 
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the financial problems of the stock market with different accuracy. The different choices of 

time intervals result in different approximations of financial markets.  

4. The statistical moments of stock price as functions of risks  

Relations (2.19; 2.20) tie up the statistical moments of the price and return of stocks of a 

company q. The results of section 3 define the statistical moments of the collective price of 

stocks of companies with risk coordinates near point x and the statistical moments of the 

price of the whole market. From (2.19; 2.20) and (3.8-3.15), the m-th statistical moments 

p(τk,xm;m) of the collective price of stocks at x at a time τk averaged during Δx take the form: 𝑝(𝜏𝑘, 𝑥𝑚; 𝑚) = 𝑟(𝜏𝑘, 𝜉, 𝑥𝑚; 𝑚) 𝑆(𝜏𝑘,𝜉,𝑥𝑚;𝑚)𝑈(𝜏𝑘,𝑥𝑚;𝑚) = 𝐶(𝜏𝑘,𝑥𝑚;𝑚)𝑈(𝜏𝑘,𝑥𝑚;𝑚)  (4.1) 𝐶(𝜏𝑘, 𝑥𝑚; 𝑚) = 𝑝(𝜏𝑘 , 𝑥𝑚; 𝑚)𝑈(𝜏𝑘, 𝑥𝑚; 𝑚)   (4.2) 

From (3.29 – 3.36), the m-th statistical moments p(μk;m) of the collective price of all stocks 

traded at the market at the time μk averaged during Δm (3.27; 3.28) take the form: 𝑝(𝜇𝑘; 𝑚) = 𝑟(𝜇𝑘, 𝜉; 𝑚) 𝑆(𝜇𝑘,𝜉;𝑚)𝑈(𝜇𝑘;𝑚) = 𝐶(𝜏𝑘;𝑚)𝑈(𝜏𝑘;𝑚)   (4.3) 𝐶(𝜇𝑘; 𝑚) = 𝑝(𝜇𝑘; 𝑚)𝑈(𝜇𝑘; 𝑚)    (4.4) 

The finite sets of n statistical moments of price p(τk,xm;m) (4.1; 4.2) and p(μk;m) (4.3; 4.4) for 

m=1,..n define the n-approximations of the price characteristic functions and probabilities 

(App.A). 

5. Economic evolution and prediction of statistical moments of stock return  

The continuous economic media approximation presents the transition from the description of 

the economic variables of individual agents to the description of the collective variables as 

functions of risk coordinates x (Olkhov, 2016a – 2021b). As the collective variables, one can 

consider the sums of the m-th powers of market trade values CΣ(tk,xqm;m), volumes 

UΣ(tk,xqm;m), and “purchased” values SΣ(tk,ξ,xqm;m) during the interval Δk (2.4). 𝐶Σ(𝑡𝑘, 𝑥𝑞𝑚; 𝑚) = ∑ 𝐶𝑚(𝑡𝑖,𝑘, 𝒙𝑞)𝑁𝑖=1 = 𝑁 ∙ 𝐶(𝑡𝑘, 𝑥𝑞𝑚; 𝑚)  (5.1)   𝑈Σ(𝑡𝑘, 𝑥𝑞𝑚; 𝑚) = ∑ 𝑈𝑚(𝑡𝑖,𝑘, 𝒙𝑞)𝑁𝑖=1 = 𝑁 ∙ 𝑈(𝑡𝑘, 𝑥𝑞𝑚; 𝑚)  (5.2) 𝑆Σ(𝑡𝑘, 𝜉, 𝑥𝑞𝑚; 𝑚) = ∑ 𝑆𝑛(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝑁𝑖=1 = 𝑁 ∙ 𝑆(𝑡𝑘, 𝜉, 𝑥𝑞𝑚; 𝑚) (5.3) 

The sums CΣ(tk,xmq;m) (5.1), UΣ(tk,xmq;m) (5.2), and SΣ(tk,ξ,xmq;m) (5.3), for m=1,2,…n define 

the m-th statistical moments of price p(tk,xqm;m) (2.8-2.10) or (4.1; 4.2) and return 

r(tk,ξ,xqm;m) (2.16-2.18) in the same way:   𝑟(𝑡𝑘, 𝜉, 𝑥𝑞𝑚; 𝑚) =  𝐶Σ(𝑡𝑘,𝑥𝑚;𝑚)𝑆Σ(𝑡𝑘,𝜉,𝑥𝑞𝑚;𝑚)        ;      𝑝(𝑡𝑘, 𝑥𝑚; 𝑚) = 𝐶Σ(𝑡𝑘,𝑥𝑚;𝑚)𝑈Σ(𝑡𝑘,𝑥𝑚;𝑚) (5.4) 
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We use relations that are similar to (5.1-5.3) to define the sums CΣ(τk,xm;m) (5.5) from (3.8), 

