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Abstract 

This paper considers the theoretical framework of the consumption-based asset-pricing model 

and derives successive approximations of the modified basic pricing equation using the 

Taylor series expansions of the investor’s utility function during the averaging time interval. 

For linear and quadratic Taylor approximations, we derive new expressions for the mean 

asset price, mean payoff, volatility, skewness, and the amount of an asset that delivers 

maximum to the investor’s utility. We introduce a new market-based approach to price 

probability determined by statistical moments of market trade values and volumes. We show 

that market-based price probability results in zero correlations between the time series of the 

n-th power of price pn and trade volume Un but doesn’t cause statistical independence. We 

derive a correlation between the time series of prices p and the squares of trade volumes U2. 

The market-based approach describes the impact of the size of the trade values and volumes 

on price statistical moments and probability. Predictions of the market-based price 

probability at horizon T should match forecasts of the statistical moments of the trade values 

and volumes at the same horizon T. Market-based price probability emphasizes direct 

dependence on the random properties of market trades. 
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1. Introduction 

Predictions of asset prices are the most desired results for investor and, at the same time, the 

most complex problems of economic and financial theory. The literature on asset pricing is 

huge and boundless, and our references present not historical review but only our personal 

preferences. We mention only a tiny part of the endless publications on asset pricing, starting 

with CAPM by Sharpe (1964), which was followed by various modifications such as 

Intertemporal CAPM by Merton (1973), the Arbitrage Theory of Capital Asset Pricing by 

Ross (1976), the consumption-based asset pricing model described by Duffie and Zame 

(1989), Cochrane (2001), Campbell (2002), and many others. In his paper, Cochrane (2001) 

demonstrates that the consumption-based asset-pricing framework gives a unified approach 

for the description of most variations of pricing models. We consider Cochrane’s statement 

and methods at the roots of the consumption-based model as the key tools of current pricing 

theories. 

One may consider most pricing theories as fruitful derivations of CAPM, which mostly have 

certain common assumptions, foundations, and limitations. Sharpe (1964) mentioned that his 

assumptions in the foundation of CAPM, such as "common pure rate of interest" and 

"homogeneity of investor expectations: investors are assumed to agree on the prospects of 

various investments" are "highly restrictive and undoubtedly unrealistic assumptions". 

CAPM and consumption-based models are based on the assumption of general market 

equilibrium, and they use utility functions that model investors’ market decisions. The 

maximum condition of the investor’s utility function results in the basic pricing equation that 

describes most current results in pricing models. These and other initial assumptions are the 

basis of modern asset pricing models. On the one hand, these assumptions support the 

description of definite relations between current asset prices, expected payoffs, discount 

factors, etc. On the other hand, "highly restrictive and undoubtedly unrealistic assumptions" 

carry the threat of failures and inconsistencies between predictions of pricing theories and 

real market price dynamics.  
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We don’t study how conventional assumptions in the foundation of the pricing models 

impact their predictions or limit their applications. Instead, we take the consumption-based 

frame and consider how few remarks generated by market trade reality could impact the 

consequences and performance of asset pricing. As our main reference to the 

consumption-based model, we chose Cochrane (2001). If one agrees with Cochrane’s 

statement that the consumption-based model and the basic pricing equation describe the 

results of most variants of pricing theories, then our remarks, approximations, and results 

make sense and could be applied to other asset pricing theories. 

Our pure theoretical paper considers the frame of the consumption-based asset pricing model 

as a general economic problem and investigates its compliance with major economic issues. 

Actually, any economic and financial model describes processes and relations only as an 

approximation that captures certain averaging, smoothness, and coarsening of the economic 

reality. Thus, our first remark concerns the importance of considering a particular time 

averaging interval Δ as a determining factor in pricing models. Indeed, current stock markets 

support initial time axis division determined by the time series of the trades performed at 

moments ti with a time shift ε = ti - ti-1 between trades. For simplicity in this paper, we 

consider the time shift ε as a constant. As usual, the time shift ε is sufficiently small and can 

be equal to 1 second or even a fraction of a second. That is not much use for modeling asset 

prices at a horizon of 1 month, quarter, or year. However, records of market trade time series 

with time shifts determine the initial market time axis division and define the discrete nature 

of all initial market trade data. To evaluate any reasonable pricing model at a given horizon T 

that can be equal to a month, quarter, year, and so on, one should choose the averaging time 

scale Δ, which should obey ε<< Δ <T. The choice of the averaging time interval Δ is a key 

factor in any pricing model. It determines the scale of averaging of the initial trade time 

series and thus performs the transition from the initial market time division multiple of ε to 

the averaged time division multiple of Δ. Below, we show how the choice of the averaging 

interval results in a modification of the consumption-based utility function and the basic 

pricing equation. 
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Our second remark indicates that the choice of the averaging interval Δ allows expanding the 

utility function and the basic pricing equation into Taylor series near average values of price 

and payoff and then averaging the fluctuating terms of the series during. Mathematical 

expectations of linear and quadratic Taylor approximations of the basic pricing equation by 

price and payoff variations during Δ give new expressions of the mean price and payoff, their 

volatilities, skewness, and other factors. Actually, even linear Taylor expansion demonstrates 

that the famous statement "price equals expected discounted payoff," with which Cochrane 

(2001) and Brunnermeier (2015) begin their papers, describes only markets with zero price 

volatility during current and "next" periods, which makes almost no economic sense. As we 

show in Sec. 4, the Taylor expansion of the modified basic pricing equation determines 

relations between mean price and price volatility during the current period and mean payoff 

and payoff volatility during the "next" period. Further in Section 4, we derive additional 

relations that extend the results of the consumption-based model. 

Our third remark concerns the economic origin, definition, approximations, and forecasting 

of the asset price probability as the major problem of any pricing model and financial 

economics as a whole. Furthermore, we consider the assessments and predictions of the finite 

number of price statistical moments, which establish the basis for approximations of price 

probability and its forecasts, as the principal and most complex problems of financial 

economics and the key problem of any asset pricing model in particular. We introduce the 

market-based probability of asset price, which is determined by statistical moments of market 

trade values and volumes during Δ. Conventional treatment considers a frequency-based 

assessment of price probability, which is proportional to the number of trades at price p. 

Actually, any particular market trade at time ti is determined by its trade value C(ti), volume 

U(ti), and price p(ti), which follow a trivial equation: 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (1.1) 

One should mention that it is impossible to independently define the probabilities of three 

variables: trade value C(ti), volume U(ti), and price p(ti) – those match equation (1.1). We 

consider trade value C(ti) and volume U(ti) time series as major random variables during the 
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interval Δ, which completely determine random price p(ti) properties. It is well known that the 

properties of a random variable can be equally described by its probability measure, 

characteristic function, or set of statistical moments (Shephard, 1991; Shiryaev, 1999; 

Klyatskin, 2005). The random market trade time series during Δ determines assessments of 

the n-th statistical moments of trade value C(t;n) (5.7) and volume U(t;n) (5.8), and we use 

them to define the n-th statistical moments p(t;n) (5.10) of price. We compare the 

frequency-based and the market-based n-th statistical  moments of price and explain why the 

conventional frequency-based treatment of price probability makes too little economic sense. 

We propose that readers become familiar with Cochrane (2001) and refer to his monograph 

for any notions or clarifications. In Sec. 2, we briefly recall the main notions of asset pricing 

according to Cochrane (2001). In Sec. 3, we consider remarks on the averaging interval Δ and 

explain the necessity for modification of the consumption-based basic pricing equation. In 

Sec. 4, we discuss the Taylor series expansion of the utility functions and derive successive 

approximations of the modified basic equation in linear and quadratic approximations by the 

price and payoff variations. In Sec. 5, we introduce the market-based price statistical 

moments and briefly consider their implications for asset pricing. Sec. 6: Conclusion. In App. 

A, we collect some calculations that define the maximum of an investor’s utility. In App. B, 

we present simple approximations of the price characteristic function.  

Equation (4.5) means equation 5 in Sec. 4, and (A.2) notes equation 2 in Appendix A. We 

assume that readers are familiar with the basic notions of probability, statistical moments, 

characteristic functions, etc. 

