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Abstract

Drawing on input-output data, a computational methodology is proposed to: (i) characterize the upstream

and/or downstream network of a targeted (or prioritized) sector i , (ii) uncover the cascade of layers of links in the

network constructed, and (iii) measure the degree of network resilience using edge betweenness centrality measure

of edges between communities. These objectives are accomplished through three complementary algorithms. The

implementation of the algorithms is illustrated using Turkiye's 2018 input-output production network. Ways to

design policies are discussed from a network perspective. The key �ndings are three-fold. First, in network-based

policy design, it is highly critical to consider the interdependencies of regulated and seemingly competitive sectors.

E�ciencies gained in liberalized markets via pro-competitive PMR can easily be wasted before �nal consumers

bene�t from them as regulated industries may exercise their market power to con�scate part of the e�ciency

gain created in competitive markets. Improved competition in a single market may not generate the desired

outcome even if competition policies perfectly support that market because bene�ts from competition may not

spread over the rest of the network due to disruptions in the cascade of interdependencies concerned. Second, a

network-based policy design should start with the identi�cation of the � dominant � source and the �subordinate �

sink sector(s), and those in between. The source� sink structure of Turkiye's manufacturing network illustrates

that the manufacturing sector is the most dominant, whereas telecommunications and transport, energy and

construction sectors are the potential sinks where large chunk of input �ow ends up. Agriculture, �nance and

oil extraction-mining seem to be interactive sectors. Third, the cascade of three layers of links are identi�ed,

and the upstream network of the manufacturing sector is found to have a mediocre level of resilience against the

complete disruption of the intermediate layer of the network.
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1 Introduction

Drawing on input-output data, a computational methodology is proposed to: (i) characterize the upstream and/or

downstream network of a targeted (or prioritized) sector i , (ii) uncover the cascade of layers of links in the network

constructed, and (iii) measure the degree of network resilience using edge betweenness centrality measure of edges

between communities. These objectives are accomplished through three complementary algorithms. The imple-

mentation of the algorithms is illustrated using Turkiye's 2018 input-output production network. Ways to design

policies to enhance the productivity of the manufacturing sector(MA 2) are discussed from a network perspective.

Together, these algorithms automate the analysis ofMA 2 from a production network perspective. Applications

may focus on a single sector or multiple sectors. The automated sector analysis starts with targetingMA 2 by

extracting pathways of critical backward binary links, all of which represent the upstream network of MA 2. The

analysis continues with the identi�cation of cascade of layers of critical backward binary links in MA 2's upstream

network. Understanding the cascading structure of sectors in its network is important as it provides a di�erent

approach to analyzing the interaction between the layers of sectors in its network. Here, the focus shifts from

pathways of individual sectors to the interaction of the layers (or groups) of sectors. The former analysis characterizes

the role of the binary sectoral links and their importance along each pathway for productivity improvement in

MA 2. However, the latter analysis characterizes the role of layers of links and their importance for improving

the productivity in MA 2. In the �nal stage, the resilience of MA 2's upstream network is measured using edge

betweenness centralities of the edges in between the communities. (The evolution of these communities over the

period 2005-2018 is explored in the following sections.) We make use of the idea that the more connected a network

is, the more resilient it is. In line with this idea, the average of edge betweenness centralities over between-community

edges of the network is assumed to approximate the degree of the connectedness of the network.

The methodology developed provides critical information on the key network characteristics ofMA 2, and hence,

can be regarded in general as an ex-ante policy design tool for assessing economic growth policy alternatives. From a

network perspective, policy design is a multi-sectorial challenge, and is key for enhancing the quality and e�ectiveness

of policies and strategies, and for increasing return on public and private investments. Many developing countries

adopt policies to selectively target economic sectors to facilitate economic growth. Targeting a speci�c sector is

desirable especially for a government with limited �scal space as it needs to intervene and support its sectoral

production. The methodology introduced is applied to systematically analyze the production environment ofMA 2,

uncovering its network properties that can be exploited in the design of economic growth policy interventions.

Industrial policy design, for example, can be informed of the characteristics of the backward and forward linkages

of MA 2 and their relations with the rest of the production network.

A growing number of studies in the literature models production networks to investigate the mechanisms that

create shocks to aggregate output. Most suggest that distortions at upstream �rms or industries create cascade of

avalanches hitting the key downstream sectors characterized by substantial resource misallocation (ine�ciencies) and

then the process works backward resulting in additional distortions in the upstream sectors [1, 16, 17]. Interactions

between sources of distortions and sinks where they land represent the mechanisms that need better understanding.

Those studies fall short of developing methods to identify the critical pathways of interactions among industries,

although they highlight the key role that highly central industries play in the creation of shocks at the macro

level. In the present paper, we develop an automated computational method to uncover hidden patterns of industry

or sector interactions in relation to a targeted (prioritized or central) sector, further dig into those patterns to

characterize cascades of the interactions, and propose a measure of network resilience based on the centrality scores

of linkages along the cascade. The logical extension of our paper is that, once identi�ed and characterized, the

pathways and cascade can be managed by policy reforms targeting speci�c pathways or cascade of links, as well
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as network constructs such as communities. More speci�cally, given the production network of the targeted sector

or industry, the communities and their interactions represent units of investigation for policy reforms aimed to

avoid the cascading e�ects of distortions on aggregate output. Such a thinking process assumes that the dynamics

of a production network are endogenous to institutional arrangements and type and e�ectiveness of the policies

implemented. The framework explained in what follows is a mere conceptualization of the idea that institutions

and policies have the power to in�uence the dynamics of the production network.

The key �ndings are three-fold. First, in network-based policy design, it is highly critical to consider the

interdependencies of regulated and seemingly competitive sectors. E�ciencies gained in liberalized markets via

pro-competitive PMR can easily be wasted before �nal consumers bene�t from them as regulated industries may

exercise their market power to con�scate part of the e�ciency gain created in competitive markets. Improved

competition in a single market may not generate the desired outcome even if competition policies perfectly support

that market because bene�ts from competition may not spread over the rest of the network due to disruptions in the

cascade of interdependencies concerned. Second, a network-based policy design should start with the identi�cation

of the �dominant � source and the �subordinate� sink sector(s), and those in between. Thesource� sink structure of

Turkiye's manufacturing network illustrates that the manufacturing sector is the most dominant, whereas telecom-

munications and transport, energy and construction sectors are the potential sinks where large chunk of input �ow

ends up. Agriculture, �nance and oil extraction-mining seem to be interactive sectors. Third, the cascade of three

layers of links are identi�ed, and the upstream network of the manufacturing sector is found to have a mediocre

level of resilience against the complete disruption of the intermediate layer of the network.

The paper is organized in eight sections. Following the Introduction, Section 2 proposes a conceptual framework

for exploring how pro-competitive product market reforms (PMR) can a�ect the structure of a production network

is such a way as to deliver the desired outcomes. Section 3 provides a critical overview of recent studies in policy

design from a network perspective. Section 4 develops a computational methodology based on the application of

three complementary algorithms aimed to characterize the network of a targeted sector. We show how to identify

the upstream network of a targeted sectorMA 2, construct the cascade of layers of links in the network, and

measure the network resilience against disruptions. Section 5 overviews the properties of the 2018 input-output

production network of Turkiye. Section 6 implements the algorithms and discusses the key �ndings in relation to

potential productivity e�ects of pro-competitive PMR in Turkiye. Section 7 discusses how to use the �ndings in the

formulation of network-based PMR to improve the e�ciency of the upstream network of MA 2. Finally, Section 8

concludes the paper with some suggestions for future research.

2 A framework for network-based policy design

From a network perspective, production is considered as the culmination of the dynamic interaction of various

sectors along pathways of links. The realization of a given pathway depends on the implementation of right policies

and the availability of productive capacities required by the sector linkages along that pathway. Therefore, an

insu�cient or a missing capacity and/or a distortionary policy will hinder, if not block, the realization of the entire

pathway. The focus should, therefore, be on the simultaneous acquisition of sector- and network-speci�c productive

capacities, as well as the implementation of right policies.Table 1 presents a logical framework (mathematically

expressed in Equ. 1) to motivate the relation between network constructs (such as upstream/downstream pathways,

cascades of layers, community structure, etc.) and their potential productivity e�ects on the targeted sector i as

a response to network-based policy reforms. Examples of regulatory arrangements are also given to show how to

improve the productivity of a targeted sector.
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In our context, the key question is the identi�cation of markets and policy reforms that are likely to enhance

most the network dynamics of sectori . To describe it formally, the production of sector i within an input-output

production network, denoted by N , depends on changes in �ve factors:

Yi = N i f (K i (C); L i (C); M i (C) j Y� i ); (1)

N i denotes an exogenously (exogenous to sectori ) evolving network construct (such as a pathway of sector links, or

a cascade of links, or a community where sectori is a member of) implied by targeting sectori ; N i = n(Pi ) assumes

that market institutions and competition policy reforms (Pi ), which are related to binary links in the upstream

network of sector i , can in�uence the dynamics of the network construct; C, general purpose productive capacity

that augments production inputs, capital K i and labor L i . M � i denotes a vector of intermediate inputs that sector

i purchases from the rest of the economy (including the use of its own output as input).Y� i denotes an exogenous

vector of outputs of the rest of the economy, in�uencing the output of sector i through pathways of sector linkages.

Note that technological change is embodied in productive capacities.

Unfortunately, there is no shortage of economic policies that directly or indirectly a�ect the quality of sectoral

interactions, and hence, the dynamics of production network. This paper focuses on the implications of market

reforms and competition law (or anti-trust law) and policy (henceforth, policy reforms) for the e�ciency of sectoral

productions. We conjecture that the e�ciency depends not only the implementation of good policies promoting

competition but also the properties of the production network. Competition law and policy aims to create an

enabling environment - a level playing �eld - that facilitates the meeting of (topologically) distant, and possibly

disadvantaged, producers, and in doing so, increases their production possibilities. In other words, competition

process works e�ectively if new producers enter the market, compete on the merits and do not bene�t from undue

advantages. Regarding the network properties, connectedness of producers is only one of the properties that

improves e�ciency. (Network connectedness is measured as the ratio of the number of actual binary links to total

number of potential links in the network.) The higher the degree of network connectedness, the faster the �ow

of price and quantity information and the easier sectors in the market concerned will be able to meet their input

suppliers to trade. Since, in a connected network, the �ow of information and sector interaction take place in a

speedy manner, the likelihood of a sector to meet its input supplier is high. This line of argument suggests that

connectedness should promote competition. Since competition calls for markets to be connected, network-based

reforms and policies that this paper advocates should facilitate the connectedness of the production network.

Competition policy a�ects the dynamics of production network through removing anti-competitive regulations

- enabling contestability, �rm entry, and rivalry - enforcing anti-trust laws to regulate cartel agreements that

raise the costs of key inputs and �nal products. Preventing anti-competitive mergers, abuse of dominance, and

ensuring competitive neutrality are among other policy options that bene�t consumers through competitive pricing.

Pro-competitive product market reforms (PMR) are designed to achieve public policy objectives by minimizing

dominance or entry restrictions or rules that are conducive to collusive outcomes or costs to compete in the market,

as well as by removing the conditions that create favorable environment for certain sectors or distortions at the level

playing �eld. Such reforms also aim to remove regulatory barriers to competition, including, but not limited to,

minimum capital requirements, increased cost of doing business, protection of incumbents, excessive restrictions on

the expansion of and potential discrimination against more-e�cient �rm, and burdensome requirements to obtain

operating permits.

In recent empirical research, competition and the institutional set up behind it have been found to be an

important determinant of total factor productivity growth at the industry and �rm levels [12, 25, 15, 1, 9, 3].

More speci�cally, pro-competitive PMR - policies and institutions that intensify product market competition - are
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found to increase productivity by reducing the market share of less e�cient �rms, increasing the incentive of �rms

to reduce costs, and stimulating entry by new low-cost �rms. PMR that reduce barriers to entry in regulated

industries (EGW , T SC, W HS, EST) are also found to increase the productivity as their general purpose outputs

tend to be widely used as inputs elsewhere in the economy. There are systematic and plausible di�erences in the

e�ects of PMR across �rms of di�erent size across the di�erent industries. In network industries, small �rms tend

to bene�t most from pro-competitive PMR, while larger ones downsize to reduce costs and maintain market share.