UΣ(τk,xm;m) (5.6) from (3.10), and SΣ(τk,ξ,xm;m) (5.6) from (3.12): 𝐶Σ(𝜏𝑘, 𝑥𝑚; 𝑚) = ∑ 𝐶(𝑡𝑖𝑘, 𝒙; 𝑚)𝑘𝑥𝑁𝑖=1 = ∑ ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1   (5.5) 𝑈Σ(𝜏𝑘, 𝑥𝑚; 𝑚) = ∑ 𝑈(𝑡𝑖𝑘, 𝒙; 𝑚)𝑘𝑥𝑁𝑖=1 = ∑ ∑ 𝑈𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1   (5.6) 𝑆Σ(𝜏𝑘, 𝜉, 𝑥𝑚; 𝑚) =  ∑ 𝑆(𝑡𝑖𝑘, 𝜉, 𝒙; 𝑛)𝑘𝑥𝑁𝑖=1 =   ∑ ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1   (5.7) 𝑟(𝜏𝑘, 𝜉, 𝑥𝑚; 𝑚) = 𝐶Σ(𝜏𝑘,𝑥𝑚;𝑚)𝑆Σ(𝜏𝑘,𝜉,𝑥𝑚;𝑚)   ;    𝑝(𝜏𝑘, 𝑥𝑚; 𝑚) = 𝐶Σ(𝜏𝑘,𝑥𝑚;𝑚)𝑈Σ(𝜏𝑘,𝑥𝑚;𝑚)   (5.8) 

For the case of the whole stock market, the similar notations define the sums CΣ(μk;m) (5.9) 

from (3.30), UΣ(μk;m) (5.10) from (3.31), and SΣ(μk,ξ;m) (5.11) from (3.33): 𝐶Σ(𝜇𝑘; 𝑚) =  ∑ 𝐶(𝑡𝑖𝑘; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1 =  ∑ ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞𝑘𝑚𝑘𝑥𝑁𝑖=1    (5.9) 𝑈Σ(𝜇𝑘; 𝑚) =  ∑ 𝑈(𝑡𝑖𝑘; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1 =  ∑ ∑ 𝑈𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞𝑘𝑚𝑘𝑥𝑁𝑖=1    (5.10) 𝑆Σ(𝜇𝑘 , 𝜉; 𝑚) =  ∑ 𝑆(𝑡𝑖𝑘, 𝜉; 𝑚)𝑘𝑚𝑘𝑥𝑁𝑖=1 =  ∑ ∑ 𝑆𝑚(𝑡𝑖𝑘, 𝜉, 𝒙𝑞)𝒙𝑞𝑘𝑚𝑘𝑥𝑁𝑖=1   (5.11) 𝑟(𝜇𝑘, 𝜉; 𝑚) = 𝐶Σ(𝜇𝑘;𝑚)𝑆Σ(𝜇𝑘,𝜉;𝑚)    ;    𝑝(𝜇𝑘; 𝑚) = 𝐶Σ(𝜇𝑘;𝑚)𝑈Σ(𝜇𝑘;𝑚)    (5.12) 

The evolution of the collective additive variables such as the sums (5.1-5.3; 5.5-5.7; 5.9-5.11) 

can be described by the equations, which are somewhat similar to the equations of flows of 

fluids (App.B). However, we highlight that the nature of economic evolution has nothing in 

common with physical hydrodynamics, and we believe any direct comparisons make almost 

no sense. The dynamics of the ratios of additive economic variables describe the evolution of 

non-additive variables, like the m-th statistical moments of return and price. The change in 

agents’ risk ratings due to economic, financial, and other factors causes the motion of agents 

in the economic domain. Each agent carries its additive economic variables. The collective 

motion of agents in the economic domain generates the flows of agents’ additive economic 

and financial variables. The equations of motion (App.B) describe the dynamics of the 

collective additive economic variables and their flows as functions of time and risk 

coordinates (Olkhov, 2019; 2020). 

An investor, who is seeking to forecast the probability of price and return of a company q at 

horizon T should follow the path we described above, but in reverse order. On that path 

investors will face irresistible economic obstacles, which limit the accuracy of any forecasts 

of the market-based probabilities of price and return.  