2. Brief Notations 

In this Sec. we briefly remind main notations and assumptions of asset pricing used by Cochrane 

(2001). The consumption-based basic pricing equation has form: 𝑝 = 𝐸[𝑚 𝑥]       (2.1) 

In (2.1), p denotes the asset price at date t, x=pt+1+dt+1 – payoff, pt+1 - price and dt+1 - dividends 

at date t+1, m - stochastic discount factor and E[..] – mathematical expectation at day t+1 made 

by the forecast under the information available at date t. Cochrane (2001) considers equation 
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(2.1) in various forms to show that most asset pricing models can be described by similar equa-

tions. For convenience, we briefly reproduce the derivation of the consumption-based basic 

pricing equation (2.1). Cochrane models investors by a utility function W(ct; ct+1) defined over 

current ct and future ct+1 values of consumption at dates t and t+1. 𝑊(𝑐𝑡;  𝑐𝑡+1) = 𝑤(𝑐𝑡) + 𝛽𝐸[𝑤(𝑐𝑡+1)]    (2.2) 𝑐𝑡 = 𝑒𝑡 − 𝑝𝜉   ;      𝑐𝑡+1 = 𝑒𝑡+1 + 𝑥𝜉     (2.3) 𝑥 = 𝑝𝑡+1 + 𝑑𝑡+1       (2.4) 

In (2.2), w(ct) and w(ct+1) are utility functions at dates t and t+1; in (2.3), et and et+1 “denotes the 

original consumption level (if the investor bought none of the asset), and ξ denotes the amount of 

the asset he chooses to buy” (Cochrane, 2001). Cochrane calls β as “subjective discount factor 

that captures impatience of future consumption”. The first-order maximum condition for (2.2) by 

the amount of assets ξ is fulfilled by putting the derivative of (2.2) by ξ equals zero (Cochrane, 

2001): 𝑚𝑎𝑥𝜉 𝑊(𝑐𝑡;  𝑐𝑡+1)  ↔  𝜕𝜕𝜉 𝑊(𝑐𝑡;  𝑐𝑡+1) = 0    (2.5) 

From (2.2-2.5) one obtains:  𝑝 = 𝛽𝐸 [ 𝑤′(𝑐𝑡+1)𝑤′(𝑐𝑡)  𝑥] = 𝐸[𝑚𝑥]     ;     𝑚 = 𝛽 𝑤′(𝑐𝑡+1)𝑤′(𝑐𝑡)    ;   𝑤′(𝑐) ≡ 𝑑𝑑𝑐 𝑤(𝑐)  (2.6) 

and (2.6) reproduces (2.1) for m (2.6). We refer Cochrane (2001) for any further details. 

3. Remarks on Time Scales 

We start with simple remarks on the averaging of economic and financial time series. Any 

economic or financial model, and asset pricing in particular, approximates real processes by 

averaging them over a certain time interval Δ. To describe market asset pricing, one should 

take into account that market trade time series are the only source of price variations. The 

interval ε between market transactions can be very small and can be equal to 1 second or 

even a fraction of a second. Initial market price time series p(ti) with time-shift ε are very 

irregular and not very useful for modelling and forecasting asset prices at any reasonable time 

horizon T that can be equal to a week, month, year, etc. To derive a reasonable description of 

asset prices, one should chose an averaging interval Δ and smooth variations of market prices 

during Δ. The choice of an averaging interval Δ is a very important challenge for each 
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investor. The choice of a long interval Δ, which equals weeks or months, would result in 

smooth dynamics and stable predictions of the averaged variables but would limit the 

capacity to take investment decisions “this hour” or “today”. Short averaging interval Δ, such 

as hours or days, improve ability to make “this hour” investment decisions, but average 

variables could be under the impact of multiple perturbations with periods equal to days or 

weeks. Different averaging intervals cause different random properties of variables and 

different models, that describe the evolution of averaged variables. 

To perform a transition from the initial market trade time axis division, which is multiple of ε 

one should choose a time interval Δ such as ε<<Δ<T and average price time series p(ti) 

during Δ. The time shift Δ = t(k) – t(k-1) of averaged prices p(t(k)) at times t(k) introduces a 

new division of the time axis division multiple of Δ. One can consider averaging intervals Δk 

as (3.1): ∆𝑘= [ 𝑡(𝑘) − ∆2  ; 𝑡(𝑘) + ∆2]  ;    𝑡(𝑘) = 𝑡(0) + 𝑘 ∆   ;     𝑘 = 0, 1, 2, .. (3.1) 

We take the duration of each averaging interval Δk equal Δ. One can consider time t=t(0) as 

the moment “today” and the “next day” at time t+1 as t(K) for some K>>1. What is most 

important: time axis division “today” at t and the “next-day” at t+1 must be the same. Indeed, 

time axis divisions can’t be measured “today” in hours and “next-day” in weeks. Utility (2.2) 

“today” at moment t and the “next-day” at t+1 should have the same time axis divisions. 

Averaging any time series at the “next-day” at t+1 during the interval Δ undoubtedly implies 

averaging “today” at date t during an equal time interval Δ and vice versa. Thus, if the utility 

(2.2) is averaged at t+1 during the interval Δ, then the utility (2.2) also should be averaged at 

date t during the same interval Δ and (2.2) should take the form: 𝑊(𝑐𝑡;  𝑐𝑡+1) = 𝐸𝑡[𝑤(𝑐𝑡)] + 𝛽𝐸[𝑤(𝑐𝑡+1)]    (3.2) 

We denote Et[..] in (3.2) as the mathematical expectation “today” at date t during Δ. It does 

not matter how one considers the market price time series “today” – as random or as irregular. 

Mathematical expectation Et[..] performs smoothing of the random or irregular time series 

via aggregating data during Δ under a particular probability measure. Mathematical 

expectations Et[..] at t and E[..] at t+1 during the same averaging intervals Δ establish 
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identical time division of the problem at dates t and t+1 in (3.2). Hence, relations similar to 

(2.5; 2.6) should cause modification of the basic pricing equation (2.1; 2.6) in the form (3.3): 𝐸𝑡[𝑝 𝑤′(𝑐)] = 𝛽𝐸 [𝑥 𝑤′(𝑐𝑡+1)]    (3.3) 

Cochrane (2001) takes the “subjective discount factor” β as non-random, and we follow his 

assumption. Mathematical expectation Et[..] averages pw’(ct) over random price p 

fluctuations during Δ “today”. On the right side, E[xw’(ct+1)] averages xw’(ct+1) over random 

payoff fluctuations during Δ “next day” on the basis of data available at date t “today”. 

4. Remarks on Taylor series 

Relation (2.5) presents the first-order condition for the amount of assets ξmax that delivers the 

maximum to the investor’s utility (2.2) or (3.2). Let us choose the averaging interval Δ and 

take the price p at date t during Δ and the payoff x at date t+1 during Δ as: 𝑝 =  𝑝0 + 𝛿𝑝 ;     𝑥 = 𝑥0 + 𝛿𝑥  ;    𝐸𝑡[𝑝] = 𝑝0 ;  𝐸[𝑥] = 𝑥0     (4.1) 𝐸𝑡[𝛿𝑝] = 𝐸[𝛿𝑥] = 0 ;  𝜎2(𝑝) = 𝐸𝑡[𝛿2𝑝]  ;  𝜎2(𝑥) = 𝐸[𝛿2𝑥]  (4.2) 

Relations (4.1; 4.2) denote the average price p0 and its volatility σ2
(p) at date t and the 

average payoff x0 and its volatility σ2
(x) at date t+1. We consider δp and δx as random 

fluctuations of price and payoff during Δ. We indicate that we consider averaging during Δ as 

averaging of a random variable or as smoothing of an irregular variable. Thus, Et[p] – at date 

t smooths the random or irregular price p (4.1) during Δ and E[x] – averages the random 

payoff x (4.1) during Δ at date t+1. We present the derivatives of utility functions in (3.3) by 