Deregulation yields positive spillovers on �rms in downstream industries through input-output linkages. Research

also �nds that lower service regulation in professional services and energy provision (EST, EGW ) increases value

added, productivity, and export growth in downstream service intensive industries.

Most empirical research focused on the competition-productivity link within a sector (or market). Yet, expected

rents from innovation or technology adoption and the corresponding within-sector incentives to improve productivity

may be reduced by lack of competition in upstream sectors that sell intermediate inputs that are necessary to

production in downstream sectors [17, 13, 16]. In other words, if there is market power in upstream sectors and if

�rms in downstream industries have to negotiate terms of their contracts with suppliers, part of the rents expected

downstream from adopting best-practice techniques will be con�scated by intermediate input suppliers. This will

in turn reduce incentives to improve e�ciency and curb productivity in downstream sectors, even if competition

may be thriving there. Moreover, lack of competition in upstream sectors can also generate barriers to entry that

curb competition in downstream sectors as well, further reducing pressures to improve e�ciency in these sectors.

For example, overly restrictive regulation in banking and �nance (F IN ) can reduce the range of available sources

of �nancing for all �rms in the economy.

The �rst line of empirical research suggests from a single sector perspective that productivity improvement is

merely an outcome of pro-competitive PMR. The second line of research, however, takes a broader view from a

network perspective that the structure of production network is important to determine the productivity e�ects

of PMR. By stressing the role of intermediary network mechanisms between policy reforms and productivity, the

current study adopts the latter perspective to characterize endogenous network constructs promoting productivity.

The network structure can change over time through PMR and regulations to the extent that they a�ect three

processes (which are used in [7]'s model of network formation). The �rst is the permanent bankruptcy of a �rm;

the second, reconnecting of surviving �rms; and the third, emergence of new �rms. The structure of a production

network with these growth and decay features in which links and �rms appear and disappear probabilistically

can be approximated using the model network. Here, the important point is to predict the probabilities for each

ex-ante PMR and regulation to in�uence the three processes described. The current study does not predict such

probabilities but give an assessment of PMR with respect to their potential impact on the performance of sectors

in the production network.

3 Related literature

This paper contributes to the growing toolbox of policy analysts, developing an automated, computational method-

ology to explore the dynamics of an input-output production network. Drawing on the properties of the network

constructs given in Table 1, it then illustrates how to study the implications of these properties for aggregate

production, elaborates on the design of network-based policies that improve the existing network architect for in-

creasing productivity and reducing the risk of disruptions [46]. Our conceptual framework given in Equ. 1 is a mere

summary of what we aim to achieve in this paper.

Recent theoretical studies elaborate on how pathways of input-output linkages in a production network are
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Table
1:

A
fram

ew
ork

for
linking

netw
ork

structure
and

p
olicy

reform
s

Network construct
n(:)

Markets and competition
policy (P )

Productivity e�ects Regulatory barriers

Identify critical
upstream and
downstream
networks of a targeted
sector to enhance its
productivity;

� To improve network
structure through free entry
of �rms; e�ective mechanisms
& increased capacity for
input-output �ow; promoting
new binary links; strengthening
weak links along the pathways
between an intervention and a
targeted sector;
� To improve allocative
e�ciency by allowing e�cient
�rms to enter/gain market
share;

Competitive product markets for
essential inputs to other industries
would yield spillover e�ects across the
economy. Upstream regulatory
improvements would generate
growth in downstream industries using
those inputs through a reduction in
the restrictiveness of such upstream
input services, i.e., �nance (FIN),
business (EST), construction (CST)
and transportation-ICT (T SC), etc.

Sector speci�c anti-competitive regulations
and lack or ine�ective enforcement of
anti-trust law would reduce TFP of sectors
along the upstream pathways and supply of
output along the downstream pathways.
Examples of reforms to address such barriers
hindering TFP include entry liberalization and
deregulation of the TSC, the removal of price
control on legal services in professional services
(EST), and pro-competition regulatory reforms
to increase labor productivity in retail sector
(WHS).

Uncover the
community structure
of the upstream and
downstream networks;

� To increase
connectedness within and
between communities
through promoting the
development of new links and
linkage capacities;

Avoiding bottlenecks or disruptions
along the pathways of sectoral
interactions is conducive to positive
spillover e�ects from
between-community interactions.

Community speci�c anti-competitive
regulations reduce coherence of sectoral
interactions within a community, leading to its
disintegration; Biased regulations against more
e�cient �rms and protecting incumbents
promote resource mis-allocation across sectors
and communities;

Identify layers of
binary links around a
sector critical for
productivity;

� To avoid or reduce the
spreading of adverse e�ects
of a shock to a binary link
and/or respective sectors;

Sectors along the �rst layer
surrounding the targeted sector and
upstream regulations across that
layer would ensure continuity of
critical production links.

Layer speci�c anti-competitive regulations
would risk the survival of the targeted sector in
case of a shock to structural (�rst layer) and
facilitating links and/or the sectors involved;

Characterize binary
links and/or the
involved sectors along
the upstream and
downstream path-
ways/layers/communities;

� To promote the creation
of an enabling environment
in which those critical
links/sectors cannot take
advantage of their positions
along a pathway or within a
community or a layer;

Improved understanding of the roles
of structural, ancillary, facilitating,
and restrictive links in a production
network allows for e�ective design of
competition policy to avoid
dominance of weak links/sectors
along a pathway/community/layer;

Along pathways/communities with weak
links/purely complementary links, c ompetition
law are be complemented by ex-ante
sector regulations to avoid failure in the
input-output �ow; and prevent potentially
anti-competitive links to exercise
dominance ;
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likely to amplify the adverse e�ects of distortions in upstream industries and their cascading e�ects sooner or later

hit downstream production units [29, 16, 2, 1, 17, 10]. The promise of production networks is to view aggregate

shock as the endogenous outcome of micro shocks propagating across input linkages. Production networks have

also been studied to analyze the economy-wide e�ects of disruptions in value and supply chains [47, 33, 52, 42],

to design innovation policies to promote technology, innovation and knowledge communities [30, 37, 18, 4, 14, 45],

and to better understand the dynamic interaction between endogenous credit limits and asset prices as a powerful

transmission mechanism through which cascading liquidity shocks spill over to other sectors [34]. (This is important

for the stable link betweenF IN and MA 2 along which the e�ects of a distortionary interaction between sub-optimal

credit limits and ine�cient asset prices will lead to misallocation of resources in MA 2.) Although the objectives of

these studies vary somewhat, their main focus has been on developing policy diagnostic tools to identify network-

wide systemic problems/ine�ciencies and design polices to encounter them. In essence, our methodology is similar

in purpose to some of these studies but also di�ers from them in that we develop an automated, computational

method to uncover hidden patterns in a production network and develop a measure of network resilience with

respect to disruptions in the linkages of a given sector [50].

Our methodology is one-little contribution to the stock of computational data analysis methods, with an appli-

cation to economic policy design motivated by the production network dynamics. Graph-theoretic principles and

concepts serve as the core elements of our algorithms to learn from large data sets [39, 40, 11]. Production network

data is one such dataset that is often exploited to identify complex patterns of critical relations and learn from them

to improve policy design [7, 17, 35]. The point of departure from conventional statistical methods is the shift from

the signi�cance of relations between factors to the signi�cance of relational patterns, such as community, clique,

shortest path among others [48, 40, 44, 23, 28]. The community detection algorithms have been widely applied

to identify technology, innovation, knowledge, and production communities [37, 31, 22]. Weitz et. al. [51] apply

network analysis to assess contextual interactions of Sustainable Development targets of the 2030 Agenda of the

UN with a view to designing economic development policies. The analysis derives information on targets with the

most and least positive in�uence on the development process, guiding policy e�orts towards more productive areas.

Our conceptual framework speci�ed by Equ. 1 conjectures that pro-competitive PMR and regulations can

reshape the production network by minimizing dominance or entry restrictions or rules that are conducive to collusive

outcomes, as well as by removing the conditions that create favorable environment for certain sectors or distortions

at the level playing �eld. Such regulations also aim to remove regulatory barriers to competition, including,

but not limited to, minimum capital requirements, increased cost of doing business, protection of incumbents,

excessive restrictions on the expansion of and potential discrimination against more-e�cient �rm, and burdensome

requirements to obtain operating permits. Using �rm-level data and sectoral information on input-output linkages,

Gal and Hijzen (2016) analyze the productivity e�ects of pro-competitive PMR in regulated industries (EGW ,

T SC, W HS, EST). PMR are found to increase the productivity as their general purpose outputs tend to be

widely used as inputs elsewhere in the economy [25]. There are systematic and plausible di�erences in the e�ects of

PMR across �rms of di�erent size across the di�erent industries. More speci�cally, in network industries, small �rms

tend to bene�t most from pro-competitive PMR, while larger ones downsize to reduce costs and maintain market

share. The �ndings con�rm the positive e�ect of PMR on downstream �rms through backward linkages within

the same country, but also provide some indication that these e�ects also extend to �rms abroad. Likewise, the

economic e�ects of major PMR are also studied by [12] in some of the historically most protected non-manufacturing

industries (electricity and gas, land transport, air transport, postal services, and telecommunications). They �nd

that reductions in barriers to entry yield large increases in output and labor productivity over a �ve-year horizon.

Providing a clear case for intensifying PMR e�orts in economies with weak growth prospects, these �ndings also

rationalize the potential emergence of new network constructs to further a�ect aggregate output growth.
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Product market imperfections, such as legal barriers to entry in some non-manufacturing markets, that curb

competition in upstream sectors will negatively a�ect the productivity of downstream sectors [13]. Trickle-down

e�ects work through two main channels. Firstly, anticompetitive regulations in an upstream sector can reduce

competition downstream if access to downstream markets requires using intermediate inputs produced upstream.

For example, if �nancial market regulations narrow the range of available �nancial instruments, access to �nance

by downstream sectors can be made di�cult, thereby curbing new entry and �rm growth. Secondly, even if

anticompetitive upstream regulations do not restrict market access downstream, they can still curb incentives to

improve e�ciency in downstream sectors. If markets for intermediate inputs are imperfect, downstream sectors may

have to negotiate with suppliers. In this case, regulations that increase suppliers market power can reduce incentives

to improve e�ciency downstream, as part of the rents that downstream �rms expect from such improvements will

have to be shared with suppliers of the intermediate inputs that are necessary for downstream production. While

most analyses of this issue have focused on the e�ects of these regulations on the productivity of the sectors

directly concerned, the main point is that such regulations can also have powerful indirect depressing e�ects on

the productivity of other sectors through input-output linkages. Barone and Cingano (2011) study the e�ects of

anti-competitive service regulation by examining whether OECD countries with less anti-competitive regulation see

better economic performance in manufacturing industries that use less-regulated services more intensively [9]. They

�nd that lower service regulation increases value added, productivity, and export growth in downstream service

intensive industries. The regulation of professional services and energy provision (EST, EGW ) has particularly

strong negative growth e�ects in service dependent industries.

Delalibera et. al. (2023) is closely related to our paper in that they analyze the e�ects of economic policy

reform - tax policy reform replacing heterogeneous tax rates by a single VAT rate applicable to all sectors in

Brazil - from a production network perspective [20]. The structure of production network is shown to deliver some

relevant results that would be impossible to observe in a standard model. The upstreamness metric developed

by [5] is used to understand how the tax reform changes the distance of sectors to �nal demand, that is, the

reform changes the structure of the network. The complete tax reform is reevaluated taking into account some

cases where groups of sectors - communities - can be subsidized or taxed more heavily. For example, the sectors

with the highest carbon emissions can be taxed more heavily for the reason that the most important sectors of

the economy are those with a strong link within the production pathway, that is, those with a high demand for

inputs and which are critical suppliers to other sectors (such asMA 2). Atalay et. al. (2011) develops a model of

network formation that better matches the attributes, such as the connectivity distribution, of an actual economic

network [7]. Using processes for �rm death, reattachment of its links among surviving �rms, and a mix of the

preferential attachment mechanisms and random attachment, the model matches observed macro distribution of

�rm connectedness. Comparing the model and actual networks provides information on how much the actual

network is away from the model network. Knowing the di�erences and/or similarities between the two networks is

important for designing PMR and regulations aimed to reform a priority sector or a community of sectors that are

in its immediate neighborhood.