Any amount of economic, financial, or market data “today” can help assess only 

approximations of current probabilities of price and return. The accuracy of these 

approximations determines the possible errors in forecasts, and, hence, the probable financial 
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losses. Any assessments of the current probabilities of price and return of stocks of a 

company are determined by the choice of the time interval Δ, which averages the initial 

irregular market time series with a period ε between trades. The interval Δ>>ε determines the 

assessments of the statistical moments of the market trade value C(tk;n) and volume U(tk;n) 

(2.6). In turn, the assessments of the trade statistical moments determine the price p(tk;n) 

(2.8-2.10) and return r(tk,ξ;n) (2.16-2.18) statistical moments, which are linked by the 

relations (2.19; 2.20). The more statistical moments an investor can assess during the interval 

Δ, the greater the accuracy of the price and return probability he could get “today.” However, 

a long averaging interval Δ equal to days, weeks, or months could increase the number of 

statistical moments but would raise the uncertainty of current, “this hour” investor’s 

decisions. The choice of the duration of the averaging interval is an important problem that 

should be solved by each investor. 

It is well known that any predictions of economic variables for an individual company 

require forecasts of the economic and market environment. In section 3, we describe the 

statistical moments (3. 8; 3.10; 3.12; 3.30; 3.31; 3.33) of market trade and the sums of market 

trades (5.1-5.3; 5.5-5.7; 5.9-5.11) as functions of risk coordinates in the economic domain. 

The main advantage of our approach lies in the fact that we perform successive transitions 

from the description of the trade statistical moments of an individual company to the 

description of the statistical moments of the collective trades at point x and then to the 

description of the statistical moments of trades of all companies on the whole market. 

To predict the m-th statistical moments of price and return at the horizon T, an investor 

should forecast the sums of the m-th trade values CΣ(t;m), volumes UΣ(t;m), and values 

SΣ(t,ξ;m) on the whole market. Each extra m=2,3,..n requires the development of the 

additional economic model of the m-th order to describe the interactions between economic 

variables of the m-th order. In simple words, to increase the accuracy of the price or return 

probability forecast with an extra m-th statistical moment, one should develop additional m-th 

order economic theory, each comparable with the existing conventional macroeconomic 

theory. 

It is the first “impossible task” that an investor should consider on his way to estimating the 

economic environment that can help him forecast price and return probabilities. The forecasts 

of the whole stock market are useful but are too uncertain for predictions of the return and 

price probabilities of a particular company. An investor should refine the forecast and extend 

the description of market trade statistical moments from the model of the whole stock market 

to the continuous economic approximation of the market trades at point x. Using the slow 
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variations of the market trade sums (5.9-5.11) or the statistical moments (3.39-3.44) of the 

whole market as an economic environment, an investor should forecast the dynamics of the 

trade sums (5.5-5.7) or the trade statistical moments (3.18-3.21) as functions of x.  

However, at that point, an investor faces additional hardships, including the problem of risk 

rating assessments. Each extra m-th trade statistical moment (3.39-3.44) generates a set of the 

economic variables of the m-th order. For each m=1,2,..n , the risk assessments using 

economic variables of the m-th order result in the definition of the m-th component xm of the 

risk rating vector x=(x1,…xn). To describe the dynamics of m-th trade statistical moments 

(3.18-3.23) as functions of x for m=1,2,...n, an investor should assess the risk ratings using 

m-th order economic variables as a source for evaluating each m-th component xm of the risk 

vector x=(x1,…xn). In the case of several risks j=1,2,..J, which can impact economic and 

market performance, the risk assessment becomes J-times more difficult, and risk ratings take 

the matrix form x=(xm,j), m=1,..n; j=1,.2,..J. 

The complexity and uncertainty related to the assessments of risk ratings significantly limit 

the capacity of investors to forecast a lot of the trade’s statistical moments. That limits the 

accuracy of the predictions of the market-based probabilities of stock price and return.  

Now assume that an investor succeeds in accomplishing these two difficult models. An 

investor chooses the number n of the m-th trade statistical moments m=1,2,..n at a horizon T 

and evaluates the dynamics of the m-th statistical moments of the whole stock market (3.39-

3.44). Further, at a horizon T for the single risk, an investor carries out the description of the 

trade statistical moments (3.18-3.23) as functions of the risk vector x=(x1,…xn) in the 

economic domain [0,1]
n using the slow dynamics of the statistical moments of the whole 

market as an economic environment. Now, using forecasts of the m-th statistical moments 

(3.18-3.23) as functions of risk x at a horizon T, an investor can evaluate the return statistical 

moments r(T,ξ,xm;m) (3.24; 3.25) or (5.8).  

