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Volatility or Higher Moments: Which Is More
Important in Return Density Forecasts of Stochastic

Volatility Model?

Abstract

The stochastic volatility (SV) model has been one of the most popular models for

latent stock return volatility. Extensions of the SV model focus on either improving

volatility inference or modeling higher moments of the return distribution. This study

investigates which extension can better improve return density forecasts. By examining

various specifications with S&P 500 daily returns for nearly 20 years, we find that

a more accurate capture of volatility dynamics with realized volatility and implied

volatility is more important than modeling higher moments for a conventional SV

model in terms of both density and tail forecasts. The accuracy of volatility estimation

and forecasts should be the precondition for higher moments extensions.

JEL Classification: C11, C15, C22, C52

Keywords: Stochastic volatility, realized volatility, implied volatility, MCMC, density forecast



1 Introduction

Although the importance of heteroskedasticity for financial time series has been well docu-

mented (Nelson 1991; Schwert and Seguin 1990), modeling and forecasting volatility accu-

rately could be difficult due to the unobservability of the true volatility process. To infer

latent volatility, Taylor (1982) proposes the stochastic volatility (SV) model to estimate

latent log volatility by observed daily stock returns. Extensions to the SV model fall into

two categories. One stream of literature, focusing on modeling higher moments in addition

to SV dynamics, extends the SV model with asymmetry, fat tails, and other distributional

features (Barndorff-Nielsen 1997; Liesenfeld and Jung 2000; Chib et al. 2002; Jensen and

Maheu 2010; Yu 2012; Kalli et al. 2013). Another stream of literature, focusing on a better

capture of latent volatility, introduces the ex-post realized volatility (RV) or the ex-ante im-

plied volatility (IV) to traditional volatility models (Koopman et al. 2005; Takahashi et al.

2009; Asai et al. 2017), to facilitate the estimation or prediction of latent volatility.

However, it remains unclear which approach, volatility or higher moments, makes a

greater improvement in return density forecasts. This study contributes to the literature

by comparing various model specifications to answer this question. We find that in an SV

model, incorporating RV or IV information significantly outperforms the fat-tailed SV-t

(Chib et al. 2002) and the semiparametric SV-DPM (Jensen and Maheu 2010) models in

both return density forecasts and tail forecasts, suggesting that a more accurate capture of

heteroskedasticity should be prioritized than modeling higher moments.

The existing literature augments the SV model with RV and IV, as they exploit the ad-

ditional information for volatility inference contained in high-frequency returns and option

prices. RV is a consistent estimator of latent volatility estimated from high-frequency returns

(Andersen and Bollerslev 1998; Barndorff-Nielsen and Shephard 2001), and IV, calculated

from option prices, is a risk-neutral expectation of future volatility and predicts future re-

alized volatility (e.g. Christensen and Prabhala 1998; Blair et al. 2001; Busch et al. 2011;

Kambouroudis et al. 2021). Koopman et al. (2005) is among the first to incorporate RV and
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IV separately as an explanatory variable in the volatility process of the SV model. Applica-

tions of the augmentation approach can be found in Becker et al. (2007) and Kambouroudis

et al. (2016). Since RV is a direct measure of latent volatility, Takahashi et al. (2009) propose

the realized stochastic volatility (RVSV) model that jointly models RV and returns1. Joint

modeling of RV and returns2 improves estimates of latent volatility and allows for further

extension of the SV model (Asai et al. 2017; Hansen et al. 2012; Koopman and Scharth 2012;

Shirota et al. 2014; Zhang and Zhao 2023).

We adopt both the methods of Koopman et al. (2005) and Takahashi et al. (2009) to

incorporate RV and IV into the SV framework and test the return density forecast perfor-

mance against the Bayesian semiparametric and fat-tailed SV models that focus more on

modeling higher moments. We confirm that RV and IV contain important and not mutu-

ally exclusive information to improve volatility forecasts in stochastic volatility modeling.

Except for those jointly model IV and returns, models that embed RV and/or IV informa-

tion have more accurate S&P 500 return volatility forecasts as well as significantly better

return density forecasts and tail forecasts. Empirical results suggest that, for better return

density forecasts of the SV model, improving the accuracy of volatility estimation and pre-

diction should be prioritized and sophisticated specifications involving higher moments are

recommended to be conditional on the accurate estimation of the latent volatility.