Taylor series in a linear approximation by δp and δx during Δ:  𝑤′(𝑐𝑡) = 𝑤′(𝑐𝑡;0) − 𝜉𝑤′′(𝑐𝑡;0)𝛿𝑝    ;    𝑤′(𝑐𝑡+1) = 𝑤′(𝑐𝑡+1;0) + 𝜉𝑤′′(𝑐𝑡+1;0)𝛿𝑥  (4.3) 𝑐𝑡;0 = 𝑒𝑡 − 𝑝0𝜉   ;      𝑐𝑡+1;0 = 𝑒𝑡+1 + 𝑥0𝜉 

Now substitute (4.3) into (3.3), and due to (4.2), obtain the equation (4.4): 𝑤′(𝑐𝑡;0)𝑝0 − 𝜉𝑤′′(𝑐𝑡;0)𝜎2(𝑝) = 𝛽𝑤′(𝑐𝑡+1;0)𝑥0 + 𝛽𝜉𝑤′′(𝑐𝑡+1;0)𝜎2(𝑥)  (4.4) 

Taylor series are simple mathematical tools, and Cochrane (2001) also used them. We 

underline: Taylor series and (4.1-4.4) are determined by the duration of Δ. The change of Δ 

can implies a change of the mean price p0, the mean payoff x0 and their volatilities σ2
(p), σ2

(x) 

(4.2). Equation (4.4) is a linear approximation of the price and payoff fluctuations of the 
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first-order max conditions (2.5) and assesses the root ξmax that delivers maximum to the 

utility W(ct;ct+1) (3.2):  𝜉𝑚𝑎𝑥 = 𝑤′(𝑐𝑡;0)𝑝0−𝛽𝑤′(𝑐𝑡+1;0)𝑥0𝑤′′(𝑐𝑡;0)𝜎2(𝑝)+𝛽𝑤′′(𝑐𝑡+1;0) 𝜎2(𝑥)    (4.5) 

We note that (4.5) is not an “exact” solution for ξmax as derivatives of utilities w’ and w” also 

depend on ξmax as it follows from (4.3). However, (4.5) gives an assessment of ξmax in a linear 

approximation by Taylor series δp and δx averaged during Δ. Let us highlight that the ξmax 

(4.5) depends on the price volatility σ2
(p) at date t and on the forecast of payoff volatility σ2

(x) 

at date t+1 (4.2).  

It is clear that sequential iterations may give more accurate approximations of ξmax. 

Nevertheless, our approach and (4.5) give a new look at the basic equation (2.6; 3.3). If one 

follows the standard derivation of (2.6) (Cochrane, 2001) and neglects the averaging at date t 

in the left side (3.3), then (2.6; 4.5) give  𝜉𝑚𝑎𝑥 = 𝑤′(𝑐𝑡)𝑝−𝛽𝑤′(𝑐𝑡+1;0)𝑥0𝛽𝑤′′(𝑐𝑡+1;0)𝜎2(𝑥)      (4.6) 

Relations (4.6) show that even the standard form of the basic equation (2.6) hides the 

dependence of the amount of assets ξmax on the payoff volatility σ2
(x) at date t+1. If one has 

an independent assessment of ξmax then one can present (4.6) in a way similar to the basic 

equation (2.6):  𝑝 = 𝑤′(𝑐𝑡+1;0)𝑤′(𝑐𝑡) 𝛽𝑥0 + 𝜉𝑚𝑎𝑥 𝑤′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡) 𝛽𝜎2(𝑥)    (4.7) 

Otherwise, if there are no independent assessments of ξmax, then one should consider (4.6) as 

the solution of the first order maximum condition (2.5), which presents the root ξmax of the 

amount of assets, determined for the given values in the right hand of (4.6). In that case, the 

basic pricing equations (2.1; 2.6; 4.7) make almost no sense, as the value of ξmax in (4.7) is 

not determined. We consider this misstep – using the maximum condition (2.5) to determine 

the basic pricing equation (2.1; 4.7) instead of defining ξmax as a root of the maximum 

condition (2.5) - a significant oversight of the consumption-based asset pricing model, which 

requires essential clarifications. One can transform (4.7) similar to (2.6): 𝑝 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥𝑚1𝜎2(𝑥)     (4.8) 
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𝑚0 = 𝑤′(𝑐𝑡+1;0)𝑤′(𝑐𝑡) 𝛽  ;   𝑚1 = 𝑤′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡) 𝛽    (4.9) 

For the given ξmax equation (4.8) in a linear approximation by Taylor series describes the 

dependence of the price p at date t (3.1) on the mean discount factors m0 and m1 (4.9), the 

mean payoff x0 (4.1), and the payoff volatility σ2
(x) during Δ. Let us stress that while the 

mean discount factor m0>0, the mean discount factor m1<0 because utility w’(ct)>0 and 

w”(ct)<0 for all t. Hence, irremovable payoff volatility σ2
(x) at day t+1 states that price p at 

day t always less than discounted mean payoff x0:  𝑝 < 𝑚0𝑥0     ;      𝜉𝑚𝑎𝑥𝑚1𝜎2(𝑥) < 0      

One can consider (4.8) as a linear Taylor expansion of (2.1; 2.6). However, equation (4.4) 

presents the dependence of mean price p0 at day t on price volatility σ2
(p) at day t, mean 

payoff x0 and payoff volatility σ2
(x) at day t+1. That definitely enlarges the conventional 

statement that “price equals expected discounted payoff”. We indicate that (4.6-4.9) makes 

sense for the given value of ξmax. As the price p in (4.8) should be positive, hence ξmax should 

obey inequality (4.10): 0 < 𝜉𝑚𝑎𝑥 < − 𝑤′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡+1;0)  𝑥0𝜎2(𝑥)    (4.10) 

For the conventional power utility (A.2) (Cochrane, 2001), from (4.3) obtain for (4.10): 𝑤(𝑐) = 11−𝛼 𝑐1−𝛼   ;    𝑤′(𝑐)𝑤′′(𝑐) =  − 𝑐𝛼    ;    0 < 𝛼 ≤ 1    

inequality (4.10) valid always if 𝛼 𝜎2(𝑥) <  𝑥02       

For this approximation (4.10) limits the value of ξmax. For (4.4; 4.5) obtain equations similar 

to (4.8; 4.9): 𝑚0 = 𝑤′(𝑐𝑡+1;0)𝑤′(𝑐𝑡;0) 𝛽 > 0 ;   𝑚1 = 𝑤′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡;0) 𝛽 < 0 ;   𝑚2 = 𝑤′′(𝑐𝑡;0)𝑤′(𝑐𝑡;0) < 0  (4.11) 𝑝0 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥[𝑚1𝜎2(𝑥) + 𝑚2𝜎2(𝑝)]    (4.12) 

We use the same notions m0, m1 to denote the discount factors, taking into account the 

replacement of w’(ct) in (4.9) by w’(ct;0) in (4.11; 4.12). The modified basic equation (4.12) 

at date t describes the dependence of the mean price p0 on the price volatility σ2
(p) at date t, 

the mean payoff x0 and the payoff volatility σ2
(x) at date t+1 averaged during Δ.  
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Equation (4.12) illustrates the well-known practice that high volatility σ2
(p) of the price at 

date t and a forecast of high volatility σ2
(x) of payoff at date t+1 may cause a decline in the 

mean price p0 at date t. 