An investor can consider the m-th statistical moments of return as functions of xm as good 

approximations of the corresponding m-th statistical moments of return of stocks of a 

company q with a risk component xqm near xm, such as |xm-xqm|<<1. It is reasonable, that the 

price statistical moments of stocks of companies q with vector risk coordinates xq=(xq1,…xqn) 

in the neighborhood of vector x=(x1,…xn) could vary a lot from the collective price statistical 

moments at point x. However, statistical moments r(tk,ξ,xqm;m) of return (3.9-3.11) of stocks 

of individual companies q in the neighborhood of vector x=(x1,…xn) should be almost the 

same as statistical moments of the collective return r(τk,ξ,xm;m) (3.24-3.25) at point x. If an 

investor can forecast at a horizon T the risk rating vector xq=(xq1,…xqn) of a particular 
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company q, then he can assess the statistical moments of return of its stocks. Due to relations 

(2.19; 2.2), the prediction of the statistical moments of return at a horizon T determines the 

statistical moments of price. 

After these long and difficult calculations, an investor would be able to approximate the 

probabilities of the price and return of stocks of a company q at a horizon T. That may help to 

make a decision that concerns the investments in stocks of that individual company. 

However, even that rather complex model doesn’t take into account the self-impact of 

investors’ decisions to invest or not to invest in the stocks of a particular company. To 

develop such a model, one should describe the impact of the investment decisions of a 

particular investor on the assessments of the risk ratings of stocks of all companies on the 

stock market and on the evolution of the collective economic and financial variables as 

functions of x. We consider such a problem an ambition for the next level. 

Currently, the econometric data, modeling, and forecasting of the economic variables of the 

2-d order that are composed by sums of squares of economic, financial, or market 

transactions are absent. The development of these models could help predict the price and 

return statistical moments of the 2-d order. That could allow the development of predictions 

of price and return probabilities in the Gaussian approximations. To increase the accuracy of 

the market-based probability predictions, one should develop economic models of the 3-d 

order and beyond. 

6. Conclusion  

This paper brings to the table the economic obstacles that interfere with and greatly limit any 

attempts to derive precise forecasts of the market-based probabilities of the price and return 

of stocks of a company. Actually, the accuracy of forecasts of the price and return 

probabilities is the core issue of asset pricing and portfolio theories, as it almost completely 

determines the possible variations of an investor’s decisions. The above model gives the 

investor the possibility to compare the returns of stocks of different companies with different 

risk ratings and to make his own choice.  

The investor should take into account that the number of statistical moments that can be 

predicted is the major factor that limits the accuracy of the forecasts of the price and return 

probabilities. One can ignore the complexity of forecasting the m-th statistical moment but 

cannot overcome or solve the problem. The predictions of the probability of return that don’t 

take into account the dependence of each m-th statistical moment on the economic theory of 

the m-th order would have such high uncertainty that they are almost useless for investors. 
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Currently, the lack of any research on the m-th order economic theories for m=2,3,..n limits 

the possible predictions of the probabilities of market trade, price, and return by simple 

Gaussian approximations. Even the prediction of Gaussian probability requires forecasting 

the 2-d statistical moments of market trade values and volumes. That needs the 2-d order 

economic theory, which is absent now. The prediction of the first two statistical moments 

determines the wide range of approximations of the characteristic functions (A.10) that can 

extend the random price and return properties beyond Gaussian distributions. Each step 

further, beyond Gaussian probabilities, needs a lot of econometric and theoretical studies. 

We emphasize that the above rather complex model doesn’t take into account a lot of extra 

factors that can significantly impact the description of market trades, statistical moments, and 

price probability. We mention the dependence of market trades on the collective expectations 

of the sellers and buyers of stocks, which for sure impact the evolution of the price 

probability. The consideration of these factors will increase the complexity of the model by 

many times. One can find approximations that take into account the impact of the collective 

expectations of the sellers and buyers on market trade (Olkhov, 2019). 