4 A computational methodology

In what follows, we explain the steps involved in the development of three complementary algorithms. We start with

the extraction of pathways based on backward binary links (Algorithm I), continuing with the extraction of cascade

of layers of groups of binary links (Algorithm II), and ending with the measurement of network resilience (Algorithm

III), that is, the stability of the connectedness of binary links. Information derived from the implementation of the
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algorithms is an important input for the analysis of a targeted (usually prioritized) sector's production network.

Summarized inTable 2, the key features of three algorithms should provide us with information for evidence-based

policy design.

4.1 Algorithm I. Targeting a sector

This algorithm establishes a subgraph in which targeted sectori 's upstream (backward or supply) and downstream

(forward or demand) linkages are combined to analyze sectori 's input and output structure. The Leontief inverse

matrix represents backward linkages of a production system of an economy, derived from the proportion of input

purchases in total output. Likewise, the Ghosh inverse matrix represents forward linkages of an intermediate con-

sumption system of an economy, derived from the proportion of output sales in total �nal demand. Forward linkages

measure changes in output values in response to changes in primary input prices [21,?]. Following Loviscek (1982),

both backward and forward linkages are concurrently used in order to obtain an accurate picture of interindus-

try input-output structure [36]. In case of sector i , for example, this algorithm identi�es the pathways of input

providers to sector i (i.e., upstream to sector i ) and of consumers of sectori 's output (i.e., downstream to sector i ).

By integrating supply and demand-side information, the Algorithm establishes a uni�ed network of sector i .

The link-wise cascading structure constructed byAlgorithm I starts with targeting sector i . In the �rst step,

the immediate input providers of sector i are identi�ed. In the second step, the input providers of sector i 's

immediate input providers are identi�ed and so on. This process would result in layers of binary links, and each

layer be associated with a sector that has bearing on sectori 's production. From the graph-theoretic perspective,

one-edge links of sectori to its immediate input providers de�ne upstream links, which are regarded as sectori 0s

structural connections. The upstream cascading arises when sectori is connected to immediate input providers of

its own immediate input providers through two-edge pathways (i.e., two steps away from sectori ). Such a cascading

behavior may extend to three-edge, four-edge or higher order links between sectori and the rest of the network.

For purposes of clarity, an example input-output (IO) matrix in Table 3 is used to demonstrate step-by-step the

implementation of Algorithm I. This matrix consists of �ve components. The �rst is an intermediate consumption

sub-matrix ( X ) with �ve sectors, { A , B , C, D , E}, as users and suppliers:

The second is a column-vector of �nal consumption (Y ); the third, a column-vector of total demand ( X D ); the

fourth, a row-vector of value-added (VA ); and the �fth, a row-vector of total supply ( X S ). Sub-matrix X and

total output supply X S are used to calculate the backward technical coe�cients matrix, Ab = [ X ij =X j
S ] (seeTable

4(2)). The Leontief inverse matrix, M b[m] � (I � Ab) � 1, de�nes the so-called backward multiplier matrix with m

denoting elements of this matrix, whereI stands for an identity matrix with dimension (5; 5) (seeTable 4(3)). For

notational simplicity, we denote M b[m] � M b. In order to focus on the analysis of inter-sectoral connectivity, the

diagonal cells inM b[m] are replaced with zeros; that is,M b � diag[M b] (seeTable 4(4)).1 The matrix, M b[x], in

Table 4(5) is obtained through column-wise standardization ofM b � diag[M b]. In doing so, individual multipliers

of a user sector are adjusted to re�ect the relative importance of a supplier in the output multiplier of the user

sector. The standardized matrix M b[x] is the only input used in targeting a sector by setting an arbitrary threshold

signi�cance level (for example,0:25 � x) with x being matrix elements greater than or equal to 0.25. The matrix

M b(0:25 6 x) given in Table 4(6) is a reduced form ofM b[x], which includes only the cells greater than or equal

to 0.25. Suppose that a user sectorA is targeted to identify the entire chain of its direct and indirect suppliers

1The diagonal elements of the multiplier matrix are set to be equal to zero, in order to focus on the inter-sectoral connectivity. An
empirical regularity is that a large majority of IO multiplier matrices are diagonally dominant as their diagonal multipliers are larger
than one. The reason is that a sector produces part of its total input demand in addition to the production of inputs demanded by the
rest of the sectors in the economy. Miller and Blair (2009, pp. 90-96) explain this within inter-regional IO framework, and Henderson
and Evans (2017) explains the same issue with an example IO matrix <https://www.fwrc.msstate.edu/pubs/implan_2017.pdf>.
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Table
2:

Interrelationships
am

ong
three

A
lgorithm

s
and

inform
ation

for
p

olicy
analysis

Inputs Computations Outputs
Information for evidence-based
policy analysis

Algorithm I A national
input-output
(IO) matrix

ˆ Leontief inverse matrix (M b);

ˆ Output multiplier matrix,
M b(� 1; � 2), in the multiplier
range (� 1 � mb � � 2) with
mb 2 M b;

ˆ Ghosh inverse matrix (M f );

ˆ Demand multiplier matrix,
M f (� 1; � 2), in the multiplier
range (� 1 � mf � � 2) with
mf 2 M f ;

ˆ Targeting sector i by using
M b(� 1; � 2) and M f (� 1; � 2);

ˆ Upstream network of
sector i ,
gU

i (� 1; � 2) � gU
i ,

obtained from
M b(� 1; � 2);

ˆ Downstream network
of sector i ,
gD

i (� 1; � 2) � gD
i ,

obtained from
M f (� 1; � 2);

ˆ Characterize the two
networks, gU

i and gD
i , to

uncover the key properties of
the IO matrix by exploring
community structures,
between-community linkage
patterns, shortest paths
between policy reform (source
sector j ) and policy impact
(sink sector i ), dominant and
subordinate sectors, strong
and weak linkages, etc.

Algorithm II Directed
subgraph gU

i ˆ Disentangle layers of links
from gU

i by implementing
Mathematica
NeighborhoodGraph[gU

i , i ];

ˆ Construct a cascade of layers:
f L 1

i ; L 2
i ; L 3

i ; :::g;

ˆ A hierarchical, directed
network of the cascade;

ˆ Design policy interventions to
avoid network disruptions in
case of a shock to a given
layer;

ˆ Develop strategies to manage
network volatility in case of
extreme events;

Algorithm III Directed
subgraph gU

i ˆ Identify community structure
and between-community
edges (BCE) ofgU

i ;

ˆ For each BCE, compute the
proportion of shortest paths
in gU

i ;

ˆ A measurement of
resilience ofgU

i based
on individual links and
the group of
between-community
links;

ˆ Design policy interventions to
avoid network disruptions in
case of a shock togU

i ;

ˆ Develop strategies to manage
network volatility in case of
community-speci�c extreme
events;

10



Table 3: An example input-output matrix

users
A B C D E Y XD

suppliers

A 10 60 5 9 12 4 100
B 20 30 40 30 30 50 200
C 10 20 20 90 60 200 400
D 30 12 24 120 90 324 600
E 6 24 12 21 15 222 300

V A 24 54 299 330 93
X S 100 200 400 600 300

(i.,e input suppliers of user sectorA ) side; that is, to identify the entire pathway (or chain) of upstream sectors

of user A .

Using backward multipliers in M b represents half through the targeting exercise because a backward linkage

de�nes only the input providers of a targeted sector. To be complete, other half should be based on forward

multipliers in M f [m] � (I � A f ) � 1 (the so-called Ghosh inverse matrix) as a forward linkage de�nes the output

linkage of the targeted sector (seeTable 5(3)). For notational simplicity, we use M f . The only di�erence between

the derivation of backward and forward multipliers is that the latter uses the forward coe�cients matrix, A f =

[X ji =X j
D ], given in Table 5(2) to calculate the row-wise standardized matrix,M f [x] (seeTable 5(5)). The matrix

M f (0:25 6 x) in Table 5(6) is a reduced form ofM f , which includes only the cells greater than or equal to 0.25.

Suppose that a supplier sectorA is targeted to identify the entire pathway (or chain) of its direct and indirect

users (i.,e consumers of output produced by supplier sectorA ); that is, to identify the entire chain of downstream

sectors of supplierA .2

Having derived the backward and forward reduced forms,M b(0:25 6 x) and M f (0:25 6 x), the next step is to

combine them to identify the upstream and downstream pathways of targeted sectorA , and map these pathways

as a single network with a view to examining the connectivity of the upstream and downstream sectors ofA .

Replicating the targeting exercise for the rest of the sectors in the IO matrix would generate �ve networks, one for

each sector. In what follows, the algorithm for computing and mapping the upstream and downstream networks of

A is described in three steps using the example IO matrix.3

Step 1 (using M b(0:25 6 x): At an arbitrarily set signi�cance level, 0.25, from input side , we target user

sector A associated with the1st column of M b(0:25 6 x). This means that those numbers equal to or greater than

0.25 in the 1st column are considered as signi�cant enough from the user perspective, in which case there are two

signi�cant linkages. One is from B to A with a coe�cient of 0.27 (denoted as B ! A), and another is from D to

A with a coe�cient of 0.41 (denoted by D ! A).4 Then, moving to the 2nd column associated with user sectorB ,

2The reader is referred to [38] for an extensive description of how to use input-output matrices in policy analysis.
3The Algorithms have been developed by the authors. Mathematica Codes developed at

<https://mathematica.stackexchange.com/questions/210169/how-can-i-generate-a-tailor-made-directed-graph-from-a-given-matrix>
have been extended to identify cascades of links and compute network resilience. The extended Algorithms will be available upon
request. Many thanks go to @kglr in Mathematica forum for his valuable programming support.

4The technical terms used throughout the report warrant clari�cations. A pathway of sectors is used to mean a set of directed
binary links (one-to-one), connection of which generates a �ow from a source to target sector. For example, given a 2-edge pathway
of three sectors, f MA 1 ! CST ! EST g, there are two binary links, f MA 1 ! CST; CST ! EST g, each one of which shows a link
(! ) established between two sectors only. Along this 2-edge pathway, MA 1 represents a source, and EST a target. These de�nitions
distinguish a pathway from a binary link. These de�nitions imply that the minimum length of a pathway is 2 edges. A directed arrow
(! ) indicates the direction of �ow of either money or material or in�uence. In the context of an upstream (downstream) pathway, a
binary link MA 1 ! CST implies that CST receives material inputs (outputs) from MA 1 or that MA 1 supplies the inputs (output)
that CST uses (consumes) in its production process. The terms, supply network and production network, are used interchangeably to
refer to a collection of sectors that exchange material inputs used in their production processes. A k-edge pathway refers to a pathway
consisting of k binary links. For example, k=3 implies a set of binary links, f MA 1 ! CST; CST ! EST; EST ! W HS g, and a
3-edge pathway, f MA 1 ! CST ! EST ! W HS g.
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Table 4: Input-output matrix: Backward multipliers

X
A B C D E

A 10 60 5 9 12
B 20 30 40 30 30
C 10 20 20 90 60
D 30 12 24 120 90
E 6 24 12 21 15

Ab = [ X=X S ]
A B C D E

A 0.10 0.30 0.01 0.02 0.04
B 0.20 0.15 0.10 0.05 0.10
C 0.10 0.10 0.05 0.15 0.20
D 0.30 0.06 0.06 0.20 0.30
E 0.06 0.12 0.03 0.04 0.05

M b[m] = ( I � Ab) � 1

A B C D E
A 1.26 0.48 0.08 0.07 0.14
B 0.38 1.37 0.17 0.13 0.24
C 0.30 0.30 1.12 0.25 0.36
D 0.58 0.39 0.15 1.34 0.52
E 0.16 0.23 0.07 0.08 1.12

(1) (2) (3)