4.1 The Idiosyncratic Risk 

Here we follow (Cochrane, 2001) and briefly consider the usage of the Taylor series for his 

example of the idiosyncratic risk for which the payoff x in (2.6) is not correlated with the 

discount factor m at moment t+1:  𝑐𝑜𝑣(𝑚, 𝑥) = 0     (4.13) 

In this case equation (2.6) takes form:  𝑝 = 𝐸[𝑚𝑥] = 𝐸[𝑚]𝐸[𝑥] + 𝑐𝑜𝑣(𝑚, 𝑥) =  𝐸[𝑚]𝑥0 = 𝑥0𝑅𝑓  (4.14) 

The risk-free rate Rf in (4.14) is known ahead (Cochrane, 2001). Taking into account (4.3) in 

a linear approximation by δx Taylor series for the derivative of the utility w’(ct+1): 𝑤′(𝑐𝑡+1) = 𝑤′(𝑐𝑡+1;0) + 𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥   (4.15) 

Hence, the discount factor m (2.6) takes form: 𝑚 = 𝛽 𝑤′(𝑐𝑡+1)𝑤′(𝑐𝑡) = 𝛽𝑤′(𝑐𝑡) [′(𝑐𝑡+1;0) + 𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥]    𝐸[𝑚] = �̅� = 𝛽 𝑤′(𝑐𝑡+1;0)𝑤′(𝑐𝑡)       ;         𝛽𝐸 [𝑤′(𝑐𝑡+1)𝑤′(𝑐𝑡) ] 𝑥0 = 𝑥0𝑅𝑓        ;     𝐸[𝑤′(𝑐𝑡+1)𝑥] = 0    𝛿𝑚 = 𝑚 − �̅� = 𝛽𝑤′(𝑐𝑡) 𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥     

Hence, (4.13) implies: 𝑐𝑜𝑣(𝑚, 𝑥) = 𝐸[𝛿𝑚𝛿𝑥] = 𝛽 𝑤′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡) 𝜉𝑚𝑎𝑥𝜎2(𝑥) = 0  (4.16) 

That causes zero payoff volatility σ2
(x)=0. Of course, zero payoff volatility does not model 

market reality, but (4.16) reflects the restrictions of the linear approximation (4.15). To 

overcome this discrepancy, take into account the Taylor series up to the second power by δ2
x:  𝑤′(𝑐𝑡+1) = 𝑤′(𝑐𝑡+1;0) + 𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 12 𝑤′′′(𝑐𝑡+1;0)𝜉2𝛿2𝑥   (4.17) 𝑚 = 𝛽 𝑤′(𝑐𝑡+1)𝑤′(𝑐𝑡) = 𝛽𝑤′(𝑐𝑡) [𝑤′(𝑐𝑡+1;0) + 𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 12 𝑤′′′(𝑐𝑡+1;0)𝜉2𝛿2𝑥] (4.18) 

For this case, the mean discount factor E[m] takes the form: 



 

 12 

𝐸[] = �̅� = 𝛽𝑤′(𝑐𝑡) [𝑤′(𝑐𝑡+1;0) + 12 𝑤′′′(𝑐𝑡+1;0)𝜉2𝜎2(𝑥)]  (4.19) 

and variations of the discount factor δm: 𝛿𝑚 = 𝑚 − �̅� = 𝛽𝑤′(𝑐𝑡)  [𝑤′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 12 𝑤′′′(𝑐𝑡+1;0)𝜉2{𝛿2𝑥 − 𝜎2(𝑥)}   

Thus the Taylor series approximation up to the second power by δ2
x gives: 𝑐𝑜𝑣(𝑚, 𝑥) = 𝐸[𝛿𝑚𝛿𝑥] =  [𝑤′′(𝑐𝑡+1;0)𝜉𝜎2(𝑥) + 12 𝑤′′′(𝑐𝑡+1;0)𝜉2 𝛾3(𝑥) ] = 0 (4.20)  𝛾3(𝑥) = 𝐸[𝛿3𝑥]     ;      𝑆𝑘(𝑥) = 𝛾3(𝑥)𝜎3(𝑥)     (4.21) 

Sk(x) – denotes normalized payoff skewness at date t+1, treated as the measure of asymmetry 

of the probability distribution during Δ. For approximation (4.18) from (4.20; 4.21), obtain 

relations on the skewness Sk(x) and ξmax:  𝜉𝑚𝑎 𝑆𝑘(𝑥)𝜎(𝑥) = −2 𝑤′′(𝑐𝑡+1;0)𝑤′′′(𝑐𝑡+1;0)    (4.22) 

For the conventional power utility (A.2)  𝑤(𝑐) = 11−𝛼 𝑐1−𝛼      

and (4.3) relations (4.22) take the form 𝜉𝑚𝑎𝑥 =  2𝑒𝑡+1(1+𝛼)𝑆𝑘(𝑥)𝜎(𝑥)−2𝑥0     (4.23) 

It is assumed that the second derivative of utility w’’(ct+1)<0 always negative and the third 

derivative w’’’(ct+1)>0 is positive, and hence the right side in (4.22) is positive. Hence, to get 

a positive ξmax for (4.23) for the power utility (A.2), the payoff skewness Sk(x) should obey 

inequality (4.24) that defines the lower limit of the payoff skewness Sk(x): 𝑆𝑘(𝑥) > 2𝑥0(1+𝛼)𝜎(𝑥)     (4.24) 

In (4.14), Rf denotes the risk-free rate. Hence, (4.19; 4.22; 4.24) define relations: 𝛽𝑤′(𝑐𝑡) [𝑤′(𝑐𝑡+1;0) + 12 𝑤′′′(𝑐𝑡+1;0)𝜉𝑚𝑎𝑥2𝜎2(𝑥)] = 1𝑅𝑓    

12 𝜉𝑚𝑎𝑥2𝜎2(𝑥) = 1𝛽𝑅𝑓  𝑤′(𝑐𝑡)𝑤′′′(𝑐𝑡+1;0)   − 𝑤′(𝑐𝑡+1;0)𝑤′′′(𝑐𝑡+1;0)    𝑆𝑘2(𝑥) = 𝑅𝑓1−𝑚0𝑅𝑓 𝑚12𝑚3 > 4𝑥02(1+𝛼)2𝜎2(𝑥)   ;    𝑚0 < 1/𝑅𝑓    

𝜎2(𝑥)4𝑥02  >  𝑚3𝑚12  1−𝑚0𝑅𝑓(1+𝛼)2𝑅𝑓     (4.25) 
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Inequality (4.25) establishes the lower limit on the payoff volatility σ2
(x) normalized by the 

square of the mean payoff x0
2. The lower limit on the right side of (4.25) is determined by the 

discount factors (4.26), the risk-free rate Rf, and the conventional power utility factor α (A.2).  𝑚0 =  𝛽 𝑤′(𝑐𝑡+1;0)𝑤′(𝑐𝑡)   ;  𝑚1 = 𝛽 𝑤′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡)   ;    𝑚3 = 𝛽 𝑤′′′(𝑐𝑡+1;0)𝑤′(𝑐𝑡)   (4.26) 

The coefficients in (4.26) differ a little from (4.1), as (4.26) takes the denominator w’(ct) 

instead of w’(ct;0) in (4.11), but we use the same letters to avoid extra notations. The similar 

calculations for (3.2; 3.3) describe both the price volatility σ2
(p) and price skewness Sk(p) at 

date t and the payoff volatility σ2
(x) and payoff skewness Sk(x) at date t+1. Further 

approximations by the Taylor series of the utility derivative w’(ct) up to δ3
p and w’(ct+1) up to 

δ3
x similar to (4.17) could give assessments of kurtosis of the price probability at date t and 

the kurtosis of the payoff probability at date t+1 estimated during interval Δ. 

4.2 The Utility Maximum 

Relations (2.5) define the first-order condition that determines the amount of asset ξmax that 

delivers the max to the utility W(ct;ct+1) (2.2; 3.2). To confirm that function W(ct;ct+1) has 

max at ξmax , the first order condition (2.5) must be supplemented by condition:   𝜕2𝜕𝜉2 𝑊(𝑐𝑡; 𝑐𝑡+1) < 0     (4.27) 

The use of (4.27) has interesting consequences. From (2.2–2.4) and (4.27), obtain: 𝑝2 > − 𝛽𝑤′′(𝑐𝑡) 𝐸[𝑥2 𝑤′′(𝑐𝑡+1) ]    (4.28) 

Take the linear Taylor series expansion of the second derivative of the utility w’’(ct+1) by δx 𝑤′′(𝑐𝑡+1) = 𝑤′′(𝑐𝑡+1;0) + 𝑤′′′(𝑐𝑡+1;0)𝜉𝛿𝑥     

Then (4.28) takes the form: 𝑝2 > −𝛽 𝑤′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] − 𝛽 𝑤′′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) 𝜉𝑚𝑎𝑥  [2𝑥0𝜎2(𝑥) + 𝛾3(𝑥)] (4.29) 

For the power utility (A.2), (see App.A) obtain relations on (4.27; 4.29). If the payoff 

volatility σ2
(x) multiplied by factor (1+2α) is less then the mean payoff x0

2 (4.30; A.5):   (1 + 2𝛼)𝜎2(𝑥) < 𝑥02        ;          13 ≤ 11+2𝛼 < 1   (4.30) 

Then (4.29) is always valid. If payoff volatility σ2
(x) is high (A.6)  (1 + 2𝛼)𝜎2(𝑥) >  𝑥02     
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Then (4.29) valid only for ξmax (A.6): 𝜉𝑚𝑎𝑥 <  𝑒𝑡+1[𝑥02+𝜎2(𝑥)]𝑥0 [(1+2𝛼)𝜎2(𝑥)−𝑥02]      

However, this upper limit for ξmax can be high enough. The same but more complex 

considerations can be presented for (3.2). 𝐸𝑡[𝑝2𝑤′′(𝑐𝑡)] < −𝐸[𝛽𝑥2 𝑤′′(𝑐𝑡+1) ] 
5. Remarks on the Price Probability 

There are at least two different approaches to the definition of asset price probability. We 

note the first one, and the most conventional, as the frequency-based approach. However, we 

believe that the nature of economic and market relations determines the different ways to 

consider price probability. We call it the market-based price probability. 