We assume that a general look at the problem of the accuracy of the price and return 

probability predictions can generate research interest and further studies. However, the 

precise future of the market-based probabilities of stock price and return are reliably hidden 

from investors and researchers.   
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Appendix A 

Approximations of the price characteristic function and probability by a finite 

set of statistical moments 

Let us take the set of the price m-th statistical moments p(t;m): 𝑝(𝑡; 𝑚) = 𝐶(𝑡;𝑚)𝑈(𝑡;𝑚)    ;    𝑚 = 1,2, … 𝑛    (A.1) 

The set of statistical moments (A.1) determines the price characteristic function F(t;x) as a 

Taylor series: 𝐹(𝑡; 𝑥) = 1 + ∑ 𝑖𝑚𝑚!∞𝑚=1 𝑝(𝑡; 𝑚) 𝑥𝑚    (A.2) 

In (A.2), i is an imaginary unit, and i
2
=-1. The finite set of the m-th statistical moments 

p(t;m) of price (A.1) determines the n-approximation of the characteristic function Fn(t;x) 𝐹𝑛(𝑡; 𝑥) = 1 + ∑ 𝑖𝑚𝑚!𝑛𝑚=1 𝑝(𝑡; 𝑚) 𝑥𝑚    (A.3) 

One can define the n-approximation of the price probability measure ηn(t;p) as Fourier 

transforms of characteristic functions Fn(t;x): 𝜂𝑛(𝑡; 𝑝) = 1√2𝜋 ∫ 𝑑𝑥 𝐹𝑛(𝑡; 𝑥) exp(−𝑖𝑥𝑝)   (A.4) 

The relations between the statistical moments p(t;m), n-approximations of the characteristic 

function Fn(t;x), and the probability measure ηn(t;p) are simple: 𝑝(𝑡; 𝑚) =  𝑑𝑚(𝑖)𝑚𝑑𝑥𝑚 𝐹𝑛(𝑡; 𝑥)|𝑥=0 = ∫ 𝑑𝑝 𝜂𝑛(𝑡; 𝑝)𝑝𝑚  ;    𝑚 ≤ 𝑛  (A.5) 

To get the characteristic function that generates the same set of the price m-th statistical 

moments p(t;m), m=1,2,..n (A.1), and causes the smooth probability ηn(t;p), we consider the 

characteristic functions in the form: 𝐹𝑛(𝑡; 𝑥) = exp {∑ 𝑖𝑚𝑚!𝑛𝑚=1  𝑎𝑚 𝑥𝑚 − 𝑏 𝑥2𝑘}    ;    2𝑘 > 𝑛  ;  𝑏 > 0 (A.6) 

The coefficients am, m=1,..n are successively determined by the relations (A.5). The terms 

bx
2k, b>0, 2k>n don’t impact the relations (A.5) for m≤n but guarantee the existence of the 

price probability measures ηn(t;p) as Fourier transforms (A.4). The uncertainty of the 

coefficients b>0 and 2k>n in (A.6) underlines the well-known fact that the first n statistical 

moments don’t exactly determine the characteristic function and probability measure of a 

random variable. The relations (A.6) describe the set of characteristic functions Fn(t;x) with 

different b>0 and 2k>n and the corresponding set of probability measures ηn(t;p) that match 

(A.4; A.5). Actually, one can take the approximation Fn(t;x) (A.6): 𝐹𝑛(𝑡; 𝑥) = exp {∑ 𝑖𝑚𝑚!𝑛𝑚=1  𝑎𝑚 𝑥𝑚 − 𝑄(𝑥)}  ;  𝑄(𝑥) = ∑ 𝑎𝑚 𝑥𝑚2𝐾𝑚=𝑛+1  ;  𝑎2𝐾 > 0  (A.7) 
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Above approximations for any coefficients am, m=n+1,…2K, don’t impact the first n 

statistical moments, and a2K>0 guarantees the existence of the price probability measures 

ηn(t;p) (A.4). For n=2 the approximation F2(t;x) describes the Gaussian probability η2(t;p): 𝐹2(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝑎22 𝑥2}    (A.8) 

It is easy to show that  𝑝2(𝑡; 2) = − 𝑑2𝑑𝑥2 𝐹2(𝑡; 𝑥)|𝑥=0 = 𝑎2 + 𝑝2(𝑡; 1) = 𝑝(𝑡; 2)    𝑎2 = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1) = 𝜎2(𝑡; 𝑝)      

The coefficient a2 equals the market-based price volatility σ2
(t;p) and the Fourier transform 