This study is organized as follows. Section 2 illustrates the specification of econometric

models. Section 3 describes the source and statistical features of the data. Section 4 explains

the algorithms to estimate and forecast each model. Section 5 discusses empirical results for

in-sample estimation and out-of-sample forecasts. And Section 6 concludes the study.
1IV contains variance risk premia (see e.g. Bollerslev et al. 2009; Carr and Wu 2009) and is not a con-

sistent estimator of true volatility. As shown in Section 5, jointly modeling IV and return estimates a
volatility process almost indistinguishable from IV, and is dominated by RVSV in out-of-sample forecasts.
However, IV is an effective predictor of the volatility process in the SV model and significantly improves
out-of-sample performance.

2A potential argument, given the consitency of RV, is that we could directly modeling and forecast-
ing RV (e.g. Corsi 2009). However, for daily stock returns, RV prediction is not necessarily equivalent to
volatility prediction due to microstructure noise (Andersen and Teräsvirta 2009; Buccheri and Corsi 2021)
and non-trading hour bias (Hansen et al. 2012; Lyócsa and Todorova 2020). Return density forecasts of
SV models embody volatility (and higher moment) prediction by directly utilizing daily returns.
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2 Model Specifications

The basic SV model with normal innovation (SV-N) is specified as

rt = exp(ht/2)zt, zt ∼ N(0, 1), (1a)

ht = α + δht−1 + ut, ut ∼ N(0, σ2
h). (1b)

Table 1 lists different specifications to incorporate RV and IV information in the SV model.

RV and IV could be jointly modeled with returns, as additional measures of latent log

volatility ht, or incorporated into the volatility process (Eq. (1b)) as predictors of ht.

[Insert Table 1 about here.]

We categorize the incorporation of RV and IV into three scenarios: with both RV and

IV, which consists of three models: RVSV-IV, SV-RVIV, RVIVSV3; with RV only, which

consists of two models: RVSV, SV-RV; and with IV only, which consists of two models:

IVSV, SV-IV. RV or IV in front of SV indicates joint modeling with returns, and those after

SV with a hyphen indicate incorporated as an explanatory variable for ht. In comparison,

we adopt two benchmarks for higher-moment modeling: a Student t extension (SV-t) that

replaces zt in (1a) with ϵt ∼ t(ν) and captures potential fat tails in the return distribution,

and a Bayesian semiparametric model (SV-DPM) that, in addition to the SV, approximates

the unknown distribution of returns nonparametrically (Jensen and Maheu 2010).4

3IVSV-RV is omitted because jointly model return and IV does not perform well as shown in Sec-
tion 5.

4The SV-DPM model can be specified as:

rt = σt exp(ht/2)zt, zt ∼ N(0, 1),

ht = δht−1 + ut, ut ∼ N(0, σ2
h),

σ2
t ∼ G, G ∼ DP (G0, α0),

where G0 is essentially the prior distribution of σ2
t .
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3 Data

We retrieve the daily close price of S&P 500 index (SPX) ranging from January 5, 2004 to

December 31, 2021, from Bloomberg. Daily return is calculated as the logarithmic differ-

ence of daily close prices, scaled by 100. RVs are obtained from the Oxford-Mannstitute’s

Quantitative Finance Realized Library and scaled by 10,000. IVs are computed by squaring

the VIX index from the Chicago Board Options Exchange (CBOE) and scaled by 1/2525.

[Insert Table 2 about here.]

Table 2 provides the descriptive statistics. The SPX returns are slightly skewed to the

left but heavily leptokurtic. Both log RV and log IV are slightly skewed to the right and

slightly leptokurtic.

4 Estimation and Prediction Algorithm

We apply the Bayesian Markov chain Monte Carlo (MCMC) algorithm to estimate the

models in Section 2. In each MCMC iteration,

1. µ|r1:T , h1:T ,

2. ν|r1:T , h1:T (for SV-t),

3. aRV , σ
2
RV |RV1:T , h1:T (if necessary),

4. aIV , σ
2
IV |IV1:T , h1:T (if necessary),

5. α, δ, β, γ, σ2
h|h1:T , RV1:T , IV1:T (sample β and/or γ if necessary),

6. ht|h−t, . . . for t = 1, . . . , T .