The usual treatment of price probability “is based on the probabilistic approach and using A. 

N. Kolmogorov’s axiomatic of probability theory, which is generally accepted now” 

(Shiryaev, 1999). The conventional definition of the price probability is based on the 

frequency of trades at a price p during the averaging interval Δ. The economic foundation of 

such a choice is simple: it is assumed that each of N trades during Δ has equal probability ~ 

1/N. If there are m(p) trades at the price p then the probability P(p) of the price p during Δ is 

assessed as m(p)/N. The use of the frequency of the particular event is an absolutely correct, 

general, and conventional approach to probability definition. The conventional 

frequency-based approach to price probability checks how almost all standard probability 

measures (Walck, 2007; Forbes et al, 2011) fit the description of the market’s random price. 

Parameters, which define standard probabilities, permit calibrating each in a manner that 

increases plausibility and consistency with the observed random price time series. For 

different assets and markets, different standard probabilities are tested and applied to fit and 

predict the random price dynamics as well as possible.  

However, one may ask a simple question: Does the conventional frequency-based approach 

to price probability fit random market pricing? Indeed, the asset price is a result of the market 

trade, and it seems reasonable that the market trade randomness should conduct the price 

stochasticity. We propose a new definition of the market-based price probability that is 
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different from the conventional frequency-based probability and is entirely determined by the 

statistical moments of the market trade values and volumes. 

Let us remind ourselves that almost 30 years ago, the volume weighted average price 

(VWAP) was introduced and is widely used now (Berkowitz et al, 1988; Buryak and Guo, 

2014; Busseti and Boyd, 2015; Duffie and Dworczak, 2018; CME Group, 2020). The 

definition of the VWAP p(t;1) that matches equation (1.1) during Δ is follows. Assume that 

during Δ (5.3), there are N market trades at moments ti, i=1,…N. Let’s denote E[..] as a 

mathematical expectation. Then the VWAP p(t;1) (5.1) that match (1.1) during Δ (5.3) at 

moment t equals  𝑝(𝑡; 1) ≡ 𝐸[𝑝(𝑡𝑖)] = 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ≡ 𝐶𝛴(𝑡;1)𝑈𝛴(𝑡;1)   (5.1) 𝐶𝛴(𝑡; 1) ≡ ∑ 𝐶(𝑡𝑖) ≡𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖)   ;    𝑈𝛴(𝑡; 1) ≡ ∑ 𝑈(𝑡𝑖)𝑁𝑖=1   (5.2) ∆= [𝑡 − ∆2  , 𝑡 + ∆2]   ;   𝑡𝑖 ∈ ∆ , 𝑖 = 1, … 𝑁    (5.3) 

We consider the time series of the trade value C(ti), volume U(ti) and price p(ti) as random 

variables during Δ (5.3). Equation (1.1) at moment ti defines the price p(ti) of market trade 

value C(ti) and volume U(ti). The sum CΣ(t;1) of values C(ti) (5.2) and the sum UΣ(t;1) of 

volumes U(ti) (5.2) of N trades during Δ (5.3) define the VWAP p(t;1) (5.1).  

We hope that readers are able distinguish the difference between the notations of 

consumption ct (2.2; 2.3) and utility U (2.2) in Sections 2-4 and trade value C(ti) and volume 

U(ti) (5.1) in the current Section.  

It is obvious that VWAP (5.1) can be equally determined (5.4) by the mean value C(t;1) (5.5) 

and the mean volume U(t;1) (5.6) of N trades during Δ: 𝐶(𝑡; 1) = 𝑝(𝑡; 1) 𝑈(𝑡; 1)    (5.4) 

The mean trade value C(t;1) and volume U(t;1) are assessed by the finite number N of trades 

during Δ (5.3) through the conventional frequency-based approach:  𝐶(𝑡; 1) ≡ 𝐸[𝐶(𝑡𝑖)]~ 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1     (5.5)  𝑈(𝑡; 1) ≡ 𝐸[𝑈(𝑡𝑖)]~ 1𝑁  ∑ 𝑈(𝑡𝑖)𝑁𝑖=1     (5.6) 
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The notion ~ indicates that (5.5; 5.6) give only assessments of mean trade value C(t;1) and 

mean volume U(t;1) by a finite number N of trades during Δ (5.3). VWAP p(t;1) (5.4) is a 

coefficient between the mean value C(t;1) (5.5) and the mean volume U(t;1) (5.6).  

Actually, the trade equation (1.1) imposes constraints on the probabilities of the trade value 

C(ti), volume U(ti) and price p(ti) time series. Given the probabilities of trade value C(ti) and 

volume U(ti) time series during Δ, that match (1.1) should determine the price probability. 

However, VWAP p(t;1) and relations (5.1-5.6) are not sufficient to define all random 

properties of price as a random variable during Δ (5.3). Actually, it is well known that 

properties of a random variable can be equally described by probability measure, 

characteristic function, and a set of statistical moments (Shephard, 1991; Shiryaev, 1999; 

Klyatskin, 2005). To approximate the properties of the market trade value and volume as 

random variables during Δ (5.3), one could assess their n-th statistical moments of the trade 

value C(t;n) and volume U(t;n): 𝐶(𝑡; 𝑛) ≡ 𝐸[𝐶𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1      (5.7)  𝑈(𝑡; 𝑛) ≡ 𝐸[𝑈𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1     (5.8) 

We mention that the n-th power of (1.1) for each particular trade at the time ti gives: 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)  ;    𝑛 = 1, 2, …   (5.9) 

We use (5.7-5.9) to determine the n-th statistical moments p(t;n) of price for n=1,2,3,… via 

the n-th statistical moments of the trade value C(t;n) (5.7) and volume U(t;n) (5.8). We 

extend the definition of the VWAP (5.1; 5.2) and use (5.7; 5.8; 5.11) to introduce the n-th 

statistical moment p(t;n) of price in a way similar to VWAP (5.1) as the n-th power volume 

averaged: 𝑝(𝑡; 𝑛) ≡ 𝐸[𝑝𝑛(𝑡𝑖)] = 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶𝛴(𝑡;𝑛)𝑈𝛴(𝑡;𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)  (5.10) 𝐶𝛴(𝑡; 𝑛) ≡ ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1 =  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1    ;    𝑈𝛴(𝑡; 𝑛) ≡ ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1   (5.11) 

We highlight that definitions (5.10) use equation (5.9) and that results expression (5.12) of 

price n-th statistical moments p(t;n) through n-th statistical moments of the market trade 

value C(t;n) and volume U(t;n): 
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 𝐶(𝑡; 𝑛) = 𝑝(𝑡; 𝑛)𝑈(𝑡; 𝑛)     (5.12) 

Definitions of price n-th statistical moments p(t;n) (5.10; 5.12) for all n=1,2,… match 

equation (5.9) for the n-th power of price pn
(ti) at time ti during Δ (5.3). It is important that 

the n-th statistical moments p(t;n) of price (5.10; 5.12) for all n=1,2,… completely determine 

the properties of market price as a random variable during Δ (5.3).  