(A.4) for F2(t;x) gives the Gaussian price probability η2(t;p): 𝜂2(𝑝𝑡; ) =  1(2𝜋)12𝜎(𝑝) exp {− (𝑝−𝑝(𝑡;1))22𝜎2(𝑡;𝑝) }    (A.9) 

The approximation (A.7) gives variations of the “Gaussian” characteristic function F2Q(t;x): 𝐹2𝑄(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑄(𝑥) }   (A.10) 𝑄(𝑥) = ∑ 𝑎𝑚 𝑥𝑚2𝐾𝑚=3  ;  𝑎2𝐾 > 0      

For n=3 the approximation F3(t;x) has the form: 𝐹3(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑖 𝑎36 𝑥3}     𝑝3(𝑡; 3) = 𝑖 𝑑3𝑑𝑥3 𝐹3(𝑡; 𝑥)|𝑥=0 = 𝑎3 + 3𝑝(𝑡; 1)𝜎2(𝑡; 𝑝) + 𝑝3(𝑡; 1) = 𝑝(𝑡; 3)  𝑎3 = 𝑝(𝑡; 3) − 3𝑝(𝑡; 2)𝑝(𝑡; 1) + 2 𝑝3(𝑡; 1) = 𝐸 [(𝑝 − 𝑝(𝑡; 1))3] = 𝑆𝑘(𝑡; 𝑝)𝜎3(𝑡; 𝑝)   

The coefficient a3 depends on the price skewness Sk(t;p), which describes the asymmetry of 

the price probability from the normal distribution. Even the Gaussian approximation F2(t;x), 

η2(t;p) (A.8; A.9) reveals the direct dependence of the price volatility σ2
(t;p) on the 2-d 

statistical moments of the trade value C(t;2) and volume U(t;2). Thus, the prediction of price 

volatility σ2
(t;p) for Gaussian η2(t;p) (A.9) should follow non-trivial forecasting of the 

statistical moments of the market trade value C(t;2) and volume U(t;2). 
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Appendix B 

Equations of motion in the economic domain 

Here, we briefly consider the equations, which describe the dynamics of the collective trade 

values CΣ(τk,xm;m) (5.5) of stocks of companies with risk coordinates xq in the neighborhood 

of x in the economic domain. We smooth the dependence on time τk and consider the model 

with continuous time τ. The sums of trade values (3.13) of agents with coordinates inside 

dV(x) determine the continuous approximation of the trade values in the economic domain as 

a function of x. The derivation of the equations of motion of the continuous economic media 

approximation almost exactly reproduces the derivation of the conventional widespread 

equations of continuous mechanics (Childress, 2009). The relations (5.5) determine 

CΣ(t,xm;m) as the sum of the m-th power of trade values Cm (t,xqm) of stocks of companies 

with risk coordinates xqm inside a small volume dV(x) so |xm-xqm|<<1 taken by all such agents 

during the interval Δx. We consider CΣ(t,xm;m) as a function of continuous coordinate xm in 

the economic domain [0,1]. To derive the equations on CΣ(t,xm;m) as a function of t and xm 

we should consider the function CΣ(t,xm;m) similar to the continuous media, which can flow 

inside the economic domain. To explain the origin of such a flow, let us refer to the 

widespread assessments of the risk transition matrices of the largest banks and corporations 

published by major risk-rating agencies (Metz and Cantor, 2007; Moody’s, 2009; Fitch, 

2017; S&P, 2018). The risk transition matrices determine the probabilities aij that an agent 

with a risk rating xi during a time interval T can change its rating to xj. If one replaces the 

current conventional letter designations of the risk ratings with the numeric ones proposed by 

us, then it is easy to show that the transition matrices determine the motion of agents in the 

economic domain with a particular velocity (Olkhov, 2017b-2020). Indeed, the transition 

time T from rating xi to rating xj defines the interval lij and velocity υij between xi and xj: 𝑙𝑖𝑗 = 𝑥𝑗 − 𝑥𝑖        ;        𝑣𝑖𝑗 = 𝑙𝑖𝑗𝑇      (B.1) 

Taking probabilities aij of the transition from xi to xj during the time T with a velocity υij (B.1) 

one assesses the mean velocity υ(t,xi) of agent at point xi: 𝑣(𝑡, 𝑥𝑖) = ∑ 𝑣𝑖𝑗𝑎𝑖𝑗𝐾𝑗=1 = 1𝑇 ∑ 𝑙𝑖𝑗𝑎𝑖𝑗𝐾𝑗=1     ;    ∑ 𝑎𝑖𝑗𝐾𝑗=1 = 1  (B.2) 