Step 1, 3, 4 and 5 can be easily drawn with the conjugate Gibbs sampler, while the Student-

t degree of freedom parameter ν in step 2 is drawn with random-walk Metropolis-Hastings

(MH). In step 6, taking the latent volatility process ht, t = 1, 2, ...T as parameters, we draw
5The VIX index represents the annualized standard deviations of returns in percentage. Scaling by

1/252 yields the daily implied volatility.
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the samples of ht using the single-move independent MH of Kim et al. (1998) with some

adjustments to the proposal distribution.6 Empirically, the average acceptance rate for each

model is greater than 95%. Let It = {r1:t, RV1:t, IV1:t} be the information set at time t.

Collect M MCMC samples after dropping some iterations of burn-ins, and the posterior

moment of a given function g(·) can be computed from those MCMC posterior draws:

E [g(θ)|IT ] ≈
1

M

M
∑

i=1

g
[

θ(i)
]

,

where θ(i) is the draw for parameter θ in the ith iteration.

To evaluate density forecasts, we compute the log-predictive likelihoods for each model.

Define Θ as the set of all parameters. For any model MA, its out-of-sample log-predictive

likelihoods can be estimated as

logPLA = log p(rt+1:T |It,MA) =
T
∑

l=t+1

log p(rl|Il−1,MA)

≈

T
∑

l=t+1

log

[

1

M

M
∑

i=1

p(rl|Il−1,Θ
(i),MA)

]

where Θ(i) is the draw for the parameter set Θ in the ith iteration. The model with greater

log-predictive likelihoods has more accurate density forecasts.

5 Empirical Results

Priors for µ, aRV , aIV , α, δ, β, γ are commonly assumed as N(0, 1), and σ2
RV , σ2

IV , σ2
h are

assumed as IG(0.25, 0.25). The prior for the degree of freedom parameter ν in the SV-t

model is assumed as U(2, 100), and for the concentration parameter α0 in the SV-DPM is

Gamma(2, 8). In each estimation, the first 5,000 iterations are discarded as burn-ins, and

the next 10,000 iterations are recorded as MCMC samples.
6See Appendix A for details.
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5.1 In-sample Estimates

[Insert Table 3 about here.]

Table 3 shows the in-sample posterior estimates for each parameter in each model. The

SV autoregressive parameter δ is close to 1 when no volatility measure is included in the

volatility equation Eq. (1b) (RVIVSV, RVSV, IVSV, SV-t, SV-DPM and SV-N), while it

reduces drastically otherwise (RVSV-IV, SV-RVIV, SV-RV, SV-IV). Regarding the volatility-

to-volatility parameter σ2
h, incorporating IV (RV) increases σ2

h from around 0.06 to about 0.3

(0.2). The joint modeling of RV and return can also increase σ2
h, while the joint modeling of

IV and return decreases σ2
h.

[Insert Figure 1 about here.]

Figure 1 plots the posterior means of the latent log volatility ht over time. The top left

plot is the log RV, which is a rough process, suggesting high volatility-of-volatility. Both

SV-N and SV-t produce a smooth ht process7. By incorporating RV and IV, the estimated

ht process can be much rougher than SV-N, depending on the specifications. In general, the

rougher the ht process, the closer it is to the log RV. The lower part of Table 3 confirms this

pattern. RVSV-IV has the roughest ht estimates and the lowest in-sample error, compared to

RV (QLIKE of 0.0529)8. Joint modeling of returns and IV (RVIVSV and IVSV) can greatly

reduce the average width of the 0.95 density interval for ht but with the highest estimation

error of 0.27 for QLIKE9. Apart from the inaccurate RVIVSV and IVSV, RVSV-IV has the

narrowest average 0.95 density interval. In summary, RVSV-IV, SV-RVIV and RVSV model

can estimate the in-sample volatility ht closest to the log RV process with a 0.95 density

interval narrower than SV-DPM, and the SV-RV and SV-IV model have an estimation error

similar to SV-DPM but a narrower 0.95 density interval.
7ht from SV-N is approximately the same as that from SV-t.
8Given the microstructure noise of RV, we use the QLIKE loss function from Patton (2011) to mea-

sure the accuracy of the estimated or predicted volatility compared to RV: QLIKE = exp(ht)
RVt

−log exp(ht)
RVt

−
1

9In fact, joint modeling of returns and IV procduce a estimated ht that almost identical to log IV,
since the estimated σ2

IV
are close to zero in Table 3.
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5.2 Out-of-Sample Forecasts

[Insert Table 4 about here.]