Let us outline important unnoticed consequences of the VWAP p(t;1) (5.1) and similar 

consequences of our definition of price n-th statistical moments p(t;n) (5.10; 5.12). The 

definition of VWAP p(t;1) (5.1) results in zero correlations between the time series of price 

p(ti) and trade volume U(ti) during Δ (5.3). Indeed, from (1.1; 5.1; 5.5; 5.6) obtain: 𝐸[𝐶(𝑡𝑖)]~ 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 = 1𝑁  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ~𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)]~    ~ 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 ~ 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]  (5.13) 

Hence, from (5.13) obtain the correlation corr{p(ti)U(ti)} between time series of price p(ti) 

and trade volume U(ti), which are averaged during Δ (5.3): 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈(𝑡𝑖)} ≡ 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)] = 0  (5.14) 

Zero correlations (5.14) between price-volume time series are determined by using VWAP 

(5.1) and average volume U(t;1) (5.6). However, many publications detect positive or 

negative correlations between price and trading volume (Tauchen and Pitts, 1983; Karpoff, 

1987; Campbell et al., 1993; Llorente et al., 2001; DeFusco et al., 2017). These papers 

describe correlations determined by the frequency-based definition of price probability. 

Assessments of correlations between any time series follow definitions of its averaging 

procedures. The use of different probabilities causes different results in correlations. The use 

of VWAP (5.1; 5.2; 5.13; 5.14) states that there are no correlations between trade volume and 

price.  

Our definitions of price n-th statistical moments p(t;n) (5.7-5.12) for all n=1,2,3,.. cause zero 

correlations corr{p
n
(ti)U

n
(ti)} between time series of the n-th power of price pn

(ti) and volume 

U
n
(ti) over Δ (5.3). One can easily reproduce (5.13; 5.14) for n=1,2,3,…: 𝐸[𝐶𝑛(𝑡𝑖)]~ 1𝑁 ∑ 𝐶𝑛(𝑡)𝑁𝑖=1 ~𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)]~ 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 
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= 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ~ 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] (5.15) 𝑐𝑜𝑟𝑟{𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)} ≡ 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] − 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] = 0  (5.16) 

Thus, the market-based definition of price n-th statistical moments p(t;n) (5.7-5.12) causes 

zero correlations between time series of the n-th power of price p
n
(ti) and volume U

n
(ti) 

during Δ but doesn’t imply statistical independence between time series of p(ti) and volume 

U(ti). For example we derive a correlation corr{p(ti)U
2
(ti)} between time series of price p(ti) 

and squares of trade volumes U2
(ti) during Δ: 𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] ≡ 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] = 𝐸[𝐶(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)] + 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)}   𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] = 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈2(𝑡𝑖)] + 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)}   𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] − 𝑝(𝑡; 1)𝑈(𝑡; 2)   

Thus, from above (5.4-5.6; 5.13), one easily obtains: 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} − 𝑝(𝑡; 1)𝜎2(𝑈)   (5.17) 

Correlation corr{C(ti)U(ti)} (5.17) between time series of trade value and volume could be 

assessed by (5.5; 5.6) and (5.17.1): 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} ≡ 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐸[𝐶(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]     𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)]~ 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖)      (5.17.1) 

In (5.17), we denote as σ2
(U) the volatility of the trade volume (5.18):  𝜎2(𝑈) ≡ 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)     (5.18) 

It is obvious that the market-based price statistical moments p(t;n) (5.10; 5.12) differ from 

the statistical moments π(t;n) generated by frequency-based price probability P(p) (5.19): 𝑃(𝑝)~ 𝑚(𝑝)𝑁        ;        𝜋(𝑡; 𝑛)~ 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1     (5.19) 𝜋(𝑡; 𝑛)~ 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ≠  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶𝛴(𝑡;𝑛)𝑈𝛴(𝑡;𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛) = 𝑝(𝑡; 𝑛)  (5.20) 

The difference between the frequency-based π(t;n) and the market-based p(t;n) price 

statistical moments determines the economic distinctions between the two approaches to the 

definition of the price probability. Statistical moments π(t;n) equal p(t;n) only if all trade 

volumes equal unit U(ti)=1 during Δ (5.3). 
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To clarify the economic origin of the difference between two assessments of the price 

statistical moments determined by the market-based approach (5.10; 5.12) and the 

conventional frequency-based approach (5.19; 5.20), we mention, that in a general case, the 

n-th statistical moments pμ(t;n) of the given price time series p(ti), i=1,..N during interval Δ 

(5.3) can be assessed via weighted functions μi(t;n) : 𝜇𝑖(𝑡; 𝑛) ≥ 0          ;         ∑ 𝜇𝑖(𝑡; 𝑛)𝑁𝑖=1 = 1    ;      𝑝𝜇(𝑡; 𝑛) = ∑ 𝜇𝑖(𝑡; 𝑛)𝑁𝑖=1 𝑝𝑛(𝑡𝑖)  (5.21) 

The frequency-based price statistical moments (5.19) correspond to all μi(t;n)=1/N and the 

market-based statistical moments (5.10) of price take μi(t;n) as (5.22): 𝜇𝑖(𝑡; 𝑛) = 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 𝑈𝑛(𝑡𝑖)      (5.22) 

The frequency-based approach to price probability with all μi(t;n)=1/N assumes that the price 

probabilities of all N market trades are equal to 1/N. The market-based approach proposes 

that only the n-th statistical moments of the trade values (5.7) and volumes (5.8) are 

determined using the frequency-based approach, with their probabilities equal to 1/N. 

However, the market-based price probability reveals that price statistical moments (5.10; 5.21; 

5,22) depend on the statistical moments of the trade values and volumes. With increasing n, 

the n-th statistical moments of price p(t;n) more and more reveal the impact of huge trade 

values and volumes. The market-based approach supports a simple market rule: the price of 

trade with a value of $100 million is much more significant for the market than the price of 

trade with a value of $10. Hence, the price probabilities of these two trades must be different. 

The market-based price probability describes that important relationship. 

From equations (1.1; 5.9) and due to the n-th statistical moments of trade values and volumes 

(5.7; 5.8), one obtains that the n-th statistical moments pμ(t;n) of price determined by 

weighted functions μi(t;n) (5.21) cause correlations corrμ{p
n
(ti)U

n
(ti)} ( 5.23) between n-th 

powers of price pn
(ti) and trade volume U

n
(ti) time series: 𝑐𝑜𝑟𝑟𝜇{𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)} = 1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 − ∑ 𝜇𝑖(𝑡; 𝑛)𝑁𝑖=1 𝑝𝑛(𝑡𝑖) 1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1   (5.23) 

For n=1 relations (5.23) and μi(t;n)=1/N determine the frequency-based price-volume 

corr{p(ti)U(ti)} correlation during Δ (5.3): 
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𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈(𝑡𝑖)} = 1𝑁  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 − 1𝑁 ∑ 𝑝(𝑡𝑖𝑁𝑖=1 ) 1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1    

This form of correlation corresponds to frequency-based price probability (5.19) and was 

studied by (Tauchen and Pitts, 1983; Karpoff, 1987; Campbell et al., 1993; Llorente et al., 

2001; DeFusco et al., 2017). However, market-based price statistical moments (5.7; 5.8), 

which are described by (5.22), result in zero correlations (5.16) for all n=1,2,…  

Now let us consider the approximations of price characteristic functions and probability 

measures by finite sets of price statistical moments. The set of price n-th statistical moments 

p(t;n) (5.10; 5.12) for all n=1,2,3,… determines the Taylor series of the price characteristic 

function F(t;x) (Shephard, 1991; Shiryaev, 1999; Klyatskin, 2005):  𝐹(𝑡; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!∞𝑛=1 𝑝(𝑡; 𝑛) 𝑥𝑛    (5.24) 

In (5.24), i denotes the imaginary unit i2
= -1. However, any records of market trades during Δ 

(5.3) assess only a finite number of statistical moments of the trade value C(t;n) (5.7) and 

volume U(t;n) (5.8). Hence, one can assess only a finite number of price statistical moments 

p(t;n) (5.10; 5.12). In App.B, we consider simple successive approximations of the price 

characteristic function FK(t;x) that take into account the finite number K of the Taylor series 

terms (5.24) and corresponding K-approximations of the price probability measure ηK(t;p) 

derived as Fourier transforms of the characteristic function FK(t;x): 𝜂𝐾(𝑡; 𝑝) = 1√2𝜋 ∫ 𝑑𝑥 𝐹𝐾(𝑡; 𝑥) 𝑒𝑥𝑝(−𝑖𝑥𝑝)    (5.25) 

Relations (5.25) define successive approximations of the price probability measure ηK(t;p). 