In (B.2), K means the number of the different numerical risk grades that defines the risk 

transition matrix KxK. Let us apply these relations to the description of the motion of stocks 

of a company q with velocity υ(t,xq) in the economic domain. Each company q with a risk 

rating xq at moment tik with velocity υ(tik,xq) carries its m-th power of trade value Cm
(tik,xq). 
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Hence, similar to (5.5), one obtains the collective flow PC(τk,xm;m) and the collective velocity 

υC(τk,xm;m) of sums of the m-th powers of the trade values as: 𝑃C(𝜏𝑘, 𝑥𝑚; 𝑚) = ∑ ∑ 𝐶𝑚(𝑡𝑖𝑘, 𝒙𝑞)𝒙𝑞∈𝑑𝑉(𝒙)𝑘𝑥𝑁𝑖=1 𝑣(𝑡𝑖𝑘, 𝑥𝑞) = 𝐶Σ(𝜏𝑘, 𝑥𝑚; 𝑚)𝑣C(𝜏𝑘, 𝑥𝑚; 𝑚)  (B.3) 

The collective transport of the trade values defines a new notion: the collective m-th flows 

PC(τk,xm;m) (B.2) of the market trade values CΣ(τk,xm;m) (5.5) and their collective velocities 

υC(τk,xm;m). Below, we consider CΣ(t,xm;m), PC(t,xm;m) and υC(t,xm;m) as the functions of 

continuous time t and variable xm. To derive the equations, let us consider the change of 

CΣ(t,xm;m) in a small interval δX=[xm, xm+dx] during the time dt. Two factors determine its 

change in a small interval δX (Childress, 2009). The first one determines the change in time:  𝛿𝑋𝑑𝑡 𝜕𝜕𝑡 𝐶Σ(𝑡, 𝑥𝑚; 𝑚)       

The second factor determines the change of CΣ(t,xm;m) due to the flows of PC(t,xm;m) (B.2) in 

and out of the small interval δX. Indeed, the velocity υC(t,xm;m) carries in and out the amount 

of CΣ(t,xm;m) and that results in total change of CΣ(t,xm;m) inside δX during dt as: 𝑑𝑡  [ 𝑃C(𝑡, 𝑥𝑚 + 𝑑𝑥; 𝑚) − 𝑃C(𝑡, 𝑥𝑚; 𝑚)] = 𝛿𝑋𝑑𝑡 𝜕𝜕𝑥𝑚 𝑃C(𝑡, 𝑥𝑚; 𝑚) 

As δX and dt are arbitrary small, one obtains the total change of CΣ(t,xm;m) as 𝜕𝜕𝑡 𝐶Σ(𝑡, 𝑥𝑚; 𝑚) + 𝜕𝜕𝑥𝑚 𝑃C(𝑡, 𝑥𝑚; 𝑚) = 𝐹𝐶(𝑡, 𝑥𝑚; 𝑚)   (B.4) 

If one takes xm as a vector xm, then (B.4), results in the well-known Gauss’ theorem (Strauss 

2008, p.179). To derive equations that describe the evolution of the flow PC(t,xm;m) (B.2) one 

should repeat the same derivation and obtain:  𝜕𝜕𝑡 𝑃C(𝑡, 𝑥𝑚; 𝑚) + 𝜕𝜕𝑥𝑚 [𝑃C(𝑡, 𝑥𝑚; 𝑚)𝑣C(𝑡, 𝑥𝑚; 𝑚)] = 𝐺𝐶(𝑡, 𝑥𝑚; 𝑚)  (B.5) 

The factors FC(t,xm;m) and GC(t,xm;m) in the right hand of (B.4; B.5) determine the impact of 

the economic environment on the evolution of the collective trade values CΣ(t,xm;m) (5.5) and 

their flows PC(t,xm;m) (B.2). These factors determine the economic model and the economic 

origin of the evolution of market trade. If one considers the market trades of stocks of 

companies that are under the action of w different risks, then xm becomes the vector 

xm=(xm1,… xmw). The flow PC(t,xm;m), velocity υC(t,xm;m) (B.2), and factor GC(t,xm;m) (B.5), 