M b � diag[M b]
A B C D E

A 0 0.48 0.08 0.07 0.14
B 0.38 0 0.17 0.13 0.24
C 0.30 0.30 0 0.25 0.36
D 0.58 0.39 0.15 0 0.52
E 0.16 0.23 0.07 0.08 0

Total 1.43 1.40 0.46 0.54 1.26

M b[x]
A B C D E

A 0 0.34 0.17 0.14 0.11
B 0.27 0 0.36 0.25 0.19
C 0.21 0.22 0 0.46 0.28
D 0.41 0.28 0.33 0 0.41
E 0.11 0.16 0.15 0.15 0

M b[0:25 � x]
A B C D E

A 0 0.34 0 0 0
B 0.27 0 0.36 0.25 0
C 0 0 0 0.46 0.28
D 0.41 0.28 0.33 0 0.41
E 0 0 0 0 0

(4) (5) (6)
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Table 5: Input-output matrix: Forward multipliers

X
A B C D E

A 10 60 5 9 12
B 20 30 40 30 30
C 10 20 20 90 60
D 30 12 24 120 90
E 6 24 12 21 15

A f = [ X=X D ]
A B C D E

A 0.10 0.60 0.05 0.09 0.12
B 0.10 0.15 0.20 0.15 0.15
C 0.025 0.05 0.05 0.225 0.15
D 0.05 0.02 0.04 0.20 0.15
E 0.02 0.08 0.04 0.07 0.05

M f [m] = ( I � A f ) � 1

A B C D E
A 1.26 0.96 0.30 0.44 0.43
B 0.19 1.37 0.33 0.40 0.36
C 0.08 0.15 1.12 0.37 0.27
D 0.10 0.13 0.10 1.34 0.26
E 0.05 0.15 0.079 0.16 1.12

(1) (2) (3)

M f � diag[M f ]
A B C D E Total

A 0 0.96 0.30 0.44 0.43 2.14
B 0.19 0 0.33 0.40 0.36 1.29
C 0.08 0.15 0 0.37 0.27 0.87
D 0.10 0.13 0.10 0 0.26 0.59
E 0.05 0.15 0.079 0.16 0 0.45

M f [x]
A B C D E

A 0 0.45 0.14 0.21 0.20
B 0.15 0 0.26 0.31 0.28
C 0.09 0.18 0 0.43 0.31
D 0.17 0.22 0.17 0 0.44
E 0.12 0.34 0.20 0.35 0

M f [0:25 � x]
A B C D E

A 0 0.45 0 0 0
B 0 0 0.326 0.31 0.28
C 0 0 0 0.43 0.31
D 0 0.34 0 0 0.44
E 0 0 0 0.35 0

(4) (5) (6)
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we observe thatA also provides input to B (denoted by A ! B ) with a strength level of 0.34, and that D provides

input to B (denoted by D ! B ) with a strength level of 0.28. We then move on to identify the signi�cant suppliers

of user sectorD associated with the 4th column. Suppliers B and C provide input to user D through the two

linkages denoted byB ! D and C ! D with the strength levels of 0.25 and 0.46, respectively. Finally, we identify

suppliers of user sectorC by moving to the 3rd column, in which case suppliersB and D are observed as signi�cant

with the strength levels of 0.36 for the linkageB ! C and 0.33 for the linkageD ! C. This completes the search

of signi�cant direct and indirect suppliers of the targeted user sectorA . Important to note is that, although the IO

matrix has �ve sectors, the search for the suppliers of userA results in a directed network of four sectors, implying

that, at the preset threshold level, sectorE is irrelevant for sector A . Combining all of the binary linkages identi�ed

in this step generates the directed network, which consists of a set of eight binary linkages when user sectorA is

targeted:

A input = f B ! A; D ! A; A ! B; D ! B; B ! D; C ! D; B ! C; D ! Cg: (2)

Step 2 (using M f (0:25 6 x): At the same signi�cance level, 0.25,from output side , we target supplier sector

A associated with the 1st row of M f (0:25 6 x). This means that those numbers equal to or greater than 0.25 in

the 1st row are considered as signi�cant enough from the supplier perspective, in which case there is one signi�cant

linkage from A to B with the strength level of 0.45 (denoted asA ! B ). Then, moving to the 2nd row associated

with supplier sector B , we observe three linkages fromB : B ! C with a strength level of 0.26, B ! D with a

strength level of 0.31, andB ! E with a strength level of 0.28. We then move on to identify the signi�cant users of

supplier sectorC associated with the3rd row. Supplier C provides output to usersD and E, which are respectively

denoted by C ! D and C ! E with the strength levels of 0.43 and 0.31. SupplierD associated with the4th row

provides output to user E (denoted by D ! E) with the strength level of 0.44. Finally, supplier E associated with

the 5th row provides output to usersB and D , which are denoted byE ! B and E ! D with the strength levels of

0.34 and 0.35, respectively. This completes the search of signi�cant direct and indirect users of the targeted supplier

sector A . Combining all of the binary output linkages identi�ed in this step generates the directed network, which

consists of a set of nine binary linkages when supplier sectorA is targeted:

A output = f A ! B; B ! C; B ! D; B ! E; C ! D; C ! E; D ! E; E ! B; E ! Dg: (3)

Step 3 : It should be noted that, A input network in 2 and A output network in 3 have four common linkages

given in Equ. 4:

A input \ A output = f A ! B; B ! C; B ! D; C ! Dg; (4)

which simultaneously carry both input (denoted by solid blue arrows) and output (denoted by solid red arrows).

To sum up, when sectorA is targeted in input markets, its upstream linkages represent the input supply network;

when it is targeted in output markets, its downstream linkages represent the output supply network. Combining

the two networks fully characterizes sectorA 's connectivity (i.e., all the linkages that matter for A at the given

threshold strength level of 0.25) both in input and output markets. In the next step, community structure of the

combined network and edges bridging the communities are extracted to examine the connectivity of the network.

As an illustration of the outputs generated by Algorithm I, see Fig. 4.

4.2 Algorithm II. Constructing cascade of layers of links

This algorithm extends the link-wise cascading structure constructed by Algorithm I to uncover layers of links

surrounding sector i . Using a directed network, gi , constructed by Algorithm I , Algorithm II extracts cascade of
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layers of links in gi by repeatedly implementing Mathematica's NeighborhoodGraph[ gi , i] code. This code gives

the graph neighborhood of a targeted sectori in the graph g.

1. Let L 1
i denote �rst-order layer of the targeted sector i , which is constructed by one-edge (both In- and Out-

edges are included) neighborhood graph,N 1
i , of i using NeighborhoodGraph[ gi , i ], where N 1

i = f S1
i ; E 1

i g

with S1
i being the set of sectors (i.e., vertices) andE 1

i being the set of links (i.e., edges) between sectors in

N 1
i . By de�nition, layer 2 is:

L 1
i = E 1

i :

2. SupposeS1
i = f j; k; m } and for each sector inS1

i , one-edge neighborhood graph is constructed:N 1
j , N 1

k , N 1
m .

De�ne layer 2 as:

L 2
i =

[

z= j;k;m

(E 2
z nE 1

i ) � E 2
i ;

where N 2
i = f S2

i ; E 2
i g.

3. SupposeS2
i = f s; u; t} and for each sector in S2

i , one-edge neighborhood graph is constructed:N 2
s , N 2

u , N 2
t .

De�ne layer 3 as:

L 3
i =

[

z= s;u;t

(E 2
z nE 2

i ) � E 3
i ;

where N 3
i = f S3

i ; E 3
i g: This process is repeated until all the sectors ingi are exhausted. By construction, the

following identity holds:

gi �
[

n =1 ;2;3

L n
i :

4.3 Algorithm III. Measuring network resilience

Using graph-theoretic measures of community and edge betweenness centrality (EBC ), this algorithm approximates

the average network resilience by a 4-step procedure:

1. Given a multiplier threshold interval (� 1; � 2), implement Algorithm I to construct sector i 0s upstream network,

denoted by gU
i (� 1; � 2) � gU

i ;

2. Suppose that gU
i has communities5 denoted by Cgu

i
. Identify the set of between-community edges inCgu

i

(denoted by BCE (Cgu
i
));

3. For each edgee(k; l ) 2 BCE (Cgu
i
), compute the resilience level of edgee(k; l ) in gU

i by:

Rgu
i
(e(k; l )) = 1 �

�
# of shortest paths f rom j to i that pass through e (k; l )

# of shortest paths f rom j to i

�
� R(e):

4. Compute the average resilience level of the networkgU
i by:

R1(gU
i ) =

� P
e R(e)

# of edges in BCE (Cgu
i
)

�
: (5)

5A community or cluster is a grouping of sectors that interact through a relatively large number of binary links while minimizing
the number of binary links with other communities. Consider, for example, the community structure in Fig. 7(a). Three communities
are connected through seven binary links. All the communities are linked with two-sided complex interaction. Community 1 including
MA 2 carries its e�ect on AGF in Community 2, which in turn carries its in�uence on F IN in Community 3. It is a cyclic community
structure. See [24, 23, 28, 26] for community detection algorithms.
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5. Suppose thatgU
i has no community. The network resilience level is then computed by:

R2(gU
i ) = 1 �

�
sum of centrality scores of in=out edges of the sector hit with shock

sum of centrality scores of all edges in the network

�
: (6)

The EBC measure given in item 3 describes the frequency at which an edge lies on the shortest path between pairs

of nodes in a network. A production network is said to have community structure if the sectors of the network can

be grouped into sets of sectors such that each set of sectors is densely connected internally and sparsely connected

between groups.

5 Properties of input-output data

5.1 Input-output data

The input-output (IO) data used in the implementation are obtained from OECD's IO database for the most recent

available year 2018.6 The OECD IO matrices with 36 sectors have been aggregated to 15 sectors by using the 2008

UN de�nitions for sector aggregation [49]. The aggregation allows for a comparative analysis of the IO systems

across countries. The �rst column in Table 6 shows the individual sectors in OECD IO database; the second

column shows the aggregated sectors used in this study. Our aggregation divides �Manufacturing sector� into two

sub-sectors: MA 1 in our analysis covers the petroleum and re�nery activities, while MA 2 captures the rest of

the activities in the manufacturing sub-sectors. MA 2 is an important sector as it represents the agglomeration of

several inter-connected industrial sectors and that it is a high-priority sector in Turkiye. Bilateral linkages between

the manufacturing and the service sectors, including wholesale, retail, �nance, real estate, hotels-tourism, etc. are

important, and in this paper, we elaborate on the linkages between the manufacturing and the service sectors.

5.2 Qualitative network properties

Under the Leontief production function, all inputs are critical and every input creates an input bottleneck if it is

missing. Since input-output networks at the industry level are extremely dense, under the Leontief function, almost

any industry can cause substantial downstream disruptions. The linear production function, in contrast, assumes

no critical inputs at all. Downstream shock propagation only occurs when the total input level is insu�cient. In

reality, some of the inputs an industry employs are in fact not critical for production [43], and in the short-run,

the associated technical coe�cients can be scaled down or set to be equal to zero, while the industry continues its

production. Therefore, scaling down some of the technical coe�cients because of non-critical input use is not in

contradiction with the analysis based on the adjusted input-output linkages. Selectively focusing on the midrange

multipliers, for example, those that fall in between 1st Quartile (Q1) and 3rd Quartile (Q3) , conjectures that the

production function in play is between the Leontief and the linear speci�cations. The choice of multiplier interval

can be changed at will if the targeting analysis aims to characterize those sectors with a given multiplier size.

To better understand the structure of Turkey's 2018 production network, the current study focuses on the

multiplier interval [Q1 � Q3] (seeFig. 1). Those linkages with multipliers that fall in that interval are selected,

and then, a threshold signi�cance level is applied to further select from each sector those multipliers that account

for at least 20 percent of their multiplier sum. This two-stage selection procedure accounts for di�erences in the

supply-use size of each sector. The quartile distribution of the multipliers selected account for about 80 percent of

the interactions in the production network (see the histogram in Fig. 1).