Assessments of the finite number K of market trade and price statistical moments result in the 

conclusion that one can only forecast approximations of the price characteristic function or 

price probability measure that match the finite number K of price statistical moments p(t;n) 

(5.10; 5.12). 𝑝(𝑡; 𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹𝐾(𝑡; 𝑥)|𝑥=0 = ∫ 𝑑𝑝 𝜂𝐾(𝑡; 𝑝)𝑝𝑛   ;      𝑛 ≤ 𝐾  (5.26) 

Any hypothesis on the form of the price probability measure ηK(t;p) during Δ (5.3) and 

predictions of the price probability at horizon T should match relations (5.10; 5.12; 5.26) at 

t+T. Thus, one should predict K statistical moments of the trade value C(t;n) (5.7) and 
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volume U(t;n) (5.8) at t+T for n≤K. That equals the prediction of the K-approximations of the 

market trade probabilities at horizon T. In simple words, the accuracy of price probability 

predictions depends on the precision of forecasts of market trade statistical moments. For 

example, consider the market-based price volatility σ2
(t;p) (Olkhov, 2020): 𝜎2(𝑡; 𝑝) ≡ 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))2] = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1) = 𝐶(𝑡;2)𝑈(𝑡;2) − 𝐶2(𝑡;1)𝑈2(𝑡;1)  (5.27) 

From (5.7; 5.8; 5.11), one can express market-based price volatility σ2
(t;p) as: 𝜎2(𝑡; 𝑝) = 𝐶(𝑡;2)𝑈(𝑡;2) − 𝐶2(𝑡;1)𝑈2(𝑡;1) =  𝐶𝛴(𝑡;2)𝑈𝛴(𝑡;2) − 𝐶𝛴2(𝑡;1)𝑈𝛴2(𝑡;1)    (5.28) 

Prediction of the price volatility σ2
(t;p) at horizon T during Δ requires forecasts of the market 

trade statistical moments C(t;1), C(t;2) (5,7) and U(t;1), U(t;2) (5.8) at the same horizon T. 

The accuracy of the price probability forecasts is determined by the accuracy of the market 

trade probability predictions. In simple words, to predict price probability, one should be able 

to predict market trade values and trade volumes probabilities, which is almost the same as 

“predicting the future of the entire economy”. 

6. Conclusion 

Each economic theory and asset pricing in particular should directly indicate the time scales 

Δ of the model under consideration. Time series of the market trades with time shift ε 

introduce initial division of the time axis multiple of ε. Asset pricing models should take into 

account these initial data as the only source for averaged market time series. Any averaging 

of market time series presumes the usage of a particular time averaging interval Δ>>ε. 

Averaging of initial market time series during Δ introduces transition from initial time axis 

division multiple of ε to new division multiple of Δ. To consider utility function and price 

dynamics “today” and “next day”, one should use the same time axis division “today” and 

“next day” and hence the same averaging interval Δ. Averaging of the investor’s utility 

function “today” and “next day” introduces modifications to the investor’s utility and basic 

pricing equation. The choice of interval Δ allows considering the Taylor series expansions of 

the modified investor’s utility and basic pricing equation by price and payoff fluctuations and 

subsequent averaging of fluctuations. For linear and quadratic approximations of the basic 

pricing equation that give relations, that describe mean price, price volatility, mean payoff, 
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payoff volatility, and etc. In the linear Taylor approximation (4.12) presents dependence of 

mean price p0 “today” during Δ, on price volatility σ2
(p) “today”  𝑝0 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥[𝑚1𝜎2(𝑥) + 𝑚2𝜎2(𝑝)]    (6.1) 

and on mean payoff x0, payoff volatility σ2
(x) “next day” and the amount of assets ξmax that 

delivers max to the investor’s utility and equals the root of the equation (3.3). On the one 

hand, (6.1) modifies the conventional statement “price equals expected discounted payoff” 

and demonstrates dependence on price volatility σ2
(p) “today”. On the other hand, (6.1) 

uncovers the direct dependence of the mean price p0 “today” on the amount of assets ξmax that 

delivers max to the investor’s utility. That direct dependence doesn’t add confidence in the 

impeccability of the consumption-based model’s frame, and further argumentation is required 

to solve the troubles, that arise with the direct dependence of (6.1) on ξmax. 

The use of the averaging interval Δ as a mandatory factor in any financial model results in the 

introduction of the market-based probability of asset prices. Indeed, aggregations of market 

time series during Δ permit considering total values and volumes of market trades during Δ as 

important variables, which govern the variations of market price. As we show, n-th statistical 

moments of the trade value C(t;n) (5.7) and volume U(t;n) (5.8) project the impact of the size 

of the trading values and volumes on statistical moments of market price. With increasing n, 

the impact of trades with large values on market prices grows. 

Time series of the performed market trades assess only the finite number K of statistical 

moments C(t;n) (5.7) and U(t;n) (5.8) and determine K-approximations of the market price 

probability. Any predictions of the price probability at horizon T should match forecasts of 

the n-th trade statistical moments for n≤K at the same horizon T.  

We define the market-based price statistical moments p(t;n) (5.10; 5.12) as extensions of 

VWAP (5.1). Their usage results in zero correlations corr{p
n
(ti)U

n
(ti)}=0 (5.14; 5.16) 

between time series of the n-th power of price pn
(ti) and trading volume Un

(ti). In particular, 

VWAP causes zero correlations (5.14) between the time series of price p(ti) and trading 

volume U(ti). That impacts studies on price-volume correlations based on the usage of a 

frequency-based approach to price probability. Zero correlations (5.16) between the n-th 
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power of price p
n
(ti) and trade volume U

n
(ti) don’t cause statistical independence between 

price and volume random variables during Δ (5.3). We derive an expression for the 

correlation corr{p(ti)U
2
(ti)} (5.17) between price and squares of trade volumes during Δ (5.3). 

This trinity – the averaging interval Δ, the Taylor series, and the market-based price 

probability can provide successive approximations for other versions of asset pricing, 

financial, and economic models. These methods were used to describe Value-at-Risk 

problems, volatility, option pricing, market-based price and payoff autocorrelations, and the 

market-based probability of stock returns (Olkhov, 2020-2023). 
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Appendix A.  

Max of Utility 

We start with (4.29): 𝑝2 > −𝛽 𝑤′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] − 𝛽 𝑤′′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) 𝜉𝑚𝑎𝑥  [2𝑥0𝜎2(𝑥) + 𝛾3(𝑥)] (A.1) 

If the right side is negative, then it is always valid. If the right side is positive, then there 

exists a lower limit on the price p. For simplicity, neglect term γ3
(x) to compare with 2x0σ2

(x) 

and take the conventional power utility w(c) (Cochrane, 2001) as: 𝑤(𝑐) = 11−𝛼 𝑐1−𝛼      (A.2) 

Let us consider the case with the negative right side (A.1). Simple but long calculations give:  −𝛽 𝑤′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] < 𝛽 𝑤′′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡) 𝜉𝑚𝑎𝑥 2𝑥0𝜎2(𝑥)    𝜉𝑚𝑎𝑥 2𝑥0𝜎2(𝑥) < − 𝑤′′′(𝑐𝑡+1;0)𝑤′′(𝑐𝑡+1;0)  [𝑥02 + 𝜎2(𝑥)]    (A.3) 

Let us take into account (A.2) and for (A.3) obtain: 𝑤′′(𝑐)𝑤′′′(𝑐) = − 𝑐1+𝛼      ;    𝜉𝑚𝑎𝑥 2𝑥0𝜎2(𝑥) <  𝑒𝑡+1+𝑥0𝜉𝑚𝑎𝑥1+𝛼   [𝑥02 + 𝜎2(𝑥)]   𝜉𝑚𝑎𝑥𝑥0 [(1 + 2𝛼)𝜎2(𝑥) − 𝑥02] <  𝑒𝑡+1[𝑥02 + 𝜎2(𝑥)]  (A.4) 