A recursive out-of-sample prediction is performed with the first year of the data as the

initial training sample. Table 4 reports the performance of the out-of-sample denisty and

point forecasts for each model. Except for those jointly model IV and returns, all models that

incorporate RV and/or IV information significantly outperform the Bayesian semiparametric

SV-DPM and fat-tailed SV-t model in both density forecasts, with log Bayes factor greater

than 14710, and volatility forecasts, with a minimum QLIKE score improvement of about

0.05. Joint modeling of IV and returns improves the return density forecasts from the SV-

DPM by a small but significant amount, while the improvement from volatility forecasts is

marginal except for the RVIVSV model. The RVSV-IV model performs significantly better

than all other models with the highest log-predictive likelihoods of -5298.977 and the lowest

QLIKE score of 0.2096. The results suggest that an effort to predict the second moment

accurately is more important than modeling the higher moments in a flexible way.

[Insert Figure 2 about here.]

Figure 2 plots the cumulative log Bayes factors of the well-performing models compared

to the SV-DPM model. All lines are approximately upward-sloping, showing that the im-

provement relative to the SV-DPM is not a consequence of extreme observations.

Incorporating both RV and IV information can also improve tail forecasts. Taylor (2019)

and Patton et al. (2019) separately propose a scoring rule that evaluates the predictive value-

at-risk and expected shortfall jointly. Table 5 shows the scores of these two measures; the

lower the scores, the better. Interestingly, the Bayesian semiparametric SV-DPM model and

the fat-tailed SV-t model fail to beat the models with additional information incorporated

in the volatility dynamics at all three levels of risk in both scoring rules, except for the
10Log Bayes factor of model MA against model MB is logBFAB = logPLA− logPLB , and a log Bayes

factor greater than 5 is considered as strong evidence in favour of MA.
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IVSV model at the risk level of 1%, and the gains are more and more prominent when

moving further to the left tail. It shows that better volatility modeling is more desirable

than modeling higher moments in tail forecasts, especially in the far left tail of the return

distribution, where a rarer but worse risk event may occur.

6 Conclusion

This study investigates whether modeling volatility more accurately or modeling higher mo-

ments should be prioritized in stock return density forecasts. We find that by incorporating

the ex-post volatility measure RV and the ex-ante volatility measure IV into the SV model,

volatility dynamics is captured more accurately both in-sample and out-of-sample. More

importantly, both return density forecasts and tail forecasts can be significantly improved

compared to the flexible Bayesian semiparametric model SV-DPM and the fat-tailed model

SV-t model. However, the results do not deny the value of modeling higher moments. Our

study suggests that future study of higher-moment extension of the SV model should be

based on the precondition that the volatility dynamics is accurately and sufficiently cap-

tured.
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Table 1: Stochastic Volatility Models with RV and/or IV

Model Specification
Return equation

rt = exp(ht/2)zt, zt ∼ N(0, 1)

With both RV and IV

RVSV-IV logRVt = aRV + ht + ϵRV
t , ϵRV

t ∼ N(0, σ2
RV )

ht = α + δht−1 + γ log IVt−1 + ut, ut ∼ N(0, σ2
h)

SV-RVIV ht = α + δht−1 + β logRVt−1 + γ log IVt−1 + ut, ut ∼ N(0, σ2
h)

RVIVSV
logRVt = aRV + ht + ϵRV

t , ϵRV
t ∼ N(0, σ2

RV )
log IVt = aIV + ht + ϵIVt , ϵIVt ∼ N(0, σ2

IV )
ht = α + δht−1 + ut, ut ∼ N(0, σ2

h)
With RV only

RVSV logRVt = aRV + ht + ϵRV
t , ϵRV

t ∼ N(0, σ2
RV )

ht = α + δht−1 + ut, ut ∼ N(0, σ2
h)

SV-RV ht = α + δht−1 + β logRVt−1 + ut, ut ∼ N(0, σ2
h)

With IV only

IVSV log IVt = aIV + ht + ϵIVt , ϵIVt ∼ N(0, σ2
IV )

ht = α + δht−1 + ut, ut ∼ N(0, σ2
h)

SV-IV ht = α + δht−1 + γ log IVt−1 + ut, ut ∼ N(0, σ2
h)

1. Each model lists the difference in specification and will not be complete
unless it is coupled with the common return equation.