6see <https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI4_2018> for OECD input-output data for 64 countries over 14 years
from 2005 through 2018.
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Table 6: Sector aggregation

Sectors in the OECD Input-Output matrices Sector aggregation in this study
TTL_01T03: Agriculture/forestry/�shing AGF: Agriculture, forestry and �shing
TTL_05T06: Mining/extraction of energy products CO12: Crude oil/mining
TTL_07T08: Mining/quarrying of non-energy products

MA1: Manufacturing/petroleum re�ning
TTL_09: Mining support service activities
TTL_10T12: Food products/beverages/tobacco

MA2: Manufacturing-other

TTL_13T15: Textiles/wearing apparel/leather/others
TTL_16: Wood/products of wood/cork (except furniture)
TTL_17T18: Paper products and printing
TTL_19: Coke and re�ned petroleum products
TTL_20T21: Chemicals and pharmaceutical products
TTL_22: Rubber and plastics products
TTL_23: Other non-metallic mineral products
TTL_24: Manufacture of basic metals
TTL_25: Fabricated metal products except machines
TTL_26: Computer, electronic and optical products
TTL_27: Electrical equipment
TTL_28: Machinery and equipment n.e.c.
TTL_29: Motor vehicles, trailers and semi-trailers
TTL_30: Other transport equipment
TTL_31T33: Other manufacturing/repair-installation of
machinery/equipment
TTL_35T39: Electricity/gas/water supply/waste etc EGW: Electricity/gas/water supply
TTL_41T43: Construction CST: Construction
TTL_45T47: Wholesale/retail trade; motor repairs WHS: Wholesale-retail trade
TTL_55T56: Accommodation and food services HOT: Hotels/restaurants
TTL_58T60: Publishing/audiovisual/broadcasting activities

TSC: Transport/storage/communication
TTL_49T53: Transportation and storage
TTL_61: Telecommunications
TTL_62T63: IT and other information services
TTL_64T66: Financial and insurance activities FIN: Financial intermediation
TTL_69T82: Other business sector services EST: Real estate/business activities
TTL_84: Public adm/defense/compulsory social security ADM: Public adm./defense/social sec.
TTL_85: Education EDU: Education
TTL_86T88: Human health and social work HLT: Health/social work
TTL_90T96: Arts/entertainment/recreation/other services

ART: Art/entertainment
TTL_97T98: Private households with employed persons
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Figure 1: Quartile distribution and histogram of multipliers
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Table 7: Sectoral eigenvector centrality scores

AGF 0.12 CST 0.22 EST 0
CO12 0.08 WHS ne ADM ne
MA1 0.04 HOT ne EDU ne
MA2 0.18 TSC 0.11 HLT ne
EGW 0.18 FIN 0.07 ENT ne
�ne� denotes sectors non-existent in the network analyzed.

Several properties are noteworthy. The �rst property is critical for modeling the network as a weighted, directed

graph. If the multiplier matrix is strongly asymmetric (symmetric), a directed (undirected) graph con�guration will

be suitable for the representation of Turkiye's production network. A low (high) correlation coe�cient ( � ) between

the upper and lower triangular multipliers rationalizes the formulation of the production network as a directed

(undirected) graph. The correlation coe�cients of backward and forward multipliers shown in Fig. 2, which are

respectively � B = 0 :14 and � F = � 0:04, suggest that Turkiye's production network in 2018 can be analyzed by

using a directed graph con�guration. Regarding backward and forward weights (or technical coe�cients), the

correlation coe�cients between upper and lower triangular elements are not signi�cant either, which are � B = 0 :17

and � F = 0 :04, respectively (see the �gures in the 2nd column ofFig. 2). This is natural because sectori 's input

demand from sectorj is not necessarily equal to sectorj 's demand for the output of sector i . As to the correlation

between multipliers and weights implied by the 2018 production network, a much stronger positive correlation is

observed in the case of input supply (backward) as opposed to output demand (forward), which are� B = 0 :93

and � F = 0 :89, respectively (see the �gures in the 3rd column ofFig. 2). Altogether, these statistics suggest that

characterizing the 2018 production network by applying graph-theoretic concepts should provide critical information

for evidence-based policy design.

The second property gives information about a sector's linkage preference. Sectoral eigenvector centrality7 scores

(seeTable 7) suggest that linkages originating from high-scoring sectors contribute more to the score of a sector

than linkages from low-scoring sectors. A high (low) eigenvector centrality score means that a sector is connected

to many sectors with high sectors. The eigenvector centrality score ofMA 2, 0.18, follows that of CST; 0.22, while

MA 1, F IN , and CO12 have scores on the lower end. This property reveals thatCST and MA 2 do business

with those sectors with high centrality, as opposed toF IN doing business mostly with non-central sectors. This

observation points to the need for increasing policy e�orts to strengthen the linkage betweenF IN and MA 2. This

�nding also implies that F IN should innovate new �nancial instruments to fund investment in MA 2 in particular

and in the rest of the economy in general.

The third property concerns the degree of sectori 's dominance. In a directed graph, sectori has both �cause�

(out-degree links) and "e�ect" (in-degree links), representing the sum of the multipliers of links from i and the sum

of the multipliers of links into i , respectively. The �cause� and �e�ect� of i serve as one measure of the size of IO

�ow, and the centrality, on the other hand, serves as an indication of where that �ow in the network is most likely to

end up. There is a striking di�erence between the list of sectors with the largest IO �ow and the list of most central

sectors, suggesting the presence of a non-trivial structure to �ows that do not necessarily drive economic activity

towards the largest sectors. Fig. 3 shows a mapping of the sectors in the upstream network ofMA 2, providing

important information about the network characteristics that can be used in the design of policy reform: (1)

f MA 2; EGW; CSTg are the most central sectors in which case most �ow ends up with these sectors shown as large

7Eigenvector centrality of a sector increases by connections to high degree sectors. When high degree sectors are preferentially
directly connected to one another, and low degree sectors are preferentially connected to one another - positive assortativity: tendency
for sectors to connect to other sectors with similar properties - eigenvector centralization will be high.
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Figure 2: Properties of Turkiye's 2018 production network
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Bubble Properties : (1) Position : Coordinates of dominancy (row-wise sum) and subordinacy (column-wise
sum of multipliers); (2) Shape: Size of eigenvector centrality score; (3)Color : Communities of sectors; (4)
Arrows : In-degree (red) or Out-degree (blue) edges with edge weights.

Figure 3: Sector dominance, eigenvector centrality, degree, and community structure

circles; (2) with respect to the degree of dominancy (i.e., �ow size), onlyMA 2 is dominant, while other two sectors are

subordinate (i.e., a�ected more by the rest of the network than their e�ect on the others); (3) the hard-core sectors

all belong to the same community (as indicated by the same color, which is purple), implying that these sectors

have more interactions among themselves than their interactions with others in the network; (4)MA 2, the most

dominant sector, is fed by inputs from general purpose service sectorsf F IN; AGF; CST g, while providing inputs

to f AGF; CST g and a regulated general purpose service sector,EGW ; (5) the community of f MA 2; EGW; CSTg

has the largest average centrality, followed by the communitiesf CO12; AGF g and f T SC; F IN g.

6 An application

6.1 Algorithm I: Key �ndings and policy implications

Algorithm I generates four hierarchically layered graphs. Fig. 4(a) exhibits the network of input suppliers of

targeted sectorMA 2 (henceforth, referred to as the upstream network ofMA 2); (b) the network of users of MA 2's

output (henceforth, referred to as the downstream network ofMA 2); (c) the combined network of upstream and

downstream linkages ofMA 2, identifying the complete network of MA 2; and lastly, (d) the structural (one-edge

links of MA 2) and ancillary ( MA 2's multiple-edge links) linkages in the combined network ofMA 2 shown in (c).

The linkage patterns observed from the four graphs provides critical information for evidence-based policy design

to improve MA 2's contribution to aggregate output growth.

The �rst pattern (see Fig. 4(a)) is that MA 2 has two-way links to CSTand AGF , followed by its single-edge

link to F IN and EGW . More importantly, MA 2's operation is characterized by two cycle-pathways:

f MA 2 ! AGF ! CST ! MA 2g and f MA 2 ! EGW ! CST ! MA 2g;

implying that any input from F IN into MA 2's production process would necessarily go through these cycle-
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pathways. AGF and EGW along these pathways act as intermediary sectors that have the power to control the

�ow of inputs into CST, which in turn create a multiplier e�ect back on MA 2. A similar multiplier e�ect on MA 2

can also be established by any input intoAGF 's production process through:

f CO12 ! AGF ! CST ! MA 2 ! AGF g:

The second pattern concerns the impact ofMA 1's and T SC's input supply to F IN , which in turn supplies

input to MA 2 through:

f MA 1 ! F IN ! MA 2g and f T SC ! F IN ! MA 2g;

implying that F IN as an upstream sector toMA 2 has power to in�uence MA 2's production.

Together, the �rst and second input �ow patterns suggest that policy reforms should consider the following

pathways of sectoral linkages:

f MA 1; TSCg ! F IN ! MA2  ! ff AGF; EGW g ! CSTg; (7)

to design e�ective policy reforms to promote MA 2's production not only by addressing MA 2's weak linkages but

also by taking into account the weaknesses of the network concerned:

f MA 1; T SC; F IN; MA2 ; AGF; EGW; CST g: (8)

Network-based policy reforms targetingMA 2's productivity need to consider mechanisms causing a deviation from

competitive prices " distortions " in MA 2's market, as well as the distortions in markets of sectors in Equ. 8. Having

said that, a particular attention should be paid to distortions and misallocation of resources taking place along the

pathways in Equ. 7. The convoluted distortions and misallocations created by backward input demand linkages

cause the upstream network ofMA 2 to become cluttered with imperfections. Ultimately, MA 2 becomes the sink

for accumulated distortionary e�ects, experiencing the highest distortion level [35]. At some point in time, the

distortions accumulated in MA 2 can burst if it goes beyond its carrying capacity, playing a much larger role in

generating aggregate volatility in the economy-wide production network [6]. Informed policy design based on the

analysis of the upstream network ofMA 2 should ease the wider di�usion of e�ects of the shock before it reaches

back at MA 2.

Centralities of sectors along the pathways in 7 call attention to two potential bottlenecks originating from F IN

and AGF that absorb a relatively small size of inputs �owing in the rest of the production network. This is in turn

likely to cause contraction in MA 2's production. On the positive side, CST has a facilitating linkage with MA 2

as it absorbs a very large �ow of input and redirects it to MA 2, which would improve MA 2's production. These

�ndings point to the need for increased policy e�orts to strengthen the linkage betweenF IN and MA 2 and e�orts

promoting �nancial innovations to expand MA 2's production possibilities.

The di�erence between input � generating� sectors, f MA 2; CO12; F IN; AGF g, and input �ow � absorbing� sec-

tors, f CST; MA2; EGW; AGF g, suggests that the largest �ow absorbersf CST; EGWg do not necessarily drive

economic activities in the largest input generatorsf MA 2; CO12g. That is, there is a linkage gap between absorbers

and generators:

f CST; EGWg
| {z }

absorbers

! f MA 2; CO12g
| {z }

generators

; (9)

pointing out the need to design policy reforms to promote the discharging of the accumulated input in the absorbing
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sectors. This can be achieved either by establishing new channels between the absorbing and generating sectors or

by investing in areas to promote new activities that will close the gap. Policies should consider the peculiarities of

EGW and CO12 , both of which are regulated general service sectors. Pro-competitive PMR in these regulated

industries are found to increase the productivity in the rest of the network as their general purpose outputs tend

to be widely used as inputs elsewhere in the economy [25].T SC, another highly regulated general purpose service

sector, is also critical for productivity improvement especially in F IN that serves as an important input supplier

of MA 2. Reductions in barriers to entry to most protected non-manufacturing network industries, f EGW; TSCg,

lead small �rms to bene�t most from pro-competitive PMR [12]. Therefor, intensifying PMR e�orts in these sectors

should strengthen Turkiye's growth prospects.

More interestingly, these regulated and protected industries are spread across the three communities embedded

in MA 2's upstream network:

f MA 2; EGW; CSTg
| {z }

community 1

> f CO12; AGF; MA 1g
| {z }

community 2

> f T SC; F IN g
| {z }

community 3

; (10)

which are ranked with respect to the average community centrality. The ranked communities also suggest that

reductions in barriers to entry to community 3 promises the largest productivity gains from pro-competitive PMR,

followed by community 2. Since every community includes at least one regulated industry, PMR related to regulated

industries in general will strengthen growth prospects forMA 2. For productivity growth in the upstream network

of MA 2, policy reforms should further target, f F IN ! MA 2; EGW ! T SCg, to create a virtuous cycle between

community 1 and 3.