Inequality (A.4) determines that the right side (A.1) is negative in two cases. The left side of 

(A.4) is negative and  (1 + 2𝛼)𝜎2(𝑥) <  𝑥02     ;       13 ≤ 11+2𝛼 < 1    (A.5) 

Inequality (A.5) describes small payoff volatility σ2
(x). In this case, the right side of (A.1) is 

negative for all ξmax and all price p and hence (4.27) that defines the max of utility (2.5) is 

valid. The left side of (A.4) is positive, and (1 + 2𝛼)𝜎2(𝑥) >  𝑥02       ;       𝜉𝑚𝑎𝑥 <  𝑒𝑡+1[𝑥02+𝜎2(𝑥)]𝑥0 [(1+2𝛼)𝜎2(𝑥)−𝑥02]        (A.6) 

This case describes high payoff volatility and the upper limit on ξmax to utility (2.5). Take the 

positive right side in (A.1). Then (A.4) is replaced by the opposite inequality 𝜉𝑚𝑎𝑥𝑥0 [(1 + 2𝛼)𝜎2(𝑥) − 𝑥02] >  𝑒𝑡+1[𝑥02 + 𝜎2(𝑥)]   (A.7) 

It is valid for (A.6) only. (A.7) determines a lower limit on ξmax to utility (2.5):  𝜉𝑚𝑎𝑥 >  𝑒𝑡+1[𝑥02+𝜎2(𝑥)]𝑥0 [(1+2𝛼)𝜎2(𝑥)−𝑥02]      
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Appendix B.  

Approximations of the price characteristic function and probability measure 

The Taylor series expansions of the market price characteristic function result in successive 

approximations of the characteristic function. The derivation of approximations is a 

self-standing problem, and here we present simple examples of such approximations only. 

We consider simple approximations of the price characteristic function FK(t;x) and the price 

probability measure ηK(t;p) during Δ (5.3) that fit the obvious condition. As such, we 

consider the approximations FK(t;x) of the price characteristic function that match (B.1):   𝑝(𝑡; 𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)  =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹𝑘(𝑡; 𝑥)|𝑥=0 = ∫ 𝑑𝑝 𝜂𝑘(𝑡; 𝑝)𝑝𝑛 ;   𝑛 ≤ 𝐾  (B.1) 

Statistical moments determined by FK(t;x) for n>K will be different from price statistical 

moments p(t;n) (5.10; 5.12), but first K moments will be equal to p(t;n).     

We suggest the approximation FK(t;x) of the price characteristic function F(t;x) (5.24)   𝐹𝐾(𝑡; 𝑥) = 𝑒𝑥𝑝 {∑ 𝑖𝑚𝑚!𝐾𝑚=1  𝑎𝑚 𝑥𝑚 − 𝑏 𝑥2𝑛}  ;   𝐾 = 1, 2, … ;  𝐾 < 2𝑛 ;  𝑏 > 0 (B.2) 

For each approximation of FK(t;x), terms am in (B.2) depend on price statistical moments 

p(t;m), m≤K and match relations (B.1). The terms bx
2n

, b>0, 2n>K don’t impact relations 

(B.1) but guarantees the existence of the price probability measures ηK(t;p) as Fourier 

transforms (5.25). The uncertainty and variability of the coefficient b>0 and power 2n>K in 

(B.2) underscores the well-known fact that the first k statistical moments don’t explicitly 

determine the characteristic function and probability measure of a random variable. Relations 

(B.2) describe the set of characteristic functions FK(t;x) with different b>0 and 2n>K and the 

corresponding set of probability measures ηK(t;p) that match (B.1; 5.25). For K=1 

approximate price characteristic function F1(t;x) and measure η1(t;p) are trivial: 𝐹1(𝑡; 𝑥) = 𝑒𝑥𝑝{𝑖 𝑎1𝑥}  ;  𝑝(𝑡; 1) = −𝑖 𝑑𝑑𝑥 𝐹1(𝑡; 𝑥)|𝑥=0 = 𝑎1   (B.3) 𝜂1(𝑡; 𝑝) = ∫ 𝑑𝑥 𝐴1(𝑥𝑡; ) 𝑒𝑥𝑝 −𝑖𝑝𝑥 = 𝛿(𝑝 −  𝑝(𝑡; 1))   (B.4) 

For K=2 approximation F2(t;x) describes the Gaussian probability measure η2(t;p): 𝐹2(𝑥; 𝑡) = 𝑒𝑥𝑝 {𝑖 𝑝(𝑡; 1)𝑥 − 𝑎22 𝑥2}    (B.5) 

It is easy to show that  
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𝑝2(𝑡; 2) = − 𝑑2𝑑𝑥2 𝐹2(𝑡; 𝑥)|𝑥=0 = 𝑎2 + 𝑝2(𝑡; 1) = 𝑝(𝑡; 2)     𝑎2 = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1) = 𝜎2(𝑡; 𝑝)    (B.6) 

Coefficient a2 equals price volatility σ2
(t;p) (5.27) and the Fourier transform (5.25) for F2(t;x) 

gives Gaussian price probability measure η2(t;p): 𝜂2(𝑝𝑡; ) =  1(2𝜋)12𝜎(𝑝) 𝑒𝑥𝑝 {− (𝑝−𝑝(𝑡;1))22𝜎2(𝑡;𝑝) }    (B.7) 

For K=3 approximation F3(t;x) has form: 𝐹3(𝑡; 𝑥) = 𝑒𝑥𝑝 {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑖 𝑎36 𝑥3}   (B.8) 

𝑝3(𝑡; 3) = 𝑖 𝑑3𝑑𝑥3 𝐹3(𝑡; 𝑥)|𝑥=0 = 𝑎3 + 3𝑝(𝑡; 1)𝜎2(𝑡; 𝑝) +  𝑝3(𝑡; 1) = 𝑝(𝑡; 3) 𝑎3 = 𝑝(𝑡; 3) − 3𝑝(𝑡; 2)𝑝(𝑡; 1) + 2 𝑝3(𝑡; 1) 𝑎3 = 𝐸 [(𝑝 − 𝑝(𝑡; 1))3] = 𝑆𝑘(𝑡; 𝑝)𝜎3(𝑡; 𝑝)     (B.9) 

Coefficient a3 (B.9) depends on price skewness Sk(t;p), which describes the asymmetry of 

the price probability from the normal distribution. For the K=4 approximation F4(t;x) during 

Δ (5.3) depends on the choice of b>0 and power 2n>4: 𝐹4(𝑡; 𝑥) = 𝑒𝑥𝑝 {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑖 𝑎36 𝑥3 + 𝑎424 𝑥4 − 𝑏𝑥2𝑛}  ;   2𝑛 > 4  (B.10) 

Simple, but long calculations give: 𝑎4 = 𝑝(𝑡; 4) − 4𝑝(𝑡; 3)𝑝(𝑡; 1) + 12𝑝(𝑡; 2)𝑝2(𝑡; 1) − 6𝑝4(𝑡; 1) − 3𝑝2(𝑡; 2)  𝑎4 = 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))4] − 3𝐸2 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))2]    

Price kurtosis Ku(p) (B.11) describes how the tails of the price probability measure ηK(t;p) 

differ from the tails of a normal distribution. 𝐾𝑢(𝑝)𝜎𝑝4(𝑡; 𝑝) = 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))4]   (B.11) 𝑎4 = [𝐾𝑢(𝑝) − 3]𝜎𝑝4(𝑡; 𝑝)       

Even the simplest Gaussian approximation F2(t;x), η2(t;p) (B.5; B.7) highlights the direct 

dependence of price volatility σ2
(t;p) (B.6; 5.27) on 2-d statistical moments of the trade value 

C(t;2) and volume U(t;2). Thus, prediction of price volatility σ2
(t;p) for Gaussian measure 

η2
(t;p) (B.9) should follow non-trivial forecasting of the statistical moments of the market 

trade value C(t;2) and volume U(t;2).   
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