Table 2: Descriptive Statistics for SPX Returns

Mean Median StdDev Skewness Ex.Kurtosis Min Max
r 0.0323 0.0735 1.1947 -0.5474∗∗∗ 14.1882∗∗∗ -12.6703 10.6420
logRV -0.8555 -1.0024 1.1555 0.6250∗∗∗ 0.7870∗∗∗ -4.4063 4.3500
log IV 0.1910 0.0455 0.7453 1.0540∗∗∗ 1.2351∗∗∗ -1.1041 3.3008
1. r is the log returns for SPX in percentage. Source: CRSP.
2. logRV is the log realized variance for r. Source: Oxford-Mannstitute’s Quantita-
tive Finance Realized Library.

3. log IV is the log implied variance for r. Source: CBOE.
4. Data start from January 5, 2004 to December 31, 2021 with 4517 observations.
5. *** indicates that the p-value of the D’Agostino test (skewness) or the Anscombe-
Glynn test (kurtosis) is less than 0.01.
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Table 3: In-Sample Posterior Estimates

RVSV-IV SV-RVIV RVIVSV RVSV SV-RV IVSV SV-IV SV-DPM SV-t SV-N
α -0.3210 -0.2837 -0.0051 -0.0302 0.1808 -0.0049 -0.7965 - -0.0128 -0.0119

(-0.3653, -0.2770) (-0.4235, -0.1522) (-0.0093, -0.0009) (-0.0431, -0.0178) (0.1400, 0.2257) (-0.0090, -0.0008) (-0.9394, -0.6522) (-0.0217, -0.0045) (-0.0210, -0.0035)

δ 0.5873 0.0096 0.9851 0.9424 0.4589 0.9856 -0.0473 0.9849 0.9749 0.9722
(0.5394, 0.6368) (-0.1350, 0.1597) (0.9800, 0.9902) (0.9302, 0.9540) (0.3628, 0.5461) (0.9806, 0.9905) (-0.2175, 0.1228) (0.9786, 0.9906) (0.9649, 0.9837) (0.9625, 0.9811)

β - 0.4415 - - 0.5068 - - - - -
(0.3614, 0.5182) (0.4281, 0.5952)

γ 0.5040 0.7598 - - - - 1.4027 - - -
(0.4390, 0.5675) (0.5588, 0.9713) (1.1678, 1.6353)

σ2
h 0.2629 0.3660 0.0165 0.1316 0.2006 0.0159 0.3720 0.0551 0.0580 0.0648

(0.2312, 0.2955) (0.2896, 0.4539) (0.0155, 0.0176) (0.1151, 0.1498) (0.1470, 0.2666) (0.0149, 0.0170) (0.2952, 0.4492) (0.0410, 0.0704) (0.0419, 0.0758) (0.0483, 0.0839)

aRV -0.3111 - -0.5125 -0.3336 - - - - - -
(-0.3542, -0.2705) (-0.5536, -0.4734) (-0.3798, -0.2912)

σ2
RV 0.0839 - 0.4620 0.1725 - - - - - -

(0.0620, 0.1055) (0.4431, 0.4820) (0.1583, 0.1874)

aIV - - 0.5339 - - 0.5328 - - - -
(0.4992, 0.5671) (0.4875, 0.5654)

σ2
IV - - 0.0036 - - 0.0039 - - - -

(0.0031, 0.0041) (0.0034, 0.0044)

ν - - - - - - - - 24.6865 -
(11.9085, 59.8367)

α0 - - - - - - - 0.3005 - -
(0.0768, 0.6677)

K - - - - - - - 3.9471 - -
(2.0000, 7.0000)