So far, all was about input supply and use. Pro-competitive PMR also have substantial bearing for the immediate

consumers,f HLT; ENT; HOT g, of MA 2's output. Their output demand and MA 1's and EST 's demand from

them (red links in Fig. 4(b)) are translated to input requirements for MA 2 to meet the new demand (red links

ending up with EST and MA 1 in Fig. 4(c)). This new demand triggers a whole bunch of backward linkages in

MA 2's production network, with the shortest pathway transmitting the input requirement signal to MA 2:

f EST; MA 1g
| {z }

signal entry points

! F IN ! MA 2: (11)

Equ. 11 reveals that pro-competitive PMR should guide the �signal entry points � in such a way as to improve their

signal transmission mechanisms. For example, subsidies to strengthen competitive neutrality inMA 1's market

would create opportunities for small disadvantaged �rms to enter the market, increasing the �ow of price-quantity

information across �rms and opportunities for F IN to design new �nancial instruments that would be available

for MA 2. SinceF IN operates in a non-competitive environment, competition policy reforms should concurrently

ensure the enforcement of competition law inF IN .

As seen from the combined upstream and downstream networks inFig. 4(d), the immediate environment of

MA 2 includes only MA 2's direct links to its neighbors, as well as the links between its neighbors denoted by the

red links in Fig. 4(d). This environment is called �structural � cluster as the interactions taking place in this

environment are immediately passing on toMA 2. The �gure also shows that f EST; T SC; CO12; MA 1g fall in

the � ancillary � cluster as the interactions in this cluster will take time to in�uence the structural cluster. Such a

layered structure suggests that policy priority should be given to the structural cluster to sustainMA 2's production

at least in the short run. In the long-run, however, policies that in�uence the interactions in the ancillary cluster

be developed to avoid a collapse of the production network ofMA 2in case of a shock to its critical sectors.

Research conjectures that upstream sectors in a given production network play an important role in the ampli�-
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cation of exogenous shocks [43]. In the context of input supply-input use �upstream� network, the ampli�cation of

an input-use �demand� shock to MA 2 would depend on which sectors, {AGF , CST, F IN }, are involved in spread-

ing the shock. The elasticity of aggregate output to the shock to a given sector depends on the linkage strength of

that sector. That the three sectors have one-edge links withMA 2 implies that, depending on the linkage strength,

the shock to any of these sectors would have deleterious e�ect onMA 2's production, and hence, the aggregate

output. To generate critical information for evidence-based design of policy interventions, some of the properties of

{ MA 2, AGF , CST, F IN } can be uncovered ex-ante to know how systemic the shock is. For example, as proposed

by [43], scenario analyses can be carried to measure the impact on the aggregate output of a single shock (i.e., by

computing the output elasticity of that shock) to a single sector.8 Knowing the output elasticities of the shock

is a valuable information for policy design. The relation between the shock and output multipliers of the sectors

concerned can be also investigated to identify those sectors experiencing little change in their output multipliers as

a response to the shock. A low (high) shock elasticity of output multipliers in a sector would imply that the shock

is not disrupting (disturbing) much the production process in that sector. This can be partially attributed to the

resilience (vulnerability) of the sector hit with the shock.

Furthermore, in the context of MA 2's � upstream� network, the distortions accumulated in { AGF , CST, F IN }

would lead to resource misallocation inMA 2, resulting in a sub-optimal production, the e�ects of which would

pass on the �downstream� network of consumers ofMA 2's output [6]. Through MA 2's direct binary links to its

customers,f HLT; ENT; HOT g, the e�ects of the shock will be observed across all the sectors in the �downstream�

network of MA 2 (seeFig. 4(b)). Eventually, through the connections of consumers to input-suppliers ofMA 2

in the � upstream� network, aggregate output growth in Turkiye will be at risk. The question is how to avoid

the spread of the shock or minimize the cost of the accumulated distortions in the upstream sectors. Two viable

strategies exist. The �rst, mildly protective strategy is to regulate the links of input-suppliers of MA 2, f AGF !

MA 2; CST ! MA 2; F IN ! MA 2g, and MA 2's output supplies on the demand side,f MA 2 ! HLT; MA 2 !

ENT; MA 2 ! HOT g. Policy design would be relatively less troubling and less costly as the number of links

considered gets smaller. Therefore, for government facing limited �scal capacity, the identi�ed sets of links should

further be prioritized. The second, strongly protective strategy is to regulate not only the links of input suppliers

and customers ofMA 2 but also those links among the neighbors ofMA 2. Prioritization of the links is more

relevant under this strategy as the number of links can quickly and exponentially increase with the inclusion of the

neighboring sectors ofMA 2 (see the structural (red colored) links in Fig. 4(d)).

The longer the pathway, the higher the upstream sector's distortion centrality. Topologically, EST is an ex-

ogenous sector in the upstream network ofMA 2 as it has no in-coming links. Thus, it can only transmit its

own distortions to two sectors f CO12; MA 1g, the users ofEST 0s output. Conversely, CST is in�uenced by an

accumulated amount of distortions as it has multiple links to f MA 2; EGW; AGF g. The larger the distortions in

its upstream sectors, the larger the resource misallocation inCST as it takes its price-quantity information from

the upstream distorted markets. The large (small) bubble size ofCST (EST) shown in Fig. 3 is an indication

of this conjecture. A policy implication for MA 2 of this conjecture is that pro-competitive PMR should target

upstream sectors,f CST; AGF; F IN g, to mitigate the distortions. Investing in markets where most-dominant and

most-distorted upstream sectors interact would improve e�ciency and reduce aggregate losses because an ine�cient

economy allocates too few factor inputs upstream and too many downstream. Policy interventions would improve

e�ciency only if they redirect the factor input to the dominant and distorted upstream sectors. In hierarchical

production networks (the generalization of vertical networks), similar to networks in Fig. 4(a, b), upstream sectors

tend to have higher distortion centrality because imperfections accumulate through backward linkages.

8Scenario analyses can be carried out using the RAS matrix balancing method, which is more practical compared to the cross-entropy
method. See [27] for the equivalence of the RAS method with the cross-entropy method for matrix balancing.

24



Applying Sugiyama's layered graph algorithm [48],9 we produceFig. 4(a) representing the" upstream" network

of MA 2. We further re�ne that network to isolate the downward links from upward links in order to create purely

hierarchical structures as tools for the analysis of ex-ante pro-competitive PMR design (seeFig . 5(a, b)). Fig . 5(a)

shows that f EST; F IN g occupy top of the hierarchy, whilef CST; T SCg bottom of the hierarchy and MA 2 functions

as a midstream sector. The distortion centrality in MA 2 is expected to be smaller than that in the upstream sectors

and larger than that in the downstream sectors. There are 6 binary links working against the hierarchical relation

in the network: f MA 1 ! F IN; T SC ! F IN; AGF ! MA 2; CST ! MA 2; AGF ! CO12; CST ! EGW g

(see Fig. 5(b)). The two isolated networks can be analyzed as an causal in�uence network to explore complex

input-output linkages mapping functional dependencies across sectors [8]. Adopting the pure hierarchical structure

described, we conjecture that, with only one link fromF IN to MA 2, the priority for public support should be given

to F IN in order to reduce the distortion in F IN , which would in turn reduce the misallocation in MA 2 and then

in the downstream sectorsf AGF; EGW; CST; T SCg. From policy design perspective, and the observation that

CST and T SC are at the bottom of the hierarchy, EST and F IN are to be supported to minimize the distortions

that cause misallocation of resource use inMA 2 and in AGF; EGW , CST; and T SC. CST and AGF work as

counteracting forces a�ecting the misallocation in MA 2. This all points out that there is a potential aggregate

productivity gain if MA 2, AGF , and CST collaborate on a common cause. SinceMA 2 and CST are members of

the same community, the collaboration concerned can be justi�ed more easily on the grounds that these two sectors

have already been interacting strongly. The second type of collaboration concerns the collaboration of sectors

from two di�erent communities, which are, by de�nition, connected through low-strength links. Hence, the second

collaboration betweenAGF and MA 2 would require more e�orts to strengthen their interactions.

6.2 Algorithm II: Key �ndings and policy implications

Algorithm II identi�es potential ampli�cation mechanisms by uncovering cascades of layers of sectoral linkages. If

a single sector fails, it may force other sectors to fail as well, which may eventually lead to failure cascades and the

breakdown of the production network, referred to in the literature as systemic risk. This algorithm reshapes the

" upstream" network of MA 2 as a cascade of layers of links (seeFig. 6). The resulting layered network is used

to elaborate on the e�ects on MA 2's production of a shock to one of the critical input suppliers of MA 2. The

resulting e�ect is traced forward from the sector hit with the shock towards MA 2 and from MA 2 to the rest of the

production network. The pathway through which the shock penetrates into downstream sectors would provide us

with more information that can be used to design layer-speci�c pro-competitive PMR and policy interventions.

Fig. 6, a policy diagnostic tool, shows three layers of links uncovered from a hierarchical network inFig .

4(a). EST occupies the outmost Layer 3 (blue colored circle with blue arrows), implying that it is the single

furthest sector that indirectly supplies input to MA 2. The midstream Layer 2 (green colored circles with green

arrows) includes three sectors,f CO12; MA 1; T SCg, that provide inputs to two sectors, f F IN; AGF g, placed in

the innermost Layer 1 (red colored circles with red arrows) centered aroundMA 2. Layer 1 includes �ve sectors,

f F IN; AGF; CST; EGW; MA 2g. This cascade structure o�ers a new perspective for designing pro-competitive

PMR aimed to improve the productivity of MA 2. In case of a shock to the economy-wide production network, there

are alternative policies to minimize the adversities that MA 2 is likely to encounter. From the point of maximizing

MA 2's production, public policy should target Layer 1 to correct the accumulated distortions in f F IN; AGF g,

which have direct bearing for the productivity of MA 2. Depending on the sectors in�icted by the shock, policies

9A layered graph drawing algorithm - also known as hierarchical layout or Sugiyama algorithm - places the vertices of a graph into
horizontal layers (virtual horizontal lines) such that the links, modeling the relationships, point in a uniform direction. This algorithm is
based on an acyclic graph structure and works with an unweighted adjacency matrix in which existing links take on score 1, non-existing
links score 0. This implies that the layering does not consider the actual edge weights which may take on values other than 1 and 0.
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(a) Upstream network of MA 2, gU
MA 2 (b) Downstream network of MA 2, gD

MA 2

(c) Networks in (a) and (b) combined (d) Structural (red) and ancillary (blue) links in (c)

Figure 4: Turkiye 2018: Targeting sectorMA 2 using IO matrix with 15 sectors

(a) Downward network in Fig. 4(a) (b) Upward network in Fig. 4(a)

Figure 5: Downward and upward hierarchical structure of gU
MA 2
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Figure 6: Turkiye 2018: Cascade of layers in the upstream networkgU
MA 2

should also target them individually and the layer they belong to. For example, if MA 1 is hit by a shock, F IN

should be the sector of interest to policy makers becauseMA 1 is only two linkages away (shortest distance)

from MA 2, f MA 1 ! F IN ! MA 2g, through which the e�ects of the shock will penetrate into MA 2 in Layer

1. The e�ect of the shock to MA 1 will also penetrate into MA 2 through a delayed e�ect along the pathway,

f MA 1 ! F IN ! CO12 ! AGF ! MA 2g. Public support to improve the resilience of F IN and AGF should

slow down the penetration, and hence, in the short run, Layer 1 will buy time to improve the resilience of the sectors

in it.

Competition policy enforcement, market reforms and institutions need to be elaborated to identify the areas that

need to be strengthened to promote the productivity of MA 2. Investment strategies can be designed. An obvious

one is to invest in infrastructure to strengthen the resilience ofF IN and AGF through improved market connectivity

and access (i.e., investments in ICT infrastructure included inT SC) so that the penetration from Layer 2 to 1 of

the e�ects of the shock can be minimized. Renewed investments in ICT would help catalyze the connectedness in

the upstream network of MA 2. Furthermore, two-way �ows of inputs, f CO12 $ AGF; T SC $ F IN g, also justify

public support to CO12 and T SC to reduce the distortionary e�ects on sectors in Layer 1 since the e�ects of the

shock would amplify due to the two-way �ow of inputs.