also become the vector variables, and equations (B.4; B.5) take the vector forms : 𝜕𝜕𝑡 𝐶Σ(𝑡, 𝒙𝑚; 𝑚) + ∇ ∙ 𝑷C(𝑡, 𝒙𝑚; 𝑚) = 𝐹𝐶(𝑡, 𝒙𝑚; 𝑚)   (B.6) 𝜕𝜕𝑡 𝑷C(𝑡, 𝒙𝑚; 𝑚) + ∇ ∙ [𝑷C(𝑡, 𝒙𝑚; 𝑚)𝒗C(𝑡, 𝒙𝑚; 𝑚)] = 𝑮𝐶(𝑡, 𝒙𝑚; 𝑚)  (B.7) ∇ ∙ 𝑷C(𝑡, 𝒙𝑚; 𝑚) ≡ ∑ 𝜕𝜕𝑥𝑚𝑗𝑤𝑗=1 𝑃Cj(𝑡, 𝒙𝑚; 𝑚) = ∑ 𝜕𝜕𝑥𝑚𝑗𝑤𝑗=1 𝐶Σ(𝑡, 𝒙𝑚; 𝑚)𝑣Cj(𝑡, 𝒙𝑚; 𝑚)  
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∇ ∙ [𝑷C(𝑡, 𝒙𝑚; 𝑚)𝒗C(𝑡, 𝒙𝑚; 𝑚)] ≡ ∑ 𝜕𝜕𝑥𝑚𝑗𝑤𝑗=1 𝑃𝐶𝑖(𝑡, 𝒙𝑚; 𝑚)𝑣𝐶𝑗(𝑡, 𝒙𝑚; 𝑚)   ;    𝑖 = 1, . . 𝑤  

We call (B.4-B.7) equations of the continuous economic media approximation. The left side 

of (B.4-B.7) is the conventional standard form of the continuous media equations, which are 

derived and have been in use for almost a century by any textbook on the physics of fluids 

(Childress, 2009). The economic origin of the model, which differs from any hydrodynamic 

equations, is presented by the right side factors (B.4-B.7), which describe the economic and 

market nature of the continuous economic media approximation. Exactly, the choice of 

FC(t,xm;m) (B.6) and GC(t,xm;m) (B.7) completely differs the model from any comparisons 

with the physics of fluids. 

Equations of motion of the whole stock market 

To derive the equations, which describe the evolution in time of the additive economic 

variables of the stock market, one can take the integrals of (B.6; B.7) by dx over the 

economic domain and obtain ordinary differential equations by time variable only: 𝜕𝜕𝑡 𝐶Σ(𝑡; 𝑚) = 𝐹𝐶(𝑡; 𝑚)    ;     
𝜕𝜕𝑡 𝑷C(𝑡; 𝑚) = 𝑮𝐶(𝑡; 𝑚)   (B.8) 𝐶Σ(𝑡; 𝑚) = ∫ 𝐶Σ(𝑡, 𝒙𝑚; 𝑚) 𝑑𝒙   ;    𝑷C(𝑡; 𝑚) = ∫ 𝑷C(𝑡, 𝒙𝑚; 𝑚) 𝑑𝒙   (B.9) 

Equations (B.8) have a simple form, but their complexities are hidden by the right hand 

factors. The important consequences of the transition from equations (B.6; B.7) to equations 

(B.8) of the whole stock market are tied up with the additional economic variables that 

significantly impact the economic dynamics. As an example, we mention the mean risk 

linked to a particular economic variable. Let us take the sums of the m-th power of trade 

values CΣ(t,xm;m) and consider the mean m-th risk XC(t;m) determined as: 𝑿𝐶(𝑡; 𝑚) 𝐶Σ(𝑡; 𝑚) = ∫ 𝒙𝑚 𝐶Σ(𝑡, 𝒙𝑚; 𝑚) 𝑑𝒙𝑚 

For each m=1,..n, the vector XC(t;m)=(xC(t;1),… xC(t;J)) determines the mean risks of sums 

of the m-th power of trade values CΣ(t;m) in the unit cube [0,1]J. The dynamics of its 

components xC(t;j) for j=1,..J in time can be described as fluctuations in the interval [0,1]. 

The fluctuations of the mean risk XC(t;m) of the sums of the m-th powers of trade values 

CΣ(t,xm;m) describe the market cycles, which are similar to the business cycles, credit cycles, 

and so on. The mean risks of trade values CΣ(t,xm;m) differ from the mean risks of the sums 

of the m-th powers of trade volumes UΣ(t,xm;m) or mean risks linked with other collective 

economic variables. The hidden dynamics of mean risks describe important properties of 

market trade evolution that are almost completely missed by current economic models. 
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