QLIKE h 0.0529 0.1785 0.2691 0.0895 0.1975 0.2720 0.2088 0.1945 0.2042 0.2148
0.95DI width 0.9569 2.2190 0.2128 1.0210 1.8426 0.2238 2.2358 2.9270 1.7067 1.7074
1. The table reports the posterior mean and the 0.95 density interval for each parameter.
2. The lower part of the table reports the QLIKE loss function of Patton (2011) and the average width of the 0.95 density interval (0.95DI width) of the estimated volatility exp(ht)
(σ2

t exp(ht) for SV-DPM) compared to the realized volatility RVt. The lower the QLIKE, the more accurate the volatility estimates.
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Table 4: Out-of-Sample Density and Point Forecasts

Model log PL log BF QLIKE
RVSV-IV -5298.977 212.4142 0.2096
SV-RVIV -5359.476 151.9145 0.2497
RVIVSV -5491.637 19.7541 0.3191
RVSV -5354.552 156.8383 0.2173
SV-RV -5347.470 163.9210 0.2272
IVSV -5494.956 16.4352 0.3112
SV-IV -5363.520 147.8712 0.2635
SV-DPM -5511.391 — 0.3155
SV-t -5519.601 -8.2104 0.3134
SV-N -5527.284 -15.8932 0.3207
1. Data start on January 3, 2004. The out-of-
sample period is from January 4, 2005 to
December 31, 2021.

2. Log BF denotes the log-predictive likeli-
hood (log PL) of the model in the first
column minus that of the SV-DPM. The
higher the value, the greater the improve-
ment in density forecasts from the SV-
DPM.

3. QLIKE denotes the loss function for volatil-
ity forecasts of Patton (2011), evaluated at
the predicted volatility and compared to
the realized volatility RVt. The lower the
QLIKE, the more accurate the volatility
forecasts.
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Table 5: Out-of-Sample Tail Forecasts

Risk level (α) 1% 5% 10%
Scoring rule Taylor PZC Taylor PZC Taylor PZC
RVSV-IV 2.1322 1.1097 1.7955 0.7268 1.6278 0.5012
SV-RVIV 2.2647 1.2407 1.8145 0.7449 1.6348 0.5078
RVIVSV 2.2872 1.2651 1.8519 0.7851 1.6721 0.5484
RVSV 2.2767 1.2519 1.8280 0.7566 1.6435 0.5140
SV-RV 2.2159 1.1915 1.8152 0.7446 1.6373 0.5088
IVSV 2.3279 1.3054 1.8601 0.7929 1.6769 0.5528
SV-IV 2.1656 1.1449 1.8184 0.7523 1.6480 0.5246
SV-DPM 2.3283 1.3078 1.9074 0.8410 1.7124 0.5886
SV-t 2.3207 1.2997 1.9009 0.8339 1.7052 0.5806
SV-N 2.3651 1.3439 1.9012 0.8340 1.7057 0.5809
1. This table reports the scoring rule of Taylor (2019), denoted as “Taylor” and
Patton et al. (2019), denoted as “PZC”, which both evaluate the value-at-
risk and expected shortfall forecasts jointly. The lower the score, the better
the tail forecasts.

2. The data and the out-of-sample period are the same as in Table 4.
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Figure 1: In-Sample Posterior Means for ht
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Figure 2: Cumulative Log Bayes Factors of RVSV-IV against Selected Models
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Appendix A Proposal Distributions for SV Volatility
Let h−t = (h1, . . . , ht−1, ht+1, . . . , hT )

′ and θ be the set of all parameters, the posterior
distribution of ht|h−t, r1:T , RV1:T , IV1:T , θ for different models are:

pRVSV-IV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(RVt|ht, . . . )p(ht|ht−1, IVt−1, . . . )p(ht+1|ht, IVt, . . . ),

pSV-RVIV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(ht|ht−1, RVt−1, IVt−1, . . . )p(ht+1|ht, RVt, IVt, . . . ),

pRVIVSV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(RVt|ht, . . . )p(IVt|ht, . . . )p(ht|ht−1, . . . )p(ht+1|ht, . . . ),

pRVSV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(RVt|ht, . . . )p(ht|ht−1, . . . )p(ht+1|ht, . . . ),

pSV-RV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(ht|ht−1, RVt−1, . . . )p(ht+1|ht, RVt, . . . ),

pIVSV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(IVt|ht, . . . )p(ht|ht−1, . . . )p(ht+1|ht, . . . ),

pSV-IV(ht|h−t, . . . ) ∝ p(rt|µ, ht)p(ht|ht−1, IVt−1, . . . )p(ht+1|ht, IVt, . . . ).