6.3 Algorithm III: Key �ndings and policy implications

Algorithm III measures the resilience of the " upstream" network of MA 2. Two measures of network resilience

are proposed: one for a network with communities, another for a network without communities. In the case of

communities, the resilience indicator is constructed at four steps. In step 1, the community structure ofMA 2's

upstream network (seeFig . 4(a)) is derived; in step 2, all the edges in between communities are extracted; in step

3, edge betweenness centrality score of each edge in the upstream network is computed; and in step 4, the network

resilience indicator given in Equ. 5 is computed using edge betweenness centrality (EBC) scores of the weighted

" upstream" network. The idea is simple: the more connected a network is, the more resilient it is. Namely, if the

communities are strongly connected with a large number of links, it is more likely that the upstream network is

more resilient against shocks because severely hit links can be quickly replaced with others.
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MA 2's upstream network has a total of 19 links (seeFig . 7(b)), 7 of which are in between communities,

f F IN ! CO12; MA 1 ! F IN; F IN ! MA 2; MA 2 $ AGF; AGF ! CST; EGW ! T SCg (see Fig . 7(a)).

In other words, more than one-third of the links in the network should be hit severely for the entire network to

breakdown. The centrality scores in our case are calculated using the link weights (i.e., multipliers), considering

that links have di�erent multipliers. The indicator given in Equ. 5 approximates the degree of resilience ofMA 2's

network as R1(gU
MA 2) = 0 :43, implying a moderate resilience level based on the centrality scores of the relevant

links (seeFig . 7(b)). The higher the score of a link is, the lower the network resilience with respect to that link is.

If one link in between communities is disrupted completely, and if that link has a large edge-betweenness centrality

score, then the resilience of the network with respect to that link will be low. The point of departure of this

measure is that the connectedness of communities relies on the importance (i.e., edge betweenness centrality score)

of between-community edges. In the case of a network with no community, the importance of all incoming and

outgoing links of a disrupted sector(s) is considered to measure the network resilience by Equ. 6. Here, the focus is

on the connectedness of the entire network concerned with respect to the disrupted sector(s). If, for example,F IN

and AGF are disrupted in an isolated manner, the network resilience will beR2(gU
MA 2; F IN ) = (1 � 0:33) = 0:67

and R2(gU
MA 2; AGF ) = (1 � 0:27) = 0:73, respectively. The average resilience level over the two disrupted links is

0.70 (= (0 :67 + 73)=2).

Assuming the complete breakdown of Layer 2 in the cascade analyzed in Section 6.2 means that all the links in

that layer become non-operative due to a shock. That is, the following set of links,

f CO12 $ AGF; F IN ! CO12; CO12 ! MA 1; MA 1 ! F IN; T SC $ F IN g;

are severely disrupted, in which case the measure of network resilience with respect to Layer 2 is calculated as

R1(gU
MA 2; Layer 2) = 0 :27. To improve the resilience of the network, policy interventions should selectively target

those links which appear more often along the shortest paths, including

f R(CO12 ! AGF )
| {z }

0:35

; R(T SC ! F IN )
| {z }

0:35

; R(MA 1 ! F IN )g
| {z }

0:32

;

where the numbers below each link,e, represent the resilience level,R(e), associated with that link.

6.4 Evolution of the production network

By allowing a time-dependent resolution of the hierarchical networks (seeFig. 8) of MA 2, we are able to move

beyond the 2018 single-snapshot network. This allows us to identify the evolutionary path of the networks during

the period 2005-2018. The time-series nature of the input-output data for Turkiye lets us track changes inMA 2's

linkages over the period 2005-2018. Concentrating on the multipliers in between Q1 and Q3 and then selecting

those binary links accounting for more than 20% of the variation in MA 2, followed by other signi�cant links in

the rest of MA 2's network, we can identify upstream and downstream sectors inMA 2's network. Fig. 8 shows

the time-series plots of the upstream networks ofMA 2 over 2005-2018. (These networks have been generated by a

single-shot application of Algorithm I for each year.)

Few observations are noteworthy to assess the changes in the structure ofMA 2's network. First, F IN has

always been connected toMA 2 during the entire period 2005-2018, followed byAGF 's linkages to MA 2 for the

periods (2007-2011, 2016-2018),CST's linkages for the periods (2007-2011, 2016-2018), andEGW 's for the periods

(2009, 2015-2018). Second, during the period 2016-2018, a more pronounced structure arises: (1)MA 2 is always

linked to f F IN; AGF; CST; EGW g, (2) the set of sectors in each year remains constant at 9, includingMA 2, (3)
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(a) Community structure of gU
MA 2 in Fig. 4(a) (b) EBC scores of edges ingU

MA 2 in Fig. 4(a)

Figure 7: Community structure and EBCs of gU
MA 2

in two of three networks, F IN and EST act as upstream sectors relative toMA 2, which always remains to be

a midstream relative to its own network. Third, in all these hierarchical networks, MA 2 occupies a midstream

position along the existing pathways. This suggests that policy reforms aimed to improve the productivity ofMA 2

need to primarily consider the potential expected impact of its immediate neighbors. Fourth, except 2005, the

number of sectors in each network changes between 6-10, with average 8 sectors over the period concerned. The

number of sectors remained stable especially during the last three years, 2016-2018, with 8 sectors surrounding

MA 2.

Likewise, the time evolution of community structures of the upstream networks ofMA 2 is explored to identify

major changes in MA 2's network during the period 2005-2018. The identi�cation has been carried out based

on snapshots of the network data for each year as an independent community detection problem (see [26] for an

algorithmic implementation). Several observations are as follows. First, during the entire period 2005-2018,MA 2

and F IN have remained connected through a stable, binary link fromF IN to MA 2. This reveals that the input

from F IN is critical for MA 2. Second, starting from 2011 until 2016, the upstream network ofMA 2 shows two

communities; for 2017 and 2018, the number of communities have increased to three. Third, these two sectors

have shared a common community during 2011-2015, while for 2016-2018, they shared di�erent communities,

implying that their linkage strength levels decreased compared to the level in 2011-2015. In other words, their

commonalities in terms of linkage strength decreased in between 2011-2015 and 2016-2018. Fourth, for the latter

period, F IN and T SC have always shared the same community, implying thatT SC has been signi�cantly and

continuously �nanced and that �nancial resources potentially available for MA 2 have slowly phased out. Fifth,

during the latter period, EST made itself known as a a stable element of the upstream network ofMA 2, with

its continuous binary link to CO12, and remained within the same community with CO12: Likewise, during the

same period,f MA 2; EGW; CSTg have always remained in the same community, pointing out that the strength

of their binary linkages has remained as strong. That during the same period,MA 2 has remained connected to

f F IN; AGF; CST; EGW g and that f MA 2; EGW; CSTg have always remained in the same community suggest that

the strength of their binary linkages has remained as strong.
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2005 2007 2009

2011 2013 2015

2016 2017 2018

Figure 8: Time evolution of upstream networks ofgU
MA 2(t) in the (Q1 - Q3) interval of multipliers
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2011 2013 2015

2016 2017 2018

Figure 9: Time evolution of the community structure of gU
MA 2(t) in the (Q1 - Q3) interval of multipliers
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7 Discussion

During the period 2000-2022, Turkiye has gone through a series of political and economic crises. Several political

con�icts triggered the 2000- 2001 �nancial crisis, followed by the 2008-2009 crisis that took place due to the global

spreading of mortgage crisis in the US, resulted in capital out�ow hoping to settle in safe heavens. The most

recent 2018-2022 crisis emerged from the deteriorating investment environment both in domestic and international

markets. On top of this, the COVID-19 pandemic and the war in Ukraine increased the severity of the crisis [32].

These cyclic crises seem to originate mainly from adverse developments in the monetary economy, however, it is

undeniable that various political-economic factors deepened the crises. Fundamentals in the real economy were not

as strong as expected to be to withstand the shocks that followed the crises. The needed reforms to strengthen

government �scal space were not undertaken, including, among others, reforms in tax schemes, agricultural support,

�nancial intermediation, and investment programs. The delay increased the burden on the real side of the economy,

putting a heavy strain on the long-time prioritized manufacturing sector in particular and the production

economy in general.

Turkiye experienced reasonably high-quality growth during the 2002-2006 period in between the 2001 and 2008

crises. With almost 6% per capita (per annum), the Turkish economy experienced its fastest per capita growth

since the 1960s. Turkey's growth performance during this period was notable because it came with relatively high

productivity growth. About half of the growth in per capita GDP during this period stemmed from total factor pro-

ductivity (TFP) growth, which increased by about 3% per annum between 2002 and 2006. Much of this TFP growth

was driven by the �structural� shift in employment from agriculture to manufacturing and service sectors. The share

of manufacturing in GDP in constant prices increased from around 22% in 2001 to almost 24% in 2007.10 On the

political account, a new government formed in 2002 started with the legacy of an enabling institutional-economic

environment facilitated by the previous government, capitalized on the already-existing strong relations with the

EU, and promised a more democratic and socially inclusive process of development. A new jump-start got the

economy running again, catalyzing the establishment of growth-generating interactions in the production economy.

The 2008 global �nancial crisis was largely a making of three intertwined factors, among others, including

predatory lending arising from the lack of competition in loan markets, the bursting of the US housing bubble,

and excessive risk-taking in global �nancial institutions. Finance, real estate, and construction sectors were the

sources of troubles, which were catalyzed by the risk-taking behavior of global �nancial institutions. It started in

the �nancial sector but quickly spread over the real economy. In Turkiye, the 2008 growth rate was 1.1%, and in

2009, it was -4.7%. In May 2009, capacity utilization in the manufacturing sector declined to 62%.[32]

The 2018-2022 crisis grew out of a combination of factors: high indebtedness, current account de�cit, and

appreciation of Turkish Lira. The period of cheap credit and public sector's support to the construction

sector ended , halting the construction-based economic growth. During 2018-2020, GDP growth was 2.8%, 0.9%

and 1.8% , respectively.[32] With the COVID-19 pandemic, the situation got worse withdisruptions in the global

value chains that adversely a�ected many �rms, leading to increasing unemployment and decreasing consumption.

To protect �rms and consumers, the government provideddirect �nancial support to businesses and income

support to the most needy population groups. This has further increased the budget de�cit, leading to expansion

of money supply and hence high in�ation.

The 2018 production network of Turkiye demonstrates some important characteristics that have implications for

the e�ective workings of MA 2's upstream network and the growth of aggregate output. The analysis of howMA 2

in�uences is in�uenced by others in the network provides useful entry points for discussion (seeFig . 3). Identifying

how dominant and subordinate sectors cluster with other sectors further provide an overview of potentially

10 See [19] for a broader discussion of the political-economy and institutional developments that took place in Turkiye during 2002-2015.
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strategic partnerships. Progress in the most subordinate sectors is more uncertain, and high dependency on other

sectors can delay progress in the sector in question, even if the measures aimed directly to the sector are successful.

A highly subordinate sector has the least control over its own issue area. Rather than surrendering to this fact,

it should be a strong motivation to nurture relationships with the sectors that hold the key to its productivity.

Because of uncertainty, selecting a highly subordinate sector as a �agship sector would not be very strategic, even

if the potential in�uence is strong. A number of dominant sectors receive very little support from other sectors

or are weakly connected to the rest of the network. Their dependence on progress in other sectors is low and they

have a lot of freedom to act independently. However, not bene�tting from network e�ects, they may need more

targeted support.

Network perspective to policy design may guide the formation of cross-sector collaboration. In many networks,

the distribution of links is unevenly distributed; they form communities of high concentrations of links with low

concentrations of links in-between the communities. The identi�cation of such communities within the upstream

network of MA 2 can help policy makers to develop comprehensive implementation strategies and organize imple-

mentation beyond just a ranking of individual sectors. Sectors forming a community can make a good coalition;

they in�uence each other positively; and they have a shared interest in handling the links to other communities.

The set of sectors in a community may be di�erent from the present logic of how responsibility is divided (e.g.,

across ministries by policy area or topic) and what is now perceived as important collaborations given shared or

con�icting interests. Exploring communities can thus present an e�ective way to build strategic partnerships.

In general, sectors in a production network operate in a complex environment in which: (1) competitive and

regulated producers engage in trade, (2) distortions and imperfections amplify the scale of a disruption or a shock,

and (3) cascade of layers of sectoral links heightens the systemic risk.MA 2, a priority sector of Turkiye's economy,

and its upstream network have to survive in this challenging environment and increase aggregate output. Here are

some suggestions based on the key �ndings of this paper, laying the ground for the design of sound policy reforms

from a network perspective.

Here is an example of how the three properties of such a complex environment may lead to the breakdown of

the upstream network of a prioritized sector. Take, for example,MA 2. Suppose thatMA 2 sells its competitively-

priced output to regulated monopolistic sector, EGW , which will lead to higher rents in EGW as its regulated

input price will be higher than its competitively-priced input. EGW would gain from pro-competitive PMR

in MA 2. An opposite price incompatibility arises when F IN sells at the regulated price toMA 2 operating in a

competitive market. This will raise the competitive price of MA 2's output and hence lower the demand, which would

subsequently lead to misallocation of resources inMA 2's production process. This price transmission mechanism

reveals that, along a pathway of sectoral links,

f competitive
| {z }

MA 2

! regulated
| {z }

EGW

! competitive
| {z }

MA 2

g =) MA 20s prof it #; (12)

part of the pro�t of MA 2 will be con�scated by the regulated industry, EGW or F IN . It further reveals:

f regulated
| {z }

F IN

! competitive
| {z }

MA 2

! regulated
| {z }

EGW

g =) EGW 0s prof it #; (13)

that high prices in F IN raise the cost ofMA 2's production and depress the demand for its output, which would

subsequently reduceMA 2's pro�ts. In this case, regulated industry price would be rising due to price distortions in

MA 2 as input supplier of EGW . This time, misallocation of resources would take place in the regulated industry

EGW . Such dynamic sectoral interactions along a pathway are harmful not only for the source but also for the
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sink sectors. It is also harmful for the entire upstream network ofMA 2 as such the accumulated price distortions

would lead to a wider scale of resource misallocation and lower the productivity of the network. The e�ects of

disruptions would amplify through backward linkages in the production network, increasing the systemic risk and

the likelihood of the breakdown of the entire network. To minimize the welfare loss due to misallocation of resources

in MA 2 and improve network resilience to disruptions, pro-competitive PMR can targetF IN and EGW to remove

dominance and blockades to �rms's entry to market, as well as to enforce competition policy and institutional

changes supporting competitive neutrality. All these e�orts should enhanceMA 20s productivity and aggregate

output growth.

Here is the most distorted pathway in�uencing the productivity of MA 2:

f regulated
| {z }

T SC

$ regulated
| {z }

F IN

! competitive
| {z }

MA 2

g =) MA 20s prof it #; (14)

suggesting that pro-competitive PMR should target T SC and F IN , both of which are subject to severe market

imperfections. Imperfect competition in the two heavily regulated upstream sectors would �rst amplify resource

misallocation in their own activities. The accumulated distortions in these upstream sectors ofMA 2 would then

lead to signi�cant misallocation of resources inMA 2, resulting in much reduced pro�ts and the contraction of the

industry as entry to market will be discouraged by sharply declining pro�ts. In order to unlock the productivity of

MA 2, PMR and institutional reforms should be undertaken to reduce price distortions in T SC and F IN .

The resilience of MA 2's production network relates to the level of systemic risk embodied in the cascade

structure of the network. With the information derived, layer-speci�c regulations and/or institutional structures

can be designed to control the penetration of detrimental e�ects of a disruption in the production process ofMA 2.

For example, in the case of disruptions inT SC, the regulated pathway, f EGW ! T SC ! F IN g, should be

prioritized to address potential adversities that might arise due to bottlenecks inT SC. However, the main issue is

much wider than the disruptions in T SC. It is the concentration of regulated sectors or markets along that pathway,

laying the ground for the conditions that are cohesive to cartel creation. In this case, systemic risk would elevate

to a level that can result in the breakdown of the production network of MA 2. In practice, the resilience of the

network is also about whether or not the involved sectors along the pathway have su�cient productive capacities.11

All of the regulated sectors requires advanced technology and skilled labor, and meeting the demand for the skilled

labor and new technology takes time and requires resources. At the network level, the resilience can be strengthened

not only by PMR and institutional reforms but also by investing in productive capacity development to meet the

demand for new capacities inF IN and T SC.

What are the implications of pro-competitive PMR on the productivity of the upstream network of MA 2?

Critical backward linkages of a mix of regulated and competitive sectors,f EGW; TSC; F IN g being regulated and

f MA 2; AGF; CST g being competitive, have been characterized in the previous sections as:

f EGW ! T SC ! F IN g; f MA 2 ! AGF; MA 2 ! CSTg; f F IN ! MA 2; MA 2 ! EGW g:

Energy market liberalization relating to EGW , such as privatization, competition, and regulation in both gas

and electricity, is expected to lead to lower prices, but industrial consumers are likely to gain disproportionately.

Opening transport markets to competition in T SC reduces the prices of transportation services, a key input for

producers and traders in general. Removing restrictive government policies in international shipping services, such

11 Productive capacities are de�ned as the productive resources, entrepreneurial capabilities and production linkages that together
determine a country's ability to produce goods and services that will help it grow and develop, see <https://unctad.org/topic/least-
developed-countries/productive-capacities-index>.
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as restrictions on foreign shipping services, would lead to an average reduction in transport prices for goods shipped.

Declining prices of services resulting from liberalization improves tra�c and access, and hence, overall consumer

welfare. Entry liberalization, deregulation of T SC, and deregulation of EGW are likely to create a particularly

substantial positive impact on capital accumulation and therefore on growth because their general purpose services

are widely used in the rest of the economy. Competition among service providers, such as �rms inF IN , can help

to increase the e�ectiveness of cash transfers, the functioning of voucher systems for agriculture subsidies, and

reduce information asymmetry on quality of services. Reforms and regulations to promote competition inF IN

would also reduce hidden costs of transactions and rules that increase discriminatory treatment, as well as improve

SMEs' access to �nancial instruments and encourage �rms inF IN to innovate �nancial intermediation instruments.

In Turkiye, the direct linkage, F IN ! EST, is particularly weak (see Fig . 4(a)), representing an area for pro-

competitive PMR interventions. The availability and pricing of credit is key to support SMEs and low-income

individuals to start and develop new SMEs. On the other hand, removing price �oors and other restrictions on

legal services underEST is positively associated with greater productivity in professional services.

Competition among processors would bene�t farmers (MA 2 ! AGF ) by increasing the farm gate price of the

crop and therefore improve their livelihood. For instance, in the case where the �rm with the largest market shares

splits, an average income of producing households can increase. Although it could be argued that lower prices for

producers could be passed on to lower prices for end consumers, the presence of buyer power coupled with high

market power in selling to customers limits this pass-through to consumers, as implied by Equ. 12, it is instead

monopsony intermediaries who would bene�t from lower prices.

Enabling widespread use of generic drugs through elimination of anti-substitution laws (i.e., pro-competitive

PMR in pharmaceutical industry in MA 2) would substantially increase consumers' savings through the backward

linkage from MA 2 to HLT . Competition in social programs such as those relating toHLT would further o�er

various bene�ts to consumers through better functioning of health (HLT ), education (EDU ) and professional

services(EST) markets.

8 Concluding remarks

This paper developed and demonstrated a practical computational methodology for gaining a systemic perspective

on production networks by building on graph-theoretic concepts and a typology of interactions. The methodology

can be applied in almost any country since many countries across the globe compile input-output tables of their

economies. It is systemic as it analyzes network-wide e�ects of a policy intervention based on a structured intercon-

nectedness between sectors. As a policy diagnostic tool, the key strength of the methodology is to support policy

making, with a high degree of transparency and opportunity for engagement compared to modeling approaches. It

induces policy decision makers to look outside their turf and think systematically about how they in�uence, and are

in�uenced, by others. It also brings scienti�c knowledge into the evidence-based policy-making process in a highly

aggregated way which is suitable in a policy context.

Across many economies,MA 2 has been a priority sector expected to catalyze the productivity in the rest of

the economy. Turkiye has also prioritizedMA 2 hoping to promote the productivity. However, except for a limited

period, MA 2 has not met expectations due to various domestic and global adversities. This paper proposes a

methodology to identify the gaps, bottlenecks, and weaknesses in a production network, and elaborates on how the

information obtained from the analysis can be used in policy design to address the challenges. The paper introduces

three complementary algorithms that can be applied to generate information for evidence-based policy design to

improve the productivity in MA 2. The analysis employed the 2018 input-output data of Turkiye, and hence, the
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�ndings are limited in nature. However, the results help us derive lessons to guide future policy interventions at

the network level.

The main results from this paper are three-fold. First, in network-based policy design, it is highly critical to

consider the interdependencies of regulated and seemingly competitive sectors. E�ciencies gained in liberalized

markets via pro-competitive PMR can easily be wasted before �nal consumers bene�t from them as regulated

industries may exercise their market power to con�scate part of the e�ciency gain created in competitive markets.

This points out that the identi�cation of signi�cant sectoral links and their structural properties along the pathways

of sectors in the network is vital for e�ective policy interventions. Improved competition in a single market may

not generate the desired outcome even if competition policies perfectly support that market because bene�ts from

competition will not be spread over the rest of the network due to the peculiarities of the interdependencies

concerned. Second, from the practical policy design perspective, a network-based policy design should start with

the identi�cation of the � dominant � source and the �subordinate� sink sector(s), and those in between. Once

identi�ed, peculiarities of the sectors in the network should be studied to characterize the pathways of linkages and

the outcomes expected from them.Fig . 3 maps thesource� sink structure of MA 2, illustrating that MA 2 is the

most dominant, whereasEST, T SC, EGW , and CST are the potential sinks of input �ow in the network. The

other sectors,AGF , F IN , and CO12 seem to be interactive, that is, their in�uence on the rest of the network is

comparable to the in�uence of the rest of the network. The last but not the least is the identi�cation of the cascade

of layers of links and the measurement of community or link-speci�c network resilience. This piece of information

is of high importance to minimize the systemic risk, and design policies to avoid deleterious e�ects of a shock, such

as the COVID-19 pandemic and the war in Ukraine, to the network.

The methodology proposed is neither �nal nor the most e�cient one, but opening a new avenue for semi-

quantitative computational analysis of a production network. Patterns of interactions in a network can be further

re�ned using more complex algorithms to uncover the very core of interdependencies across sectors. However, the

lack of a benchmark production network structure against which Turkiye's structure can be contrasted makes the

current analysis more of an exploration of existing sectoral interdependencies and their policy implications because

progress towards the productivity improvement cannot be assessed diligently.

Future research is desirable in two broad areas. On the theoretical account, the complexities of interacting

market structures (including competitive, monopolist, oligopolist), the speed and size of price transmission between

interacting markets, the measurement of resource misallocation in downstream sectors due to distortions in the

upstream sectors, and welfare e�ects comprise the challenges to be addressed. On the empirical account, there

are more challenges concerning both data re�nement and empirical market studies. First of all, using aggregate

input-output data creates a completely connected production network as non-existent �rm-level links are essentially

ignored by the aggregation at the sectoral level. Re�ned �rm-level data would be more appropriate to capture the

e�ects at the micro level, which can deviate from the aggregate e�ects. Big data creation e�orts are increasing, and

our methodology can be applied to micro-level data to capture critical micro-level interdependencies [41]. In the

absence of �rm-level data, a second best strategy would be to quantify how much of an input used by a sector is

essential for its main production activity. As we observe at the aggregate level,ENT supplies not-so-small input

to MA 1's production activity. This can be attributed to the catering input purchased by MA 1, which is obviously

not an essential production input used in MA 1. By disentangling of essential input from non-essential input,

the aggregate input-output production network can be adjusted to base the network analysis only on the use of

essential inputs. With such adjustment, some links across sectors may disappear even at the aggregate level, giving

rise a more realistic representation of input-output data. A similar adjustment can be pursued by distinguishing

between easily substitutable inputs and crucial, hard-to-substitute inputs where �rms are locked-in and switching

costs are large. Alternative (or re�ned) network data can be then analyzed to paint a more realistic picture of
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interdependencies in the network concerned.
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