Let rvt = logRVt and ivt = log IVt, then note that

p(RVt|ht, . . . ) = N
(

rvt
∣

∣aRV + ht, σ
2
RV

)

= N
(

ht

∣

∣rvt − aRV , σ
2
RV

)

,

p(IVt|ht, . . . ) = N
(

ivt
∣

∣aIV + ht, σ
2
IV

)

= N
(

ht

∣

∣ivt − aIV , σ
2
IV

)

,

p(ht|ht−1, RVt−1, IVt−1, . . . ) = N
(

ht

∣

∣α + δht−1 + βrvt−1 + γivt−1, σ
2
h

)

,

p(ht|ht−1, RVt−1, . . . ) = N
(

ht

∣

∣α + δht−1 + βrvt−1, σ
2
h

)

,

p(ht|ht−1, IVt−1, . . . ) = N
(

ht

∣

∣α + δht−1 + γivt−1, σ
2
h

)

,

p(ht|ht−1, . . . ) = N
(

ht

∣

∣α + δht−1, σ
2
h

)

.

and

p(ht+1|ht, RVt, IVt, . . . ) = N
(

ht

∣

∣(ht+1 − α− βrvt − γivt)/δ, σ
2
h/δ

2
)

,

p(ht+1|ht, RVt, . . . ) = N
(

ht

∣

∣(ht+1 − α− βrvt)/δ, σ
2
h/δ

2
)

,

p(ht+1|ht, IVt, . . . ) = N
(

ht

∣

∣(ht+1 − α− γivt)/δ, σ
2
h/δ

2
)

,

p(ht+1|ht, . . . ) = N
(

ht

∣

∣(ht+1 − α)/δ, σ2
h/δ

2
)

.
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Therefore, the posterior of ht for each model is proportional to p(rt|µ, ht)N(ht|µM,t, σ
2
M
)

where M represents a particular model and

µRVSV-IV,t = σ2
RVSV-IV

[

(1− δ)α + δ(ht−1 + ht+1)− γ(δivt − ivt−1)

σ2
h

+
rvt − aRV

σ2
RV

]

,

σ2
RVSV-IV =

1

(1 + δ2)/σ2
h + 1/σ2

RV

,

µSV-RVIV,t = σ2
SV-RVIV

[

(1− δ)α + δ(ht−1 + ht+1)− β(δrvt − rvt−1)− γ(δivt − ivt−1)

σ2
h

]

,

σ2
SV-RVIV =

1

(1 + δ2)/σ2
h

,

µRVIVSV,t = σ2
RVIVSV

[

(1− δ)α + δ(ht−1 + ht+1)

σ2
h

+
rvt − aRV

σ2
RV

+
ivt − aIV

σ2
IV

]

,

σ2
RVIVSV =

1

(1 + δ2)/σ2
h + 1/σ2

RV + 1/σ2
IV

,

µRVSV,t = σ2
RVSV

[

(1− δ)α + δ(ht−1 + ht+1)

σ2
h

+
rvt − aRV

σ2
RV

]

,

σ2
RVSV =

1

(1 + δ2)/σ2
h + 1/σ2

RV

,

µSV-RV,t = σ2
SV-RV

[

(1− δ)α + δ(ht−1 + ht+1)− β(δrvt − logRVt−1)

σ2
h

]

,

σ2
SV-RV =

1

(1 + δ2)/σ2
h

,

µIVSV,t = σ2
IVSV

[

(1− δ)α + δ(ht−1 + ht+1)

σ2
h

+
ivt − aIV

σ2
IV

]

,

σ2
IVSV =

1

(1 + δ2)/σ2
h + 1/σ2

IV

,

µSV-IV,t = σ2
SV-IV

[

(1− δ)α + δ(ht−1 + ht+1)− γ(δivt − log IVt−1)

σ2
h

]

,

σ2
SV-IV =

1

(1 + δ2)/σ2
h

.

The initial value h0 and the terminal value hT+1 are simulated from the SV process. Follow
Kim et al. (1998), approximate exp(−ht) with first-order Taylor expansion at µM,t, then the
independent proposal is

ht|h−t, . . . ∼ N

(

µM,t +
σ2
M

2

[

(rt − µ)2 exp(−µM,t)− 1
]

, σ2
M

)

.
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